NUMERICAL EXPERIMENTS USING DISSECTION
METHODS TO SOLVE n BY n GRID PROBLEMS

by

Alan George
Research Report CS-75-07
Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

March 1975

This research was supported in part by Canadian
National Research Council Grant A8111,

ABSTRACT

Recently the author has proposed two theoretically efficient
orderings for Gausstan elimination when it is applied to systems of n2
linear equations arising in connection with the use of finite elements
methods on an n by n grid [6,7]. These are efficient in the sense that if
zeros are exploited, the amount of arithmetic required is 0(n3) or 0(n7/2),
compared to O(n4) if the usual row by row numbering scheme is used. Similarly,
the amount of fill suffered is O(n2 logzn) and 0(n5/2) compared to 0(n3).

These comparisons ignored differences in the program and data structure
complexity required to exploit the zeros for the different orderings.
In this paper the author describes how these orderings can be implemented

in an efficient manner and provides numerical experiments which show that

the performance of these programs properly reflects the theory.

§1 Introduction

Recently the author has proposed two efficient ordering strategies
for sparse positive definite systems of linear equations associated with
an n by n grid or mesh consisting of (n—1)2 small "elements" [6,7]. For
some numbering of the grid points from 1 to n2 we have the n2 by n2 matrix

equation

(].]) Ax bs

where Aij = 0 unless grid points i and j belong to the same element. Matrix
problems such as this or similar to this arise in connection with the use of
finite element or finite difference methods to solve elliptic boundary value
problems on rectangular domains. We solve (1.1) using symmetric Gaussian
elimination or Cholesky's method by first factoring A into LLT, where L is
Tower triangular, and then solving the triangular systems Ly = b and

LTx = y.

Now it is well known that when Gaussian elimination is applied to a
sparse matrix, it usually suffers some "fill"; that is, the triangular factors
have nonzero components in positions which are zero in the original matrix.
Thus, we might reduce this fill by replacing (1.1) above by the equivalent

problem
(1.2) (PAPT)q = pb,

where g = Px and P is a judiciously chosen permutation matrix of the appro-
priate size. The permutation P might be chosen for other reasons, such as
reduced arithmetic requirements, convenient data management, convenient coding

and perhaps other factors.

The two proposed ordering strategies mentioned above (and described
in sections 3 and 4) are efficient in the sense that the amount of arithmetic
required to solve the problems is 0(n3) and 0(n7/2), compared to 0(n4) for
the so-called row by row or "natural" ordering. Similarly, the fill suffered
during the factorization is 0(n21ogzn) and 0(n5/2), compared to O(n3) for
the natural ordering.

From a pure compiexity point of view, these comparisons are perefectly
legitimate. However, from a practical point of view their relevancy is
open to question because they ignore differences in the cost of exploiting
sparsity for the different orderings, and this cost appears to be higher
for the more efficient orderings. Also, the constants multiplying the high
order terms in the arithmetic and fill counts are different for each ordering.

This motivates the objective of this paper, which is to compare
in a practical way (i.e., computer execution time, computer storage require-
ments), the two proposed ordering strategies and the natural (row-by-row)

ordering.

The paper consists of the following. In sections 2-4 we review
the natural, nested dissection, and one-way dissection orderings respectively.
We include estimates for the number of nonzero components in their respective
L's that we must store, and the amount of arithmetic required to factor the
n2 X n2 matrix, for each ordering. We also describe the storage techniques

used and provide estimates in each case for the amount of storage overhead

(pointer data etc.) required for the data structure. Finally, in these

sections we report the results of some experiments which demonstrate that

our implementations properly reflect the theory. In section 5 we provide

a comparison among the codes, with respect to various practical criteria.

Section 6 contains our concluding remarks.

It is helpful to have some notation for various quantities we

use to i1lustrate and compare the performance and efficiency of our codes.

In this connection, we provide the following, where "multiplications" mean

multiplicative

8. ~

operations (multiplications and divisions).
the number of multiplications required to compute the
Cholesky factorization, if all zeros are exploited.

the number of multiplications actually performed by the

code under discussion, to compute the Cholesky factoriza-
tion. (Obviously O < éF.)

the number of multiplications required to solve Ax = b,

given the factorization produced by the code under study,
if all zeros are exploited. (We assume that b is full.)

the number of multiplications actually performed in solving

Ax = b, given the factorization produced by the code under
study. Again, it is clear that 6 < és. (A11 our codes
assume b is full.)

the number of nonzero components in L that we need to_store

in order to execute the algorithm under study. (For the
one-way dissection scheme, this is not the number of nonzero

components in L. See section 3 for details.)

n - the number of components of L actually stored, including

any zeros.

n - the number of storage locations used for pointers etc. in
connection with storing L.

n - theatotaT storage used in connection with the storage of
L (= 7+).

n - the total number of storage locations used by the program for
its data, including that required for the right-hand side b,
all pointer data, and any auxiliary vectors that are needed
to execute the algorithm,

T. - central processor time in seconds required to compute the
factorization of A.

T. - central processor time required to solve Ax = b, given the
factorization of A.

We believe the times TF and TS to be in error by no more than about

5 percent.

