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Abstract

The information in many file systems may be divided into
two classes: descriptive storage and basic storagee.
Descriptive storage is that information whose only inherent
value is to facilitate access to the basic informatione. This
thesis is concerned with the implementation of Set-theoretical
Descriptive Storage (STDS). Informally, an STDS is a file in
which the descriptive storage is composed of setse It is

shown that several well-known file structures are examples of

STDS files; jeeey inverted and multilist filese. Retrieval in
an STDS is analyzed in a general mannere. A theory is
developed to formally specify how to use the sets in
descriptive storage for retrieval purposes. The problem of

choosing the best collection of sets for a particular STDS is
analyzede It is proposed that the branch-and-bound method be
adapted to select the optimal collectionse Several particular
STDS systems are consideredes It is shown fhat retrieval in
these systems can be generalized in order to process more
retrieval requests and in some cases can be made more
efficiente. How to optimize some of these systems is also
indicatede. Previouslyy, no optimization methods existed for

these systemse



PREFACE

In each of the first four chapters of this thesis a
summary of the contents of that appropriate chapter is
included in the introductory sectione The purpose of these
sections is to indicate those areas which are background
information and +those in which new results are obtained. It
is hoped that this approach will facilitate the reading of the

thesice. A brief outline of the thesis is as follows.

This chapter introduces the concepts upon which our research
is based. It provides a review of the literature and
introduces the conéept of descriptive storagee. Descriptive
astorage is that information in a file system which is used to
facilitate access to the primary information in the files. An
idealized model of cost is developed for systems which use
descriptive storage. A general class of descriptive-storage
systems is definedy called Set-theoretical Descriptive S torage
(STDS)e. STDS systems include several well—-known file systems

such as inverted files and multilist filese

CHAPTER 2

This chapter is an analysis of the STDS environment with
particular emphasis upon retrieval. For an arbitrary Boolean
expression of attributesy it is demonstrated how to determine
the records for which such a query is truee. The costs of
operating an STDS system are analyzed and a model of operation

is proposede.



CHAPTER_ 3
This chapter is an analysis of how to select the sets which
corpose descriptive storage in an STDS system. It is proposed
that the well—known Branch—-and-Bound method be applied to
select an optimal collection of setsy, given a collection of
candidatese. Several heuristic approaches are recommended for

the implementation of this algorithme The problem of choosing

the candidate collection is analyzede.

CHAPTIER 4

The results in chapters two and three are applied to the
following file systems: inverted filesy, multilist files, and
a structure proposed by Wong and Chiange. Several results
unique to particular systenms are also presentede. An STDS

system for future research is proposede.

CHAPTER_5

Ve conclude our remarks in this chapters
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Chapter 1: Fundamental concepts

1e1 Introduction

This thesis is concerned with the implementation of file
systems stored on direct—access storage devicese. A review of
the literature in this area is presented in section 1.2
Briefly, the historical development is as follows. The first
file systems were implemented using magnetic tape or punched
cardse The cost of operating these systems is largely
proportional to the number of times the files are sequentially
reade In order to reduce the cosf of these systems, the
various processing requests are collected into batchese. The
requests in each batch are satisfied by reading the file once
and performing the indicated operations concurrentlye. In many
cases it is inconvenient for the users of such a system to
have to wait for the period of time that is required to
collect a batch of requestse The development of direct—access
storage devicesy principally disks and drums, permitted files
to be processed in a non—-sequential mannere. Records in a file
can be accessed randomly using these devices. A number of file
systems were developed to take advantage of this features.
These file systems include inverted filesy multilist files,
and indexed files.

In addition to the data records, many systems also
maintain a supplementary collection of information which

describes the content of the data recordse. The accession
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algorithms can use this description in order to determine
which records are to he accessed in order to satisfy a given
processing request. Consider, for example, a student-record
filea A list of pointers to records of students living ir
recsidence could be maintained. This list could be utilized
while producing a report of all students who had not paid
their residence feese.

Tt is apparent that two kinds of information is
maintained by these systemse. Firsty, there is the information
which is of primary concern to the user(s),y, called basic
storage. Ir the preceding example, the basic storage is the
file of data recordse Secondly, there is descriptive storage:
that information whose only inherent value is to facilitate
access to tre basic informatione In the preceding example, the
list of pointers is an illustration of descriptive storageoe
Tt might seem tha+t a system should maintain as muc h
descriptive storage as possible, thereby decreasing the
Lrocessing cost as much as possibles This approachy of coursey
is naive as it ignores the cost of storing the descriptive
informatione.

To analyze the various costs in a file system which uses
descriptive storage we have developed (section 1.3) an
idealized model of cost, called the Idealized Descriptive
Storage Model (IDSM)e Using this model, we will demonstrate
the trade—offs between the cost of storage and the cost of
processing requests in these systemse. We will derive an upper

bound for the amount of descriptive storage at which the
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expected system cost can be minimume

1t is important that the limited amount of descriptive
storage be able to be used for a wide range of processing
requestse Since the descriptive storage in many systems can be
modelled as a collection of sets we are motivated to define
Set-theoretic Descriptive Storage (STDS)e. Informally, an STDS
is a file system in which descriptive storage is composed of
sets.e Fach set has associated with it a definition and is
composed (abstractly) of all records in the file for which the
definition is truee. In the preceding example, the set
consisted of all records having the property "student lives in
residence"s The actual representation of the set might be as a
collection of pointerse. Several familiar file systems are
examples of STDS systems; jecey inverted filesy, multilist
filesy dictionary systems, and a structure proposed by Wong

and Chiang [ WONG71 ],



l1e2 HISTORICAL OVERVIEW

A review of the history of file systems and their
evolution into what are currently called data—-base systems
indicates several generalizations:

(i) The main volume of the published works is concerned

with the exposition of new structures or algorithmse

(ii) Vhere an analysis to determine the best

implementation of a particular file system has appeared,

the results are usually based upon restrictive
assumptions and a simple definition of coste

(iii) For particular file systems a retrieval algorithm

is usually non—-adaptive; ieesey the algorithm consists of

a single strategy as opposed to an adaptive method which

chooses the best (based upon cost) strategy for an

arbitrary guery and the descriptive storage definede.

The idea of a data base has evolved from the punched-card
ard magnetic—tape systems which were developed for first-and
second—generation computerse. In these first systems the
physical crder of the records in the files determined the
order in which records were encountered by a processing
programe The records were ordered according to some unique
attribute - leading to the development of unnatural (but
unigue ) identifiers such as student—-identification numbers tor
files containing student recordse For many applications, the
order in which the records were stored was inconveniente.
Thusy, sorting techniqgues became important and a number of

me thods were developed. The cost of processing in these



systems was largely dependent upon the number of times the
tile was reade Hence,y, many requests were collected before the
tile was processed and the requests were all handled during a
single computer rune As the amount of information which a
record could potentially contain increasedy it became apparent
that a fixed format for the records could lead to excessively
large recordse. Hence, the idea of a "formatted record'" was
developede Records were "self-identifying", ieeey in addition
to the basic information, the records contained information by
which a processing program could determine what information
was contained in a recorde.

The usefulness of these systems is exemplified by the
number of applications which are still performed using their
methodologye The principal disadvantages of this method of
operation are as follows:

(i) Batching of requests may cause the time between

submission and implementation of a processing request to

be excessively longe

(ii) The nature of the hardware prevents the processing

of records in any order except the physical order, and

all records must be read (or at least up to the last one
required) whenever the file is processede.
For many applications, the ine#pensiveness of tape or cards as
a storage medium (compared to direct—-access storage) is still
a more important consideration than the disadvantages cited
above.

The development of direct—access storage devices,



principally disks and drums, enabled systems designers to
implement files in which the two disadvantages above could be
avoided. These new techniques included inverted Tiles,
multilist tiles, ring structures,y, and other list structures.
odd [DCDD69], Lefkovitz [ LEFK69), and Morgan [ MORG724A]
present surveys of these methods and the bibliography
associated with theme. In general, the results concern the
development of new file structures and processing techniques.
With the exception of tree structures [SUSS63, CLAMPO64,
ARORKA6T, PATT69, BAYER70, KNUTH7 (G, BAYER71, DEM71, NIEV72,
NIEV73, WALK72, FOST73] and hashing techniques [ MAUR6&, MORGE,
ALOOM70, COFF70, LUM70, LUM71, ENOTT71, LUM72, BRENT73, LUM73]
there is a lack of results concerning the optimization of file
structurese. By such an optimization, we mean the
implementation of a file system so that the processing cost is
minimume In addition to the analytic results cited abovey,
several authors have obtained important results by simulation
TATW72, sEVT72]. In general, the results have used exceedingly
zimple definitions of coste They assume, for example, that
cost is proportional to the number of accesses to direct-
access storagees The state of the art is illustrated by a
chart [ PALM73] published in November 1973, Twenty—one data-—
base systems were characterizeds. Under the classification

"Tuning and Optimization" the following results were recordede.



RPesponse Number of Svstems

none 10
limited a
very Llimited 2
come facilities 3
using operating system facilities 2
some statistics zzathered 1

“f the 2?21 commercially availablz systems, none claimed to have
comprehencive facilities and about half claimed only 1limited
facilitiese.

The seconc cercept which extends through the literature
B a restricted idea of retrievale Usually, only one
retrieval algorithm is presented for a given file systeme. In
additiony, the algorithms can usually be applied only to a
rectricted form of querye. An exception to this trend is the
work of Esiao and Harary [HSIAO70], and the extension by
Manola and lisiao [MAN73]s These authors have modelled several
well—-known file structures as special cases of a "seneralized
3ile structur=". We shall discuss this work in detail in
ctepter four and we shall present several extensions to the
1¢ thods of processing this file structuree.

Two vEpects are apparent with regard to the future of
date—-hase syStems?

(i) There will he a large commitment of resources

toward tha development and usage of large data—-base

SYysStems .

(ii) T+ will Dbecome increasingly important that these



large data bases have facilities whereby these systems

may be structured to operate at or near the minimum

coste
Two setse of reports which are likely to intluence the
deve lopment of these data bases are the CODASYL reports
[ CODASEDA,CODASE6SB,CODASTL ] and the SHARE/GUIDFE report
TGUIDETO]s Both these organizations envision a Data Base
Administrator (DBA), or eqguivalent person, to be responsible,
among offer functions, for the control of the cost of a data
base . As illustrated abovey the DBA has relatively few tools

to employ in this activitye.



1.3 IDSM: An _Idealized view of System Cost

As we have noted,y, one may divide the storea informatiod
ir many file systems into two classes:? descriptive storage
ard basic Storagees Descriptive storage is information whose
orrly inherert value is to facilitate access to basic storage.
The motivation for the development of descriptive storage is
to provide access to proper subsets of basic storage, thus
avoiding the serial examination of all the basic informatione.
Fer gxample, in a file consisting of records of persons
employed by a company, & set of record addresses, indicating
the records of all employers satisfying the criterion "sex is
male', could be definede This set (rather than the entire
file) could be used to locate all records of employees with

the criterion "sex is male and earns more than $10,000

annually".

In our idealization we shall consider a single computer
svetem in which the amount of direct-eccess storage (one
rierarchy) is sufficient to store the basic and descriptive
cstorage which might be cdefined. It is assumed that unused
auantities of direct—-access storage are not charged to the
file system being considerede. Our point of view is
cesentially that of a user of a computer utility who is
charged only for the resources he explicitly uses.

We ¢hall develop a theoretical model of costy called the
Idealized Descriptive Storage Model (IDSM), to describe

situations such as the one outlined abovee. Ve shall view the



hbasic information as being invariant and shall allow the
amount of descriptive =torage to varyes We define the total
ccet of such a system to be the sum of two components?:

maripulative cost and storage cost:

1e3-1 T(s) = S(s) + M(s)
where = = amount of descriptive storage allocated
T = total-cost function
S = storage-cost function
M = manipulative-cost functione.

The storage cost S(s), is the cost to store s units of
descriptive storage and te store the basic storagee. The
menipulative cost is the cost of manipulating the basic
infoermation, presumeably the performance of retrievals and
undates . All costs are taken over some arbitrary time
intervale. We shall ignore intangible costs such as those
experienced by terminal users of a time-sharing system with a
long response timeo.

Supnrose that we decide to allocate s unite of descriptive
storages Then, there is a (possibly infinite) number of ways
to chooce descripti&e ctorag=. For each of these ways we will
assume that there existe a finite zxpected manipulative costy,

during <comne time period. Let Mg(s) be the minimum value for

these =xpected manipulation costs,y when

lig

units of Adescriptive
storage are allocated. We assume that the cost of storage is
anr arithmetic progression, depending upon the amount

allocated:



1e3=-2 S(s) = B + deg

whare s = number of units of descriptive storage allocatad
¥ = cost (invariant) to store the basic information
o = cost to store each unit of descriptive storage

Combining the cost of storage with the minimum of expected
maripulation cost, we derive the minimum expected cost, Tol(s)
hs: apzrate the file system for the given period of time, when

s unite of descriptive storage are allocatede. These costs are

cummarized graphically in diagram 1.3-3«. As a convenience,
all functions are drawn as continuous curvese Of course, the
furctions are only defined for integral allocatiors of

deceriptive storagee.

The fnllowirg propertiss are immediately apparent:

1.3-4 propzrty! Mg(s) is a decreasing seguencee.
1.3=-% rroperty: Mg(s) approaches a limit Mt,
iecey lim Mg(s) = Mt
S->w
1.3-6 _propsrty Total cost approaches a sequence Tal(s)
where Ta(s) = BtMttdes.

Since all descriptive—-storage arrangements of s units are also
descriptive—storage arrangements of (s+1) units (with one unit
urused ), it follows that Mg(s) 2 Mg(s+1) and so Mg(s) is a
decreasing functione Because Mg(s) is bounded below (by, for

example, 7e 10 cost) it has a greatest lower bound Mt, called



Lisgram 1.3-3: Idealized Descriptive Storage Model

Cost

Upper Bound for
Minimum Cost

Minimum Cost Point

T_(0) Cost = T (0) /

M (0)
o)

B
Mt




“te manipulation threshaolds. Since Mg(s) is also decreasing,
W+ must be the limit of the function as s increases without
heund e Property 13-6 is a direct consequeance of property

1.3-3, Ae a consequence of the above arguments we conclude

1.3-7 property: Total cost Tg(s) is bounded below by the

sequence Tal(s)e.

We are interested in the amount(s) of descriptive storage for
which Tg(s) i minimumy, Ie€ey the amount(s) of descriptive
storage for which the expected cost is minimume Wz may
recstrict the points for which Tale) ig minimum by the

fcllowing propertye.

1e3-R property: Tg(S) is not minimum when

s > (wo(O)—Vt)/d

wrich may he proven as follows:?:

1.3=-0 proof of property 1.3-8

Lo+t = be any amount of descriptive storage for
which Tg is minimume Theny To(0) 2 Tg(s)e. By
property  1.3-7 we also have Tg(s) 2 Ta(s) and so
Tg(0) 2 Ta(s)e Hernce, we have

P+ Mg(0) 2 B + Mt + des or

(Mg(0) - Mt)/d 2 s

which proves the 1.3-8.



Peferring to diagram 1.3-1, we see that a horizontal line
cost=Tg(0) intersects the line Ta when (Mg(0)-Mt)/d = s. In
other words, minimum total cost cannot occur when the lower
bPound on cost (Ta(s)) exceeds the cost when no descriptive
storage is allocated (Tg(0))e.

We have developed the IDSM +to precisely outline the
effect of descriptive storage upon coste. The idealized view
illustrates the trade—-off between decreasing manipulation cost
ard increasing storage cost, as the amount of descriptive
storage is increasede. The effect of the cost of storage 1is
characterized by the parameter d (cost to store one unit of
descriptive storage e Referring to diagram 1.3-3 we note
that a decrease in the value of d has the effects of:

(i) increasing the range of values for which minimum

cost may ocCccCure

(ii) decresasing the costy, By of basic storage

(1ii) causing the line S(s) to become more horizontale.

As manipulation cost is not affected by this change, the
minimum cost vnint(s) will be shiftedy in diagram 1.3-3, to
the righte Thus, our intuition is reinforced: a decrease in
the cost of descriptive storage implies that more may be
allocated profitably.

Cur arguments have been for all arrangements of
decscriptive storagee. Of coursey, the same arguments could be
applied to a particular class of descriptive-storage systems.

1t is possible, for exampley to restrict our view to inverted



files and th=reby define Mg(s) to be the mirimum cost of an
inverted file when s units of descriptive storage may be
allocated.
We ¢laim that the IDSM is useful because
(i) I+t illustrates the trade~-off between storage and
manipulative costs in a system which uses descriptive
storage; and
(ii) 1+ indicates a lower bound for expectaed system
costy when the amnunt of dascriptive storage is
specified; and
(iii) It indicates an upper bound for the amount of
descriptive storage for which expected system cost c¢can be
minimume
I+te pracfical value is limited because of the difficulty in
determining values for minimum expected manipulation cCoOsty

Mals), and the greatest lower pboundy Mt, for manipulation

We will be corcerned with a particular typre of file
svsten, Set—theoretical Descriptive Storage (81TDS)y defined in
the foellowing sectione Our emphasis will be with regard to
retrievale Thusy we shall consider STDS systems in which
manipulation cost is mostly due to retrievale. Within this
contexty, we shall make the following assumption: increasing
the amount of descriptive storage will not increase the
expected manipulation cost of the systeme Thus, we implicitly
assume that retrieval algorithms are able to take advantage of

the extra descriptive storage without any increase in cosSte



Ir some sSystems this assumption may not be absolutely valide.
For e€xampley, the additional descriptive storage may increase
the cost of scanning (during retrieval) for useful sets. It
is presumed that the assumption is reasonable and will not

distort the analyses which followe



1le4 STDS: A general class of Descriptive Storage

In this section we shall define a general class of
descriptive storage, called Set-theoretical Descriptive
Storayge (STDS)e. Informally, an STDS is a descriptive storage
composed of sets such that:

(i) Fach set has a detinition in the form of a Boolean

expression whose variables are attributes of the data

items in basic storage; and

(ii) Each set consists of all those data items in basic

storage for which the definition of the set is truee
Refore formally defining an STDS we shall consider several
preliminary examples of STDS systemse

The examples will refer to the information in table 1.4-
1. There are eight rows to the table, where each row
represents a person in a mailing-list systeme Each person is
a member of one or more mailing lists, represented by capital
letters following the name (iecey person P5 is on mailing
lists B and C)e In each of the examples which followy we
shall suppose that basic storage consists of eight data items,
where each data item contains:

(i) the person's name

(ii) +the mailing lists applying to the person

(iii) the pailing address(es) of the person

(iv) his title

(v) his occupation
As we will be concerned with only the first two elements in

our examples, table 1.4~1 shows only persons‘ names and the



mailing lists which applye We shall illustrate several well-
known $TDS systems by constructing descriptive storage for
this examplee

We shall first consider an inverted filee Table 1.4-2
gives a descriptive storage for this cases In an inverted
file some (or all) of the attributes in basic storage are
selected. A set is maintained for each of +these attributes
and consists of all data items for which the attribute is
true. When all the attributes are choseny, the system is said
to be fully invertede. To construct the three sets illustrated
in table 1+.4-2 we have choseny, as attributes, whether or not a
person is on a particular mailing liste Historically, basic
storage has been implemented as a file of records and the
sets, called inverted lists, have been represented as a
collection of (hardware) record addresses, record keys, or
accession numberse. Alternatively, the inverted lists have
been constructed as binary sequences where the i-th digit in
the J—th sequence is one if and only if the j-th attribute is
true for the i-th record. We note that descriptive storage
may be logically thought to consist of sets of data items and
that each set consists of all data items which satisfy the
associated definitione

A second example is what we term a Wong-and-Chiang (W&C)
implementation [ WONG71) of descriptive storage. Table 1.4-3
illustrates the descriptive storage in a WEC systemy, when the
attributes are identical to those in the first examplee.

Treating each attribute as a bivalent wvariable, we may



I&b1€ 1.4“1

P1

s0

P2 :
P3 :
P4 :
PS5 @
P6 :
P7 :

P8 :

A {
B o {
c : {

Table 1.4-3

Persons in file and mailing listse.

Inverted Lists for table 1.4-1
P1,P3,P6,P7}
P2, P3, PS5}

P4,P5, P8}

Vong-and-Chiang atoms and sets for table 1.4-1

SET
2 {P1,P6,P7]
: {p2}
: {r3}
: {r4,pr8}
: {p5}




construct Boolean expressions, in the usual waye. Writing
these expressions in disjunctive normal form, there are 20
minimal expressions {(callsed atoms) for n attributes- Each
expression mav be expressad as the conjunction of atomse. Wong
and Chiang propose that a set be constructed for every atom,
corsisting of those data items for which the atom is truee. of
course, atoms to which null sets correspond would be
dicsregarded in an actual implementatione. It is shown that
every data item occurs in exactly one sete The collection of
records for which an expression is true may be found by taking
the union of all the sets corresponding to the atoms whose
conjunction is the expressiones in table 1.4-3, we note that

these are five (out of a possible £ight) atoms with non-null

n

ets and that every data item is found in exactly one sete

The similarities in the two examples motivate our
definition of Set—theoretical Descriptive Storage (STDS). Ve
recall that in both cases descriptive storage was composed of
sets. Fach of these sets has a definition and the content of
each set is those data items in basic storage for which the
associated definition is true. We will define +the sets in
tescriptive storage using a function 5, which determines, for a
Rocolean expression £y that set which consists of exactly those
date items for which e is truee. As a notational convenience,
we shall represent by.D(S) the Boolean expression used to
generate Se For consistency,y, we will permit in an STDS only
those sets consisting of exactly those data items in basic

storage for which the associated definition is truee.



Formally,

In other
subsets of
consists

definition

and wEC

we define an STDS as followse.

Definjition: An STDS is a four-tuple <I,A,D,%8>

(i) I (information) 1is a <finite collection of
undefined elements called data items or recordse.
(ii) A is =a finite set of attributes, each of
which may be evaluated as either true (1) or false
(0) for every data item d€l. For d€l and a€A, we
denote this evaluation as E(dsalde
(iii) o BCA)->TT(I) 1is a function which defines,
for any of the expressions (8(A)) having attributes
from A as variables, a member of the power set of I
(TT(1)) as followse For any e€g(A),

ACe) = {d|(deI)E(d,ye)=1)}
where E(dye) is the result of evaluating the
expression € when all the variables a€A in e are
valuated as E(djya)de
(iv) 8 < {p(e)|e€p(A)}. For a set S€8, we denote
by D(S) the boolean expression which generated S,
and so we can write

S = {c|(deI)(E(dyD(S))=1)}.

words, an STDS has descriptive storage composed of
basic storagee Each subset has a definition and
of all items in basic storage for which the

is truee. It may be verified that inverted files

files are instances of this general dgflnition. In



additior, we shall demonstrate that multilist files and
dictionary systems are special cases of an STDS.

