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ABSTRACT

The nature of the solutions of differential equations of
boundary layer type suggests the desirability of using non-uniform meshes
in the numerical schemes used in solving them. There will be greater con-
centration of mesh points in the boundary layer regions than away from them.
In this study, we describe and implement a scheme that adaptively
generates these mesh points. We explore the possibility of completely
automating this procedure.
Tests are performed and the results are shown. Comparisons
of the results on a non-uniform mesh with results on a comparable uniform

mesh are made. Some conclusions are drawn.
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CHAPTER 1

Introduction: The Problem

1.A Sources, Nature and Examples of Boundary Layer Problems

Two point boundary value problems of the boundary layer type arise
in many areas of applied science. Examples are the boundary layer equations
of fluid dynamics, the edge-effect-on-shells problems of elasticity and
the W.K.B. (Wentzel, Kramers and Brillouin) problems of quantum mechanics
[3,5,6].

These equations are characterized by very sharp changes in the
solutions and/or their derivatives close to the boundaries.

Simple linear examples of such equations and the behaviour of their
solutions are shown below:
Example 1

ey' =y =20

y(-1) =1, y(1) = 2

The behaviour of the solution is sketched in Fig.1.1 for 0 < & << 1.
y(x) = 0 except near the end points, where y(x) rises steeply in "boundary
layer" regions - each of width 0(/€) - so as to satisfy the boundary conditions.
Example 2

ey" + xy' = 0

y(1) =15 y(1) = 2

The behaviour of the solution is sketched in Fig.1.2 for 0 < & << 1.
The solution consists (nearly) of two horizontal straight lines, joined
together in a narrow transition region (interior boundary layer) near the origin.
The width of the transition region is of 0(vg).

For more examples and discussion of the nature of equations of

boundary layer type - linear and nonilinear - see C.E. Pearson [3,4].
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1.B Why use an adaptive scheme.

The nature of the solutions of boundary layer equations suggests
the desirability of using variable mesh spacing for the difference schemes

used in approximating their solutions.

H.B. Keller [1,2] remarked that when the 'Box Scheme' is combined
with h - 0 extrapolation on a fixed, pre-chosen mesh, uniform or variable,
one can obtain sufficient accuracy for most practical purposes, even with

crude meshes.

In many subtle cases of boundary Tayer type equations, one may not know
beforehand where to use fewer or more mesh points. It is therefore desirable
to have a scheme which picks the mesh points adaptively, starting with crude

meshes.

1.C Aim of Report

We attempt in this report to describe a scheme which adaptively picks
the mesh points. We also explore the possibility of completely automating

the mesh selection process.

In chapter 2, the scheme is described and analysed. Its algorithmic

details are available in the Appendix.

In Chapter 3, experiments with three examples are discussed with
particular emphasis on comparing results of the non-uniform mesh adaptively

generated with a comparable uniform mesh.

Chapter 4 contains our conclusions and a 1ist of possibilities which

exist in applying our scheme.
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CHAPTER 2

The Adaptive Scheme

2.A Basis

The scheme outlined below is based on the decomposition of the given
differential equation(s) into a system of first order equations, as done for
the Box Scheme. (See [1],[5] and Appendix C for details.)

The system is now of the form

DWI(X) = C (Z.A..l)
a<x<b
with boundary conditions Paw(a) =9,
wa(b) =9
where x is the independent variable

w.(x),. =1,2,...,m,

w is the solution vector with components W, 3 j

where m is the number of first order equations in 2.A.1
D is an m x m matrix
c is an m-vector
D,c can be (nonlinear) functions of w and x
P.is a Py xm matrix with constant entries
Pb is a po X M matrix (p1+p2 = m) with constant entries
94 is a p1-vector of boundary values at x = a

9 is a p2-vector of boundary values at x = b.

Let us denote the solution of the system 2.A.1 using a uniform mesh
of size h by w(x,h). We denote the ith-component of w(x,h) by wi(x,h).

Consider the Box Scheme which is a second order accurate scheme.
Choose a uniform mesh, size h, and denote the numerical values of w at

X = x; by w(xi,h), and the actual values by w(xi). Then



w(x;sh) = wix;) = E(x1-)h2 + o(n?) (2.1.2)
where X; = i*h and

g(xi) is a vector depending on x,.

Similarly, for a uniform mesh, size h/2, we have

W(x; 1/2) = wix;) + £0x;) (h/2)° + o(h") (2.A.3)
From (2.A.2) and (2.A.3) we have

£(x;) £ (4/30°) (wlx;h) - wx;»h/2)) (2.A.4)

We make use of (2.A.4) in defining our relations and the associated
subdivision technique. Our aim is to redistribute the points based on the
magnitude of these error indicators.