Our programs do not do any "packing" of pointers; that is, our
codes used the same number of bits to store pointers as that used for float-
ing point data, permutation vectors etc. However, on some computers it is
convenient and desirable to store pointers using only a fraction of the storage
required for a floating point number. Thus, the reader should keep in mind
that some of our reported quantities such as ﬁE may be much smaller for

similar implementations on other computers.

§2 Banded Orderings and their Implementations

In this and the following two sections we describe the three
orderings which we intend to compare along with the programming techniques
used in order to utilize them. The first is the simple but popular and
widely used row by row numbering scheme, which yields a band matrix having

bandwidth m(A) = n + 1, where

(2.1) m(A) max|i-3].

1370

A

Implicit in the use of band orderings is the assumption that zeros outside
the band are to be exploited. The fill is confined within the band, and it
is usual to ignore zeros within it when processing A. A storage scheme
which is often used in conjunction with symmetric N x N band matrices is to store
the diagonal and the m non-null sub-diagonals of A in an N x (m+1) rectangular array
[14]. This storage scheme is reasonably efficient if m << N, and since no pivoting
is required to maintain numerical stability, the factorization can be
conveniently carried out "in place", with L replacing A in the array.

A somewhat more attractive scheme, in our opinion, is that suggested

i
define the envelope of A by

by Jennings [13]. Define f, = min{leij # 0}, 1 <i< N. We then

(2.2) Env(A) = {(i,j)]i = f; and j > f.1.

Jennings proposes storing those components aij of the Tower triangle of
A, for which (i,j) € Env(A), row by row in a one dimensional array S, with

an extra N pointers to the diagonal components a5 in S. Thus, this

storage scheme exploits any variation in the band, and avoids the inevitable
wastage of m(m-1)/2 storage locations which the diagonal storage scheme
described above incurs. (See [9, chapter 4] for experiments which
demonstrate how substantial these savings can be for some rectangular
problems.) In exchange, we must store N pointers. We have used this storage
scheme in the experiments we report here and in section 5 for the row by row

numbering scheme. See Figure 2.1 for an example.

4 Pointer Data
array array S
3 2 symmetric
1 4
1 1
A = 3 "’—.* 3
2 7 5 2
10 1
1 12 13 5
0
7
6
9
1
0
12

Fig.2.1 Illustration of Jennings envelope storage scheme

For the problems we consider in this paper, the number of nonzero

components in L (”L) is n3 + n2 - n. For our code we observed that n = ﬁL

and ;L = + n2 as expected. It is easy to verify that bp * n4/2 +11n3/6 + 0(n2) .

and our code satisfies éF = GF. Obviously, eS = 2nL, and for our code

0 2

we found that 6. = 6.. It is also clear that n_=n for our test problems.

S S’
To verify that our code's execution times TF and TS are proportional

to Op and éS respectively, we present Table 2.1 which shows that the execution

time properly reflects the amount of arithmetic being performed.

2

n n TF/§F To/8¢

10 100 2.2(-5) 1.3(-5)
15 225 1.8(-5) 1.2(-5)
20 400 1.7(-5) 1.2(-5)
25 625 1.7(-5) 1.2(-5)
30 900 1.6(-5) 1.2(-5)
35 1225 1.6(-5) 1.2(-5)
40 1600 1.6(-5) 1.2(-5)

Table 2.1 Ratio of execution time to operation counts
using the natural ordering and Jennings
envelope storage scheme.
Table 2.1 demonstrates the interesting fact that the IBM optimi-
zing compiler does a considerably better job of generating code for one of
the 1inner joops of the triangular solvers than it did for the inner loop of

the factorijzation routine. This is particularly surprising since they do

not look al1 that different, as shown below.

DO 4 J4 = J1, J2
S =S - A(J4)*A(J3)
J3 =33 + 1
4 CONTINUE

Inner Toop of the factorization subroutine.

DB 4 K = K1, K2
S =5 - A(K)*A(L)
L=1L+1
4 CONTINUE

Inner Toop of the lower triangular solver.

D@ 54J = J1, J2
X(J) = X(J) - A(M)*R
M =M+
5 CONTINUE

Inner loop of the upper triangular solver.

As expected, the machine code produced for the first two Toop was the same.
However, the code for the inner loop of the upper triangular solver was
considerably more efficient.

This phenomenon, while not at all uncommon, serves to emphasize the
danger in drawing conclusions about performance of algorithms without actually
implementing them. Although this particular anomoly could be dismissed as
"compiler dependent", many algorithms, while equivalent in some theoretical

sense, differ considerably in their complexity of implementation.

- 9.

§3 Nested Dissection Orderings and their Implementation

It is becoming increasingly well known that if we avoid operating
on and storing all zeros, orderings which minimize m(A) or Env(A) are often

far from optimal in the least-fill or least-arithmetic sense. The second

ordering strategy we consider is the so-called nested dissection ordering

scheme, which minimizes (in the asymptotic sense) both arithmetic and fill.