A multilist file is similar to an inverted file. In both
casesy a collection of attributes is selected and a set is
constructed tfor 2ach of these attributese. Fach set consists
of all data items for which the corresponding attribute is
+rue . The difference between the two types of systems is in
the wesy they are implemented. We recall that the sets, in
inverted filzgs, were constructed as distinct entities,
separate from the file and from 2ach othere. Sets are
implemented in a multilist system by using pointers which are
assocjiated with the records of the original file. Pointers
are used to uniquely identify records in basic storage.
Examples of pointers include

(i) the hardware address of a record

(ii) the relative record numbher of a recorde.

A multilist set is implemented as a sequence of data items
{lefzy---yrk} where

(i) For each of the chosen attributes, there is a

special pointer identifying the first record (r;) in the

sequence

(ii) Record ri (1<i<k) contains a pointer which

identifies the next record (ri*l) in the sequencees

(iii) The 1last record (rk) in the sequence contains a

special pointer, called a null pointer, indicating the

end of the sequencee.

Trese sets are constructed so as to contain all data items for



which the corresponding attribute is true. Hence, th=
multilist file is an example of an STDS. Methods of retrieval
using a multilist file are referenced in [PRYW63, HSTIAO70,
MAN73] and will be discussed in section 4+2.2. Table 1.4-5 is
a schematic representation of a multilist file for the data in
table 1.4-1. A multilist set is constructed for each of the
three mailing listse. Pointers are represented as ordered
pairs where the first element is the mailing list and the
second element is the name of the person for the next record
in the set; ieeey SAyP1> is a pointer for mailing list A and
indicates the record fér person Pl. The special symbol "' is
used for the null pointere.

A fourth example of an STDS is a dictionary systeme. In
this situation, records are located by using a unique
identifier, called a keyy associated with each recorde. The
dictionary is descriptive storage which contains all keys and
a ‘pointer associated with each keye. A record is located by
searching the dictionary for the key of the record and the
associated pointer of this key indicates the location of the
recorde We consider each key to be an attributee. Thus for
every attribute there exists a set consisting of a single data
item and this data item is the only one having that attribute.
Hence, this cace is an example of an STDS. To facilitate
searching for keys it is common to establish a hierarchy as
follows:

(i) Order the keys according to some collating

SBQUENCE



Table _1.445 Example of Descriptive Storage For Multilist file

(i) Pointers to First Record in Fach_ Seguence

<A,P1>
<RB, P2>

<c,p4>

(ii) PRepresentation of the File

Pl : <aA,P3>
P2 : <B,P3>

P3

<A,P6>, <B,PS5>
P4 : <c,P5>

P5 : <B,0>, <c,P8>

P6 : <A,P7>
P7 : <A,@>
P8 : <c,o>

notes: (1) <K,P> represents K-pointer to the record of person “E',

(2) <Xy@> represents a null K-pointer.




(ii) Partition the keys into sub-tables of some maximum

sSizee

(iii) Establish a key for each subtable and associate

with this key a pointer to the subtablee.

(iv) This establishes a level of the table. Repeat at

(15, using the keys from (iii), until only one sub-table

remainse.
Searching for a key involves one access to each level of the
tabley, until the highest level is determined and the required
entry founde As an example, table 1.4-7 illustrates a
dictionary where?

(i) the keys are the persons! names of table 1l.4-1

(ii) +the maximum sub-table size is two entries

(iii) the key of a subtable 1is the '"highest! key

alphabetically

(iv) each subtable is entirely usede.
We represenrt pointers by arrowses Thus to locate the record
with key 'P5', references are made to subtables 1, 3, and 6
respectivelye. We claim that the situation outlined is another
example of an STDS. Fach entry in the dictionary defines a
set of data items having one of the attributes of the records
t0o which it points, directly or indirectlye. Thus, the entry
fer 'YP2' in subtable (2) of diagram 1.4-7 indicates data items
with keys 'P1' or 'P2°'.

We have indicated that several well—-known file systems

are examples of the STDS definition (1.4-4). The 1literature



Diagram le.4-7:

Example of dictionary system

level( 1)

level( 2)

level(3)

records




applying to these particular systems is voluminous and will be
referenced in Chapter Foure. Cur general point-of-view
introduces a number of questions; ieRey
(i) Is it possible to implementy in full generality, an
STDS system?
(ii) Given tha+t (i) is possibley, how may we determine
the best STDS for a given purpose?
(iii) what improvements to particular STDS systems are
indicated by considering the general case?
Tre following chapters will outline our answers tp the above

gquestionse



CEAPTER_2: STDS__IMPLEMENTATION: _ A GENERAL ANALYSIS

201 INTRODUCTION

In this chapter we shall consider Set—-theoretical
Descriptive Storage (STDS) from a general point of view. We
recall +the definition of STDS as a four—tuple <I,A,D,%> where
I is a finite set of data items, A is a collection of
attributes bhaving a value of true (1) or false (Q) for every
data item in I, and $ is a finite collection of subsets of 1
where for every S€%, S={d|(deI1) E(d,D(S))=1)}

The major problem analyzed in this chapter is how to
retrieve using STDSe For a given Boolean expression of
attributes, we would like to determine how to combine some or
all of the sets in descriptive storage in order tc derive the
collection of records for which this query is trues. We have
developed the theory of functional-covering (f-covers) to
specify how this combination may be implementedes

Trivially, if a guery is identical to the definition of
one of the sets in descriptive storagey, then that sef is the
collection of data items for which the gquery is truee. In other
casesy several sets in descriptive storage may Dbe combined,
using the set—-theoretical operations of union, intersection,
and complementation to derive the required collectione. It is
poseible that no combination will yield exactly the collection
of data items for which the query is truee. In this situation,

a possible solution is to obtain a superset of the required



coltectione We have developed the theory of f-covers to
specify how to use the set definitions in order to determine
the smallest superset that contains the data items for which
the query is true. We develop the theory further in order to
determine supersets which may be constructed with any of the
following restrictions applied to them:
1: (i) Complementation of sets is not allowed in the
construction of the supersete
(ii) Union of sets is not permittede.
(iii) Intersection of sets is not permittedes
or (iv) We allow only union of sets or only
intersection of sets in order to construct
the f-covere
Although the main thrust of this chapter is towards
retrievaly we do not consider updates to be inconsistent for
an STDS. In section 2.3 we will discuss the problem of
updating an STDS.

For any system to be successful, it must operate with a
low enough cost to satisfy the users of ite In section 2.4 we
will analyze the costs in an STDS system. The total cost of a
system may change over a period of time due to, for example,
changed usage characteristicse. As a result, the system must
be monitored to verify that its operation is reasonably close
to the predicted situatione When the system characteristics
have changed sufficiently that a restructuring or
optimization is indicatedy, the new system definition must be

presented to the optimization proceduree. Thus we propose a



model of system operation (section 2¢5) called the feedback
model. In this model the file system is monitored and
restructured when necessarye This restructuring activity is
the subject of Chapter 3.

In summary, the main purposes of this chapter are:

(i) to demonstrate that STDS is.a useful and feasible

model with regard to information retrievale

(ii) to analyze the costs of such a system

(iii) to develop a general framework within which the

optimization procedures of Chapter 3 are performedes



202 RETRIEVAL USING SIDS

In this section we shall demonstrate how to retrieve
using STDS. A general technique will be developed which
involves creating a set of data items containing those items
requested by a Boolean expression called a querye
Unacceptable data items are then eliminated from this larger
sete A systematic method for creating such supersets, based
upon the theory in Appendix Cy, is explainede. This method
entails creating a special Boolean expression called an -
cover which is true whenever the query is truee. The
composition of the derived f-cover specifies how to combine
sets of descriptive storage to create the required supersete.
¥e will show how to create a number of different f-covers and
we indicete the advantages of each form. Several remarks will
be made concerning how to choose the appropriate f-cover for
an expressione

By a retrieval, we mean a process which determines, for a
given Boolean expression q called a aquery.s a retrieval set

R(g) which satisfies
2e2-1 R(g) = {d](d€I1 X E(d,q)=1)}

Pecalling that the notation F(d,q) indicates whether or not a
data item d€1 is true for an expression q, we see that the
retrieval process selects all data i1tems d€I for which the
query is truees

This definition of retrieval suggests the following

approache

2 -4



(i) Create a set which contains the retrieval sete

(ii) Eliminate from this superset all data items not in

the retrieval sete.

Ve note that one set which always contains the retrieval set
is the set I of all data itemse. When this set is used as the
superset, then retrieval is accomplished in a manner similar
to the traditional method of sequentially processing files,
jecaey examine all the data itemsy in some order, selecting
those for which the query is truee. We shall assume that we
can always use the set I as a superset and shall call this
assumption the geguential assumptione

In many situations, however, the sets in descriptive
storage can be of usee. For example, it may be the case that a
set Se®g has the definition D(S)=q and so the required
retrieval set would be S (and step ii would be unnecessary)e
In other situationsy, two or more sets from descriptive storage
may be combined in some fashicn to derive the supersete.

Ve have developed the theory of functional covering (f-
covering) as the basis for the methods which determine these
supersetse. Appendix C is a formal presentation of this
theorye. Within this section we shall be concerned with only
the results and application of this theorye. Firsty, we present

some preliminary definitions and lemmase

as

2e2-2 ~ Definition A Boolean expression f jimplijes a

Boolean expression g, if for all valuations of the
variables in expression f for which £ is true, it

follows that g is truee. In this case we also say

2-5



As a consequenc

easily provene

and gz we have:
202-3 lemma
(i)
(ii)
22-4 lemma
202-5 lemma
22-6 lemma

A generalization

written f==>g,

e of this definition,

and that g is a

the following lemmas are

For the Boolean expressions f, f34, fo49 gy g1y
T If £, ==> g3, and fp ==> g,, then

f1 A £2 ==> g3 A &2

f1 v £2 ==> gy Vv g2

: If £ ==> g, then g ==> T

: f ==> g4 A g5 if and only if f ==> g, and f
==> gze

: fy Vv fp ==> g if and only if £; ==> g and
fz == ge

of a cover is an f-cover:

2¢2=-7 Definition: For a set of Boolean expressions {fi,

oy 0oy fn}, an f-cover of a Boolean expression g

is an expression C(fj,fz,coo,fn) for which g ==> Ce

In other words, an f-cover of a Boolean expression q is a

Boolean expression which has fi49 f3y eeosy fﬁ as variables and
which covers g

Consider the following example (reproduced in section

Ce3)e Let
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o
]
o
' {
oo

Then, flV
An

COVETD e

22-9

Trus, a

Peferring

g = (avb)ad
fy = a

£f, = b

f3 = aAc

f,¥3 and f; v f» are two examples of f-coverse.

f-cover which has special importance is a minimal f-

Definition: For the set of Boolean expressions
{f19 f29 ecoey fn}, an f-cover C of an expression g
is a minimal f-cover if for any other f-cover C' of
gy C==>C'e.
minimal f-cover is covered by all other f-covers.

to example 2.2-8, f3vf,¥3 and fivfs are both

(equivalent) minimal f-coverss Appendix C outlines a method

for const
Ve

Processe.

222=10

ructing minimal f-coverse.

now specify how f-covers can be used in the retrieval

Ve define a retrieval algorithm as follows:

(i) For +the query expresssion g and the set of
Roolean expressionsy, {D(S)|(seg)}, construct an f-
cover Ce.

(ii) Use Cy, together with the contents of sets S€g
to create a superset R(C)‘of the retrieval set.
(iii) Select (eliminate) data items dE€R(C) for

which the expression g is true (false) to create



the retrieval set R(qg)e
Before considering how fo accomplish step (ii) of 22-10 we

present the folltowing lemma ( proven in Appendix C)e.

2e2-11 lemma: Let S;y S, € # be defined in an STDS <I1,A4D,%>,
Then,

(i) S¢nSy {dl(d€I)CE(d,D( 8, )AD(S,))=1)}

{d](d€eT1)(E(d,D(S,;)VD(S,))=1)}

1t

(ii) S US>

(iii) §,

{d|(d€1)(deS; )} (by definition)

it

{dl(d€eI1 ) E(d,D(81))=1)}

Hence, for an STDS <I,A,D,%8> and a Boolean expression q, let &
= {Sl’ Sz, * ey Sn} and let C(D(S[)yD(Sz)y se ey D(Sn)) be an

f-cover for g Then, we may construct the superset
2.2-12 R(C) = {d|(de€IY E(d,C)=1)}

by taking the expression for C and making the following

(simultaneous) substitutions:

242=-13 (i) Si for D(Si) y i=143240009k
(ii) '‘nt for A

(iii) *u* for 'V

Then, for an f-cover C=D(S;) A DUS3), the corresponding set is
R(C)=S; n 8, = {d|(d€I1)(E(d,D(S;) A D(S2))=1)}.

In summary, we have developed a general method for
determining the set of data items in basic storage for which

an arbitrary query expression is true. This method involves



choosing an appropriate f-cover, creating the corresponding
superset of data items,y, and finally selecting (eliminating)
the acceptable (unacceptable) data items. The first stage of
the method involves manipulation of the set definitions,
disregarding the set contentse. In the second stage the set
centents, in conjunction with an expression derived in the
first stage, are useds. It is probable that the definitions
and contents would be stored in direct—access storage media
and transferred to the memory of a computer when requirede. 1f
the definition and contents were physically represented such
that the transfer of one implied the transfer of the other,
then more information than is necessary is likely to bhe
transferrede. Thus,y, it is indicated that the definitions and
contents be physically separated in the storage mediae We
call this generalization the geparation principle.

Ve have been primarily concerned with minimal f-covers
because the number of data items corresponding to such an -
cover is minimume This is a consequence of the following

lemma and its corollarye.

2.2-14 lemnma: In the STDS <I,C,yD,8> where S;,y S> € 8, if

D(S;y) ==> D(S3), then S < Soe

202-15 corollary: In the STDS <IJ4A,D,%8> let q be an
expression depending upon the variables in Ae Then
the number of data items in the set corresponding

to a minimal f-cover of g is minimume



Despi te the fact that a minimal f-cover corresponds to
the smallest number of data items of all f-covers, it may not
he the best choice for a particular STDS. This is because we
have ignored the costs of constructing the minimal f-cover and
of constructing the set of data items corresponding to ite.
For exampley, consider the case where I is a file and the data
items are records located at unpredictable addresses in a
direct—access storage mediume If the contents of sets were
implemented as collections of these addresses, then the
process of complementing a set would likely be very costlye. A
less expensive alternative might be to construct a (possibly
non-minimal) f-cover in which complementation is not usede In
other situations, reasons (ieeesy programming simplicity) may
warrant that f-covers which use only"AND' or 'OR!' operations
be usede. For these considerations, we have indicated (in
Appendix C) how to construct (if they exist) f-covers with any
of the following restrictions:
2e2-16 (i) No complementation is ailowed in the f-cover

expressione
(ii) YAND' operations are not permitted
(iii) "OR' operations are not permitted
or (iv) Only ‘expressions with condition (i) and
either of (ii) or (iii) are allowed.
Thus, we can construct parficular f~covers which have a given
(restricted) composition if they existe. ‘In some’ cases, a

number of such f-covers is constructede In this case, some

2-10



criteria must be established to decide which f-cover to Usee

This choice could be either arbitrary (iee.y take the first)

or could

As

be based upon some estimate of cost.

an example, suppose we restrict f-covers with

conditions (i) and (ii) of 2.2-16. In other wordsy for an

STDS <I,A,D,%> in which S={S19S29 eeey sn}, we allow only f-

covers of the form:

2.2=17

E

U =V D(S) where Q < [1929 s 00y K}.
ieQ

suppose that the number of data items in a set S€% is
1(S) and let us suppose that the number of data items
I is given by the integer te. Theny, for an f-cover of

2.2-17, we may compute

1(Si)/t is an estimate of the probability that a

data item occurs in set Si, for i€Qe

(l—l(Si)/t) is an estimate of the probability that
a data item does not occur in Si, for i€Qe.
ﬂ(l—l(Si)/t) is an estimate of the probability that
ieqQ

item d€1 does not occur in the set corresponding to

Fence, we can calculate

222=21

1 - ﬁ(l-l(si)/t)
ieo

as an estimate of the probability that an arbitrary data item

occurs in the set R(U) for the f-cover U, If a number of such

f-covers

exist, then a selection criteria might be to choose

2-11

a data



the f-cover for which the value of 2¢2-21 was minimume An

alternative could be to use the value of the expression

(maximum number of data items corresponding to f-cover) to
choose the required f-cover. Similar probabilistic anglysis
could be used as a selection criteria when other restricted f-
covers are derived.

In other situations the cost of retrieving, for a given
f-cover,y, may be estimatede. Supposey for example, that f-
covers are restricted as in 22-17 and that the superset R(U)
is obtained by merging the sorted (according to some
appropriate sorting criterion) strings of data items (or their
addresses) in Siy i€Q. Then, an apﬁropriate analysis of cost
might be to estimafe the cost of the‘mergé and the cost of the
final selection (elimination) stage. The f-cover for which
the +total cost was minimum would then be used for retrieval;
Factors to be considered incyude the algorithms to be used and
the accounting parameters and procedures currently employed.

of course, there is a cost iInvolved in performing the

analyses proposed abovee. This cost must be balanced by a
saving during the last two stages of retrievale. It is
impossible to predict how complex an analysis should bee. It

is anticipatéd, for exampte,‘thaf some systems would perform
best with a veéry simple or even érbitrary selection criterione.

Lastlyy we mention that a particular f-cover may be
expressed in many formse. For example, the expression f; V fa

A could be expressed in disjunctive normal form having



seven termse I£f £, ==> f,y then an equivalent expression is
fo v f3e Simpler forms have a similarly simple set-theoretic

expression for the set of data items which corresponds to ite

This set 1is easier (and 1less costly) to construct using a

simpler expressione Hence, it may be important to use
reduction procedurese Section 5 of Appendix C discusses
various methods which may be used to perform these

simplicationss.

In conclusion, we have proposed and justified a general
method of retrieval in file systems which may be classified as
STDS systemse. As we shall see when we analyze particular
systems in chapter 4, this general approach suggests several
improvements to the manner in which retrieval has been

historically implemented.



2+3 UPDAIE CONSIDERATIONS

The two main operations in a file system may be
summarized as retrieval and update. We considered the former
in the preceding sectione This section will be concerned with
with the update operations We have intended the STDS model to
be primarily used for retrievals. We thus expect that most of
the manipulation cost to be attributable to retrieval. Ve do
not, however, consider updates to be inconsistent with the
modele.

Updates are modifications to basic storagee. These
changes include adding new data items, deleting existing data
items, and modifying the attributes of existing data item%.
Scme of these changes may affect the intégrity of descriptive
storage unless it too is updatede. Usually this loss of
integrity cannot be tolerated although a few exceptions (ieeey
a few document retrieval systems) to this generalization are
plausiblee.

As an exahple, consider an STDS where I is a personnel
file for a companye. The data items in 1 are records, each of
which contains information about a particular employee. One
attribute might concein whéther or not an employee worked in
the finance departmént. Suppose that a set S with definition
"employee works in finance department" existse When the
finance department hires a new employee and a corresponding
record is added to the fjie, S is not valid unless we add the
record in duestion to Se. Many such sets may exist and some

may require similar additions.

2-14



In general, as descriptive storage becomes more
elaborate, the process of updating descriptive storage becomes
mcore complexe Whenever a data item is added, deleted,y, or
changed, the data item must be either added to or deleted from
the relevent sets in descriptive storagee. In some cases, the
set definitions must be scanned to determine the sets
affected. This processing of the set definitions,
disregarding the set contents,y, is a second argument for the
separation principles Thus, useless transfer of sets?
contents from direct—access storage to computer memory is
avoidede

An alternative to updating the descriptive storage is to
maintain an update areas All changes to basic storage would
be recorded in this areae. Periodically descriptive storage
would be reconstructed +to incorporate these changese. The
retrieval algorithm, after creating a retrieval set using the
original descriptive storage, would be required to add and
delete da ta items according to the information in the update
areas Balancing the simplicity of this approach is the
complication of £he retrieval algorithm(s) and the
deterioration in performance as the update area becomes
largere. A model of this deterioration is found in [SHN73].

For a particular STDSy a compromise between maintaining
an update area and modifying all descriptive storage may be
the hest solutione. For example, deletions from a set may be

accomplished by marking a data item in a set as deletede. An

addition +to a set may be implemented as a Vset definition'-



"data item'" couple in the update areae In any casey we submit
that the STDS structure is a feasible representation to be
uprda ted. The complexity of the update mechanism is countered
by the gains expected from the generality apd ease of

retrievale.



2.4 SYSTEM_COST

In this section we shall identify the components of cost
in an STDS systeme Recalling the Idealized Descriptive
Storage Model (IDSM) we note that total system cost for a
period of time is the sum of storage cost and of manipulation
coste.

Ve shall only be concerned with tangible costs; ieecey
those costs which can be determined by standard measurement of
computer resourcess We shall disregard intangible costs such
as those incurred by the users of an on-line computer system
in which there is poor responsee. In computer systems tangible
costs are usually determined by special programs and/or
subroutines known as accounting procedurese. These procedures
measure the usage of system resources and compute a cost using
a formula in which these measurements are combinede. Typical
measurements include

(i) the number of cycles of central processor time used

by a program

(ii) the number of input/output operations during the

execution of a program

(iii) the amount of computer memory dedicated to a

program and the time for which that computer memory was

usede.

(iv) the amount of direct—-access storage reserved by a

user and the duration of that reservatione



The

Accounting Formula usied at the University of Waterloo for

computer jobs run on the IBM 360/75 computers

Usage (in units) = 700 x CPU + +5 x RW x ERT

+ «0N16 x PRT + 0066 x PCH + .0014 x RD

where:
CPU = hours of central processor time used by the program
R = number of kilobytes of memory dedicated to the program
RW = a weighted measure of memory usage
= «833 x (F + 002 x R?)
ERT = a measure of real time
= CPU + .027 x IO
10 = number of input/output operations performed by the
program
PRT = number of print records
PCH = number of cards punched
RD = number of cards read
cost of a wunit is approximately $0¢10 for a University of

Waterloo usere.




As an example, we present (table 2¢4-1) the accounting formula
used at the University of Waterloo Computer Centre to
calculate the cost of running a batch program on an IBM/360
Model 75 Computere.

Cur concern is primarily with retrieval using the STDS
modele. Our analyses shall ignore the cost of updating an STDS
systeme Thus, manipulation cost is the sum of the éosts of
performing retrievals for the queries introduced into the
systeme Total cost for an interval of time is therefore

dependent upon:

244-2 (i) accounting procedures and parameters
(ii) algorithms for retrieval
(iii) néture of the queries
(iv) frequency by which queries are introduced
(v) the definition and size of descriptive

storage and of basic storagee.