We define IIE(xi)II by
m
JEERITEENETEN

where m is the number of first order equations, Ej(xi) is the jth-component

of g(xi) and oy = 1.

2.B The Defining Relations and Subdivision Technique

Using (2.A.4) we define the weighted estimate of the total truncatin

error at the point x = X; by

2
e_i = 4/3h {OC-IIW'I (X.i :h)"w'l(x-i 9h/2)| + OLZIWZ(X'i ,h)'Wz(X_i ,h/2)| to..t
OLmIWm(,Xi ’h)_wm{‘xi ,h/2) I}

= 4/30° | [w(x; ,h)-w(x; h/2)]]. (2.8.1)



where o1 + Oy +...+ o = 1.

e, is thus a weighted norm of the error vector at the point x = X

For the ith subinterval [x; ;.x;I, with x; = a+(i-1)h, we can define

a measure of the relative size of the perceived discretization error as

s. = fles ,+d)"YT (2.8.2)

i3

where e. (e1_1+e1)/2

'safety margin' to avoid division by zero

[«
"y
(7]
QO

-1
+d) 2

-
I
~=

CH

1
e

k=1
f is a factor to be determined by our desired error tolerance.

The adaptive mesh subdivision then is to divide the original ith interval into

Ny = rh/s; 1 (2.B.3)

subintervals. (Here "I 1" denotes the next largest integer function.)
Hence, e.g., if €., were so small that S; was larger than h then no sub-
division of the original ith interval would occur. If we set ei = 1/Ni’
the new subinterval spacings are eih in the old ith intervals.

We shall indicate how, based on the validity of the asymptotic
estimate of discretization error, {2.A.2) we could expect the discretization
errors for the adaptively generated mesh to be fairly uniform in size. The new

approximate solution is w(x,eih) for a+(i-1)h < x < a+ih and (2.A.2) implies

w(x,8:h) = wix) + &£(x)(0;n) + o(h") (2.8.4)

But, using (2.B.2)



E(x)(eih)2 = E(X)hz/rn/si12

~

2
£(x)s;

However, e, , +d =
i~k

(2.A.3)) so the vector & = £(x)/(e

and we have

w(x,eih) = w(x) + FTQ

-

(ei~1+ei)/2 + d is an estimate of ||&(x)|] ((2.B.1) and

2

; _+d) should be nearly a unit vector,
-1

(2.B.5)

From (2.B.5) we can see how f should be chosen, for

T

1=

k=1

(ek_l/2+d)'1/2

is known prior to selecting the new mesh. If we wish to have an approximate

solution with an absolute error not exceeding a tolerance E, we should get

f

c(E/T)

1
2

where ¢ is a fraction 0 < c¢c < 1.

c=1/2.

(2.B.6)

In the tests reported on below, we took
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CHAPTER 3

Numerical Examples and Results

3.A The Numerical Scheme

The numerical scheme used to implement our technique is the "mid-
point rule" of H.B. Keller [1], [2]. It is an O(hz) method which becomes
an 0(h4) method with h ~ 0 extrapolation. Its implementation by Lam [5]
is used.

3.B Examples Solved

The examples solved are the two equations given as examples of

equations of boundary layer type in Chapter 1. The third example is

0 -1 £ x<a
-y"(x) = fa(X) = m(x+a)2 -;a<x<0
1-m(x-a)2 0<x<a
1 a<x <1
y(-1) =y(1) =0
Its sketch is given below. In the interval -a < x < a, its solution is
quartic. A
i ﬂY |
! |
's- '
| |
‘ |
] |
[ '
'-. !
K'#-‘i X’nq{xzotsa_ - A:_V x

Sketch of Example 3



As a ~ 0
y(x) =cx+d x <0
= -x2 +ex+d x>0
c=d=1/2

If we require fa(O) = 1/2 we have m = 1/2a2. Notice that this is not a
boundary layer phenomenon equation in the usual sense, but it presents similar
numerical difficulties. It is used to examine how our scheme reacts to a
simple, non-smooth problem,

For Example 1, the boundary layer regions are near the points
x = ~] and x = 1. For Example 2, we have an interior boundary layer region
of width 0(v&) around the point x = 0. For Example 3, we expect a behaviour
'similar' to Example 2 in the interval -a < x < a.

We expect greater number of subdivisions in the boundary layer

regions.

3.C Bases of Evaluation and Comparison

Let us review some notation which was introduced in Chapter 2.
The boundary value problems for Examples 1, 2 and 3 are reduced to:
two first order equations of the form (2.A.1), i.e. m = 2, (see Appendix B).
Denote by wk(x) the kth component of the exact solution, k = 1,2. We will
use the presence of 'h' in the notation Wk(xi’h) to indicate that this is the
value of the kth component of one of the discretized problems at a mesh point
X; - We will rely on the context to make it clear whether the original
uniform mesh or the adaptively chosen mesh was used.