For a detailed discussion, the reader is referred to George [6]. However, for

completeness and to help describe the implementation, we review the basic idea here
Following the approach described in [1], 1let V be the set of

vertices of the n by n mesh and let C] consist of the vertices on a mesh

line which as nearly as possible divides V into two equal components R} and

2 By definition, variables associated with vertices in R} are not connected

1"
to those in Rf. Thus, if we number variables in R}, followed by those in R%,

R

followed finally by those in C1, we induce the following block structure

in A.
A 0 Ayg
(3.1) A= [0 Ay Ay
T T
A Ayz Aszz .

Thus, variables associated with C1 "dissect" the problem into two independent

components. Obviously,

=gl ,R? =
VA C1 = R1 v R] = R1.

%

Now choose vertex sets S] c R%, 2 = 1,2, consisting of nodes lying

on mesh lines which as nearly as possible divide R% into equal parts. Let

- 10 -

1 = S} v S% and define C, = C] U 31. If we number the variables associated
with the vertices in R% \ S% before those associated with S%, 2 =1,2, then
we induce in A]] and A22 of (3.1) exactly the same structure as that of

the overall matrix, but of course on a smaller scale. Obviously, we can

repeat this process, generating a nested sequence of vertex sets

n

¢ < C] c C2 ...C Cr =V, where

£
VA Ck = Rk = U Rk and
2=1
k
_ _ 20 L
Chrt G = 3¢ = Y %k

An example of such a nested dissection appears in Figure 3.1 for a 10 by 10
mesh.Tt The vertex label k denotes membership in Sk‘

Thus, an ordering induced by this nested dissection is as follows.
Number variables associated with vertices in S& consecutively, followed by
those in S&_], and so on, finally numbering variables associated with
vertices in S}, S% and S, (= C]). Each Sﬁ consists of part of a mesh line
of nodes; for reasons which will be apparent later, consecutive numbers

should be assigned to adjacent nodes, beginning at one end. Figure 3.2

contains an example of a numbering induced by the dissection of Figure 3.1.

L
i

When there is a choice, we choose |sﬁ| to be as small as possible, which

&

means for our test problems the Rk consist of rectangular vertex sets whose

lengths do not exceed twice their width.

1
—
p—

I

)
4 4 2 4 4lola 4 2 4
4 4 4 4|0|4 4 2 4
3 3 2 3 3/0(3 3 2 3
4 4 2 4 40|84 4 2 4
4 4 2 4 4l0|4 4 2 4
(i v 1 0 Dol 11)
4 4 2 4 4lola 4 2 4
4 4 2 4 4lola 4 2 4
3 3 2 3 3(0(3 3 2 3
4 4 2 4 4 \o) 4 4 2 5

- Fig.3.1 Nested dissection labelling of 10 by 10
mesh, with label k 1nd1cat1ng membership

in Sk' Sets S and S} i=1,2, are circled.

49 48 81 35 34 100 21 20 72 7
47 46 80 33 32 99 19 18 71 6
63 62 79 61 60 98 59 58 70 57
45 44 78 31 30 97 17 16 69 5
43 42 29 28 9 15 14 68 4

90 89 ﬂ\:z\[_s_ l95] 85 &4 83 &2

2 40 [76 @) @O 98] 13 12 67 3
39 38 [75] @) @D l93] 11 10 66 2
56 55 [74] |54l [53] [02] 52 51 65 50

37 36 73 23 22 91 9 8 64 1

(8]

Fig.3.2 An ordering induced by the labelling of
Fig.3.1.

- 12 -

We now describe the implementation scheme. It is helpful in this

connection to denote the set of nodes which are adjacent to Ri, but not in Ri,

by 8Rﬁ. We also denote the node numbers assigned to the nodes in the set Q

by X(Q).

Our strategy is to regard A as a partitioned matrix, with the

partitioning determined by the sets Sﬁ. This determines "block columns"

of L, and it turns out that the rows in these block columns themselves can

be partitioned so as to have t < 4 non-null blocks. To see this, consider

the following:

1)

3)

The set aRi "insulates" the nodes in Rﬁ from the rest of

V. In terms of Gaussian elimination, this means that the elimination

ﬁ can only connect variables of Rﬁ ¥ aRi.

(For example, in (3.1), the first part of the factorization involving

A1] has no effect on A22; that s 8R}(= C1) insulates R} from the

of variables of R

remainder of V.) Thus, if p X(Rﬁ), Lq

p
If pe X(Rﬁ \ Sﬁ), q € X(Sﬁ) and r ¢ X(aRﬁ), then p < q < r.

= 0 unless q ¢ X(Rzu BRQ).
k k

Thus, in terms of L, the only rows which are involved in the block

column of L corresponding to Sﬁ are those with numbers in

L
X(Sk

aRﬁ consists of portions of mesh Tines, and these portions have

L
u BRk).

t
consecutive node numbers. Thus, X(aRi) = "%ﬁ X(aRﬁ’m), t < 4,

where X(aRi’m) consists of a sequence of consecutive integers.

Also, nodes of Sﬁ are numbered consecutively.