Qur goal is to implement an STDS for which this total cost is
minimume We shall assume that (i) and (ii) of 2.4-2 are
fixeds By measurement we shall determine (iii) and (iv) of
2e4-24 We shall assume in our analysis that the
representation and definition of ﬁasic storage is unalterable.
Using the apove characterization we shall construct a
descriptive storage for which the total cost is minimum or
nearly soe

This analysis suggests a method of system operation which

is the subject of the following sectione.



2,5 FEEDBACK MODEL

In this chapter we have demonstrated the feasibility of
the STDS concept with regard to retrieval and we discussed the
costs of operating such a systeme The next problem which we
will consider is how to chocose the best descriptive storage
for an STDS systeme In generaly this is a continuing process
because it is not always possible to predict ta priorit how
the basic information will be used. Even if such a prediction
could be made, the use of the data could change atfter a period
of timee

These considerations suggest a method of operation which
we call +the Feedback Modele. This model, schematically
represented in Diagram 2¢5-2, has two processes called the
retrieval process and the optimization processe. The retrieval
process is simply the implementation of the retrieval
algorithms described previously, augmented with a measurement
facilitye. The optimization process produces a descriptive
storage arrangement based upon?:
2+5-1: (i) the data in basic storage;

(ii) a description of the retrievals to be
performed; (iii) a description of the accounting
procedures;,

(iv) &a description of the retrieval algorithms
which may be employed; and

(v) any special STDPS c¢riteria (is.esy resultant
structure must be a multilist file) the system

administrators wish 10 impose.



Diagram_Z2.5-2: Feedback model for STDSe
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Queries are introduced into the system by some
unspecified mechanisme For each query the retrieval process
creates a retrieval set consisting of all those data items for
which the guery is truee. The retrieval proceéedure processes
descriptive and basic storages to produce this retrieval sete
A measurement apparafus is embedded within the retrieval
process so that!:
245=-3¢ (i) the administrators of the STDS system can

determine when the system is no longer functioning

as predicted; and

(ii) sufficient information is collected to

describe the current usage of the systeme
It is not anticipated that the proposed measurement process
will be difficult to implement. Most computer systems have
accounting procedures which measure usage of computer
resources so that the cost of performing each retrieval can be
calculated. We also wish to characterize the retrievals that
the retrieval process performed. The easiest manner to create
this description is ‘tok collect the queries which are
introduced into the systeme. We can thus, for example,
envision a measurement process which produces for each guery
an accounting record consisting of:
2.5-4z2 (i) the gquery

(ii) the number of cycles of central processor

time used to create the retrieval sete

(iii) the number of accesses to descriptive storage

(iv) the number of accesses to basjic storagee



All items but the first item above could be used to calculate
the cost of performing the querye.

The optimization procedure produces descriﬁtive storage
based upon the five criteria cited (2.5-1) abovee. The
particular arrangement created is one for which the expected
cost o0of operation will be minimume. As a result the
optimization procedure must take into consideratiqn the
algorithms used and the method of calculating cost for thems
The data items in basic storage determine, for example, the
number of items in a set with a given definition and SO must
be considerede A description of how the system is expected to
be used is necessary to compute expected cost for any
potential storage arrangemente. Lastly, it may have been
decided that the STDS must be of a special format (such as an
inverted file) and so these special STDS descriptions must be
considerede.

1t is anticipated that a general optimization process is
too complicated to construct and/or too expensive to usee.
Hence, it is proposed that optimization procedures be
constructed for each set of special STDS criterias Chapter 3

is an investigation of this problem in generale.



2+6 SUMMARY

This chapter has been concerned with the general
feasibility of the STDS model. Using the theory of functional
covering (t—-covering) we have demonstrated that retrieval is
able to be accomplished in a number of workable wayse We have
remarked that updates are not inconsistent with the model. It
is thus concluded that the STDS model is practicale.

We have also proposed a general framework for the
operation of an STDS system. The cost components in such an
operation have been isolatede. The method of operationy, called
the Feedback Model, specifies two processes, called the
retrieval process and the optimization processe We have
already,y, in general, considered the retrieval pfocess. The
following chapter will be concerned with the optimization

Processe



Chapter 33 Optimizetion of SIDS

Jelel Introduction

The purpose of this chapter is to discuss how to choose
the sets for an STDS systems By optimizing an STDS system, we
mean determining a collection of sets so that thé expected
cost of operating the STDS is near the minimum-cost point
indicated by the IDSMb(see diagram 13-3)s VWe will consider
( sub—-section 3¢1¢2) a number of traditional approaches to this
problem and conclude that they cannot be applied in generale
For situatiéns where the sets cannot be selected using one of
these traditional approaches, we suggest that the well-known
branch-and~kbound (BEBE) method be adapted to determine the
cocllection of sets for descriptive storage.

The proposed method of optimization will have two phases:

(i) Generate a collection of sets (candidates)
which mighf be included in descriptive storagee
(ii) Use the branch-and—-bound method to determine
the best  sub-collection from the candidate
collectione
In section 3'2f1 we will discuss how to implement the BEB
method for this particular probleme. The maximum number of
steps in this algorithm indicates that this worst case must be
avoideds Ve will specify some heuristic approaches which may
be applied to avoid the excessive computatione We will develop

a method by which it may be possible (depending upon the



particular optimization) to reduce the optimization to a
numbher of small optimizationse. Not only does this approach
arpear to reduce the amount of computation but it
substantially reduces the number of steps of the worst case.

The maximum number of. steps in the BEB algorithm is
dependent upon the characterization of how the system will be
used and upon the number of candidates selected for
optimization. In section 3¢2+2 we will discuss these two
factorse Our prediction of how the system will operate is
based upon the historical operation of the system. Associated
with each of the gueries is its expected frequency of
occurances. In some s&stems it may be desirable to limit the
number of queries used in the BEB algorithme Hence we will"
propose three methods to reduce the number of gueriese.

We will show how to generate candidates for descriptive
storage using the gqueries which characterize system usage. We
will suggest some restrictions that may be placed upon the
candidates so that all possible sets are not considered. We
will propose a new application of classification theory. The
theory may be used to classify "similar" gueries into groups
or clusters. Fach of these clusters can be used to generate
candidatess An optimal collection can be derived for each of
thege groups of candidétes. The union of these optimal groups
then can be used as descriptive storagee. This method has

significart computational advantagese.

3-2



3ele2 Motivation for using Branch—and-Bound method

There are various approaches to choosing an STDS
arrangement which is nearly optimal. With regard to one of
these methods (the analytic apprcach), we will show that it is
always possible to derive . a cost function which might be
minimizede. These methods involve estimating how the system
will be used.  in the future in order to predict expected coste
Such predictions can be based upon the historical operation of
the systeme. We shall determine such @& characterization by
using the queries which have been posed to the systeme
Specifically, we shall predict system usage by using two sets,
F and Qy each having k elementse. The set Q consists of
gqueries and the set F is a collection of positive real numbers
such thet fieF (1€ifk) is an estimate of the frequency that
gquery inO is introduced into the system, during some time
intervale Section 3e¢2e¢2 analyzes the prﬁblem of creating such
a characterizatione

The following methods may be used <to create a

descriptive-storage arrangement which is optimal:
3e1-1 (i) Pass—the—-buck ( to the user)es
(ii) Use a restrictive definitione

(iii) EFnumerate all possibilities and select the

one for which cost is leaste

(iv) Derive an analytic result +to indicate the

best solutione.



(v) Use a search procedure to determine a

(nearly) optimal solutione

The first four techniques are traditionally employede The
last method has not been used extensively, although the
following related results are knowne
(i) Chu [CHU69] used linear programming to decide
how to best allocate files in a special networke
(ii) Aspinall, Bell, and Rogers [ ASPIN72] used the
BEB method to decide where to allocate records in a
direct—-access filee.
(iii) Ramamoorthy and Chandy [ RAM70] used the BEB
method to determine the best memory hierarchy for a
multi-programmed computer systeme

The first method of 3«.1-1 involves having the users of an
STDE system specify exactly which sets of descriptive storage
are to be createde. Fxcept in limited situations, this
technigue is unsatisfactory because

(i) The users must be technically capable of
deciding which sets to create; and

(ii) there may be conflicting opinions regarding
which sets to create when more than one user is
involvede.

The second method of J.1-1 is to use an STDS definition
so restrictive that only one possibility for descriptive
storage exists (and hence is optimal)e. For example, consider
a Wong-and-Chiang descriptive storage where the additional

restrictions are:



(i) The collection A of attributes is fixed; and
(ii) Sets are constructed using all the attributes
in A.
In this case, there is only one collection of sets which
satisfies this definitione The obvious drawback to this
me thod is that another restrictive definition may be less
expensives

Another method is to enumerate the expected cost for all
possible arrangements and then to select an arrangement for
which cost is minimume. Again, except for limited casesy this
technique is impractical because of the large number of
choicess. For exampley, an inverted file with n potential lists
has 2" alternatives.

The fourth method, when it applies, is the most
desireable. An analytic result is the easiest method to
determine which sets to creates Unfortunately, analytic
results are Known for only a few restrictive cases and so do
not apply in generale An approach is as follows:

(i) Derive, by some method, a cost function for
the system to be optimizede.
(ii) Minimize this functione.
For a particular system we shall show that it is theoretically
possible to perform +this operation, under the following
assumptions:
(i) There is a finite collection of sets which
may be defined; and

(ii) For every possible arrangement an expected



total cost, for a time interval, may be calculateds

In this casey, for n candidates for the defined sets,y, there are
n -

2 arrangements and we may define a cost function which is a

pseudo—~Boolean (pB) functione. A pB function is a real-valued

function with bivalent (0,1) variabless We may define the

cost function as follows:

3.1-2 (i) Let S, (1£i€n) be a bivalent variable with a
value of one if the i-th candidate is defined and a
value of zero otherwisee. Denote by §i the

complementary value of Sio

n
(ii) Then, there are 2 terms, 91°§2'..o°§n, where
§i (1<i<n) is S; or §i. Arbitrarily arrange these
n

terms in some order and denote the J-th term (i<j<2

) by Tjo

n
(iii) Pefine a real number Cj (15£j%2 ) as the
expected cost of the arrangement in which the

defined sets are exactly those sets which

correspond to an uncomplemented symbol in T..

J
on

(iv) Then, the cost function is given by X Cj'T ie
j=1

This function specifies the cost of an arbitrary arrangement
because:
. n
(i) In +the j-th arrangement (15j<2 ), let the
variables Si (1€i<n) have a value of one if the i-

th variable is defined and zero otherwisee. Then,



Tj evaluates as one and every other Tk (15k<2 '

J#k) evaluates as zeros
2

(ii) Hencey z C

k=1
arrangement, which concludes the proofe.

*T = C.o for the J—th

k "k j

The substitution of (l—Si) for §i (1€i$n) results in a cost
eqguation involving only operators, constants, and
uncomplemented bivalent variabless. Me thods exist for the
maximization of pB functions [ HAMM72]. These techniques may
bhe adapted to minimize the functionsy or the cost functions,
multiplied by negative one, may be maximized.

We note that the computation of Cj (ISJSZH) is equivalent
to enumerating all casese. Hencey, where the enumerative method
ie unfeasible, the c¢reation of a pB cost function is
unfeasible, unless the function can be obtained in an
alternative form in a reasonable number of stepse.

The last method cited in 3.1-1 involves searching for the
best descriptive—-storage arrangemente A general formulation
of the method is as follows:

(i) Create a collection of sets (called candidates)

which may be defined; and

(ii) Eliminate (select) members of this collection which

are not (are) in the optimal collectione
Since a finite number of cases existy this method always
WOTrkse To avoid considering all cases we mast specify a
method of determining when we have found the best collectione

A systematic way of searching must be specified, which,



hope fully, will avoid enumerating all choicese Because of the
generality of this method, we shall devote the following

section to the consideration of ite



3.2 Search Procedures

As indicated in the preceding section, a general

formulation of a search procedure is as follows:

2.2-1 (i) Create a collection of candidates; iecey a

collection of sets which may be potentially defined

as descriptive storagee.

(ii) Select (eliminate) members of this collection

which are (are not) in the optimal collectione

Candidates are constructed froﬁ the gqueries which have entered
the system. Thus we predict that the STDS system will be used
in the fvture similarly to how it was used historicallye. Sub -~
section 342.2 will be an investigation of how to construct the
candidate collectione

The selection/elimination phase is an adaption of a well-
known éptimization procedure, the branch~-and-bound methode
Cost is the criterion by which candidates are accepted or
rejectede. Thus, 'small' sets are preferred to "large! sets
arnd *frequently used' sets are preferred to 'infrequently
used'! sets. The following subsection will indicate how this

optimization may be implemented.



Within this subsection we shall assume that a candidate
collection has been determined ( the next subsection will
discuss how to create such a collection). We shall assume
that this candidate collection contains an optimal sub -
collection; iecey if the optimal sub-collection is used as
descriptive storage, then the STDS system is expected to have
a minimum total cost over an arbitrary period of time.

A survey of branch-and-bound implementations and
applications, together with an extensive bibliography, is
found in [LAWL69]. The branch—and-bound (BEB) method may be
described as followse Let f(xl,xz,...,xn) be a function to be
minimized where the i-th variable (ISiSn) may assume an

n

integral number (mi) valuese. Thusy there is a set of iI{mi
feasible valuations of +the variablese The B&EB method
repeatedly partitions the set of feasible valuations into
smaller and smaller subsetse. There is associatedy with every
subset in the partition of feasible solutions, a lower bound
for the minimum evaluation of f within that subsete. As we
perform each partitioning, we refine an upper bound for the
minimum evaluation of fe Subsets for which the associated
lower bound is greater than the upper bound for the minimum
evaluation of f are clearly unfeasible and are excluded from
further partitioninge

We shall adopt the BEB method to determine the sub-
collection of candidates for which the expected cost (during

an arbitrary time interval) of operating an STDS system is



minimale We consider each of the n candidates to be a
bivalent variable whose value is one when the candidate is
defined in an STDS arrangement and whose value is zero
otherwisee. We denote the set of candidates by the collection
{€11S8290¢0:95 1o
n
Ve characterize each subset of valuations of the

variables as a four—-tuple <j,D,Cminy,X> where

De2e1~-1 (i) DS {S1y S22y ceey Sj} is a collection of sets
defined for all members of the subsete Sets with an

index greater than j have not yet been considered

with regard to this subsete.

(ii) Cmin is a lower bound for expected cost of
operating the STDS system when descriptive storage
is composed of the set D and a subset of

[Sj*l’sj*z""'sn}'

(iii) X 1is one of the symbols {uyp} where f*u!
indicates that the subset is unfeasible and I'p!?
deno tes that the subset is feasible or potentially

contains the best sub-collection of candidatese.

Thusy the subset <2,{S$S;:}+436,'p'> is feasible and 436 is a
lower bound for the expected cost of an STDS for which S, is
defined and Sz is not defined. We will continue to partition
subsets of solutioqs which have the symbol 'p' and for which

J<ne The partitioning process replaces a subset in which j



candidates have been considered with two subsets in which jt+1

candidates

have been considerede. Our adaptation of the BEB

algorithm is as followse

;}‘.24.1-2

(i) Start with one subsety <0,8,Z,'p'>, which
represents all possible collections of candidatese.
Z 1is the manipulative cost when all candidates are
defineds Set the initial value of a variable Cmax
to the expected cost when descriptive storage

consists of all candidatese.

(ii) Select a subset <jyDyCmin,'p'> for which j<ne
If no such subset exists, then the optimal
collection eof candidates is Dy, where there exists a

subset <nyDyCmin,"'p?'>.

(iii) Replace the selected subset by the two
subsets:
<j+1,D,Chin,'p'>

<j+1,DU{Sj+1},Cﬁin,'p'>

(iv) Replace the value of Cmax by the minimum of
the present value of Cmax and the expected cost
where descriptive storage is the collection D U

{Sj+1}-

(v) For any subset, <jyDyCmin,'p'>, if Cmin>Cmax,

then change the symbol 'p' to 'u',

(vi) Repeaty starting at step (iide



Ve shall neglect +the cost of storing the file in all total
cost computationse. If this cost is to be included, then the
constant value of this cost may be added to the total cost
computations specified aboves

Recalling (3¢2¢1-1) the definition of Cmin, we calculate

Cmin, in the subset <jyD,Cminy,x> as the sum of

36213 (i) the expected cost to store the members of D;
and (ii) the expected éost of retrieval when
descriptive  storage is defined to be D U

S S es ey S .
{ j+l’ j+21 1 n}

We assume that increasing descriptive storage will not
decrease the manipulative (retrieval) coste. Ve have argued
that this assumption is reasonable in section 1.3,

Cmax always repfesents the expected cost of the STDS when
descriptive storage is a subset of the candidate collections
Thus, Cmax represents an upper bound for the minimum cost of
operating the STDS systeme Moreover, when the optimization
terminates, the value o0f Cmax is this minimum expected coste.

In order to‘estimate manipulative (retrieval) cost for a
given storage collection, we must formulate how the STDS
svstem will be used during the time interval in questione. One

formulation is in terms of two sets F and Q such that

Q;f.];ﬁ (i) Q = {q;,qg,..-,qk} is a collection of queries
for which the system is expected to find retrieval

sets during the time interval in question; and
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(ii) F = {f11f27'°°1fk] is a set of real numbers
such that f (1<if<k) is the frequency that g, |is
i i

expected to be posed during the time periode

Suppose that R(qi,X) is the expected cost of finding a
retrieval set for the i-th query (15i<k) when XS {S11S2yeeeyS }
n
is used as descriptive storagee. Then, the expected
manipulative cost for the time period is given by
k
z f_'R(q_,X)
. i i
i=1
ILet 1(S ) denote the cost of storing the set £, (1£j%n) during
J J

the time period in question. Then, for a subset <j,D,Cmin, x>

of feasihle collections,y, we compute a lower bound on minimum

3e2e1-6 Cmin = 2 1(S) + M(D')
seD
kK
= L 1(s) + Z £.®R(q;+D")
SeD i=1
where D' = D U {sj+1’sj+2""’sn}

Recalling the general formulation (3+2.1-2) of the BEB
algorithmy we note that worst computational case occurs when
no subsets can be marked unfeasible (step vVv) during the
alygorithm. In this situation, steps (ii) to (vi) are

n-1
performed 2 times. The computations for expected costs
involve k queries and so are of this ordere. Hence, an upper
n

hound on the number of computations is of the order k*2 . The

actual number of steps can be reduced by:



(i) using "wood" branching rules; iecey the rules by

which the next subset of feasible collects is chosen to

partitione.

(ii) considering the candidates in a "good" order

(iii) allowing, as optimal, subcollections of candidates

for which the expected cost differs from the minimum by a

specified tolerancee

(iv) performing a number of "small" optimizations

instead of one "large" onee.
Before we investigate these technigues, we shall consider an
examples

We summarize ficticious costs for four queries and three
candidates in Table 3e¢2¢1-7a Fach row of the table consists
of a binary sequence followed by six costse The binary
numbers represent whether or not the corresponding candidates
are definede The first four costs are the expected costs to
perform retrievals for the four gqueries when descriptive
=torage is composed of the sets for which the corresponding
binary number is onee. The last two columns give expected
manipulation and storage costs for the corresponding
descriptive storagee. Thusy for the row headed by the binary
sequence 100, the expected cost to retrieve the first query is
500 and the expected manipulation cost is 780 (780 = (4x50) +
(3x100) + (4x40) + (2x100))e The costs to store the three
candidates are respectively 100, 200, and 100 The expected
frequencies which the four queries will entered during the

time interval in question are respectively 4, 3, 2, and 2.



Table 3e2e1-7 Summary of Costs for example 3e¢2¢1-8

Descriptive Query Costs Expected X e 8
Storage Manipe Storage
Sets Cost Cost

1 2 3 1 2 3 4

C e C inc 100 100 100 11090 o

0 0 1 100 20 50 €0 680 1°C

0 1 0 100 100 100 600 1¢20 200

0 1 1 100 20 50 30 620 3oe

1 0 0 50 100 40 100 780 1o

1 0 1 20 2n 10 60 280 200

1 1 C 50 100 40 60 700 390C

1 1 1 20 20N 10 30 220 407

Cost to store sets: 170, 20C, 100

Query freguencies: 4, 3, 2, 2




Example 3e2el1-8 is a BEB optimization based upon the data
in table 3e¢2e¢1-7e The computations are summarized by the tree
in Diagram 3¢2¢1-9, The nodes in the tree are the subsetse.
There are two branches for each iteration of the algorithme.
Eranches emanate from a node to the two nodes created by
partitioning the originall nodee. For legibility, we have
omitted the symbols 'p' and 'u' when denoting subsets in the
diagrame

In example J3e¢2.1-8, more than one feasible subset could
have been partitioned in iterations 2 and 3. Ve arbitrarily
partitioned the subset which had the minimum lower bound on
coste Branching rules are used to decide which subset to
partition when more than one such subset existse. Example of

branching rules include:

Je2e1-190 (i) Partition feasible subsets according to the
order in which they weéere created (FIFO rule)e
(ii) Partition feasible subsets in the opposite
order to which they were created (LIFO rule)es
(iii) Partition feasible subsets according to some

prediction that an optimal collection occurs in a

subset (heuristic approach)e.

Arr example of (iii) is khe rule used in example 3e¢2¢1-8e When
the FIFO and LIFO rules were applied to +the costs in table
3e2¢1-7 five and four jterations were required, respectivelye.
A summary’of the computations for these two rules is found in

diagrams 3e¢2.1-11 and 3+2.1-12, respectivelye. The effect of



EXAMPLE 3¢2.1-8: Sample BEB COptimization

INITIALLY
SUBSET (0) <0,0,220,'p'>
Cmax = 1100

ITERATION (1)
- partition subset (0) into subsets (1) and (2):
(1) <1,9,620,'p*>
(2) <11 {Sy} 7320y'p'>

ITERATION (2)
- partition subset (2) into subsets (3) and (4):
(3) <21 {S,},aSO,'p')
(4) <2, {S1,52},520,'p*>
- Cmax = 880

1IERATION (3)
— partition subset (3) into subsets (5) and (6)
(5) <3, {$,},890,'p*'>
(6) <3,{S1yS3},4R0,'p*>
- Cmax = 480
- subsets (1), (4), (5) are marked unfeasible.

Tre algorithm terminates because only subset (6) is feasible

and it cannot be partitioned furthere. The optimal descriptive

storage consists of the first and third setse. The expected

cost of this arrangement is 4R%0.




iagram 3¢2e1-9 Tree summarizing calculations for example 3+2.1-8

(0)<0,9,220>

(2)<1, {s,},320> (1)<1,2,620>
(4)<2, {S11S2},520> (3)<2, {s1},380>
(6)<3, {S1,S3},480> (5)<3, {s;},890>

Cptimal collection is subset(6): descriptive storage is composed of

sets {S14982} and has an expected cost of 480.