The error in w(xi,h) will be denoted by

Ery = o Jwg (%) -wq (% 50 ) [0y [ Wy (X ) -4y (x5 ,h) |
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where the aqs G are the same as the weights used to compute the estimate of
the discretization error in (2.B.1). The user specified desired absolute
error tolerance will be denoted by E. We now introduce two parameters to

try to quantify the performance of the adaptive scheme. One is the deficiency

of the adaptive scheme defined as

Deficiency = (max Eri)|E
i

This parameter is a measure of the adaptive processes ability to meet the
requested error tolerance. A deficiency of 1 would be highly desirable.
The other parameter we call the uniformity of the adaptive scheme,

N

Uniformity = 1og1o[m?x Eril(jZ1ErilN)]

It is a Togarithmic comparison of the maximum error to the average error. A
uniformity of zero would be highly desirable.

To compare the effectiveness of the non-uniform spacings chosen
adaptively, we compare the results obtained on the non-uniform meshes with the
results obtained by using a uniform mesh with the same number of subintervals.
Hence the comparison uniform mesh is not the (relatively crude) uniform mesh
used in the initial stages of the adaptive process. Nor is it the
(relatively fine) mesh that the process would predict if the finest mesh
spacing that was chosen adaptively were taken for a uniform mesh spacing. It
is a uniform mesh which produces a problem of comparable magnitude to the
non-uniform one.

For the tests made on the example problems, the problem parameters

chosen were

Example 1 e=.1, .01, .004

.01

Example 2 €

Example 3 a= .05
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and the method parameters used were ay =a, = 1/2, ¢ = 1/2 (see (2.B.6)),

and d = E/T0.

3.D Results
A. Efficiency
To check on the accuracy and efficiency of our technique, in the
sense of redistributing the mesh points in the appropriate regions, the three
examples were solved using an initial number of mesh points of 21 (initial

'2('25)4, the number of sub-

mesh size = .1). For desired tolerances E = 10
divisions needed in each interval is shown in Tables 3.1, 3.2 and 3.3 for
Examples 1, 2, 3 respectively. Figs.3.1, 3.2 and 3.3 are histograms of the
distribution of points over the range of integration for E = 10-3.
The scheme appears to be redistributing the points appropriately.
The patterns shown conform to those of the solutions.
To further check on the adaptability of the scheme, Example 1
was solved with € = .1, .01, .004. The mesh point distributijons for E = 10'2
are shown in Table 3.4 for each of these three cases. They show greater
concentration of the points near the boundaries as e decreases. They thus
conform with the expected behaviour of the solutions for these values
of €.

B. AbiTlity to meet Specified Tolerance

When the examples were solved using the newly generated mesh, we
measured the deficiency (see section 3C for definition) of each solution for
specified tolerances. The results are shown in Table 3.5,

It shows that for
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TABLE 3.1

Example 1: Number of subdivisions of each interval for each tolerance

Initial N = 21; E = tolerance.

—1og1OE

Interval 2 2,25 2,50 2.75 3.00 3.25 3.50  3.75
1 9 12 16 21 28 38 50 67
2 9 1 15 20 26 35 46 62
3 7 9 12 16 21 28 37 49
4 5 7 9 11 15 20 26 35
5 4 5 6 8 10 13 18 23
6 3 3 4 5 7 9 12 16
7 2 2 3 4 5 6 8 10
8 1 2 2 2 3 4 5 7
9 1 1 1 2 2 3 3 4
10 1 1 T 1 ] 2 2 3
11 1 1 1 1 2 2 3 4
12 1 1 2 2 3 4 5 6
13 2 2 3 3 4 5 7 9
14 2 3 4 5 6 8 11 14
15 3 4 6 7 9 12 16 22
16 5 6 8 1 14 19 25 33
17 7 9 12 16 21 28 37 49
18 10 13 17 22 29 39 52 69
19 12 16 21 28 37 49 65 87
20 113 17 23 30 40 53 71 %4

Final N =

Total + 1 99 126 167 .+ 216 284 378 500 664

Note * Need about 3 times as many points when one goes from tolerance of 10'k

to tolerance of 10'k'].
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TABLE 3.2