Observations 1) and 2) imply that for p « X(Si)b LiD =) urless

J e X(Sé U aRﬁ). Observation 3) implies that the bilock column of L corresponding

i

J

to Sﬁ can be partitioned so that L,p # 0= j is in one of 5 contiquous
subsets of {p,p*+1,...,n}. Specifically, the components Ljp te be stored
have subscripts (j,p). J > p, where p « X(Si) and j 1s in X(Si) or cne of
X(BRZ’m), T <m< t., Although it would take us too far afield here, it

k
is easy to see, using the generalized element model developed in [6], that the

A

non-null blocks of L will be full or nearly so.

In Fig.3.Z2 the members of a typical Ri are circied, with the
members of aRﬁ put in squares. Fig.3.3 contains L corresponding to the
ordering of Fig.3.2 with the partitioning of L indicated by lines drawn on it.

The number of diagonal blocks ng (i.e., the number of sets SE)
satisfies Ny < n2/2 + n. Each block column of L has at most 4 off-diagonal
blocks. Moreover, each of these blocks has the same number of columns, and
the diagonal block is square. Thus, we need 5n2/2 + C(n) numbers to record
the dimensions of the blocks. In our implementation, the diagonal blocks
were stored using Jennings scheme, thus reguiring a further n2 pointers, and
the off-diagonal blocks were all aliocated from a single one dimensional
array, so we needed a further 2% + 0(n) pointers to record their position
in the array. We also need 5n2/2 + 0{n) integers indicating the row number
of L which corresponds to the first row of each of the blocks. Finally, for
convenience in coding, it was helipful to have an array q where Qi 1T <1 < n2,
indicates the block column in which column i resides. Thus, for this storage

scheme and the nested dissection ordering, an estimate for ﬁE is given by

Fig.3.3 The matrix structure of L+LT corresponding to
the ordering of Fig.3.2. The block columns

determined by the Sﬁ are indicated; the enclosed

blocks on the diagonal and above the diagonal
are the matrix components actually stored.

- 15 -

(3.2) aE = 9n% + 0(n).

Using the techniques developed by Birkhoff and George [1], the

following estimates for O and n, can be derived [1o].

2

1t

(3.3) 6% = 9.88n° - 17n21ogz(n+]) + 16.06n

r ~ 0.50n 1092(n+1) - 24.69n

+ 11.50 1092(n+1),

= 7-75n31097€n+1) - 24n2109?(n+3) + 11.50n log,(n+1)

——
w
NS

o

=

=
1

+ 1ln + .75 1092(n+1).

The superscript e 1s intended to remind the reader that {3.3) and (3.4) are
estimates.

Before describing the performance of our nested dissection code,
we want to establish that the orderings we are using do indeed yield
operation counts and numbers of nonzero components given approximately by
(3.3) and (3.4). Table (3.1) contains the ratios |6.-0%|/6, and |n, -n’|/n
for the orderings used by our code. These ratios show to our satisfaction
that the orderings we use yield values of GF and i which are well-

approximated by (3.3) and (3.4).

n n? IGF“GEI/GF lnL-nfl/nL
10 100 215 .054
15 225 .005 .065
20 400 .017 017
25 625 .007 .020
30 900 .018 .013
35 1225 .008 .008
40 1600 .0004 .003

Table 3.1 Relative error in the estimates eﬁ and nﬁ provided
by (3.3) and (3.4)

- 16 -

Just as we did for the envelope code of section 2, we now want to
show that the execution times TF and TS properly reflect the amount of
arithmetic being performed. Table 3.2 contains the ratios TF/éF and Ts/éS
for n = 10(5)40.

2

n n TF/§F TS/§S
10 100 2.1(-5) 2.3(-5)
15 225 2.5(-5) 3.1(-5)
20 400 1.7(-5) 1.8(-5)
25 625 1.6(-5) 1.6(-5)
30 900 1.7(-5) 2.1(-5)
35 1225 1.5(-5) 1.8(-5)
40 1600 1.4(-5) 1.6(-5)

Table 3.2 Ratios TF/éF and Ts/éS for the nested
dissection code

Note first that in Table 3.2, for n = 20, it appears that the
nested dissection code 1s at least as efficient as the band (envelope) code
discussed in §2 (see Table 2.1). Thus, we conclude that even for relatively
small problems our more elaborate data structure does not seriously penalize
the operations-per-second output of our code. The somewhat erratic nature
of the ratios in Table 3.2 will be explained after we consider the
efficiency of our storage scheme, which we turn to now.

In a sense, the efficiency of our storage scheme has already been
established. Using our estimates (3.2) and (3.4) for ﬁE and n > we see that
ﬁE/nL + 0 as n » », which is an enviable situation. By comparison, many

sparse matrix storage schemes require one or more pointers for each nonzero

- 17 -

component of L stored [12,15]. The only item to confirm is that ﬁL—nL is
acceptably small; that is, that we do not store many zeros. Table 3.3

below contains the ratios nL/ﬁL and ﬁ?/ﬁL for n = 10{5)40.