Diagram Je2el-11: Tree summarizing calculations for example

when FIFO rule is usede

(0)<0,2,220>

(2)<1, {s;},320> (1)<1,0,620>
<2, {S34+85},520> <2, {s1},380> <2, {s2},820> <240,680>
(6) (5) (4) )
<3, {S1+53},480> <3, {s1},880> <3, {s3} ,780> <3,0,1100>
(10) (9) (8) «7)

\3‘,‘:0 LEEN




Diagram 3e2¢1-12 Tree summarizing calculations for example 3.2.1-8

when LIFO rule is usede

(0)<0,2,220>

(2)<1, {S:},320> (1)<1,08,620>

(4)<2, {8,452} ,520> (3)<2, {s;:},380>

<3,{S1182y83},620> <3, {S11+82},1000> <3, {S1183},480> <3, {s;},780>

(6) (5) (8) «7)




the FIFO rule is to favour the partitioning of larger subsetse
Conversely, the LIFO rule tends to favour the partitioning of
smaller subsetse. Either of these two rules may be inefficient
because the partitioning of another set may cause the value of
Cmax to decrease so that the original subsets would be marked
unfeasible. The heuristic approachy outlined in 3.2.1-10,
appears to be the most promisinge. The criterion applied in
example J3e2¢1-8 (choosing the feasible subset with the least
lower bound for cost) favours partitioning larger subsets,
although to a lesser degree than the FIFO rule. It is
anticipated that experience with a number of particular
systems will indicate a number of more efficient rulese.

The number of iterations during B&B optimization is
affected by the order in which candidates are considerede. For
example 3.2.1-8, if the sets were considered in the order Sg3,
S149 S22y then four iterations would be required to determine
the optimal collection {Sp, S;}. It is desireable that the
sets be considered in an order whereby large subsets of
collections are marked wunfeasibley thereby avoiding useless
computations and partitioninge. Supposey, for example, that a
candidate has a relatively high storage cost and that there is
a relatively small difference in manipulation cost, regardless
of whether or not the candidate is definede. Theny, the subsets
of collections in which the candidate is defined are likely to
have a higher value of Cmin than the subsets where the
candidate is not defined. The opposite situation occurs when

a candidate has a relatively high difference between



manipulation costs and a relatively low storage coste
Consider, for example, the costs depicted in table 3¢2.1-7.
We summarize the effects of defining a candidate in table
3¢2¢1-13+ For each of these candidates we present the average
cost when candidates are defined and not definede. The
differences in these averages is compared with the storage

costs for the candidatess.

JABLE 3.2.1-13 Average Cost Summary

Candidates

Manipulation (1) 2) (3)
(i) Costs: Not Defined: 1005 810 1050
(ii) ' Defined: 645 740 6N¢C
(iii)Difference in manipulation

costs: 360 70 450
(iv) Storage costs 100 200 100
(v). Absolute difference bhetween

(iii) and (iv) 260 130 380

Comparing the absolute differences in table J3e¢2¢1~-13, we
conclude that the best order to consider the sets is S3y Sy
Sz

of coursey in an optimization with many candidates it is
generally impractical to calculate the expected costs and

derive a table similar to Je¢e2¢1-13¢ The analysisy however,

indicates several situations in which '"good" orders may be
founde Vhen relatively few of +the candidates are to be
included in the optimal collection, a "“good" order is to

consider the candidates in ascending order of their storage

costse Similarily, when relatively many candidates are to be



included, the opposite order is preferreds

As indicated in [LAWL69], a third method to reduce the
arcunt of computation is to accept "nearly optimal"™ solutionse.
in other words;, we agree to accept a sub=-collection of
candidates for which the expected cost differs from the
minimum expected cost by no more than a prescribed amounte.
Suppose, for example, that a percentage of error e is
acceptable and that a sub-collection of candidates has
expected cost Cmaxe Then, any subsets of collections, which
rnas a corresponding value of Cmin satisfying (i+te)®Cmin>Cmax,
can be excluded from further partitioninge If all subsets may
he eliminated in this manner, then the "nearly optimal®
solution is a sub-collection of the candidates for which the
expected cost is Cmaxs Another way of proceeding is to use an
"adaptive" computational scheme in which the amoun-t of
acceptable error increases during the optimizatione. For
example, we coculd attempt to find nearly optimal collections
during time intervals T/2, T/4, T/88yase using acceptable
errors of Ny €9y 2y eee In this mannery, a solution is alwavs
determined in a time interval of length Te We have not
investigated this third method, as we have been able to
perform all optimizations using a fourth technique,
rartitioninge.

We have developed the idea of partitioning in order to do
a number of small optimizations instead of a single large one.
As we shall indicatey, this approach substantially reduces the

maximum number of calculations in the B&EB algorithm. Our



computational experience indicates that the actual number of
steps is also reduceda. The problem is to decide how to
partition the candidates, queries, and frequencies so that the
union of the sub-optimal solutions is also the optimal
solution when the candidates, queries, and frequencies are
considered jointly. Before we develop the partitioning method
and informally Justifty ity we shall illustrate the
computational advantages of ite.

Suppose that n candidates may be partitioned into p
groups where the i-th group (1%i<p) has n; memberse. Theny,

performing BEB optimizations for each of the p partitions, the

maximum number of iterations is
P P

n; n: n
I ke2 1 = kel 21 < ged

i=1 i=1

where there are k queries characterizing system usage

If the k queries could also be partitioned so that the i-th
partition (1%ifp) of candidates was characterized by Kk

gueriesy then the maximum number of steps would be

P n P
Se241-15 z kj*2 1 < kel 21
i=1 i=1
P P
where n = & n and k = I ki.
i=t1 i=1

For example, if 10 candidates were partitioned into groups of
2y 5y and 3 and if the 8 queries were partitioned into groups

ot 4, 2y and 2 queries, then,
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3e2e1-16 96 = (4 @ 22) + (2 e 25) + (2 e 23)

would be the maximum number of iterations, compared to

3e2.1-17 8,192 = 8 e 210

iterations without partitioninge

To decide how to partition the candidates and queries we
introduce the concept of dependence between candidatess
Intuitively, two or more candidates are dependent upon one
arother if the inclusion or exclusion of one candidate in
descriptive storage changes how the other candidates are usede.
For example, suppose the retrieval set for a query can be
determined using the collections {S3s S22y S3} or {Ss4s Ss}
where the former is used in preference to the latter. Then,
the exclusion of set S; from descriptive storage would mean
that whenever the guery in question is entered, the latter
collection would be used (if sets Ss4y Ss are defined) to
determine the retrieval sete.

In general, each guery g in the set Q may be associated
with a sub-collection of the candidate collection. This sub-
collection consists of all candidates which may be used to
determine the retrieval set for Qqe. We denote this sub-—
collection as S(qg). For convenience, we define a relation 8

as followse

32118 Definition For queries qi1,q €Q, 9 q, if and

only if there exists a finite sequence of queries

q19 29y e e ey qn such that



(i) qg.€Q, for 15<ifn
i

(ii) s(qg_ ) n S(qi+1) £ ¢, for 1%i<n
i

Ags is easily proven, e is symmetric, reflexive, and
transitive, and so is an equivalence relatione Hence, ® may
be used to partition o] into p equivalence classeses

Furthermore, as is easily demonstrated, 6 partitions the set

cf candidates into p groups as Tollowse Let the i=-th
i i i
partition of Q be {ql,qz,.o.,qk}. Then, the i-th partition of
i
{S1+S2, ceey s } consists of all candidates
i i in

S(ql)US(qz)U...US(qk). We will now prove that these p groups
i

ot candidates are disjointe

322+1-19 Prooft

Assume a candidate S occurs in the i-th and j—-th
Zroupe Then, there exist queries q; and gz in the
i-th and j=-th partitions, respectively, such that
S€S(gi ) and S€S(gz)e Hencey S€S(qy)7S(qgz) and so
g1 € dze. Thus, g and qé are in the same
equivalence class and so i=je This completes the

proofe

Ve have noct yet considered candidates which occur in none of
the sub-collections associated with the queries of Q. For
cempleteness, we could include them in any of the groupse. It
is preferable, however,y, to eliminate themrimmediately from the
candidate collection: none of these candidates will occur in

an optimal sub-collection since they are never expected to be



used for retrieval and will only increase the storage coste
Similarly, if a query exists, such that none of the candidates
can be used to create its retrieval sety, then that guery can
be eliminated: it will always be satisfied by sequentially
processing the files

We will demonstrate that the method of partitioning,
outlined above, determines a sub-collection of the candidates
for which the expected cost is minimume. Let there be p
partitions where the i-th partition (1<i<p) has a candidate
sub=-collection Si and a set of queries Oi. Denote by f(q)
the expected frequency of an arbitrary query g in the time
interval in guestion. For any candidate subcollection X, let
P(gyX) be the expected cost of performing a retrieval for a
quUery qe We assume that the addition to descriptive storage
of sets which do not occur in S(g) will not change the value
of R(geX)e Thus, if a collection of candidates Y satisfies

YnS(g)=0 then, R(gyX) = R(gyXuY). Now for the i-th partition

(15i<p), let zy be a sub-collection of Si such that

322120 Zucs) + 2 £f(g)®R(qyZ;)

SGZ:.L qui
is minimume Let X be any sub—-collection of the set of
candidates and define X; = Xng  for 15iSp. Theny by +the

definitions of X; and Z;, we have (12iZp)

322.1-21 2 US) + I £(qIeR(qsX;) 2 2 1(S) + I £(q)®R(q,Z;)

S€Xi qui sez; q€Qy

But, for qeoi, S(q)nxi#ﬂ if and only if i=je Hence, for q€Q; »

P(q,Xi) = R(gyX)e Similarily, for qui, R(q,Zi) = R(gy2Z)



where Z = YZ_ . Hence, from 3.2.1-21 we derive (15i<p)
De2e1-22 L 1(S) + ¢ f(g)®R(g,X) 2 Z 1(S) + & £f(qg)*R(q,Z)
and summing 3e2e1-22 over the p partitions, we get

P P

3e2e1-23 s {5 1(sS) + ¥ £(g)*R(g,X) } 2 ¢ { £ w(sS) + I f£(q)*R(g,2Z) }
i=1 sex; q€Q; i=1 sez; q€Q4

- or

Selel-24 v 1(S) + T £(q)®R(gyX) 2 % WS) + I £(q)*R(qg,2Z)
S€eXx q€Q S€eZ q€Q

This proves that the sub-collection Z is an arrangement of
descriptive storage for which the expected cost is minimume
Furthermore, the sum of the expected costs (3¢2.1-20) over the
p partitions is this minimum expected coste Thus, the
partitioning method determines a descriptive storage with the

same expected cost as the one found without using

partitioninge. Computational experience (see Appendix D)
suggests that the partitioning method finds an optimal

solution in feﬁer steps then the non—-partitioned casees of
coursey it is recommended that techniques, such as '"good"
branching techniques, be employed in the optimization of each
partitione

Ve have assumed throughout this sub-section that the
candidate collection has been determinede. The following sub-
section shall indicate methods to create this collection and

the characterization of expected system usagee.



Je2e2 Creation of Candidates

This sub-section is concerned with how to create the
collection of candidates and how to create the
characterization of system usagee. To serve as a prediction of
how the system will be used, we create two sets:

(i) the set Q of +the queries which have been
entered the system;

and (ii) the set F of the frequencies which the

gueries in Q are expected to be posed during the
time interval of the optimizatione.
The candidate collection can then be created using these two
sets.

This choice for the collection of queries to characterize
system usage could provide a set of gqueries which is too large
to be effectively used in the BEB optimizatione Hence, we
propose three methods to reduce this number to a workable

size?

302e2-1 (i) Random Selection
(ii) Probabilistic Selection

(iii) Classification

By the term 'workable size! we mean that the maximum or
expected number of steps in the proposed BEB optimization be
reasonables

Recalling +the Feedback Model (section 2.5), we proposed

that the retrieval process be augmented with a measurement



facilitye This facility would record the gqueries which
entered the system, in addition to the usual accounting
informatione To each unique gquery we may assign a prcbability
in a number of wayses The simplest method to estimate the

probakility for a guery is to take the quotient of

2- (i) the freguency which a query was entered;

and (ii) +the sum of (i) for all gueriess

This method ignores when the query was enterede If the usage
pattern of the system is changing, it may be preferable to
bias these probabilities so that queries which were entered
recently would tend to have larger probabilitiese. Thus,
weighted frequencies could be used where the time of entry
determines the weight added to the frequencye. For example,
the weights could be aged exponentially, where the weight for
a query entered n days ago is W! (02w<1). Thus, the weighted
frequency for a gqguery which was entered twicey, 4 and 8 days
agoy, would he (W4 + w8), The weight W to use, and the
intervals of time to age the frequenciesy, we shall leave
unspecifiede. These values would be parameters of the
particular system in which they are usede.

As indicated previously, the number of queries can be

reduced in at least three waysSe The simplest is random
selectione Using a device such as a random—number generator,
k gqueries are selected to consititute the collectione. The

frequencies corresponding to this set are then used to create

the corresponding probabilitiese.
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A second method is probabilistic selectione In this
situationy the kK gueries with the highest frequencies are
selecteds This method is preferred to random selection when
the range of fregquencies is largeo When all frequencies are
of about the same magnitude,; random selection is likely to be
asz effective as probabilistic selectione Againg, as with
random selectiony the frequencies of the k gueries are used to
estimate the corresponding probabilitiess.

The probabilities which we have calculated for each query
are estimates of the probability that an erbitrary gquery which
enters the system is the guery in questions An estimate of
the frequency that a guery will be entered during a time
interval is the product of the above estimated probability and
the number of gueries expected to be entered during the time
interval in questione

Before we consider the third method (classification of
gqueriesc}, we shall investigate how to create candidates for
descriptive storagee We create candidates based upon the
description of how the system will be usede One choice for
the candidate collection is the collection of sets which
corresponds to the retrieval sets for the gueries selected in
the descriptione. Consider,y, however,; two such sets S; and S
which are the retrieval =ets for two queriese. Less storage
space (and less storage cost) might be required to store the

three sets:

o
I
o
{ ]
o
|
.
mn
W
it

{d]|des; and d€S,}

{d|ldes; and dé€s;}

n
F
it



Sg = {d|dgSsS; and d€S,}

In general,y, there is a tradeoff between the reduction of
cost due to reduced storage requirements and the additional
cost of combining these "small" sets during retrieval.

It is well-known fact [WOODES8] of ﬁoolean algebra that
there exist 2Zk distinct Boolean expressions of K bivalent
variablecs Considering each of the k queries as a bivalent
variable, there exists a maximum of 2Zk potential members of
the candidate collectione. This is clearly an unreasonable
number except in the unusual situation where there is a very
small number of gqueriese.

In some caces, added restrictions on the type of sets
allowed may reduce the number of potenfial candidatés to a
reasonable number. For example, if the STDS system was
restricted to inverted lists whose definition involved only a
single attributey, then this number may already be reasonable.
In other cases, we propose that restrictions be added to
reduce the number of possible candidates.

One manner of restricting the possible candidates is to
limit the definitions of the sets which are used as
candidatese. For example, the definition of the sets may be
limited to a specific format, as is the case with inverted
fTilese. Another possibility is to allow only atoms, in the
terms of Wong and Chiang [WONG71], +to be candidates. The

queries may also be used to create a restricted candidate



collectione For example, we could allow non-null sets which
correspond to the retrieval sets for the queries and the pair-
wise intersection of them (a maximum of ke®(k+l1)/2 candidates).

Another method of restriction is to allow only candidates
which are judged to be sufficiently wuseful. Intuitively,
larger sets are less useful than smaller setse. Also, a set
which is used frequently for retrieval puposes is more useful
than one which is accessed infrequentlye. Thus,y we could
arbitrarily exclude all candidates whose size exceeded some
boundary value. Similarly, by estimating the probability of
accessing a set during an arbitrary retrieval, we could
include as candidates only sets whose probability was greater
than some arbitrary value. In general, this preliminary
screening of candidates ignores any dependencies between sets.
As suchy the estimates of the probabilities, for example,
would be very crude.

Ve have indicated these restrictions to demonstrate that
there are reasonable ways to proceed when a general STDS
system is implementede. In the particular systems, referenced
in Chapter Four,y, such procedures are generally unnecessary;
the definition of these systems usually restricts the
candidates to a reasonable number.

Whatever the manner used to create the collection of
candidates and the description of system usage, the
optimization procedure must be able to determine an optimal
collection in a reasonable number of stepss We have shown

that the maximum number of steps is of the order k‘2n, where
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there are k queries anq n candidatese Fxperience may indicate
to a system administrator that the actual number of steps is
of a different magnitude, for a particular systeme In any
case, thhe system administrator is ltikely to have an estimate
of the number of steps which may be feasibly performede
Hence, it is possible to compute reasonable values of k and n
from this number of steps, or these values may be directly
passed to the candidate-creation phase of the optimization
procedures

As indicated in the previous subsectiony, substantial
reduction in the number of actual steps performed during an
optimization is possible when partitioning is usede
Unfortunetely, in many cases only a few (possibly only one)
partitions existe. For example, suppose that k queries
characterize system usage and that we create a candidate
collection as followse. Let S; and S; be the retrieval sets
for two arbitrary queriese. Theny we include in the candidate

collection all non-null sets defined as

3.2.2-4 {dldes; and d€S>}

{d|d€es; and dgS5}

{dldgs; and d€S;,}

Thus, if all sets J3e2¢2-4 are non-null, we have 3k(kt+1l)/2
candidates and partitioning of the queries may yield only one
partitione.

Thus, it may be desireable to create the query and

candidate collections in a manner in which partitioning will



be effectivee An approach is to select p groups of queries
ard then to construct candidates for each of these groups in a
manner that will determine p partitions of the candidatese. It
is natural to require that the queries within a group be, in
some sense,y, similare. Hence, the application of classification
theory appears appropriates

Classification me thods have been used in toxonomy
{wWALLé68], medical research [BONN64], document retrieval
systems [ SALT63, SALT69], and are also of theoretical interest
[ LANCE66, LANCE67A, LANCE67B, JARD68, LANCE68, SHEP68, JARD71,
VANR71, LING72, SIB73]. Alternative terms for 'classification
methods' include 'clustering'y, 'cluster analysis', 'toxometric
analysis', 'similarity analysis', and 'association analysis'.
The problem is formulated as follows: given a set of k
objects with pair-wise similarity/dissimilarity measures, find
groups or clusters of objects which are similar. The
techniques are conveniently divided into hierarchical and non-
hierarchical methodse

Hierarchical me thods are either divisive or
agglomerative. Agglomerative methods may be summarized by the

following algorithm [CUNN72]:

3e2e2-5 (i) Search for the 1two most similar objects

(clusters), say p and qge

(ii) Fuse the objects in p and g to form a new

cluster, say ne



(iii) To every other object or cluster 1, recompute
the similarily/dissimilarity measure between n and

1.

(iv) Repeat steps (i) to (iii) until only one

cluster remainse

This procedure generates k partitions in a hierarchy where
there are k objects to be zroupede Divisive methods are
similar except that all the objects are initially put into one
group and each step of the algorithm involves splitting a
cluster into two clusterse. A study [CUNN72] has compared
various agglomerative hierarchical methodse.

Hierarchical methods find the most efficient step at each
stage of the algorithm and so may be thought of as optimizing
the route. As has been noted [LANCE66], +this procedure
sacrifices some homogeneity of the Zroupse. Non~hierarchical
methodsy on the other hand, attempt to maximize the similarity
of items within a groupe These technigues are characterized

by four processes [LANCE67B].

3e2e2-6 (i) a method of initiating clusters

(ii) a method of allocating new elements to

existing clusters and/or fusing existing clusters

(iii) a me thod of determining when further

allocation is unprofitable



(iv) a method of reallocating some or all the
elements to existing clusters when the main

classification process is completede.

It is noted [LANCE67B)] that all systems involve (i) and (ii)
but that (iii) and/or (iv) may be lacking in a particular
systema Specific strategies are outlined in [LANCE67B,
JARD68, LING72, VANR71, SIB73].

It is beyond the scope of this research to evaluate the
various strategiese. It is sufficient to indicate that a
number of methods exist and may be adapted to the problem of
grouping gqueriesy provided a similarity/dissimilarity measure
can be calculated for any two queriese. We will propose such a
measure and illustrate its use in an example.

For any two queries qi and g2y the
similarity/dissimilarity coefficient d(gyy q2) should satisfy

the following conditions:

1

D227 (i) d(qirqz) d(aqz2yqy)

(ii) d(gp4q91) = 1

(iii) 1 2 d(qgyyq2) 2 O

Refore definition of +the coefficienty, we shall discuss the
notion of similarity between queriese. In the STDS <1,A,D,S8>,
the retrieval set R(g) for a query consists of exactly those

data items d€1 for which the guery expression is true, ieeey

3e2e2-8 P(q) = {d|(d€e1)(E(d,q)=1)}



We consider the similarity between two queries to be
determined by the degree to which their retrieval sets
corresponde As suchy a crude measure might be the probability
that an arbitrary data item occurs in the intersection of the
retrieval setse. Although this measure satisfies the criteria
3.262~74y it suffers from +the disadvantage that the value
increases as the prcbabilities of an arbitrary data item
occuring in the retrieval sets increasee. This effect is
alleviated if we use the measure
322.2-9 d{qirqz) = P(gy7az)/P(gyVasz)
where P(q) is the probability that an arbitrary data item is
true for the Boolean expression qe Thus, we have proposed, as
a measure of dissimilarity, the conditional probability that
an arbitrary data item satisfies both queries, given that it
satisfies one of theme These probabilities may be obtained by
direct examination of the data items or by estimatione

To exemplify the clagssification method we present the
following example. We will classify <five queries into two
ETOUpSe The queries are Boolean expressions where attributes

are represented by small letterse.

]

e2e2=11 Querjes to be Classified

qq = aVvb
gz = avc
g3 = cvd
qe = dve
ags = cvdve

We shall assume that the probabilities of an arbitrary data



item havirg an arbitrary attribute are known:

3e2e2-12 Probabilities of Data_ Item Having Attribute
a ! «3
b ! «25
c T .1
d T o2
e * .15

We assume that the attributes are uniformly distributed among
the data items and are distributed independently of one
anothere. This is sufficient information to compute

digsimilarity measures, outlined above. For exampley, we have

Plairgz)/P(agiVgs)

3s2.2-13 dlgyi+92)
= {P(q1)*P(qg2)-P(g1vqz)}/P(q1Vvqz)
= {e475+¢37-+5275}/+5275
= +6019

where we have calculated, for example

14 P(gyVvgz) = Plavbvce)

1 - P(anbhrc)

1 - P(a)*P(b)ep(c)

1 ~ («7)%(e75)2( .9)

«5275

Table 302¢2~15 gives all the pairwise dissimilarity measures.