Example 2: Number of subdivisions of each interval for each tolerance

Initial N = 21; E = tolerance

-1og]0E
Interval 2 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
1 1 1 1 1 1 2 2 3 3
2 1 1 1 1 2 2 3 3 4
3 1 1 1 2 2 2 3 4 5
4 1 1 2 2 3 3 4 5 7
5 1 2 2 3 3 4 6 7 10
6 2 2 3 4 5 7 9 11 15
7 4 5 6 8 1 14 19 25 33
8 6 8 10 13 17 23 30 40 54
9 6 8 11 14 19 25 33 43 58
10 7 9 12 15 20 27 36 47 63
11 7 9 12 15 20 27 36 47 63
12 6 8 11 14 19 25 33 43 58
13 6 8 10 13 17 23 30 40 54
14 4 5 6 8 11 14 19 25 33
15 2 2 3 4 5 7 9 11 15
16 1 2 2 3 3 4 6 7 10
17 1 1 2 2 3 3 4 5 7
18 1 1 1 2 2 2 3 4 5
19 1 1 1 1 2 2 3 3 4
20 1 1 1 1 1 2 2 3 3
Final N =
Total+1 61 77 99 127 167 219 291 377 505

* Same comments as below Table 3.1
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TABLE 3.3

Example 3: Number of subdivisions of each interval for each tolerance

Initial N = 21; E = tolerance

—1og]0E
Interval 2 2,25 2,50 2,75 3.00 3.25 3.50 3.75 4.00 4.25

1 1 1 1 1 1 1 2 2 3 3
2 1 1 1 1 1 [ 2 2 3 3
3 1 1 1 1 1 1 2 2 3 4
4 1 1 1 1 1 2 2 2 3 4
5 1 1 1 1 1 2 2 2 3 4
6 1 1 1 1 1 2 2 2 3 4
1 1 1 1 1 2 2 2 3 4

8 1 1 1 1 1 2 2 2 3 4
9 1 1 1 1 1 2 2 2 3 4
10 1 2 2 3 3 4 6 9 10 13
11 1 2 2 3 3 4 6 9 10 13
12 1 1 1 1 1 2 2 2 3 4
13 1 1 1 1 1 2 2 2 3 4
14 1 1 1 1 1 2 2 2 3 4
15 1 1 1 1 1 2 2 2 3 4
16 1 1 1 1 1 2 2 2 3 4
17 1 1 1 1 1 2 2 2 3 4
18 1 1 1 1 1 2 2 2 3 4
19 1 1 1 1 1 2 2 2 3 3
20 1 1 1 1 1 2 2 2 3 3

Final N

o]
(8]

Total +1 21 23 23 25 25 39 49 55 75

* QObservation on Example 1 and Example 2 does not hold in this case.
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ple 2: Number of subdivisions

of each interval
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TABLE 3.4

Example 1: Dependence of subdivisions on size of € (equation parameter)

Tolerance = 10"3; Initial N = 21

Intervai = 3 .01 .004

1 1 9 18

2 2 9 15

3 2 7 8

4 2 5 4

5 2 4 2

6 2 3 1

7 2 2 1

8 1 1 1

9 1 1 1

10 2 1 1

11 2 1 1

12 2 1 1

13 2 2 1

14 2 2 1

15 3 3 2

16 3 5 3

17 3 7 6

18 3 10 11

19 2 12 21

20 2 13 26
Final N =

Total + 1 42 99 126
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Example 1: maximum error = .4 x E
Example 2: maximum error = .6 x E
Example 3: maximum error = 3.0 x E

For Examples 1 and 2, the results more than met the desired tolerance
and the results for Example 3 are not bad.

C. How Uniform is the Error?

After the redistribution of the mesh points, we expect the errors to
be fairly uniformly distributed over the interval of integration. For our
examples, the uniformity (see section 3.C for definition) of each solution
for each specified tolerance is shown in Table 3.6. For the three cases, the
uniformity decreased with N - the final number of points generated.

For Example 1, maximum error = 1.7 x average error

For Example 2, maximum error = 2.2 X average error

T

For Example 3, 1.7 x average error < maximum error < 25.12 x average error
These mean that for Example 1, the maximum error is less than twice
the average error (actually ~ 1.66 x average error). For Example 2, the
maximum error is about twice the average error (2.24 x average error).
For Example 3, the maximum error ranges from less than twice average error to
about twenty-five times the average error.
The errors, therefore, appear to be fairly uniformly distributed
over the range of integration.

D. Non-uniform Mesh Solution versus Uniform Mesh Solution

After solving the Examples with a non-uniform mesh, they were also
solved with a uniform mesh using the same number of points generated by the

adaptive technique.
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The deficiencies and uniformities of the solutions for specified
tolerances are given in Tables 3.5 and 3.6, respectively.

Fig.3.4 shows graphs of the errors in solving Example 2 (with e = 10'3,
number of points generated was 167) with a non-uniform mesh and with a uniform
mesh respectively. Maximum error is expected at the centre of the interval.