-0,- =

n n nL/ﬁL n/ng n

10 100 .93 573 1705
15 225 1.0 797 4893
20 400 , 984 .408 8845
25 625 . 940 .333 14775
30 900 .990 474 24481
35 1225 .986 .396 33707
40 1600 .967 .298 45007

Table 3.3 Ratio of nonzero components in L tc the number
actually stored, the ratic of overhead storage
to the number of components of L stored, and

-0
)

the total storage EL required for L (= ﬁL+nL

From the ratio nL/ﬁL in Table 3.3, it seems fair to conclude
that our data structure is appropriate in the sense that relatively few
zero components of L are being stored. Also, the ratio HE/EL is tending
slowly to zero as expected. However, just as in Table 3.2, the ratios behave
somewhat erratically,despite their overall trend. We now offer an explana-
tion of this behaviour.

Unless n = 2"-1, r an integer, the dissection will be "imperfect"
in the sense that some or all of the sets Sﬁ at the final level of dissection
will contain more than a single vertex (as was the case in the example

described by Figures 3.1-3.3). This has two consequences. First, some of

rnd
[

the blocks will contain some zeros, implying that nL/ﬁL < 1. The variation
of this ratio in Table 3.2 jllustrates this phenomenon. Second, for n # 2%~],
N4 will usually be considerably smaller than the bound n2/2+n, Since a major
component of ﬁg and a major portion of the computation overhead is directly
proportional to ny> 2 relatively imperfect dissection is beneficial with
regard to reducing HE and execution overhead. This explains the variation
in Table 3.2 and in the second coiumn of Table 3.3.

This Tatter observation Ted us to speculate whether it might be
possible to decrease n and/or execution time by "suspending" the
dissection "early"; that is, to simply number the vertices in Rﬁ arbitrarily
as soon as !R;] fell below a certain threshold. Since EL = ﬁE + HL’ the
storage question was whether early suspension of the dissection might
decrease ”8 more than it increased ﬁLh OQur experience was that in the
relatively few cases where the idea did decrease ﬁL and/or execution time,
the decrease was not significant, so we rejected the idea. However, on

other computers, the idea might very well be effective.

- 19 -

84 One-Way Dissection Schemes and their Implementation

Our final scheme under study, which we shall refer to as one-way
dissection, may be regarded as a compromise between band and nested
dissection orderings. The basic idea is to dissect the mesh in such a
way that the independent blocks can be efficiently processed by band or
envelope methods. Theoretically, this schemes' efficiency lies between
the band and nested dissection orderings, since it has been shown that the

7/2 and n512

computation and storage requirements are proportional to n

respectively. Following [7], the scheme is as follows.
Let a be an integer satisfying 1 < a << n, and choose o-1 sets

of grid Tines (separators) which dissect the n by n mesh into o independent

blocks, as depicted in Figure 4.1 where oo = 4. The heavy lines are

intended to depict a grid line, and the circled numbers indicate the

order in which vertex sets are to be Tabelled.

©
-\
\U"

€
£,
\U_j

@
Ja
2~/ a

@

Fig.4.1 One-way dissection of an n by n
mesh with a = 4

Now number the o independent blocks column by column, followed by the a-1

separators in any order. For our example, such an ordering induces the

block structure shown in Figure 4.2. The hatched blocks indicate the blocks

- 20 -

which are created when the factorization is carried out. The pattern for
general o should be clear.

THere are two key observations which are essential to the use of
this ordering scheme. We illustrate the ideas with a block 2 by 2 symmetric

positive definite matrix A below, where A12 is assumed to be non-null.

) M A12>
1 A = .
Al A

12 22

First, given A, we can compute either of the factorizations shown below.

.
- <A” A]2> <L1 0>(L] W >
. T = T T

A2 A WL L,
4.3 -
: T T -
A2 Ao Ao Ryp/ N0 1
T T .-

B T _ 1 o
Here A]] = L1L] and L2L2 = A22 - A12 ”A]2 = A22, where L-l and L2 are lower

triangular. The off-diagonal blocks of the factorizations are defined by

(4.4) W=L]Aps
and
SR -

Note the factorization (4.3) is as useful as (4.2) since we compute and
store L] and L2 rather than retaining A]1 and KZZ' The essential difference

in computing the factorizations is whether KZZ is computed as

- 21 -

Fig.4.2 Block structure in A induced by one-way
dissection with a = 4

. 22 -

T Ty -1 T =Ty -0
Asp - (A12L])(L] A12) or Ay, - A]Z(L1 (L1

1?). As shown by George [8 1,
these factorizations in general require different amounts of arithmetic
to compute, and the unsymmetric factorization (4.9) may be cheaper to

compute than (4.8), even though A is symmetric!

Thé second key observation is that we may not wish to retain the
off-diagonal blocks of the factorization. Bunch and Rose [3] observe
that in performing the solution, given the triangular factorization (4.8),
it may require fewer arithmetic operations to compute §] = sz by
computing 21 = A]2x2 and then solving L]§1 = 21, than simply multiplying
X0 by W. Similar remarks apply to the use of WT, W and ﬁT.

Returning to our one-way dissection ordering, it turns out to be
beneficial to use both ideas. Indeed, if we do not, the number of muiti-

plications required to factor the matrix using this ordering is >> %ﬂA

. 3
the number of nonzero components in L is >> n”.