3e2.2-15 Pairwise dissimilarity measures for example

QUERIFS (2) (3) (4) (5)
(1) « 60160 .21383 «23639 ¢ 27155
(2) «31048 «20714 32610
(3) «54639 e72165
4) e 82474

¥e <chall wuse the hierarchical clustering method (3¢2e¢2~-5)
where, when we fuse groups i and j intoe a group Ky the
dissimilarity measure d(k,y,l) between groups k and 1 is defined

as

dlk,1) = {d(i,l)+d( j,1)}/2

Initially we have five groups of one guery eachs According to
the measure, groups 4 and 5 are most similar and so are fusede

After recomputing the appropriate measures, we have pairwise

dissimilarity measures as followse.

2e2+2-17 Dissimilarity measures after first jteration

GROUPS (2) 3) (4,5)
1) «60190 «21383 «253¢7
2) «31048 «26662
3) «63402

Continuing, we fuse group (3) with the group (4,5) and the

dissimilarity measures become:



3e202-18 Dissimilarity measures after second jiteration

GROUP (2) (3,4,5)
(1) « 60190 ' +23390
(2) «28855

On the last stepy we fuse groups (1) and (2) and we are left
with two groups {1,2} and {3,4,5}.

At the point, candidates could be created for the two
groups and then two BEB optimizations could be performeds,
Each optimization determines an optimal sub-collection of the
candidates, for the partition in guestions. According to the
argument in 3e¢2¢1y, the union of these optimal sub-collections
is the descriptive storage for which total cost is expected to
be minimum, provided no candidate in one partition may be used
to determine the retrieval set for a query in another
partitione. If a candidate may be used in more than one
partition, this result is not necessarily truee. For example,
consider the partitioning of gueries in the previous example.
A candidate whose definition is avVbVecVdYe would rejected in
favour of a candidate with definition aVbVe in thé first
partitione. Similarily, a set with defintion c¢VdVe woulq be
preferred in the second partitione. A rejected candidate,
however, may be the best choice when the five queries are
considered jointly.

of coursey it is possible to choose a descriptive

storagey given a partition of the queries, as follows:



3e2e2-19 (i) Create the candidate collection for each
partition, disregarding queries in other

partitionse.

(ii) Select the optimal sub-collection of

candidates in each partitione.

(iii) Choose descriptive storage to be the union of

these optimal sub=-collectionse.

In fact, this approach is to be preferred since the
alternative is to omit candi&ates which apply to more than one
partitione. When these candidates are excludedy the total
expected cost may be greater than if they were includeds. As
was shown in section Je2e1y when these candidates are not
included, total expected cost equals the sum of the expected
costs for the partitions. The inclusion of these candidates
may decrease the cost for some or all of the partitionse The
sum of these costs is an upper bound for total expected cost
because:
(i) Total expected storage cost is less than or equal
to the sum of the expected storage costs in each
partition, if a candidate is selected in more than one
partitione
(ii) The expected <cost to create the retrieval set for
gny guery does not increase when candidates from other
partitions may be used.
Thus, the classification method has the computational

advantages of partitioninge It mayy however, determine a



descriptive storage for which the expected cost is not
minimume Hencey this method should be employed only when a
very large number of queries and/or candidates is to be used
in a BEB optimizatione.

In summary, this subsection has been concerned with the
creation of

(i) an estimate of how the STDS system is used for

retrieval; and

(ii) &a collection of candidates for descriptive storage,

based upon (i)
Our approach has been to outline a number of technigues and,
where applicabley, to indicate when the alternative methods are
prreferable. This general discussion has been intended +to
demonstrate that the Branch-and—-Bound approach is feasible in

a wide range of STDS situationse



3.3 _SUMMARY

This chapter has been concerned with a general method to
select descriptive storage for an STDS systeme It is
anticipated that many vof the particular techniques may be
applied to file systems or data bases which do not strictly
adhere to the STDS definitione.

We have developed and proposed technigues whereby the
branch—~and-bound algorithm may be adapted to select the
optimal (nearly-optimal) sub-collection of sets, given a
collection of candidatess The problem ‘of how to choose a
candidate collection was also discussede. In some cases we
would determine a nearly-optimal solution because the
calculation of +the minumum solution would involve too many
stepse Essential}y, this 1is a trade—off of +the cost of
ocptimization against the saving in system coste

These developments are important because of their

generalitys.s Previously no general method has been proposed.



Chapter 4: Particular STDS systems

4,1 Introduction

This chapter shall be concerned with the application of
the +heory in chapters two and three to particular file
systemse In summary, our results will be applied in two ways:
the generalization of the retrieval mechanism in these systems
and an approach to the optimization of these systemse. The
theory shall be applied to the following well-known file
systems? multilist filesy, inverted files, and a descriptive
storage proposed by Wong and Chiange

We shall model (section 4¢2) a multilist file and
inverted file as a "generalized file structure", proposed by
Hsaio and Harary and later extended by Manola and Hsaioe Ve
shall demonstrate how the retrieval algorithm of Hsaio and
Harary may be generalized by the application of the theory of
f-coverse The original algorithm, proposed by these authors,
is shown to be a special case of our general algorithme

The multilist file is treated (section 4¢2.1) as an
example of the generalized file structuree. Hencey the general
algorithm developed in section 4.2 applies to the multilist
filee By introducing a restriction on the implementation of
this file system (ieeey ordering lists of records according to
their relative addresses) we derive a new algorithm called the
generalized trace algorithme. This algorithm, which may be

applied to any Boolean query appropriate to a multilist file,



is shown to be an effective method of retrieval for this file
systeme For a given Boolean guery, any f-cover for the query
may be used as the expression to which the algorithm is
appliede. An analysis of the effectiveness of several such -
covers is presentedes In addition, we present an alternative
method of implementing the multilist filee.

A second special case of a generalized file structure is
the inverted file (section 4¢2¢2)s With regard to this file
type, we shall discuss +the problems of implementing the
general algorithm proposed in section 4.2 We shall develop
several analytic results concerning the optimal collection of
inverted lists, wh2n the format of the queries is restrictede.
We shall demonstrate the difficulty of determining analytic
results when the format of the queries is unrestrictede.
Hence, we shall conclude that an appropriate optimization
technique is a search procedure such as the BEB approach
proposed in chaptecr threee. The effectiveness of this approach
shall be demonstrated by referencing a case study (Appendix
D).

Wong and Chiang tiave proposed a descriptive-storage
system which we shall abbreviate as WEC descriptive storages
The authors rest~ict the definition of sets to a special
format, given the :0ollection of attributes which generates the
collection of serse Ve shall demonstrate (section 4.3) how
the theory of f-crvers generalizes retrieval using a W&C
descriptive stor.igee We shall discuss the problem of

determining the optimal collection ¢f attributes (from which



to generate the WEC descriptive storage) and we shall
demcenstrate how the optimal collection may be determined by
adapting the B&B methode

Lastly (section 4.4), we shall propose for future
research an alternative approach to the optimization of STDSe
File systems which use this approach we shall call "work-set"
systems because of their similarity with paging systemsa. Ve
shall indicate a method for optimizing such systems and
recommend that future research be directed to analyzing this

approache



4.2 Generalized File Structyre

In this section we shall discuss a particular type of
Set-theoretical Descriptive Storagey, called a generalized file
struc turee. This formulation was first proposed by Hsjgo and
Harary [ HSIA070] and later extended by Manola and Hsigo
[ MAN73]. Several well-known file structures, such as inverted
files and multilist files, may be defined as special cases of
the generalized file structure.

We shall develop the definition of a generalized file
structure according to Hsijgo and Hararye These authors
indicate that retrieval may be accomplished according to an
algorithm called the general retrieval algorithme. Ve shall
formulate this algorithm in our own terms and we shall
indicate how it may be improvede. The improvement involves
determining an optimal f-cover for a particular querye. Lastly
we shall discuss the extensions proposed by Manola and Hsigoe
We shall indicate how the results that we have derived with
regard to the original definition also apply to this
extensione.

We shatll first present some preliminary definitionse
Consider two sets A (attributes) and V (values) of undefined
elements. A record R is a subset of the Cartesian product AXV
where each attribute has exactly one valuee Some of the
attribute~-value pairs are called kKeywordss The jindex of a
record is the set of keywords that characterize the recorde
Every record has associated with it a unique positive integer

called its addregsse Sometimes a record R has associated with



one of its keywords K the address of another record containing
the keyword K. We call this address a K-pointer of Re. When
there is no address associated with a keyword K in a record R,
we say P has a null K-pointer. A mechanjized record has a
pointer (either null or indicating another record) assocated
with all keywords in its indexe. Henceforth, when we speak of
a record, we shall mean a mechanized recorde.

list L is a set of records containing a keyword K

4.2-1 (i) the K-pointers for the records are distinct
(ii) each non-null K-pointer in L indicates a
record within L
(iii) there is a unique record in L, called the
beginning of the list, which is not pointed at by
any K-pointer in L

(iv) there is a unique record in Ly, called the end

of the list, which has a null K-pointere.

A file F of records is a set of records in which every K-
list containing one or more records in Foe Files are
identified by unique names called file pamese

A directory of a file F is a collection of sequences

i i i
402-2 (K 4n ,oh ,5a14829 eeey &.) where
i i i hi

(i) 15i<m

(ii) there are m keywords

(iii) n_  is the number of keywords containing keyword Kje
i

(iv) hi is the number of Ki-lists.



(v) a% (15j%h ) is the beginning of the j—th Ki-list.
i

A geperalized file structure is a file with its directory.
The generalized file structure may be used to define several

well—-known file structures by placing restrictions upon the

difectory as follows:

4.2-3 (i) Inverted file: n, = hi
(ii) Index Random: ni = hi =1
(iii) lndex _Seguential: ni=hi=1, al<af<...<aT
(iv) Multilisgt file: hi=1

Diagrams 402-4 and 4¢2-5 schematically depict the inverted-
list and multilist file organizations, respectively. Keywords
are represented in these diagrams by capital letterse. The
records are shown as boxes with their addresses to the top
lef+ cCOoTrnere. Inside the boxes the K-pointers are shown and
the symbel @ is used for the null pointer.

Hsigo and Harary suggest that an algorithm, known as the
general retrieval algorithm, ke used to determine all records
which satisfy a given querye A keyword K is said to be true
for a given record R if R contains K. A guery is a Roolean
expression ot keywords and a guery is true for a record R, if
this proposition is true for Re In this case we say R
catisfies the qguerye. It is convenient to define several
func tions before specifying the general retrieval algorithme.

The directory—-search function 1t is used to select the




442-4 Inverted File

Directory <4,3,3;1,3,5>
<By3,332,4,5>
<Cy24233,4>

<Dy242;2,5>

File
1 A~
2 B~¢
D-¢
3 A-Q
c~-¢
4 B-¢
c-9
5 A-@
B-2
D-§




Multilist File
Directory <Ay3,131>
<B,3,1;2>
<Cy2,13;3>
<D,2,1:;2>
Eile
1 A-3
2 B-4 ]
D-5
3 A-5
c~4
4 B~5
c-¢
[~ A—- g
B~¢
D-2




beginning

acdldresses

4.2-6

of the K-listsy in ascending order accordinz to the

of the records:

f(K.QX)

min{al1<jSn } 1 x=0;
1 1

min[a%la%)x and 15j<h.} otherwisee.
j i

when the directory entry for keyword K 6 is 4.2-2.
i

The file-search functijon g is used to trace the records which

occur on an arbitrary K-list:

Let x be the address of a record containg a keyword
Ke If this record has a null K-pointer, then
g(Kyx)=0, Otherwisey, g(Kyx) is the address of the

record specified by the K-pointer.

The general retrjieval algorithm may be specified in six steps

as follows:

502"8

(i) Choose the prime kevwords: Write the query

in the form:

1,.1 o1 s, 8 s
(K1 MK2Meee MK IVees V(K1 K2Mee oMK
1 2 'f‘.(i)‘ 1 2 r(g)
Denote by K' the keyword which has fewest records
i

associated with ity with respect to the i-th terme.
Hence, for the s items in the query, we have t<s

prime keywords which we denote K|y K%y eeey K's
t

(ii) Search the Directory: Create a sequence § by

repeatedly applying £ to the directory entries of

t
K (15i%t). Theny, ¢® has h = . h' addresses of
i i=11



listse Let E be an empty set of recordse.

(iii) Search the file: Removing duplicates, let G
be the collection of addresses in Qe If all the
records specified by the addresses in G have been
retrieved, then go to step (vi)e Otherwise choose
the least address a' in G of a record which has not
vet been retrievede. Petrieve the record R at
address a'. Let H be the collection of addresses

g(Kiya') (15i<t).

(iv) Examine the record: If record R satisfies

the query, then add R to the set Ee

(v) Prepare 1o retirjieve the next record: Move

all the addresses in H to Q¢ Repeat the algorithm

at step (iii)e

(vi) Complete the algorithm: The collection E of

records contains all records which satisfy the

aquerye.

Fxample 4.2-9 illustrates the general retrieval algorithm for
the multilist file 442~5 and the guery (AAD) v (AAC).

Hsia o and Harary indicate that the general retrieval
algorithm is significant because it retrieves records at most
once and because it attempts to minimize the number of records
retrieved at step (iii)e The authors call steps (ii) -~ (vi)

parallel processing of listse It is evident that the first

step ot the algorithm selects an f-cover



General retrieval algorithm for multilist file

guery
step_ (i)
step (ii)
step (iii)
step (iv)
step (v)
step (iii)
step (iv)
step (v)
step (jii)
step (iv)
step (v)
step (iii)
step (iv)
step (v)
step (iii)
step (vi)

(AAD) v (AAC)

prime keywords are D,C

¢

G

t

(2,3) s E=9

(2,3) 5 a'=2; H=(5)

record (2) does not satisfy query

¢ = (2,3,%)

G = (2,3,8); a'=3; H=(4)

add record (3) to E: E = ({3}
= (2,3,5,4)

G = (2,3,4,5); a'=4; H=p

record (4) does not satisfy the query

¢ = (2,3,4,5)

G = (2,3,544); at'=5; H=@

add record (5) to E: E = {3,5}
¢ = (2,3,5,4)

G = (2,395,4); go to step (vi)
stop




402-10 a' = Kf VvV K3 V esee V K*
t

and the remaining steps retrieve all records which satisfy the
expression 4¢2-10. The authors note that the algorithm is not
optimal in that it may retrieve more records than are to be
included in the retrieval set E. We claim that the algorithm
is also not optimal with regard to the f-cover 4.2-10
selectede.

Ve believe that the criteria by which an f-cover should
be selected is the expected number of records to be retrieved.
Suppose there are n records in a file in guestion and that
parallel processing of lists is used to determine records

which satisfy a query

4.2-11 g = Ky v K v eee v K
t

Then, the probability that an arbitrary record has a keyword

Ki is given by

402-12 p.= n_/n

1 1

Assuming that the keywords are distributed independently of
one another, the probability that an arbitrary record

satisfies the query 4+.2~-11 is given by

4.2-13 P(g) = 1 -iH (1-p.)

G I

i

ioeey the probability that an arbitrary record is rétrieved by
parallel processing of lists acting on the query q is

specified by P(qg)e.



We propose that step (i) of the general retrieval
algorithm be changed so that an f-cover q' of the form 4.2-10
be chosen, such that P(q') is minimume. This may be

accomplished as follows:

4.2-14 i) Select an optimal f-cover: VWrite the query g
1 1 1 S, S s

in the form q=(K1VK2Vo.oVKrz£’ooA(K1VK2V.ooVKrzS?nd

chose as an optimal f-cover q' the term for which

i i i
P(k‘Vngo..VKrzi}s minimume

(ii) Retrieve the records which satisfy the f-
cover in (i) and add to the retrieval set E all

records for which g is truee.
Referring to example 4+2-9, the query may be written as

4.2-15 q = A A (D v E)

and so we have

4.2-16 P(A) = 1 = (1-e6) = o6

P(DVE) = 1 - (1-e4)°(1-e4) = +64

In this case, q'=A would’ be the optimal f-cover and three
reccrds, as compared to four, would be retrieved by parallel
processing of listse

The analysis in this section has disregarded the costs of
determining the best f-cover and of manipulating the
directorye. The cost of determining the best f-cover may be

neglected if this cost is relatively small, compared to the



cost of retrievale It is therefore important that the
determination of optimal f-covers be implemented efficientlye.
The determination of optimal f-covers is concerned with the
definitions (and file statistics) and not with the contents of
listse Hence, the pointers to the beginning of lists should
be stored separately from the remainder of the directory
entries, if a given directory entry contains relatively many
pointers. This generalization, called the separation
principley, was discussed in section 2.2

Manipulation of record pointers, obtained from the
pertinent directory entries, hecomes increasingly costly as
the number of pointers per directory entry increasese. The two
extremes are multilist (one pointer per directory entry) and
inverted file (all non-null pointers are found in the
directory)e. In the case where there are many pointers per
directory entryy this cost of manipulation must be considered
during the determination of the optimal f-covere. Thus, in
section 4.2-2 we consider this factor when we discuss the
creation of optimal f-~covers for inverted files.

Manola and Hsiao [MAN73] have extended the definition of
generalized file structure by introducing the concept of

secondary-storage cells or cellse These entities are intended

to model the physical characteristics of direct—-access storage
devices such as moving—-head diskse An integer s is called the

cell size and the cell number c¢c of a record with address a is

calculated as

4.2=1R8 c = L g/ 4



The authors consider directory entries to be sequences
i i i i i i
4.2-19 (Kiynivhi;(clvalvpx)1(C21529P2)90001(C

where the start of a K -list is indicated by =a
i

4.2-20 (C%va%yp;) such that:
] J

i

i i i
h(i)’%h (i)’ Ph(1)

))

(i) aj is the address of the beginning of this Ki—list

i
(ii) cj is the cell number of the beginning of

this Ki-list
i
(iii) pj is the number of records in this K. -liste
i

All K-lists are restricted so that any list contains only
records having the same cell number. With these extensionsg,
some well-known file structures are defined as follows (n is

the number of records in the file).

4.2-21 (i) Myltilist: h;=1, s=n
i
(ii) Cellular muyltiligt: The 5 are distinct
within a directory entrye
(iii) Inverted=-ligt: s=1y, n;= hy, p = 1

(iv) Index Random: n;= h;= 1
(v) Index Seguential: n,= h.= 1, al<af<eee<a}

The authors present an algorithm, for this extended

definition, which corresponds +to +the general retrieval



algeorithm defined by Hsiao and Hararye This algorithm may be

summarized as follows:

44222 (i) For a guery in the form
1 1 A'l v tA tA Avt .
{ KgAKoNese Krz¥)" (Kl KpoNeoeoa kr(e)deflne
i
(a) e, to he the cell addresses in the directory

i
entries of keyword K..»

r(i) i
(b)) 8, = n 67, 1%i<+
1 .
j=1
t
(ii) Yor every c G_Uﬁ_
i=14
t
(a) create an f—cover g'(c)=KEVKZ2V.,..VK &
(b) use parallel processing of lists to retrieve

all records, in the storage cell with numbe r <oy

which satisfy g'(c)e. Examine these records and add

to the retrieval set all records for which q is
TTrUue e

Ttu=, the algorithm has essentially two parte:

A4e2-23 (i) Select the smallest collection of storage cells
which may possibly c¢contain a record for which the

gquery is truee.

(ii) for each cell in (i) retrieve a superset of
those records for which the query is truee Ry
examination of these records, select those records

for which the gueryv is trues

Cur analysis of retrieval in the generalized file structure

defined by Hsiao and Harary will apply in (ii) of 4.2-23 since



the algorithm 442-22 treats each storage cell as a file in the
original SENSE o Because the generalized file structure
includes several well-known file systems, these results have
wide applicabilitye. Similar remarks will apply to the results
we shall obtain in the subsections 4«2.1 and 4.2.2. These‘two
subsections are concerned with two particular examples of the
generalized file structure:? multilist files and inverted

filese.



bele Multilist File

In this subsection we shall be concerned with the
multilist filee. We have already indicated (in section 4.2) a
method of retrieval for this filey, by improving the general
retrieval algorithm of Hsiao and Hararye. By adding a
restriction to the way lists are constructed, we may specity a
more general algorithm for retrieval, called the generalized
trace algorithme. This algorithm will retrieve using any f-
COVPTe Wren the f-cover is in the form reqguired by the
general retrieval algorithmy, the generalized trace algorithm
is equivalent to parallel processing of listse. In additiony
we shall propose a new way of implementing the multilist file
and we shall show some conditions under which it is preferable
te the traditional method of implementation.

Further optimization ofbretrieval using a multilist file
is possible if the following restriction is placed upon every

K-list: (records stored at consecutive integral addresses)

402011 For every K-list containing a record with address x
and with a K-pointer to a record with address Yy, X
< v

In other words, if we were to trace any list,y, the records

would be encountered in ascending order, according to their
addressesa Vhen this condition is true, parallel processing

of lists is equivalent to the following algorithm:

de2e1-2 (i) Let the f-cover to be traced be

qzkﬂ/Ké/.o.VKS- For 1%i<s associate a pointer P



with the i—-th keyword K, and let the initial wvalue
i

of Py be the address of the first record in the

list for keyword K. o Let E be an empty set of

1

recordse.

(ii) Let x = min{plypz,...,ps}- If a>n (n is the
maximum address of a record in the multilist file),
then continue at step (v)e. Retrieve the record at
address Xe If the keyword Ky (i<i<s) occurs on
this record, then

(a) if the Ki—poinfer is null, let py have the
value n+1;

(b)) otherwise, let p; have the value of the K;-

pointer.

(iii) Examine the record. If the query is true for

+t+he record, then add the record to the set Ee.
{iv) Repeat the algorithm at step (iide

(v) Complete the algorithm: the set E contains

exactly those records for which the query is truee

Several features of this algorithm are interestinge In the
first case, if a keyword Kj (1<i<s) was found in the f-cover,
and if no list was defined for ity then every record in the
file has to be examinede. We could accomplish +this if we
initially gave 12 the value 1 and set p; to (x+1) whenever
step (ii) of the algorithm was performed. In the second case,

if the f-cover was of the form



22e1-3 qQ = K1 A Kz A eee A Ks

then we could retrieve fewer records by selecting (step (ii))

the next address x as

4.2.1-4 X = maX{Ptvpzvoo-vPS}

These two considerations introduce the concept of a trace
function.