In Fig.3.4, the distribution of errors as they occur for Example 2
is compared for the adaptively chosen mesh and for the comparison uniform mesh.
The 'X''s are marked on the error curve at the positions of the mesh nodes
used. It can be seen that the adaptive mesh has bunched the nodes near the
origin and left them spread out near the ends of the interval. The basic

distribution of error is similar in both cases; with the adaptive mesh having

reduced the peak error by a factor of about 10.

E. Dependence of Final Number of Mesh Points on Tolerance

It has been observed recently by Malcolm and Simpson [7] and Rice [8]
for adaptive quadrature that the order of the method used is preserved, in a

sense. In the case of a 2nd order method, the sense is that the selected

number of subintervals (Nfina1)’ is expected to be proportional to eV/2,

This appears to be the case in our scheme.
Starting with N = 21 points the examples were solved and the final

number of mesh points generated, (N ), were recorded for each tolerance.

final

See Table 3.7. Fig.3. contains graphs of log1O(N ) vs -1og10E for the

final
three examples. For examples 1 and 2, the results give straight lines

with slopes nearly equal to 1/2. Therefore, logloN g - %JOQ]OE + K, i.e.

. £-1/2
Nfina1 E ’

The erratic behaviour of Example 3 is probably due to its lack of
smoothness. In Fig.3.5, its behaviour for bigger tolerances (—1og1o(to1erance)
in the range 2.0 to 3.25) appears to be fourth order; however, it seems to climb

rather unsteadily Tike a second order method for smaller tolerances.
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Fig.3.4 Comparison of Error Distribution from Uniform
and Adaptively chosen Meshes
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TABLE 3.5

Deficiency of Solutions for each tolerance.

1og]0E Deficiency
Example 1 Example 2 Example 3
Non- Uniform Non- Uniform Non- Uniform
Uniform mesh Uniform mesh Uniform mesh
| Mesh mesh mesh
2 416 2.82 .548 2.78 .844 .844

2.25 422 3.08 .580 3.08 416 .910
2.50 .420 3.10 .574 3.28 .742 1.618
2.75 432 3.28 .646 3.54 .648 2.728
3.00 434 3.36 .642 3.62 1.15 4,846
3.25 432 3.38 .636 3.74 1.32 7.092
3.50 434 3.42 .640 3.76 1.408 11,830
3.75 * * .670 3.98 2.15 20.476
4.00 * * * * 2.938 34.982
Note: * indicates those deficiencies which could not be obtained because

the number of points generated by the scheme was more than we
wanted to allow in our programs.




- 22 -

TABLE 3.6
Uniformity of Solutions for each tolerance.

-1og]0E UNIFORMITY
Example 1 Example 2 Example 3
Non- Uni form Non~- Uniform Non Uniform
uniform| mesh Uniform mesh Uniform mesh
mesh mesh mesh
2 .252 .697 .363 .755 1.322 1.322
2.25 232 .695 . 361 .753 .857 1.333
2.50 .231 .694 . 347 .748 .857 1.333
2.75 .223 .693 .362 .749 .659 1.308
3.00 .219 .693 . 352 .749 .659 1.308
3.25 .216 .692 . 342 .748 .544 .964
3.50 .213 .692 . 340 .748 . 380 .784
3.75 * * .337 .748 .319 .737
4,00 * * * * .230 .659

Note: * (see note below Table 3.5)
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TABLE 3.7

DEPENDENCE OF FINAL N ON TOLERANCE DESIRED (E)

EXAMPLE 1 EXAMPLE 2 EXAMPLE 3
-1og]0E

N Logy N N Log; N N LogqoN
2 99 1.996 61 | 1.785 21 1.322
2.25 126 2.100 77 | 1.886 23 1.362
2.50 167 2.233 99 | 1.996 23 1.362
2.75 216 2.334 127 | 2.104 25 1.398
3.00 284 2.453 167 | 2.223 25 1.398
3.25 378 2.577 219 | 2.340 39 1.591
3.50 500 2.699 291 | 2.464 49 1.690
3.75 664 2.822 377 | 2.576 55 1.740
4.00 864 2.94 505 {2.703 75 1.875
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Fig.3.5 Number of points genera ted vs tolerance
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F. Choice of Initjal N

Because the first two solutions, w(x,h) and w(x,h/2) are used
only to generate new mesh spacings, they are in a sense wasted thereafter.
It is therefore desirable and important that one does not start with too
many points and yet should be able to generate enough points to satisfy the
desired tolerance.