, and
That is, the ordering is

much inferior to the natural ordering.

However, our strategy is to let A, of (4.1) correspond to the o
independent blocks, and A22 correspond to the remaining unknowns. Thus, for
example, in Fig.4.2, the only part of L that is stored is the lower triangle

of the diagonal blocks and the hatched blocks in the lower triangle.

OQur implementation is straightforward. The matrices AH and KZZ
are stored using Jennings envelope scheme. This incurs a storage overhead
of n2 pointers. Since A]2 is very sparse, only its nonzero components are
stored. It is easy to verify that it has at most 6 nonzero components in

each column. Two N, by 6 arrays are used, (where Ny = n(a-1),) one

- 23 -

containing the nonzero components of A{z and the other containing their
respective column subscripts. Thus, the overhead storage ﬁE required for

this storage scheme is

(4.6) ﬁe = n% + 6n(o-1).

It is straightforward although tedious to show that the number of
nonzero components of L that we must store, including those of A12 and

including ﬁE, is given approximately by

(4.7) 7 - %(3n2+23n-6) + g(n2+n-2) - B(3n+17).

The number of multiplications required to factor the matrix, as a function

of o, is given approximately by

3

(4.8) 0%(a)= %{7n3+27n2-40n—26) + 3%{18n4+24n ~81n°-90n)

2

- —12{15n4+13n3-15n2-9n) - %{13n3-12n ~136n),
60,

and the number of multiplications required to solve the system, given the

factorization, is given approximately by

2 2

(4.9) 6%(a) = 3a(n + 3n.

S +3n-4) + g(n3+n2-n) - 5n

For large n, (4.7), (4.8) and (4.9) are approximately minimized

respectively by

(4.10) oc: = ‘/2;]73-’

and

- 24 -

(4.12) of = /E0/3.

Just as we did with our nested dissection code, we wish to investi-
gate the performance of our one-way dissection code to see how well its
behaviour is predicted by the theory just developed. It turns out to make
no sense to distinguish between eF and éF’ or between 65 and éS’ since no
zeros are operated upon. Moreover, it is easy to show that {ﬁL"nLl = 4{a-1),
which is relatively insignificant. Thus, if our program properly reflects
our theory, the quantities eg(a), eg(a), and HE(&) should provide reasonable
estimates for éF(a), és(m) and ;L' Table 4.1 shows this to be the case for

n =40, Similar results hold for other values of n.

o | 18p(a)-65(a)]/Belal]|Bg(a)-6g(a) | /Bg(a) | Iy (2)-Rf (=)]/ (o)
2 .016 .007 .004
3 .023 .009 .006
4 .007 .008 .008
5 .014 .006 .010
6 .009 .004 0N
7 .003 .00 .012
8 .031 .002 .013
9 .015 .002 .011
10 .039 .008 .013
M .021 .007 012
12 .030 .008 012

Table 4,1 Relative error in the estimates eg(a), eg(a) and
ﬁf(a) for n = 40 and o« = 2(1)12.

- 25 -

We were interested in determining the reliability of the values

of o predicted by (4.10)-(4.12). To this end we present Table 4.2 below.

n n2 s) a a ap o a O
n n F F F S S S
10 100 2.58 2 5.07 3 2 3.65 3 3
15 225 3.16 3 6.21 5 5 4.47 4 4
20 400 3.65 3 7.17 5 5 5.16 5 5
25 625 4.08 4 8.02 6 5 5.77 6 5
30 900 4.47 4 8.78 7) 6.32 6 6
35 1225 4.83 4 9.49 9 7 6.83 7 6
40 1600 5.16 5 10.14 10 7.30 7 7

Table 4.2 Predicted optimal values of o given by (4.10)-(4.12).
The values of &n, &F and &S are those which actually
minimize ;L’ éF and és, while the values of a; and a;

are the values of o which minimized the corresponding
execution times.

The entries in Table 4.2 show that aﬁ and ag are quite effective

as predictors of the o's which minimize ;L and eS (and TS). The formula for
ug was obtained by ignoring some terms in (4.8) which are relatively large
for small n. As a consequence, a? tends to be somewhat too large for small n.
However, for moderately large n, ag is a reliable predictor of the minimizing
a. At any rate, errors of two or three in the predicted minimizing o

are not very serious since the functions are quite flat near their minima.

We present Table 4.3 as an example which demonstrates this phenomenon.

- 26 -

o 0 Tp % Ts Ny n

1 1,394,939 23.63 131,120 1.70 65,560 67,160
2 2,389,535 29.84 134,548 1.66. 33,779 35,619
3 2,069,316 27.71 95,816 1.2 25,438 27,518
4 1,749,871 24.15 78,924 1.13 22,557 24,877
5 1,572,862 22.72 70,768 .95 21,860 24,420
6 1,506,567 21.36 66,980 .87 22,255 25,055
7 1,437,720 20.93 65,688 .85 23,274 26,314
8 1,363,068 20.50 65,956 .86 24,683 27,963
9 1,377,868 21.16 67,477 .88 26,406 29,924
10 1,354,071 21.31 60,300 .9% 23,203 31,963
11 1,399,535 22.36 72,064 .94 30,236 34,236
12 1,416,678 22.82 75,140 .97 32,347 36,587
13 1,433,821 23.48 78,216 1.04 24,458 38,938

Table 4.3 Actual operation counts and execution times for
factorization and solution, the number of nonzero
components of L stored, and the tutal storage asso-
ciated with L, for the one-way dissection code
with n = 40 and o = 1{1)13.