Informally, the trace function operates upon the f-cover,
in conjunction with the pointers associated with keywords in
the f-cover, to produce the address of the next record to be
retrieveds. The recursive definition of the trace function J

is as follows:

4e241-52 Let p(K) be the pointer associated with a keyword
Ky let E;34 F2 be Boolean expréssions of keywords,
and let x be the address of the 1last record
retrievedes
(i) J(0,x) = x*+1

(ii) J(1,x) x+1

(iii) J(K,x)

max {p(K)yx+1}
(iv) J(E,x) = x+1

(v) J(E1vEzex) min{J(E;4x)yJ(Ezyx)}

(vi) JCEfAEpyx)

i

max {J(F; yx ), J(Ez,x)}

The above definition applies to f-covers in which

complementation is applied only to keywordse. We shall develop



our analyses using f=-covers in this restrictive formate Ve
shall subsequently generalize our results to all expressionse
Example 4¢2.1-7 shows the trace function for several queriese.

Ve have developed the trace function in order to
implement an efficient and general algorithm, called the trace
algorithme. This algorithm repeatedly uses the trace function
tc determine the address of the next record for which a query
(in the restricted format) could be true. We specify the trace

algorithm as follows:

4e2.1-6 (i) Select an f-cover: For an arbitrary query,
gpgy construct an appropriate f-cover ge Let the
keywords in q be {K33KzyeeesKiloe For 15i%+t

associate a pointer py with the keyword K; and let

Py have value of -1.

(ii) Initialize 1the pointer varjables: For 1Sist
if a directory entry (Kiy njy 15 a;) exists for a

keyword K.

it then let p;{ have a value aj. Let a

variable x have a value of 0 and let E be an empty

set of records.

(iii) Search the file Let v = J(gsx)e If y>n (n
is the maximum address of a record in the tfile)
then continue at step (vi)e Retrieve the record R
with address ve If K{€R (15i<t) then let pj have a
value of ntl if the K;-pointer is null, If the Kj-

pointer is not null then let p; have the value of

that pointeres.



(iv) Examine the record: 1If the query qg is true

for the record Ry then add P to the set Ee

(v) Prepare 1o reirieve the next record: Set the
value of x to Ye Repeat the algorithm at step
(iii)e

(vi) Complete the algorithm: The set E contains

exactly those records which satisfy the query qge

Fxample 442¢1-8 illustrates the trace algorithm applied to the
guery (AAC) V (AAD) for the multilist file 4.2-5. Values of
the various variables are presented at the end of each stepe
In this example three records were reades If the algorithm of
Hsiao and Harary were usedy, then four records would have been
reades

We shall now demonstrate that the trace algorithm
determines all records which satisfy a given f-cover (in the
restricted format)e. As we shall showy, the value of a pointer

associated with a given keyword is either

4e2.1-9 (i) less than the address of the last record

retrieved, or

(ii) equal to the address of the next record,
following the last record retrievedy, for which the

associated keyword is truee.

Ve shall call this property x-consistency of pointers, where x

is the address of the last record retrieved. As a



4e2e1-7 Examples of Trace Functions

Cuery Irace Function

1]

q = Ky Vv K Jlayx] = min{ J[K1,x], J[K2yx }
= min{ max{p1,x*1}, max{po,x+1} }

= max{ x+1, min{p;,p2} }

P = Ky A K> Jlayx] = max{ J[Kyyx]y, J[Kzyx] }
= max{ max{p;yx+t1}, max{po,x+1} }
= max{ x*1, p;y pz2 }
a = (K;VEz) A Jlarx] = max{ J[KyvKzyx]y J[KyvKzyx] }
(K3 VvK3) = max{ max{ x*1, min{py1yp2} },
max[ x+1, min}pl,p3} } }
= max{ x+1, min{pyip2}y min{p;,pa} }
q = (K{AK2) Vv Jlayx] = min{ max{x+1l,max{x+1,p2} },
(K; AK3) max {x+1,max}x+1,py} } }

= max{ x+1, min{p;,p2} }

where p;y pzy p3z are the pointers associated with the keywords

K1+ K29y K3 respectively.




Example 402.1-8: Trace algorithm

q = gg = (AAC) v(AAD)

Jlagyx] = max {min {max {p(A)yx+1} ,max {p(C),x+1}},
min{max {p(A)yx+1} ,max{p(D),x+1}}}
= max{ x+t1, p(A)y min{p(C)lyp(D)} }
STEP X y p(A) p(C) p(D) E
i - - -1 -1 -1 1%
ii 6 - 1 3 2 1%
iii 0o 2 1 3 S Q
iv o 2 1 3 5 1%}
iii 2 3 5 3 5 %]
iv ’ 2 3 5 4 5 {3}
iii 3 5 6 4 6 {3}
iv 3 5 6 4 6 {3,5}
iii 5 6 6 4 6 {3,5}
vi and the algorithm terminates




convenience, we first define a function m(gyx) as follows:

4024110 Definition: For a wmultilist filey let E be the
collection of record addresses for records which
satisfy a query gqe Then, m(qsyx) = min {y|y€E,{n+1}

and y>x} for 05x<n where n is the maximum

of a record in the files

For the multilist file 4.2-6, we have

m( AVC,X)

i
—
-
b

|
o]

We may now formally define x-consistency as follows:

40201-12 Pefinition: For a file of records in which n is

address

the

maximum address of
(0<x<n), a pointer
is X-consistent if

is true:

(i) p(K) < x

(ii) p(K) = m(Kyx)

1f all rointers are XxX—-cons
indicates a record address gre
equal to the address of the n

query in the trace function:

a record and for an integer x
p(k) associated with a keyword K

and only if one of the following

istent, then the trace function
ater than x and less than or

ext record which can satisfy the



4e201-13

Lemma: For an arbitrary query gq (in the

restricted format), if all pointers associated with
keywords occurring in g are x-consistenty then x <
JCgex) < mlgex)e

proof: We shall prove the lemma by using
induction on a measure of complexity c(é) defined
for Boolean expressions of keywordse. Let c(gq) be
the number ° of occurrances of variables and

constants in the expression q (ieeey c(AyByCvA) =

4).
Basis Step:! Suppose c(qgl=1. Then q is either a
constant, an uncomplemented keyword, or a

complemented keyworde. In the first and third cases
the hypothesis is true because J(gyx) = x+1. Tn
the second case the hypothesis is true by
definitions of J and of x-consistencye.

Induction _Step:? Suppose c(g)>l. Assume by
induction that the hypothesis is true for atl
expressions e which satisfy c(g)>c(e)de. Now g may

be expressed in one of the following formats:

(i) q ey V ez

(ii) g ey A ep

where e and ez are expressions such that c(q) >

cleq) and cl(g) > clez)de

case(i): gq=e; V ep



m(gyx) = min{m(eyyx)ym(es,x)} because g is true for
the record with address min{m(egyx)ym(ezyx)} and
because no record with an address Yy where
x<y<min{m(ey yx)ym(es,x)} can satisfy q without
contradicting the definitions m(eyyx) and m(ezyx)e
Now, since «c(q)>c(e;) and cl(gl)>c(es) we have
x<J(eyyx)<m(e;,x) and x<J(ezyx)<m(eayx)e. So we
derive:?

x < min{J(e;yx)yJ(ezyx)} < min{m(e; yx)ym(ezyx)} or
x € Jlgsyx) £ m(g,x)

which completes case (i) of the proof.

case(ii): q = e "

e2
The proof of this case is omitted as it is proven
similarily to case (i)e Thus, for all cases, x <

J(gyx) < m{qgyx) which completes the proof of this

lemma.

Llemma 4¢2+1-13 provides the basis for the proof that the trace
algorithm retrieves all records that satisfy an arbitrary
gquery (ip the restricted format), provided that we can
demonstrate that x-consistency of pointers is maintainede
Consider a pointer p, associated with a keyword K, just atter
a record with address x is retrieved. If p is x—-consistent,

then one of the following is true:

4.2.1-14 (i) p < x

(ii) x < p <€ J(gyx)

(iii) »p Jlgyex) p = m{kyx)

(iv) J(q,x)<p



for some qguery ge

Suppose that the next record to be retrieved has an
address y=J(qex)e The value of p is changed if and only if K
occurs on the record with address ye An examination of the
four cases above indicates that, after updating the pointers,
the pointers are y—-consistent. We can now show the following

lemma:

4e201-15 Lemma? For an arbitrary query q (in the restricted
format) the trace algorithm will retrieve all

records for which the query is true.

Consider the case where at least one record satisfies the
QUETY e Let Z; be thé least address of a record for which the
query is truee. All pointers associated with keywords in q are
initially 0O-consistent and so that first record retrieved

(with address r;) satisfies

|
[~

I~
-
A
]

3

_4_;2_,_1__ < m(q,(.‘-) or

0<!‘1S21

The pointers are updated and become rj-consistents If ry #
Zy, then the second record retrieved (with address ro)

satisfies

4024117 ry < rz £ m(gyry) or

!‘1(1"2321

In general, after t retrievals, if ri1y rzy esocey rt # Z19 then



we have
4024118 0<r1<r2<...<rtS21

This process must be finite because

4e2.1-19 (i) The algorithm terminates after t retrievals
it and only if J(q,rt) > ne
(ii) There are only a finite sequences 4e¢2e1-18%
possiblee.

Hence, there must exist a t such r = Zy; leeey the first

t

record is retrievede. By similar arguments, we can show that

trte record with address Zi, where

il

d4e2e1-20 Zi min{y| record with address y satisfies gq and

v>z }

is retrieved, given that the record Zi-l is retrievede

We shall now indicate how the trace function can be
generaltized to operate upon all Boolean expressions of
kKeywordse Table 4de2e1-21 is the complete definition of the

trace function J(ayxyc) where g and x are as before and where
C is a modulus—-two counter of the depth of complementation of
a sub-expressione This function is illustrated in example
4e261-220 For the Boolean expressions E, Fiy Eo, the

following identities are true:?



Table 4e0241-21

Let p(k) be the pointer associated with a keyword Ke

Generalized Trace Function

Fi19y E2 be Bcolean expressions of Keywordse

J[Kyxy0] = max{p(K)
J[Kyx,1] = x+1
J[Ryx,0] = x+1

JRyxy1] - max {p(K)

JF1vE2yx47] = min{

JIE1VE2,x91] = max{

J[E1AF24,%,40]

max {

J[El/\gzyﬁl{,l] = min{

J[Eyx,0] = J[Eyx,1]
J[Eyx,1] = JF,x,0]
J[1,x,0]) = x+1
Jfl,x,l] = x+1
J0yxy0] = x+1
J{0,x,1] = x+1

where n

= the maximum address of a record in the file.

vX+1}

1X+1}

J(Eysx,01],
JE yx,1 I
J[Eysx,01],

J(ELyx,1],

J[Eg,x,O] }
J£E21X91] }
J[Ea,x,O] }

J[Ez,x,l] }

Let

Eq,




Example 4e2¢1-22 Generalized Trace Function

J[(E1vE2) A (K3 VvR3) 4%x,0])
= JL(KyVvKz) A (KyVvR3)yx,y1]
= min{J[ (K1 VvK2)yx,y1],J[(K;VE3)yx,1]}
= min{ max{J[X,,%x,1],J[Ksyx,11]3,
max {J[Ky4x,1],IJ[K3,x,1]} }
= min{ max{ max[x+1,p,; ],
max|[ x+1,p5] },
max { max{x+1,py ],
max{ x+1,p3] } }
= min{ max{x*+1,p14p2}y max{x+1,p;,p3} }

= max{ x*1, p;, min{payp3} }

where P11y P2y P3 are the pointers associated with

the keywords K349y Ky K3 respectively.




(iii) z:.:l/\Ez; = El v E?_

Repeated application of these three identities will reduce any

query to the restricted format described abovee. The function

of the parameter ¢ is to simulate such a reduction processe.
Using the generalized form of the trace function, the

following lemmas may be proven:

4e2e1-24 Lemma: For an arbitrary gquery gy if all pointers

in q are x—-consistent, then x < J(qg,x,0) < mlgyx)

and x < J(gyxys1) < m(gyx)e

4e2es1-25 Lemma: For an arbitrary query gy the generalized
trace algorithm will retrieve all records for which

the query is true.

Lemma 4e¢2¢1-24 is proven similarily to lemma 4¢2¢1-13 except
that the measure of complexity c(q) for a Boolean expression g
is defined to be the sum of the number of times variables,
constante, and operators occur in the expressione. I'n
addition, there is a third case (g=e) to be considered during
the induction stepe. Lemma 421-25 is proven identically +to
lemma 4.2.1-15, except that lemma 4.2.1-24 is cited in place
of 4424.1-13.

We now define the generalized trace algorithm as the
trace algorithm (4+.2.1-6) with the generalized trace function
used in prlace of the trace functione In multilist files in

which the lists are ordered according to the values of the

pointers, the generalized trace algorithm is an attractive



method for a number of reasonsSe The method is simple to
program and is very general as it operates on any querye In
addition, the guery may be used in its original form with the

following interpretations:

42126 (i) Keywords K are interpretted as integers with
a value max {p(k)yxt1} where x is the address of

the last record retrieved (or zero)de.

(ii) CAND? and 'CR' are interpretted as "max' and

'*min' according to the formulas in table 4de¢2e1-21,

(iii) The complementation operator has the effect
of adding one (modulo two) to the third parameter

of the trace functione

The generality of the trace algorithm allows all possible -
covers to be useds. We propose that an attempt be made to
select the f-cover for which the expected number of records to
be retrieved is least. We shall indicate how probabilistic
analysis can be applied in a number of casese.

We shall present a comparative analysis of several casese
The general problem of determining the expected number of
recerds retrieved for an arbitrary f-cover has not been
solvede In our analyses we shall assume that the probability
that an arbitrary word contains a specified keyword is knowne
For a file of n recordsy, m of which contain a given keyword,

the corresponding probability may be calculated as the ratio



m/re Ve shall further assume that the keywords are
distributed among the records of the file independently of one
anothere.

The first case to be considered is where the query is of

the form

.4..'_2._'_.‘1.:21 g = Ky v Ko v eee v K
S

and where P11y P2 sesny ps are the probabilities associated
with s keywords, respectivelye. As may be verified, the
generalized trace algorithm, applied t0o qy retrieves exactly
throse receords which contain one or more of the S keywords.
The probability that an arbitrary record contains at least one
of the s keywords is given by

S
4¢241-28 1 -TT(1-p )

i=1 *t
provided that all the s keywords have lists defined for them.
In the case where at least one of the keywords does not have a
list defined to correspond to ity all records in the multilist

file are retrieved. Summarizing these results, we derive:

s

40241-29 r(q) = 1-T7T 1-pi), if all of the s keywords have
i:
lists defined

= 1, if at least one of the s keywords does

not have a list defined.

as the probability that an arbitrary record is retrieved when
the generalized trace algorithm is applied to a query in the

form 4¢2¢61-27. The optimal f-cover, in this restricted



formaty is the one for which 4e¢2¢1-29 is leaste
The second case which we shall consider is where the

query is in the form:

de201

a0 q—‘-Kl/\Kz/\ooo/\KS

In this situationy the trace function is defined as

442.1-31 J(gyx,0) = max {X+1vplv9210iﬁp }
S

Ve shall wview the generalized trace algorithm as a system of

state transitions where

4e2s1-32 (i) the state of the system is determined by the
set of keywords for a record which is retrieved;

and

(ii) a transition occurs whenever a record is

retrieveds.

We shall specify a method to compute the probability that the
system is in a given statee An optimal f-cover, in the format
44.2.1-30, is one for which the probability that the system is
in the state consisting of all keywords is greatest. We
compute this probability by modelling our state-transition

system as a Markov chaine

4.2¢1-33 Definition: Consider r transitions in a system

with n statese Let E (i, j) denote the event that
the i-th state occured as a result of the j—th

transitione. Then, the system is a Markov chain if



for any integer k (1<k<r) and for any integers ji,
Jar eeesr Jyp (15j,%n,15iSk), the states E(1,j1),
E(2,42), evey E(ky ) satisfy P{E(k,jp)|E(k-
1egp 1)y E(k=2y, _ 2) coes E(1y41)] =

PLECKy VI ECk=1y4y _1)]e

In other words, a Markov chain is a system where the k-~th
transition, from state i to a state jy depends only upon the
states 144 and the time of the transitione. If the transition
probabilities are independent of time, then the system is said
to he homogeneouss When we speak of a Markov chéin
henceforth, we mean a homogeneous Markov chaine Ve denote the
probability of a transition form state i to a state j by
P(iysj) and we denote by Pm(i) the probability the system is in
a state i after m transitions. The Markov chain is said to be

rgodic it the numbers TJ(i) (1€i<p) exist such that

o]

42241-34 lim P (i) = TTC(1)

li
mF =

The numbers JJ](i) are called the stationary probabilities of

the Markov chaine Two states are said to gcommunjicate if one

may be reached from the other, and vice versa. The following

lemma [FFLL50] is well-knowne

4e201~35 If all states in a Markov chain communicate and if

a state i exists such that P(i,i)>0D, then the

Markov chain is ergodice

The stationary probabilities satisfy



4e241-36: TTC(j) = r;T‘T(r«k)-P(k,‘j)
k=1
TTCg) > 0
n
1 = ITT(x)
k=1

ir the system we have specified, all states (except the state
corresponding to no keywords) communicate since records with
any collection of keywords may be retrievedes Hencey we may
determine the stationary probabilities.

ot course our system is not strictly a Markov chain
because the probabilities of transition from one state to
another is dependent upon the records which have been
previously retrievede. We shall ignore this effect in our
analysise The calculation of the transition probabilities
shall consider only the probabilities of the keywords occuring
on an arbitrary recorde. Thusy our calculations are based upon
‘campling with replacement? when 'sampling without
replacement! should be used. In the limit, as the number of
records in the file is increased unboundedy, the two methods of
sampling become identicale. Hence, for large files, the
difference between the actual and computed values will be
smalle Appendix E glilves the derivation of the transition

prebability from a state corresponding to the keywords

37 Kiy Koy eeey K v K 419 K 429 eeer K

S

to a state corresponding to the keywords

4 20 _3 K K . e K kK
4:2.1-38 1+ Kz sr K o» KS+17 KS+29 seey stu

4-37



when the guery is of the form

4e2.1-32 a = K1 A Kz Aeeepn K

t

We define ?®P(P,j) to be the collection of subsets of P which
have exactly j elements of Pe Then, the required probability

is given by the formula.

1

v s s+tu t
49241-40: [TT P, ][TT (1-p ) ”TT p.][TT (1-p ) ][ L(Py) - sz)]
i=1

i=v+1 j=g+1l j=s+u+t1 1

where P, {P11pP21eeeyp }
S

Pz = {P +19P 42v0ee9p }
v v s
k
L(P) = 57 (~1) i+1 z[ 1 ]
i=1 Yed(P,i)L1-TT(1-p)
peEY

and P has k elements.
A transition between two states whose associated keyword
collections are disjoint is impossible and so the transition
probability will be zeroe

As an example, consider the qgquery

4.2:1-41 g = A A B

where +the capital letters denote keywordse The transition

probabilities are displayed in table 4¢2.1-44s Small letters,

corresponding to the keywords, are used to denote the
probabilities that the respective keywords occur on an
arbi trary recorde. The steady-~-state equations, corresponding
to equations 4.2.1-36y are shown in diagram 4.2.1-45. The

solutions for these equations are shown in diagram 4e¢2.1-46.



RANSITION

{A,P} to {a,B}

{A,B} to {A}

{A,B} to {8}

{aA} to {A,B}

fA} +to {A}

{A} to (B}

{B} to {a,B}

{B} to {a}

{B} to {8}

a b
a®(l-b)el] -~
[2
(i~al)epel|l ] -
b
a®b
a
a®(i=-pb)
a
0
a*b
b
D
(l-a)edp
b

Transition probabilities for 4.2.1-41.

- (1-a)e(1-b)

1

]

1

- (1l~-a)e(1-b)

1

]
]

1

- (1-a)*(1-b)




Zeble 442e1-45: Steadyv-state equations for 4e2e1-41

@ = probability that system is in state {A,B}
B = probability that system is in state {a}

Y = probability that system is in state {B}

a = a'b'[l + 1 - 1 ]‘a + aepeg +gepey
a b 1 - (1-a)e(1-p) a b
g = a'(l—b)'[l - 1 ]°a + a®(i-b)eg
a 1 - (1-a)e(1-b) a
v = (]—a)’b‘[l - 1 ]'a + (l1-a)ebey
b 1 -~ (1-a)e(1-b) b

Diagram 4.,2.,1~46: §iéiigngzx_ﬂzghggiliiigs for 4.2.1-41

a = 1 = (4=-a)e(1-b)
1 + (1-a)e(1-b)

™
I
<
f

(1-a)e(1-bp)
1 + (1-a)e(1-b)




Of particular interest is the probability for the state

corresponding to both attributes:

4.2¢1-42 TTCA,B) = 1_- (l-alde(i-b)
1 + (1-a)e(1-b)
As an alternative to 4e2¢1~41, the f-cover

4e2.1-43 g(A) = A

could be used in the peneralized trace algorithme In this
situation the expectation that a record with the keywords Ay B

is retrieved is given by

44201-48 TTC(A) = b
Then, the expression 4e¢2s1-41 is preferred to 4e¢241-43 if

4e201-492 TTcay < TTCA,B)

or if

44241-50 » < 1-(1-al)2(1=-b)
1*(1-al)e(1-b)

or if

Le2¢1-51 a > b/(1+%) when b#le

In the case where bz=l, the relationship 4e2e¢1-5" is always
false and s0 the condition 4¢2¢1-49 is falsee These results
are summarized by the diagram 4e¢2.1=52, A unit square is
divided into three arease. Each of the areas where one of the

gueries gy g(A)y gq(RB) is preferred to the others is labelled.



A coordinate (ay,b) within the square represents the
ﬁrobabilities for the keywords A and B, respectivelye Thus,
the qguery q = A A B is crreferred when the associated
probabilities (ay,b) fall within the area delineated by the

lines

a = b/(1+h)

b

a/(1+a)

It is conceded that the transition-system method is
impractical in many casese For s keywords in a query 2“—1
linear egquations are generatede. This number of equations may
be too large for practical purposese. For the case of §=2, the
equations were solved analyticly and the results summarized in
diagram 4¢.2.1=-52, For larger values of Sy the analytic
sclution of the equations resulted in formulas which were to
complex to be useful.

Lastly, we shall propose a new method of implementing a
’multilist file. According to Hsaio and Harary, a multilist
file is a general file structure in which the directory entry
for any keyword has exactly one list associated with ite Each
list is represented as a collection of records in which the
next record in the list is indicated by a K=pointer. These

pointers are usually stored as part of the record from which

they pointe We suggest that these pointers be stored
tparallel? to these records; ie€ey that another file be
created to consist of the K-pointerse Thus, if the i-th



4e2e1-52" Optimal areas for f-covers of A AN B

b
A
(0,1) (=, 1) —_ (1,1)
a =b
1+b
g(A)=Aa
g=AnaB
(1’%)
b= a
l1+a
g (B)=B
(C,0) S

(1,0)



record in the multilist file has the keywords K;y Kpy oceey Kt
associated with it and if lists are defined for each of these

keywords, then the i-th degcriptive record in the parallel

file would be represented as

4e2+1=-54 {<K11P1>?<K29p2>v00001<kt1Pt>}

Another possibility is to invert each of these descriptive

records as

1 1 1 s _s S
40241=55 {<911K1vK21~-~vKn(1§1 ceoy <p59K19K270001K >}

n(s)
when there are n(i) (1£i<t) keywords having the pointer value
pi. The representation 4«2.1-55 may use less storage space
than 4¢2.1-54 but will be less efficient to use to locate the
pointer value corresponding to an arbitrary keyworde.