To check if our scheme has this capability, our examples were solved
with different initial values of N. The final value of N generated for each
tolerance were recorded and are shown in Tables 3.8, 3.9 and 3.10. The defi-
ciencies are also shown (Tables 3.11, 3.12 and 3.13).

For examples 1 and 2, the desired tolerances were satisfied in all
cases. For example 3, they were satisfied in some cases. As expected,
all the desired tolerances tend to be satisfied as final N gets larger. In
this case, more points fall into the boundary layer region and a better
distribution of points is obtained.

For example 1, final N varies little with initial N for each
tolerance. This does not appear to be the case in the other two examples.

From these results, there does not appear to be a clearcut guide-
line for choosing initial N so as to achieve desired tolerance. It will

have to depend on the problem being solved.
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TABLE 3.8

EXAMPLE 1: VARIATION OF FINAL N WITH INITIAL N

Initial
~logy oE ! 9 11 13 15 17 19 21
2 110 99 99 97 a7 97 99
2.25 146 127 129 127 127 126 126
2.50 193 168 169 168 166 164 167
2.75 254 224 222 220 217 219 216
3.00 335 297 293 291 289 286 284
3.25 447 392 388 383 381 380 378
3.50 594 521 516 512 506 501 500
3.75 792 693 687 680 669 665 664
4.00 1054 922 912 902 894 884 881
TABLE 3.11
Example 1: Variation of Deficiency with Initial
Initial
N
~logy
10 ° 9 11 13 15 17 19 21
2 .218  .200 .194 .191 .206 .208 .208
2.25 213 .196 .198 .196 .194 .205 .211
2.50 .213  .202 .195 .200 .198 .204 .210
1.75 .217  .205 .203 .201 .205 .204 .216
3.00 .215  .206 .203 .198 .203 .206 .217
3.25 .219  .206 .211 .203 .203 .210 .216
3.50 * * % * * * *
3.75 % * % % % * *
4.00 * * * * % % %

* - the number of points generated was larger than the
mrmmmlamaa 2T T mrrnd L el A A fENNN
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TABLE 3.9
Example 2: Variation of Final N with Initial N
Initia
N
—1ogloE 9 N 13 15 17 19 21
2 125 51 89 85 71 59 61
2.25 165 63 113 1M 89 73 71
2.50 217 83 147 145 113 95 99
2.75 289 11T 193 187 153 123 127
3.00 381 143 255 249 201 163 167
3.25 507 189 343 331 267 215 219
3.50 679 251 453 439 351 283 291
3.75 903 333 599 583 463 373 377
4.006 | 1199 4417 787 773 613 495 505
TABLE 3.12
Example 2: Variation of Deficiency with Initial N
\Initial
‘ N
-log
10E \- 9 11 13 15 17 19 21
2 .241 .338 .356 .398 .316 .316 .274
2,25 .241 .378 .376  .380 .347 .340 .290
2.50 .241 .39 .392  .416 .365 .340 .287
2.75 . 249 .369 416,405 344 341 .323
3.00 .250 .399 425,415 370 .327  .321
3.25 * .392 419 425 .367  .334  .318
3.50 * .396 437 428 .374 (347 .320
3.75 * .393 % * .387 .348 .335
4.00 * .399 * * * -356 *

* - pumber of points generated was larger than allowed
in the program (500).
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TABLE 3.10
EXample 3: Variation of Final N with Initial N
Initial
—1og]0E " 13 15 17 19 21 31 41
2 13 15 17 19 21 31 41
2.25 13 15 19 21 23 48 a1
2.50 13 17 19 21 23 49 a
2.75 13 17 19 23 25 69 43
3.00 15 19 21 23 25 91 43
3.25 15 19 29 35 39 115 43
3.50 17 31 39 43 49 141 45
3.75 23 35 4] 49 55 192 57
4.00 29 45 57 67 75 247 87
TABLE 3.13
Example 3: Variation of Deficiency with Initial N
Initial
N
_ligE 13 15 17 19 21 31 41
2 L4220 L4220 422 L4220 L4220 242 117
2.25 .750 .750 .371 .276 .208 .105 .208
2.50 *k ok .661 .491 .,371 .182 .371
2.75 F*k *% *% 346 .324 .168 209
3.00 *k &% .748 .616 .577 .223 .371
3.25 *% *% .986 .821 .660 .326 .660
3.50 *k *k *% L944 709 .496 .704
3.75 *% *k *% *% k% 752 .,961
400 % %% %% %% *% %k *%

#% - deficiency

greater than 1
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CHAPTER 4

Conclusions and Possibilities

Our scheme appears to possess some desirable properties of an adaptive
mesh-generation scheme.

New mesh points are inserted in the appropriate places. It appears
that so long as the numerical scheme used to implement it is stable on a
uniform mesh, it is also stable on the non-uniform mesh generated.