There are several apparent anomolies associated with éF and TF
in Table 4.3. The first is that éF does not appear to be guite convex;
this is because some values of o lead to somewhat more "uniform" dissections
than others, which result in a few irregularities which are apparent near the
minimum. Second, TF(8) < TF(1O) even though 6F(8) > éF(1O). This can be
explained at least in part by the fact that bookkeeping overhead increases
with a. Moreover, our timing routine is subject to the usual vagaries of

modern operating systems, and can be in error by up to about 5 percent.

- 27 -

Finally, just as we did for the codes described in sections 2
and 3, we would like to examine the operations-per-second output of our
code to determine whether our data structure is significantly penalizing
the speed of the computation. Table 4.4 contains the ratios TF/éF and
TS/éS for n = 10(5) 40 and the o which minimizes 5F” The results are
essentially the same for the a's which minimize n and 55. Comparing the
entries in Table 4.4 with those in Tables 3.2 and 2.1, we conclude that our

one~way dissection code is about as efficient as the other two codes.

n n TF/éF To/8s

10 100 2.1(-5) 2.0(-5)
15 225 1.9(-5) T.6(-5)
20 400 1.7(-5) 1.5(~5}
25 625 1.7(-5) 1.4(-5)
30 900 1.7(-5) 1.4({-5)
35 1225 1.6(-5) 1.3(-5)
40 1600 1.5{-5) 1.3(~5)

Table 4.4 TF/éF and Tg/é).q for n = 10{5)40
and the o which minimizes éF“

- 28 -

§5 Comparison of the Codes

Now that we have reported on some of the individual characteristics
of the orderings and the codes which utilize them, we now turn tc the task
of evaluating their relative merits. There are several issues which must
be considered in any such comparison. First, if a given matrix problem is to
be solved only once, then a comparison between two ordering strategies
should include the cost of producing the ordering and initializing any data
structures. On the other hand, if many problems having the same zero-nonzero
structure are to be solved, it is reasonable to ignore the initialization
costs in the comparison. Such a situation might occur, for examplie, in
solving a nonlinear boundary value problem.

Another related issue is whether more than one right hand side
is involved in the matrix probiem. In the solution of some mildly nonlinear
and time dependent problems, many systems having the same coefficient matrix
must be solved. In these cases, the cost of solving the equations, given

the triangular factorijzation, may be the dominant consideration, whereas

for a single right hand side, the cost of the factorization typically
dominates the cost of solving the triangular systems.

In our reporting, we have intentionally ignored the cost of actually
producing the ordering and setting up the data structures. We do not suggest
that these costs are in general unimportant. However, our ordering sub-
routines were coded especially for the problems under study, and we feel that
their (relatively small) execution times have 1ittle general relevance.
Indeed, reliable automatic schemes for producing "good" nested dissection
orderings and one-way dissection orderings, even if they exist, are not

generally available. Thus, all our conclusions are based on the assumption

-~ 29 -

that the ordering has been supplied. If the ordering costs vary a great

deal, (which was not the case for our experiments), our conclusions may be
altered. However, as noted above, situations occur where it may very well be
reasonable to ignore the ordering and set-up costs in comparing the schemes.

Although our experiments have been pertformed for a special problem,
we contend that if the orderings are provided, our results are indicative of
the effectiveness of these dissection strategies applied to probiems having
less regular geometry. The linear equation solvers whose performance we
are comparing do not exploit the shape of the domain (mesh) associated with
the matrix problems. They have been used to solve irregular mesh problems,
ordered in the same manner as described for our regular test problems.

Table 5.1 contains the total storage requirement n for the sub-
routines which use the three strategies under study. Tables 5.6 and 5.7
contain factorization times TF and times required for solution TS’ given the

factorization, for the same matrix problems.

nested One-way dissection ordering

9 natural dissec?ion o cho§en to| o chosen to | a cho§en to

n- jordering | ordering | minimize n | minimize T | minimize TS
100 1292 1740 1010 1110 1110
225 4037 5218 2653 3173 3173
400 9182 9235 5222 5746 5746
625 | 17477 15400 8942 9329 9329
900 ; 29672 25381 13796 14812 14812
1225 | 46517 35257 20093 22025 20837
1600 { 68762 46607 27638 31193 29540

Table 5.1 Total storage requirements n for the three strategies

""300—-

) . nested One-way dissection ordering

o | natural ' dissection o chosen to| a chosen to; o chosen to

n ordering | ordering | minimize n | minimize TF* minimize ¥S
100 .15 14 .22 .22 .22
225 .58 .54 .76 .76 .76
400 1.62 1.04 2.13 1.99 1.99
625 3.83 1.95 4.55 4,26 4.26
900 7.31 3.65 8.62 8.05 .05
1225 13.15 5.27 14.39 13.23 13.37
1600 22.77 7.46 22.72 20.50 20.93