The proposed implementation will decrease retrieval costs
in some casese. Consider the generalized trace algorithm
applied to &a multilist file which |is 1mplemented in this
manners The descriptive records may be stored in blocks and
s0 a single access to direct-access storage may read into the
computer memory several descriptive records. In some cases,
the descriptive record by itself may determine whether or not
an actual record satisfies a querye. Thus,y there is no need to
read the actual data record and evaluate the query expression
for ite It is anticipated that many retrievals can be
performed with subhstantially fewer accesses using the proposed

me thode.

In order to illustrate how a record may be evaluated as



true or false, with regard to a query, consider the query

4.2.1-56 g = (A v B) 5o C

where Ay B, C represent keywordse If a descriptive word is
read in which Ay, C are keywords (as indicated by the keyword
pointers), then the query is true for that recorde. In the
case where the keyword C is not found on a descriptive record,
and a list is defined for that keyword, then the record cannot
satisfy the recorde. If lists exist for keywords Ay C (and not
for B) and if C is found on the record and A is noty then the
actual record has to be examined (the query will be t rue if
keyword B is true for the record)e.

In general, the keywordse in a gqguery may be divided into
two disjoint classes: those for which lists are defined, and
those for which 1lists are not definede By examining the
descriptive record, all keywords in the former set may be

evaluatede Substituting the appropriate values into the query

expression and applying the identities

4.21-57 (i) K = K vy 0

(ii) K

[}
=
>
-

(iii) 0 = K A O
(iv) 1 = K v 1

(for a keyword K)

we may reduce the guery to either a constant or an expression
involving keywords from the latter classe. When the reduced

expression is a constant, then it has been determined whether



or not the query is true for the record in questione. When the
sukstitutions do not reduce the query to a constant, the
actual record must be read to determine whether or not the
record satisfies the querye. Of coursey if all the keywords in
a query have lists defined to correspond to them, then the
gquery expression can always be reduced to a constant (since
all keywords may be evaluated by inspecting the descriptive
record)e. As an exampley consider the query 4.2.1-56 and
suppose that keywords Ay, C have lists definede Then, the
following contingency table indicates the values of A and C

for which the actual record must be read in order to evaluate

4.2. 1—56c

Table 4¢2e1-58 C e 1
A
C ¢ ?
1 0 1
("?" jindicates when g = (AvB) A C cannot be
evaluated without examination of the actual
recorde )

In summary s this subsection has been concerned in

particular with certain improvements +to +the multilist file
organizatione. Specifically, we introduced a restriction which
may be applied to the lists and then we showed how the
retrieval process could be generalized using the modified

struc turee. We derived several results concerning the



probability of one f-cover ©being preferred to anotheres

lLastlyy we proposed a new manner of implementing a multilist

file and indicated the potential benefits from such an

implementatione.



This subsection will be concerned with inverted filess
We shall consider inverted files from the same point of view
as Heaio and Hararyes Parallel-processing of lists for this
particular type of generalized file structure will be reviewed
and compared with an algorithm by Manola and Hsiao The two
alyporithrs above are special cases of a general algorithm
which we shall specifye We shall consider an inverted file in
which the queries are restricted to a simple format and
develoﬁ an analytic result indicating how to determine the
optimal collection of inverted lists for this system. Lastly,
we shall illustrate why analytic results are difficult to
obtain for systems in which the queries‘are unrestricted. In
the absence of analytic resultsy, a search procedure such as
the branch=-and-bound approach is indicated and we shall
reference a case study to illustrate our ideas.

Adopting the view of Hsiao and Harary, an inverted file
is a generalized file structure for which the directory

entries are (n=h):
4e2s2-1 (Kynyh5a(1)ya(2)yeseyalh))

Thuss all records iﬁ the file which contain the keyword K are
indicated by a pointer a(ji) (1%i€h) in the associated
directory. It is common to call 442.2=-1 an inverted list and,
since all K-pointers associated with records are null, to omit

physically representing K-pointers.



fil?y

Manol

appli

Parallel-processing of lists, applied to the inverted

is equivalent to the following algorithm:

a

ed

(i) Search the directory: Create a sequence & to
he the union of the record pointers found in the
directory entries (4¢2¢2-1) for the prime keywords
Ki (1€iSt). Let E be an initially empty set of

recordse.

(ii) Search the file: If 8 is null, then go to
step (v)e Otherwise, let a'=min{ala€8}. Retrieve

the record R at address a'e

(iii) Examine the record: If the query is true for

record Ry then add P to set Ee

(iv) Prepare 1o retrieve the next record: Delete
(all occurances of) a' from 8, Repeat the

algorithm at step (ii)e

(v) Complete the algorithm: The collection E of
records contains all records which satisty the

gquerye

Hsaio suggest that the following algorithm be

to inverted lists:

(i) For a query q in the form qz(K}AK%AoooAK v

R

)
(1
ese v (KfAKSAeeenKk®) create a collection of sets €
i

r(s

r igi i

(12158) as 8, =N i where Qj is the collection of
j=1



record pointers in the directory entry (4¢2.2-1)

i
for keyword Kj in g e

[}

(ii) Let & =

ei and let F be an initially empty
1

i:
set of recordse
(iii) -~ (vi) are the same as steps (ii) - (v) of
algorithm 4e2.2-2, except that tte aquery g is

always true for the record R retrieved and so does

not have to be examinede

consider both algorithms to be special cases of the

algorithm:

(i) Create an f-cover: Given a query qggy create
an appropriate f-cover g such that aq involves no
complementation and such that all keywords have

lists defined to correspond to theme

(ii) Create £€: C(Create a set & of record pointers
defined by substituting (simultaneously) in q as
follows:

(a) substitute '0¢', YUV for TA', ¢VI regpectively
(b) substitute 8(K) for K, where 8(K) is the
collection of record pointers which are found in
the directory entry for a keyword K in qe

(iii) Retrieve the records: Retrieve all records
indicated by the pointers in 8 Add to the
retrieval set those records for which the guery ggp

is truee.



Clearly, algorithm 4e2e¢2~2 selects an f-cover in the form of
the 'CRY of prime keywordse In algorithm 4.2.2-3, the initial
guery gg is used as the f-covere.

There may bey hcowever, a number of other f-covers which
can be selectede. It is reasonable to attempt to select the f-
cover for which the cost of retrieval will be minimume To
estimate this cost we have to have knowledge of the retrieval
algorithm(s) and accounting proceduress. As accounting
procedures, for example, typically differ from computer system
To computer system, analytic results which generally apply are
fewe We anticipate, however, given the definitions of
retrieval algorithms and accounting procedures which are
applicable toc a particular system, estimates of retrieval
costs may be mades To illustrate the estimation of these
costs we shall consider a simple accounting system and a
simple retrieval algorithme

Consider an accounting system where the cost of

performing a retrieval is the sum of

4ele2-5 (i) the cost of retrieving records: assumed to

be proportional to the number of records retrievedes

(ii) the cost of taking the intersections and
- unions of lists of pointers: assumed to be

proportional to the number of such operations.

for an f-cover q, the cost c(q) of retrieval is therefore

estimated to be:



40202-6 c(q) = X®*a(q) * Y*b(qg) where
(i) a(g) is the number of records retrievedes

(ii) X is the expected cost of retrieving a record

and examining it to determine if it satisfies the

qﬁery.

(iii) b(gq) is the number of intersections or unions

required to create the set 8 in algerithm 4de2l2e2-4,

(iv) ¥ is the average cost of taking the union or

intersection of two sets of record pointerse

Now, for an f-cover g in the form

4.242-7 g = (Kivkl ...vxl)Asvakg ...vxzzA ce A{KSVKSVaeovk®
n(l n 2’ n

the number of set operations b(q) is given by

n(i) - 1
1

40202-8 b(qg) =
i

[

if all operations are binarye. To estimate the number of
records a(g) to be retrievedy, we first compute the probability
p(g) that an arbitrary record satisfies the f-cover ge We
assume that we know, for any keyword Ky, the probability p(K)
that an arbitrary record contains Ke p(g) may be estimated as

follows:

4e2.2-9 (i) write the f-cover q in disjunctive normal

forme



e thiod Ao 3
Lecause the
re cord is

dimpgunctive

and the est

de2e2-12

(ii) create an expression by (simultaneously)

performing the following substitutions into
Boolean expression (i):

{a) Vet for thH

(b) '+ for ',°

{c) p(K) for a keyword Ke

() (1-p(kK)) for K

(ii1i) evaluate (ii) to derive p(gle

the

«2-9 derives plq), under the assumptions above,

method finds the sum of the probabilities that

a member ot the disjoint sets defined by

a

the

terms in (i) of 4e42.2-0, For exampley the f-cover

q = (AAB)vC

in disjunctive normal form as

g = (AABAC)
v (AANBAC)
v (AABAC)
v (AABAC)
v (AAPAC)

imate of p(g) is given by

p(g) = plA)*p(B)ep(C)

+ pCA)*p(RB)*(1-p(C))



+ p(A)*(1-p(B))ep(C)
+ (1-p(A))*p(BYep(C)

+ (1-p(A))e(1-p(B))ep(C)

Having calculated p(g)y the estimate a(gq) is computed as

13 algq) = Nep(q)

where N is the number of records in the filee

It remains to specify the retrieval algorithme We shall

assume that the query qgp is in the form

(K}VK%VOOOVKI ) A( K%Vl(gvooovl( Jpeee K?ngv..vaS)

n(l) n(2) n{3)

f

4.202-14 ag

One of the s terms in 4e¢2¢2-14, for which the n(i) (1%i<s)
keywords all have inverted lists defined to correspond to
them, is selected as the f-covers. We shall choose the f-cover
for which cost is estimated to be minimume As an example,

consider the guerye.

4e2e2-15 go = (AvBvC) A (AvDVE) A (AVF)

where the keywords are represented as capital letters and

where the following probabilities are known:

4.2.2-16 p(A) = &3

p(B) = 2
p(C) = 4
p(D) = .1
p(E) = .3



fsitowing f~covers may be selected

o gy = AVRvC
gz = AVOVE
93 T AVF

o a0 caleulate

bl 2218 alqgy) = 664 bla,) = 2
alagp) = 559 blgqz) = 2
alqz) = 720 blgz) = 1
clay) = 50 x 664 + 500 x 2 = 4320
c(gp) = 50 x 559 + 500 x 2 = 3795
clqz) = 80 x 720 + 820 x 1 = 4100

ool 0 the f-covers are preferred in the order: g2y 39 die
Ft the cost of the set operations, Y, was increased to 1000
nen g3 would be the preferred f~covere

The preceding analysis has shown that the cost of an f-



cover is dependent upon a number of factorse It is not
possible, in most casesy to choose the f-cover having least
expected cost without considering all these factorse. A
somewhat similar situation occurs if we attempt to determine
the best collection of lists to definee.

lLet us consider a system in which the gueries have the

very simple form:

4220220 aq = K

where K is a keyworde Ve shall assume that the following

parameters are known?:

402.2=21 (i) {K11K2yeee9K } is the set of keywords which
n

may be used in the qgqueries

(ii) C, is the cost of performirg the retrieval
i
for the i-th guery when the i~th keyword has a list

defined for ite.

(iii) S is the cost of sequentially processing the
tile to determine all records which satisfy an

arbitrary querye.

(iv) Ei ie the <cost of gstoring the list for Ki

during a period of timee

(v) ﬁ‘ is the expected fregquency which the i-th

guery is entered during the period of times

We shall consider K to be a bivalent variable with a value of
i



one if the i-th keyword has a list defined for it and a value
of zero otherwises. The expected system costy, for the unit of
timey, is a function of the n variables Ki and is given as

: n
4026222 C(Kyy9Kayeeu K ) = B + 7 { K oL + £ ¢(K oC + (1-K_)es)}

n - i i i i i i
i=1

where B is the cost to store the basic information for the

period of timee. The cost function is minimized, if for 1<i<n,

- = if e > + °
=23 Ki 1, if fi S Li fi Ci

H

0, otherwise

In other wordsy we define a list for the i-th keyword if the

relationship

. -2 > -
4.2.2-24 fi Li / (s ci)

is truee The above relationship indicates thaty even for this
simple system, the decision whether or not to define an
inverted list ié dependent upon four factorse. The situation
is more complicﬁted when the queries which characterize system
usage are allowed to be more complexe.

Consider one such query,

4222225 g = (AvB) A(BVC) A(CvD)

involving the keywords A, By C, D, Suppose that the retrieval

algorithm will choose one of

322.2-26 q(1) Av B

q(2) By C



q(3) = CVD

as the f—-cover to be usedy iny, for exampley, algorithm 4.2.2-4,
and assume that the f—~covers are preferred in ascending order,
according to their indices. In this case, the cost of

retrieval for this query is given by

442.2-27 c(g) = ABR; + (1-A)BCF, * (1-A)(1-B)CDR;
+ (1-A)(1-B)(1-C)s
where Ay By Cy D are varijiables as before and where
Fyy R2y P3 are the costs of performing retrievals
using the three f-covers respectivelys S is the

cost of sequentially searching the filee

1t there were many similarly complex queries, than the cost
egquation for the system cannot be minimized as easily as was
462.2-15.

This analysis indicates the need for a procedure which
will effectively search for an optimal (or nearly optimal)
solutione. As was stated in chapter threey, the branch-and-
bound method is an attractive method to use for this purposees
Appendix P is a case study of an inverted file to which this
method was appliede.

In summary, our general approach us ing f-covers has
increased the number of possihble ways to retrieve records
using an inverted filee. Some of these ways may decfease
retrieval «cost substantially, compared to conventional

approachese. The analysisy to determine an optimal f-cover for

4~-58



a particular guery, is naturally dependent upon the retrieval
algorithms and accounting procedures applicable in a
particular systenm. We have indicated how these factors may be
taken into consideration in a few specific casese The
important feature is the approach usedes Ve anticipate that
this method has wide applicabilitye.

Ve have indicated that analytic results are,y, in general,
difficult to determine. As an alternativey, we have proposed
that the hranch-and-bound technique be adapted as a search
procedure to determine the (nearly) optimal collection of
inverted listse A case study has been provided to illustrate

the application of these techniques (Appendix D).



4.3 Vong-and—-Chiang Descriptive Storage

In +this section we shall consider an organization of
descriptive storage proposed by Wong and Chiang [WONG71].
Trigs organization may be shown to be a special case of Set-—
theoretical Descriptive Storages We shall demonstrate how
retrieval may be generalized for the Wong and Chiang (WEC)
organizationes Lastly, we shall illustrate how this form of
descriptive storage may be optimized, using the branch-and-
bound techniquee

The authors use definitions similar to those of Hsaio and
Farary to formulate their modele. A record is considered to be
a finite collection of attribute~value pairse. Fach record has
a unique positive integer assocliated with it, called its
addresse. A certain sub-collection of these attribute-value
pairs are called keywordse. Descriptive storage is organized
as followsse Let A = [Kjy Koy evey Kn} be the keywords defined

n
for a file G Then there are 2 expressions of the form

3.3:_]_ kl A ‘KZ A eee A ‘K

n

where ki represents either K; or K; (1%isn).

Descriptive storage consists of those non-null sets of records
which satisfy a definition of the form 4.3-1. As is shown by
the authors, every record occurs in exactly one such sete
This organization is clearly an STDS <G,A,D,%”> where basic
storage is the original file G, the set A is a.set of keywords
(attributes in our earlier definitions), and & is the

collection of sets defined abovee The set—-definition function
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Yong-and-Chiang file organjzation

o]

10

Keywords

DESCRIPTIVE STORAGE

Definition

ABATAD

»l

ANBACAD
AANBACAD

A ABAC AD

A, C
AyB

D

Contents
{3,6,9}
{1,4}
{5,8}

{247,100}




40305 (i) Let A= {Kl
which the WEC de

For an arbitra

, KZ’ ecey Kn} be the keywords for

scriptive storage is constructede

ry query q and for the set of

keywordsy construct the minimal f~cover q'.

(ii) WVWrite q°

every term in th
set having the ¢t
examine all reco
which satisfies

record to the re

In the case where all the a
keywords, the minimal f-cov
expressiones There is an ad

minimal because:?

4.3-6 (i) The number
g (with respect

minimal f-covere.

(ii) Exactly +t

is true,y, are ret

In other words, if the
records than needed may
generalized the retrieval

may be posede.

For an arbitrary file

in disjunctive normal forme For
is expression, if there exists a
erm as its definition, retrieve and
rds in the set. For every record
the original gquery dq add the

trieval set.

ttribute-~value pairs in a query are
er is equivalent to the original

vantage in using f-covers which are

of records for which an f-cover of

to A) is truey is minimum for the

hose records,y, for which the f-cover

rieved by the algorithme

f-cover is not minimal, then more
be retrievede. Thus, we have

algorithm to handle any query which

there are many ways of constructing



a WEC descriptive storage because there are many ways to
apecify a set Ae This sety in conjunction with the contents
ot the file, determines the descriptive storagee. The optimal
collection of keywords is ore for which the system cost is
expected to be minimume In the preceding chapters we have
discussed the factors which influence system coste. As an
illustration of how to determine the optimal descriptive
storage for the wEC organization, we shall assume that the
cost Cl(Ayg) of performing a retrieval for a gquery q is given

by

i C(Aygq) = r(Ayq)*R %+ C(qg)
where (i) r(Ayq) is the number of records retrieved and

examined during algorithm 4.3-5.

(ii) R is the (constant) cost to read and examine

a recorde

(iii) C(g) 1is the remaining (constant) cost of

retrieval when the query is q.

Ve shall characterize expected system cost, in the usual way,
by the sets Q (queries) and F (frequencies). Then, the
expected system cost C(A), when the set A of keywords
generates descriptive storage, is given by
4.9-8 CCA) = S(A) + 5 f(g)*C(A,q)
q€Q
where (i) S(A) is the cost of storing the sets in

descriptive storage, for an arbitrary period of
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Tt remains to specify how to derive a lower bound for
exrected cost of a set of feasible solutions during the
branch—and-bound optimizatione Pecall that a subset is

ctaracterized as a four—-tuple

15 <jsDyCminy x> where
(i) for n candidates, 0%<j<n
(ii) D Z {Kyis Kz9 seey Kj}
(iii) Cmin is a lower bound on cost, when the
descriptive storage is generated Dby DvD?Y, where

D'E{Kj+1ij+21---’Kn}-

(iv) x 1is a symbol indicating whether or not the

subset of solutions is feasiblee
Given j and D in 4.3-15, we compute a lower bound for cost as

4.3-16 Cmin = S(D) + 2 £(q)*C(D",q)
q€Q

where (i) D" = p U {Kj+1, Kj+2y XXX Kl’l}
(ii) S(D) is the expected cost to store the

descriptive storage generated by the collection of

keywords De

VYaving completely defined all computations, we may determine
the optimal WEC descriptive storage, using the branch-and-
bound algorithm specified in chapter threee.

In summary, we have applied our general results regarding
Set—theoretrical Descriptive Storage to the particular case of

a Wong-and-Chiang descriptive storages. By doing soy we have
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Work—-Set Systems

In this section we shall be concerned with a special
class of STDS systems which we shall call work-set systemse.
WYe have borrowed the term *work—-set! from paging systems
because of the manner in which our proposed systems will
decide upon the composition of descriptive storages. We shall
treat these systems as proposals for further researche We
shall irdicate +the potential benefits of such systems and we
shall present some elementary resul ts regarding their
operationes

First we shall explain the reason for naming these
systems 'Ywork—set systems'e. Consider the execution of a
computer program in a paging systeme. The program and data
areas of the program are partitioned into small portions
called pagese For a given number of machine instructions,
orrly a few of the data and program pages are referencede. This
collection is called the working set or work-set for the
series of instructions in question. Pages that are not in the
work-set need not reside in the computer memory while the
sequence of instructions is executed by the computer hardwaree
Thus, by writing unneeded pages from the computer memory to a
direct-access storage device, and by reading required pages
from a direct-access storage device into the computer memory,
the program may be executed using less memory (at any given
time) then the total requirements of the programs It is

argued that paging is desireable because



404-1 (i) It is possible to execute programs whose
total memory requirements exceed the physical

memory of the computers.

(ii) It is possible to allow more programs to
execute concurrently (because more will fit into
the physical memory of the computer) and so the
hardware resources of a computer system are more

effectively utilized.

Paging systems attempt to estimate the size and contents
of the work-set for a given programe Algorithms, known as
replacement algorithms, determine where a page of a program is
to reside - in the computer memory or on a direct-access
storage devicee. Decisions on whether to transfer a given page

from one memory hierarchy to another are typically based upon:

4.4-2 (i) the historical reference pattern of a program
(ii) the environment of the paging system
(iii) the current state (ie.cey ready to execute,

waiting for a resource, etce) of the programe

The goal of the paging system is to maximize the usage of the
system resources, subject to constraints such as "response
time for terminal users must not exceed some maximum value's
We propose that an STDS system can be implemented in a
manner analogous to a paging system. The various sets in an
STDS system may be considered in the same manner as pages are

in a paging system. Corresponding to replacement algorithms



in the paging systems, we propose that algorithms which decide
+t0 create or destroy sets be implementedo. Based upon the
ucsage of the system, these decisions would control which sets
consititute descriptive storage. This collection of sets
resembles the collection of pages in the work-set. A
comparison between paging systems and the proposed STDS system
is displayed in table 4.4-3.,

Thus the essential feature of the work—-set systems is
that an optimal descriptive storage is approximated, during
the system operation, through the action of replacement

algorithms. These algorithms decide

4.4-4 (i) to destroy a set when the storage of the set
( for a period of time) is expected to cost more
than the saving in retrieval cost achieved by its

presence.

(ii) to create a set when storage of this set is
expected to cost less than the saving in retrieval

cost due to its presence.

Replacement alzorithms, in paging systems, must be invoked
frequently (ieseey many times a second) and must be completed
in a short period of time. Otherwise, the system overhead
becomes excessive and various measures of system performance
( such as response time for terminal users) will indicate
inadequate usage of system resourcese. In the proposed work-
set systems, however, the rate at which queries are posed to

the system determines that replacement decisions are made
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relatively

As a

rerformede.

in section

infrequently (ieeey on the order of hours or days)e

result a relatively more complex analysis may be

As an

example, consider the simple inverted file outlined

44242 where queries have the simple form:

g = K

where K is a keyworde

As was shown, a list should be defined for a keyword K if the

tollowing relationship is true:

4+4-6

where

f(K) > _L(K)
S=C(K)

(i) f(K) is the frequency which the gquery 4+4-5

is entered (for a period of time).