It appears that one need not start with too many point initially,
but it is not clear how one should choose this number. It will have to de-
pend on the problem being solved.

The solutions obtained from the non-uniform mesh are more accurate
than those obtained from the uniform mesh (using the same number of points
generated by the scheme). The errors are smaller and more evenly spread
over the interval of integration. However, these effects are not strongly
pronounced.

How does one know that he has generated enough mesh points to give
a solution whose deficiency is less than 1? There does not appear to be
a clear dependence of the final number of points generated on the initial
number of points, as shown in Table 3.9. Moreover, there may be no way of
knowing the deficiency of a solution before actually obtaining the approxi-
mate solution.

So the question is whether the advantages obtained from our scheme
are worth the overhead - extra number of computations and code - involved?
The answer, at this stage, may be 'no'. But non-uniform meshes have been
effectively used in solving several problems and have shown remarkable im-
provement over uniform mesh solutions.

We have, here, only explored a possible meéthod of automating the

mesh-generation and we believe that the effectiveness of our scheme can be
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improved. It has to be more fully tested.

Possibilities

Several possibilities exist in the application of our scheme.
1. If one knew beforehand where the boundary layer region(s) are,
it may be advantageous to start with a non-uniform mesh, smaller mesh size

in the boundary layer region(s), larger mesh size in the other places.

2. The choice o = 1/m 1<i<m for the error weights, may not be ideal.
A different choice of oy may give better distribution of points and better
results. For a given problem there may be an optimal choice of ui's. To
determine this may be a more difficult subproblem than the origianl pro-
blem. It will be interesting to know what happens when a1=1, a1=0, izl or

when OLk=] . o(,_i=0, izk.

3. Different choices of the scale factor, ¢, are possible. If the de-
ficiency of a solution is greater than 1, it may be necessary to choose a
new scale factor (smaller than the original one) so as to increase the
number of points generated. If the deficiency is very much less than 1,
than one may have used more points than necessary and a larger scale factor
could be used subsequently to reduce the number of points and computational

effort.

4. For time-dependent problems which exhibit boundary layer phenomenon,
it may be advantageous to redistribute the points after a certain number of
time steps. This will result in doing fewer computations and getting good

results or doing more computations and getting better results.

5. It is possible to choose a certain fixed number k>0, such that if
the number of subdivisions of any interval is greater than k, then one applies

the adaptive scheme to only that interval to obtain a better distribution.



- 31 -

It is not clear how to choose k and it is doubtful if the accuracy obtained
is worth the overhead. A choice of k may result in very many of the in-

tervals being further subdivided. This is time consuming.
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APPENDIX A
IMPLEMENTATION

a. Computational Steps

Subject to the constraints outlined above, the basic computational
steps are:

1. Choose initial number of mesh points. and tolerance.
Solve the system (uniform mesh). Store results.

Double the number of mesh points.

S ow N

Solve the system again (uniform mesh). Store results.

5. Use results of steps (2) and (4) to generate error estimates.

6. Use estimates in (5) to obtain the number of subdivisions

of each original interval.
7. Generate new (non-uniform) mesh.
‘8. Solve the system.
b. Routines

The routines for carrying out steps 2, 4 and 8 depend on the numerical
scheme being used. Possible routines for carrying out steps 5 and 6 are given
below:

SUBROUTINE ERROR - For step 5 (m = 2)

SUBROUTINE NUMESH - For step 6

The parameters passed through these routines are explained within

them.
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SURRAUTTNE NUMESH( JF , ERCR, C, EPSLMN, DX, THETA, JENEW)
THIS SURROUTTNE GENERATES THE NE™ SUBDIVISIMN,

JE ====- NUMBRER AF MESH PAINTS --- ALD ONE,

FROR -==--- VECTCOR OF ERMR FESTIMATES CRTAIMED FROM "SUBROUTINE ERRMRM

C ----- FACTOR FOR DETERMIMING SCALE FACTOR 0 <= C <= 1.

EPSLAN --==~ DESIRED TOLERANCE.