Table 5.2 Factorization times TF for the three strategies

nested

One-way dissection ordering

2 ! natural 3dissec?ion? o chosen to} a chosen to|a chosen to
n- | ordering | ordering | minimize n | minimize TF‘;m1nzmlze TS
1

100 03 | .05 .04 04 o4
225 10 07 .09 09 .09
400 21 .23 18 a7
625 43 .36 | .31 28 | .28
900 68 .71 .48 4z a2
1225 1.08 .9 N .65 .64
1600 1.60 © 1.0 | .92 .86 .85

Table 5.3 Solution times T

S

for the three strategies

- 31 -

On the basis of some simple least squares approximations to
the data provided in the tables, along with the estimates (3.4) and (4.7),

our conclusions can be summarized in the following table.

Criterion which is; Natural One-way Nested

most important ordering dissection dissection
Storage (S) 0 <n® <15 |15 < n? < 70,000 | 42 > 70,000
Factorization 0 < n? < 100 - n? > 100
time (TF)
Solution time, 0 < n® < 225|225 < n% < 4,000 | n? 5 4,000
given the

factorization(TS)

Table 5.4 Choice of ordering strategy based on n2 and the
criterion which is most important.

§6 Concluding Remarks

There is an important qualification which must be made concerning
our experiments in order that they interpreted fairly. As mentioned in
section 5, the cost of actually producing the orderings and initializing
the data structures for the different solvers has been ignored. We did
this for two reasons: a) for our special test problem, these costs were not
very significant and b) for more general meshes, the problem of producing "good"
dissection orderings is not well understood, and reliable afgorithms have
not been developed. On the other hand, good algorithms do exist for
producing banded orderings for mesh problems [4,11]. Moreover, it seems probable
that even if good algorithms are developed for dissection orderings, they
will be at least as costly as those for producing banded orderings. Thus,
it is important to emphasize that the conclusions in Table 5.4 are based
solely on the performance of the solvers.
This brings us to a second important point. The linear equation
solvers were not specialized in any way to the test problem. Thus, in view
of the substantial savings which are possible using these dissection
orderings, we would contend that the development of efficient, reliable

algorithms for producing dissection orderings is a desirable goal.

[$%]
[6F]

References

1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[l

[12]

[13]

[14]

[15]

Garrett Birkhoff and Alan George, "Elimination Sy nested dissection”
in Complexity of Seaquential and Parallel Algorithms (J.F. Traub,
editor), Academic Press, New York, 1973, pp.221-269.

James R. Bunch, "Analysis of the diagonal pivoting method", SIAM C.
Numer. Anal. 8 (1971), pp.556-680.

James R. Bunch, and D.J. Rose, "Partitioning, tearing and modification
of sparse linear systems”, J. Math. Anal. and Appl., to appear.

E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric
matrices", Proc. Z4th Nat. Conf., Assoc. Comput. Mach., ACM Publ.
P-69, 1122 Ave. of the Americas, New York, N.Y., 1969,

George E. Forsythe and Cleve B. Moier, Computer Solution of Linear
Algebraic Systems, Prentice Hall, Inc.. Englewcod Cliffs, N.J., 1967.

Alan George, "Nested dissection of a regular finite element mesh",
SIAM J. Numer. Anal., 10 (1973}, pp.345-363.

Alan George, "An efficient band-oriented scheme for solving n by n
grid", Proc. 1972 FJCC, AFIPS Press, 210 Summit Ave., Montvale,
N.J., pp.1317-1321.

Alan George, "On block elimination for sparse Tinear systems®,
SIAM J. Numer. Anal., 11 (1974), pp.585-603.

Alan George, "Computer implementation of the finite element method",
Stanford University Technical Report STAN-C5-208, 1971.

Alan George, "The calculation of arithmetic and storage estimates for
sparse matrix calculaticns using a symbolic algebra system”,
unpublished manuscript.

N.E. Gibbs, W.G. Poole, and P.K. Stockmeyer, "An algorithm for reducing
the bandwidth and profile of a sparse matrix", SIAM J. Numer. Anal.,
to appear.

F.G. Gustavson, "Some basic techniques for solving sparse systems
of equations", Sparse Matrices and their Applications, D.J. Rose
and R.A. Willoughby eds., Plenum Press, New York, 1972.

A. Jennings, "A compact storage scheme for the solution of simultaneous
equations”, Comput. J., 9 (1966}, pp.281-285.

R.S. Martin and J.H. Wilkinson, "Solution of symmetric and unsymmetric
band equations and calculation of eigenvectors of band matrices”,
Numer. Math., 9 (1967), pp.279-301.

R.P. Tewarsen, Sparse Matrices, Academic Press, New York, 1973.

- 34 -

[16] James H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,
Oxford, 1965.

[17] J.H. Wilkinson and C. Reinsch, Handbook for Automatic Computation,
Vol.I1, Springer Verlag, MN.Y., 1971.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