DX ====- VECTMR CONTAINING IMTERVAL LENGTHS,

THETA -=--- VECTAR CONTAINING THE NUMBER OF SURDIVISICONS OF EACH
INTERVAL,

JENEW ====- NEW TOTAL MNUMBER CF MESH PCOINTS,

DIMENSION FRAR(JE), DX(JE), THETA(JE), ERCJE)

ER ----- VECTOR CONTAINING THE AVERAGE 0F THF ERRCFRS AT Twn
SUCCESSTIVE POINTS,

UM = 0,
Jd = JE/2

SET 'SAFETY MARGIN' (D) FNUAL TR EPSLAN / 10,
D = EPTLAN *+ (.1)
MRTATN THE AVERAGES AMD THETR SUM,

DY T =1, J
ERP = (ERMRCT) + ERPOR(I + 1)) * (,5)
FR(I) = (ERPR + D) *+ (-,5)

SUM = SUM + FR(I)

1 CONTINUF
TAKE THE SQUARE OF THE SUM
SUMEN = SUM + SUM
ABTAIN STEP FUNCTICN VALUES AMD NUMBER MF SURDIVE, OF EACH TINTEPVAL
SCALEF C » SNRT(SUMSN = EPSLON)
D 2 71 1, 4
S = (SCALEF * FR(T)) / <uM

THETA(T) = DX(T) / ¢ + 1
2 CONTINUE

COUNT THE NUMBER OF MESH POTNTS GENERATED

TeUM = 0
D3 K =1 , Jd
KK = THETA(K)
pe3 1 =1, KK
TeuM = 1M + 1
3 CONTINUE
JENEW = TSUM + 1
RETURN
END



OO

- 34 -

SUBRMUTIME ERROR(JE, U1, U2, DX, ALPHA, ERCR)
SURRMUTINF COAMPUTES  THF "TATAL" EPRMR ESTIMATES (SEF 2.B.1)

JE === THE NUMBER OF MESH POTNTS, THNTERMAL + BOUNDARY,

vl ----- THE SOLUTTOM OF THE SYSTEM WITH UNIFARM MESH ST7F M,
2 ----- THE SCLUTTIAN MF THFE SYSTEM WITH UNTFORYM MESH CST7FE H/2.
DX -=-=- TNTERVAL LENGTHS, DX(T) = X(T + 1) - X(T),.

ALPHA ----- APRAY (OF MWEIGHTS, (SEE 2.R.1)

FRAR ====- VALUES OF ERRMRS E(T) (SFE 2.R,1), THIS IS THF

AUTPUT OF THIS SURRMUTINE,

DIMENSTAN ULICJE,2), U2(JE,2), DX(JE), ALPHA(2), FERAR(JE)
THE DTMENSTION MF ALPHA SHAULD BE ENUAL TO THE NUMRER OF
FIRST ORDER ENUATTICONS IM THE SYSTEM,

JJd o= JF/Z + 1

D 11 = 1'['!!
KK =2+ T -1
A = ARS(UL(T,1) - U2(k¥,1))
B = ARS(UI(TI,2) - U2(KK,2))
RAT = 3,0 * DX(I) » DX(T)
TOP = b, *(ALPHA(L1) + A + ALPHA(2) =* B)
EROR(I) = TOP/RAT

CONTIMUE

RETURM

END
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APPENDIX B

BREAKING UP THE GIVEN EQUATION(S) INTO A SYSTEM OF FIRST
ORDER EQUATIONS

We demonstrate with a few examples.

Consider Examples 1 and 2 (Chapter 3)

1. ey' -y=0
y(-1) =1, y(1) =2
0 <e<<

2. ey" + xy' =0
y(-1) =1, y(1) =2
0 <e<<]

We can break them up as follows:

1. Let y = W1
y' = w,
Then ewé = Wy
wi = W,

Thus
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E—
]
0

P, = (1,0
pp = (1,0)
9, = 1
9 = 2

Alternatively, we can break it up as follows:

Let y W,

1

y' wi = wz/fé

Ve wé =W
w1(-1)= 1, w1(+1) = 2.

- (4 4)
()

w', Pa and Pp> 95 and 9 remain the same.

Thus

(gp]
1]

2. Let y = Wi
vzt
Then wé = -XW,
Wy = W,

Thus
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Ve 0

()
()

] .
w's p, and Pp> 9 and g, remain the same.

(]
1

2. Let y = Wy
y'E ey =y
Then ewé = -Xw,
wi = W,
wp(-1)= 1, w(+1) = 2
Thus

W, .
()
-XW2

p, = (1,00, py = (1,0)
9q = 1, 9, = 2.
Alternatively let y Wy
y' = wz//g = wi
Then ey" = wé//g = Jew, = —xwz//E

w](-1)= 1, w1(+]) = 2.
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Thus
Ve 0
D=< )
0 Ve
(e
-xwzf/E

pa,pb,ga,gb remain the same,

(9]
1l

Remarks

If one is interested in the values of y' or higher other derivatives,
then the first method of breaking up is preferable to the second. This is
because of the division by ve in the second method. If e is very small,
then the estimates of the derivates will be very poor.

If one is interested in only y, then any of the methods is fine.

Our computations in the Chapter 3 were done using the first method.
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