(ii) L(K) is the cost of storing the inverted list

for keyword K (for the period of time).

(iii) S is the cost of retrieval when basic storage

is sequentially processeds.

(iv) C(K) is the cost of retrieval for query 4+4-5

when the indicated inverted list is definede

The three variables on the right side of the greater—-than sign

are immediately available and may be combined to yield a lower

hound

4.4-7

PCK) = L(K) _
S-C(X)
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The set in question should be defined if the difference (4.4-

G) is greater than zero. If we substitute the mean cost C for

ol (1%in) we obtain the expression
i
n
404-10 Difference = . f @®(S-C) - L
i
i=1

which indicates that the set in guestion should be defined if

the relationship

n
40411 L f. > _L_
i
i=1 $-C
ie true. For n=1, the relationship 4.4-11 is identical to
4ed=6e Again, the right—hand side of the relationship is

constant and the problem reduces to estimation of f. (15i<n),
The above two cases are easily solved because the total

cost of the system can be expressed as a sum of functions,

each ot which involves a single bi-valent variable

representing whether or not a set is defined. In the latter

case above, the total cost of the system may be expressed as

m [ n(j) n(J)j

m
4.4-12 Cost = I D(1l4) = I |Se(1-13)® I fJ + 1je{LC1;) +2

J=1 J=1 i=1 1 i=1

where (i) lj (1£j<m) is a variable whose value is one if

the j-th list is defined, and zero otherwisees

(ii) D(lj) (1£jfm) is the cost 'contribution' for

queries which can be satisfied using the j—th sete

(iii) s is the (constant) cost to determine the
retrieval set for an arbhitrary query by

sequentially processing the fileo.



(iv) fi (1%isn(4j), 15j<m) is the frequency which
the i-th guery corresponding to the J-=th set is

enterede.

]
(v) ¢4 (1515n( §)y 1<j<m) is the cost of
performing a retrieval for the i-th query of the j-

th sety, when that set is definede.

(vi) L(lj) (1£j¥m) 1is the cost to store the j-th

sete

This situation is not possible when the more general case

exists;, iecey if

(i) several sets may be combined to yield a

superset of the retrieval set for a query; and

(ii) a query may be processed using several

collections as in (i)e

In this general situation the psuedo-Boolean cost equation
will involve terms where several of the bi-valent variables
are multiplied together. Hencey the equation is not separable
as was done in the restricted cases.

It is proposed that a function be introduced which
measures the 'usefulness' of a given set. For the two special
cases cited above, suitable functions might be:

4.4-14 case (1): £(X) - L(K) .
S-C(K)









Summary

TN
o
len

This chapter was intended to emphasize the applicability
of our results to particular file systemse. We have also
presented several results which apply to particular file
systemse.

The significance of our work may be summarized as

follows:

4e5-1 (i) The retrieval of records which satisfy a
given Boolean query has been generalized to include
all appropriate queriese. The introduction of f—-
covers has considerably expanded the choice of
retrieval algorithms, since many f-covers may exist

for an arbitrary querye.

(ii) The optimization of descriptive storage has
been attempted from a general point of views
Previously, it was either not attempted or it was
performed only for particular systems in restricted

environmentse.






a significant step towards the automatic optimization of
storage structurese.

Several avenues for future research are indicatede.
Concerning the generation of f—covers, two aspects to be
investigated are immediately apparente. In many systems, the
disjunctive normal form of a query will be inconvenient to
work withe We need a method to generate f-covers which does
not involve using the query in disjunctive normal forme
Secondly, in some cases the special knowledge of the system
may indicate that particular types of f-covers are likely to
have the minimum coste For a system which generates a number
of f-covers and then chooses the best, the generation could be
done in a heuristic mannere. In order to determine the
feasibility of this approach we need some experiments with a
real—life systeme

In the area of optimization of systems, we have provided
a foundation. A general method has been proposed and a number
of implementation considerations have been discussede. Ve have
irdicated the theoretical feasibility of +the approache To
demonstrate the practical feasibility of the approach,
experience with existing systems is necessarye It is expected
that heuristics will be developed (i.es.y better branching
rules) which will decrease the actual number of steps in the
optimization algorithm, based upon special knowledge about
particular systems.

It is anticipated that the results of this thesis can be

applied in other arease For roughly the past five years the



idea of a relational data base has been gaining increasing
acceptance. Based wupon the theoretical ideas of Childs
[ CHILD67A, CHILD67B]}y, Codd [cCcODD70, <CcODD71], and others
[ ABR70, DATE71A, DATE71B, EARL71, HEATH71 ], several examples
of relational data bases [ BRAC72] have been implemented. It
is not known whether or not these systems employ descriptive
storage to a large degree. In any casey the idea of
optimizing these systems has not yet been considerede. 1t is
anticipated that these systems may be optimized somewhat
similarly to STDS systemse The branch—and-bound method, for
example, might be used to decide which derived relations
should be maintained in the data base.

Lastly, we have proposed an alternative approach to
determine the contents of descriptive storage. Because of an
analogy with paging systems, we call these systems "work—-set"
systemse We recommend that these systems be investigatede.

In conclusiony we feel that the results of this research
are significant and will contribute to the implementation of

data base and file systems in an economical mannere.






APPENDIX (A): DEFINITIONS:

An acgounting formula is a function which, for a given

collection ¢f measurements of system resources, assigns a

coste

An accounting procedure is a method by which cost is assigned

to the usage of computer resourceses Typically, the usage of
system resources is measured and an accounting formula is

applied to these measurements in order to determine the coste

Soretimes every record in a file has a unique (within the
file) integer, called an address, associated with ite
Fxamples of addresses include the physical location (on a
hardware device) of the record and the relative record number

of the record within a filee.

In a file systemy, basjic storage is that information which is
nof primary interest to the users (to be distinguished from
descriptive storage, whose only function is to facilitate

access to the basic information)e

A variable is bpivalent if it can have one of exactly two

possible valuese

A Boolean_ expression is defined recursively as follows:

(i) 0, 1, and bivalent variables are Boolean
expressionse.
(ii) if u and v are Boolean expressions, then so are

uvVvy, uAv, and u



(iii) only items (i) and (ii) are Boolean expressionse.

Branch=-apd-Bound (B € B) procedure: see section J.2.1

Branching rules determine the order in which feasible subsets
of sclutions are partitioned, during the branch-and-bound

proceduree.

'n a search orocedure for +the optimization of an SIDSy the
candidate collsctiony is a superset of the optimal collection
of Setse It is constructed as the first stage of the search

proceduree.

GCiven a set of nbhjectsy, with pairwise similarity/dissimilarity

measures defined, a gclagssification method groups the objects

irto collections which are similare

A  Roolean exrression A govers a "loolean expression B it for
all evaluatinns of the variables of R for which B is true, A

i truee.

A data jtem i an undefined term, intuitively thought of as

corresponding to a record in a filee.

In a file system, descriptive storage is that information

whose <=ole purpose is to facilitate access to basic storage.

Ir a dictionaryv-look-up file system every record has
associated with it a unique identifier called a keye. Fach key

ie stored in the dictionary (a table), together with the



address of the record to which it applieses The address of a
record corresponding to a key is determined by locating the

appropriate key—-address pair in the table.

Given a set of n Boolean expressions fi4 T2y eeey fn an f-

cover of Boolean expression B is a Boolean expression

C(flyfzyoooyfn) which covers Be

In the branch—and-bound algorithm, a feasible subset
<jyDyCy'P'> of solutions is the collection of descriptive
«torage arrangements such that:?
(i) for n candidates {sl,sz,...,sn}, Jj<n; and
(ii) D c (sl,sz,...,sj}; and
(iii) C is a lower bound for expected system cost when
descriptive storage is DyD?! where ne .
{sj+1,sj+2,...,sn}; and

(iv) +the algorithm has not yet detected a descriptive—-

storage arrangement with a cost less than Ce

The feed-back model is a proposed model of a computerized file

system whose main components are discussed in section 2e5e
Fupnctional covering: same as f-cover

The general retrjeval algorjthm is an algorithm, proposed by
Hsaio and Harary, which retrieves all records satisfying a

guery, in a generalized file structuree.

A generalized file structure is a file together with a

directory defined in a special manner (see section 4e2)e



The peneralized trace algorithm is an algorithm for retrieval
using multilist files in which the lists are ordered according

to their addressese.

The Idealized Descriptive Storage Model (IDSM) is a model of

system cost for descriptive storage systemse

A boolear expression A implies a Boolean expression B if and

only if B covers A.

An inverted file is a generalized file structure in which
every directory entry has the form (K,n,n;al,az,oo-,an); iecey
there are n records containing the keyword K and the addresses

of these records are all found in the directorye.

The Quipe-McClusky Method is an algorithm +to produce a

minimum—-1literal union—-of-intersections (intersections—-of-
unions) Boolean expressiony equivalent to an arbitrary Boolean

expressiona.

In a file system, mapnpipulative cost is that cost which is
attributable to retrieval, update, and other maintenance

activitye.

Given a set of Boolean expressions f;, fzy eeey f; an f-cover
C is a minimal f-cover of a Boolean expressidn B if and only
if

(i) C is an f-cover of B; and

(ii) any other f-cover C!' of B covers Ce






Civen a query q and an STDS <I,A,D,%>, the retrieval st with
recpect to g is the collection {d|(d€IN E(g,d)=1)} of all data

items for which g is truee.

When applied to the optimization of STDS, a gearch precsdurs
is a method by which
(i) a collection of cancdidatesy for inclusion in the
cptimal collection of descriptive storagey is constructed
(ii) memhers of the optimal collection are chosen from

thris collection of candidatese.

In an STDS <T1,4,D,8>, the set contents of a set S€B, are those

data iteme in the set {d|(d€I)X(E(D(S)yd)=1)}.

In an STDS <TI,A,D,%>, the set definition of a sct S€%, is a

Roolean expression D(S) which determines the contents of S.

A Set-theoretical Descriprtive Storage ( STDS) is a four—-tuple
<1,A,D,8> where
(i) 1 is a finite set of data items (records), also
called basic storagee. |
(ii) A is a finite set of Boolean conditiors
(attributes)y each of which may be evalueted as either
true or false for every data item d€le.
(iii) A :8(A)=-=->TT(1) defines a set for every Boolean

expression ¢ of B(A) as follows:

ACe) {d]|(d€IME(dy=2)=1)}

(iv) g < {pn (e)|le€plA)} e As a notational convenience,

we write D(S) for the expression which generated the



labelled set S€g.

Tte storage cost of a file system, for a period of time, is
trat cost charged for the storage of besic and descriptive

storagee

A set X is a guperset of a set Y if all members of Y are also

members of Xe.

Tangible cogst refers to cost or cost elements nf resources
wtich can bhe conventionally measured by, for gxample, computer
accounting algorithmse. These costs are to be distinguished
from intangible costs which cannot be conventionally measured,
ic ey the cost to time—-csharing users of a computer system

attributable to poor response times.

Ac applied to file systems, an updats occurs when any part of
tre file syetem is changede. The changes include the addition
or destruction of data items and the changing of the

attributes possessed by data itemse.

A VWong-and-Chjiang Descriptive Storags system is an STDS system

<14A4DyS> where descriptive storage is generated by a set A% A
to consist of all non-nutl subsets of I with a definition

(S )=Ar A where & is a or ae
acA

Vork-set Systems is a proposed class of STDS systems in which
decisions regardirg the ccnstitution of descriptive storage
are nmade seanalogously tc the manner in which replacement

algorithms operate in paging systemse.






APPENDIX B: Notation
This appendix gives the notation used in several sections of
tte thesise. It may be used as a reference when reading these
sectionse

Section 1.4

An STDS is a four-tuple <I,A,D,%> where
I : basic storage (ieeey the data file)
A I a collection of attributes
# * a collection of sets describing 1 (descriptive storage)

D(S) ¢ the definition of a set S€gf

Sectiopn Jele2

WVhile developing a formula specifying total cost of an STDS
systemy, we use?:
Sj ! bivalent variable specifying whether or not the i—-th
candidate is defined.

T : a term corresponding to the j—-th arrangement

C : the cost of the j-th arrangement

Section JeZel
{S11 S29 eeey Sn} is a candidate collectione
A subset of the valuations of the variables used in a BEB
optimization is denoted <jyD,Cmin,X>
Jg number of candidates considered in subsete.
D : of the j candidates considered, those which are defined

Cmin ¢ a lower bound on cost for this subsetes



X a symbol indicating whether the subset is feasible

The following symbols are used while demonstrating that
partitioning determines an optimal collection of candidatese.
Si H candidate collection for the i-th partition
i

guery collection for the i-th partition

f(gq): frequency of the query qe

R(gyX) : cost of performing retrieval when the
descriptive storage is the collection Xe

X H any collection of candidates in the i—-th partition.

Section 4e2
A directory entry in a generalized file structure has the
form:?

(K,n,h;alyaz,...,ah)

K ! keyword

n * nunber of records for which K is true

h : number of K-lists for keyword K

a ! (1€i<h) address of a record at the start of a K-list









Cel-S:lemma: I1f f==>g, then g==>T .

Cel-6:lemma: f ==> gyrgs if and only if f==>g; and f==>gse

Cel-7:lemma: fivfy, == g if and only if fj==2g and f,==>ge

As all the above lemmas may be proven similarily, we will
only exhibit the proof for C.l-6.

proocf of Cal-6

(sufficiency)s Assume f==2g; and f==2gse Then, by
the definition of covering, for any evaluation of the
variables such that f is true, it follows that g; is true
and that g, is truee. Thus, for any such valuation g1 AE2
is true and so ==DgiAg2e

(neccessity)e. Assume f==DgiAgse Then, whenever f
is true, giagz is true. Bencey, whenever f is true, g; is
true and g, is truee. Thus, f==>g; and f==>goe

This completes the proof.

These lemmas will be referred to in section C-2 when we
specify the construction of minimal f-coverse. An example of
this construction is given in section C-3. In section C-4 we
will introduce a number of restrictions on the form of f-
covers which we permite We will indicate how to construct
these f-coverse. Several remarks on how to simplify the
expressions for f-covers will be made in section C-S5. Before

concluding our discussion in section C-7 we develop several









k
(ii) Each term Bi is in the form B, = , vj where
i :

Vj stands for the Jj-th variable of V or its

complemente For every term Bi’ we define a
valuation of the variables in V as follows: vj is
true if Vj is not complemented in B, and vi is

false otherwisee

(iii) Fach fj for j=142y eeey n is either true or

false for the valuation of V corresponding to Bi'

n

Thus, for i=1y, 2, eeey ly, we define a term Ci = A
. . j=1

i i b

fj where Yj = fj if fj is true for this valuation

i -
and Tj = fj otherwisee.

1 n .
(iv) We define C(B) =, [ . T J.
i=1  j=1Y
We claim that C(B) is a minimal f-cover of B. We shall first

demonstrate that C(B) is an f-cover of Be.
Ce2-4: lemma: C(B) is an f-cover of B,
proof:

Consider any term B in the disjunctive normal form
i

of Be. The valuation defined in C.2-3(ii) results in B,
i

evaluating as truee. Any other valuation results in B
i

evaluating as false. By the definition in C.2-3(iii) it

follows that T% is true whenever B is true. Hence, we

J i
have B ==> i for 15iS1 and 15j<n. By repeated
1 1
. n .
application of lemma C.1-6 we thus derive B ==> , T!.
1 N}
1 j=1
Repeated application of lemma Ce.l-7 proves that B, ==
i
e n . i=1
v [ A T! Je In other words, B ==> C(B) and so C(B) is an

i=1  j=17
f-cover.

We will now show that C(B) is minimal.



Ce2-5: lemma: C(B) is a minimal f-covere

Let C‘(fl,fz,oooyf ) be any f-~cover of Be
n

1
='V1Cf in disjunctive normal form with f,4 fo, o
i=1 1

variables.s For any term C , 1<i<, defined
i

wWri

o oy

in

te C°'

f as
n

the

construction of C(B) we shall show that there exists an

integer t, 12t<1', such that C _=C'.
1 t m
Consider any term C', 1€m<l', We can write C*' = ,
m m ]
ET where E? is f or its complement. Comparing C' to C ,

] J J m 1
suppose that there exists a J such that ?% is not
J

identical to Q?. Then, ET is the complement of ?%. Now,

] 1

J

for the evaluation defined by B and defining C_, ¥' is
1 -

1

i

true and so ET is falsee. Hence, C' is falsee. Hence, all

R m

terms not identical +to C. are false. But,
i

evaluation in gquestiony, P is true and so C'

Thus, there must exist a t, 15St31', such that C,
i

fo

is

=Ct,
m

r the

truee.

Hence, we may write C' = C(B) v C" and so C' is

true whenever C(B) is truey, ieeey C(B) ==>

proves the minimality of C(RBR).

which

To illustrate the method of constructing an f-cover, we

present an example in section Ce3.
Before considering the example, we remark

minimal f-covers are equivalent to one anothere.

that

For

all

two

minimal f-covers, C; and Cpy, we have C;==>C, and C>==>C3. We

can thus show that C; and C», have the same value

valuations of the variables in V.

for

any



C=23 EXAMPLF OF CONSTRUCTION OF MINIMAL F=-COVER

Thise section is intended to illustrate the construction
of minimal f-covers as proposed in section C.2e Let Byfy,y fo,

and f3 be defined as:

B = (a yv b) A d
fy = a
f, = b
f3 = a A ¢
Hence, the set of variables is V = {aybycyd}e The disjunctive

normal form of B is given by

Ced-1 B = abcd v abdd v abed v abcd v abed v abcd

Ve have omitted 'A' operators to increase legibilityes Steps
(ii) and (iii) of the construction are summarized in table

Ce3-2 belowes

Ce3-2 Summary of Steps (i) and (iii)

Evaluation of V

ET a b c d_ QT

abcd 1111 fifof3
abcd 11 01 £f,1f2%3
abcd 101 1 f,f21f3
abcd 1 001 11273
abed o111 fif.T3

abcd C.1 0 1 T, 213

Hence, we derive



h

Cad=2 C(B) = fifefs | £1f2%5 , 11733 117375 | FifeT5
= 1, v fZ:Fg

as a minimal f-covers

The generality of the method is illustrated by the fact
that a non-trivial f-cover was constructed even though a
- variable 'd' was present only in Be. We note that C(B) can be

written as

Cs3-4 C(B) = (fy , f2)(£; , T3)

and by substitution for the expressions f,, fz, f3 we derive

Ce3=5 f1 v f2 = a y b
Ced-6 f, v £f3 = a  (ac)
=1
and so
C03:l C(B) = a th(fl sz)

Simplifications of the above nature are discussed in
section C-5e As the remarks apply to f-covers in general we
will consider first a number of other f-covers in the

following sections



Cs4 RESTRICTIED F-COVEPRS

As indicated in section 22 of the thesisy, minimal f-
covers may not be the preferred form of f-cover to be derivede.
For example it may be desireable to obtain f-=covers in which
no complementation occurse Hence,y, we introduce a number of
restrictions on the composition of f-covers. For each
restriction we indicate a construction procedure and show that
such f-covers exist, then the appropriate method will derive
theme

We propose that f-covers be restricted in any of the

following wayss

Ced-1 (i) No complementation - be allowed in the

expression for the f-covere

(ii) No tyt operators be allowed in the f-cover

expressione

(iii) No " At operators be allowed in the f-cover

expressions

or (iv) The expression for the f-cover is to have
property (i) and either property (1ii) or
(iii)e
Property (ii), for example, specifies that the f-cover must
have the form:

Ca4-2 c= AT

. where Q ¢ {1425eee9yn} and ¥ is f 6 or its
ieQ i - i i

complement



To construct an f-cover with property (iii) of Ced4-1 we

proceed as follows:

Ce4-3 (i) For the given Boolean expression B construct

a minimal f-cover using the method specified in

Ce2e

(ii) WwWrite the resultant f~cover as an 'AND' -of-

"OR' terms expressiones

(iii) Select one of the '"OR'-terms as the required

f-cover.

By lemma Cel1-6 and the definition of an f-cover, the selected
term is an f-cover in the required formate. The problem of
which term to select is based upon other considerations and is
discussed in the thesise Referring to the example in section
Ce3, we derived a minimum f-cover Ce3~3 which was written in
the form specified in Ce4-3 (ii)e From Ce3-4 we see that
either of the terms (ft; y f3) or (f3 v f3) could have been
selecteds We observe that step (ii) of Ce4-3 is always
pessible since C(B) can always be written in conjunctive
normal forme

Ve now consider the situation where f-covers are
restricted according to Ce4-1 (ii)y ieeey f—-covers are ot the
form U = AT where Qc {132yeee9n} e Suppose that such an

ieQ 1 -

expression exists for an expression Be Then, by lemma Cel-6
end the detfinition of an f-cover, it follows that ?i’ i€Qy,y is

1
an f-cover of Be. Writing B = VvB in disjunctive normal form,

j=17



T is an f-cover of Bj, J€{1y25000e31l}, by lemma Cel=-7e In
i

other words, we can construct the required f-cover as the
YAND! of all fi or their complements which occur in the same

form in all terms of the disjunctive normal form of the

minimal f-covere. As an example let

Ced-4 B = aan b
f1 = a v ¢
fo = b A C
f3z3 = c
fqa = C

Then, an appropriate f-cover is (flATZ) sincey, for the two
terms in the disjunctive normal form of the minimal f~cover,
fy occurs in uncomplemented form and f, occurs in complemented
forme

For the case where we want an f—-cover which involves no
complementation we adapt the three procedures for f-cover
constructiones. When the only restriction is that
complementation is not allowed we modify +the method for
constructing minimal f-covers as followse. Instead of creating
+t+he disjunctive normal form of the minimal f-cover, we create
terms which omi+t any complemented forms of fyy fo49 eeey fn.

Referring to the example in section C.3, we create by this

method a table corresponding to table Ce3-2.



Cs4-8 Table corresponding to table C.3-2

Fvaluation of V

B3 a_b_c d Ci
abcd 1111 fatofs
abcd 1101 fito
abcd 1 011 fqf3
abcd 1001 £y
abcd 0111 £z
abcd | 0101 fo

and so we derive

Ced-6 C = £1f,f3 v f1f2 v £1f3 v £1 v £ v f2

= £y v f£2
as an f-cover for B = (aarb)vde As long as every term in the
disjunctive normal form of B is covered, the outlined

procedure is wvalid, as could be proven similarily to lemma
Ce2-4. In the case where the disjunctive normal form of the
minimal f-cover contains a term F; A T A esse A Tn, we claim
that the only f-cover which does not involve complementation
is the trivial f-cover 1, ieeey the expression which is true

for all valuations. This is a consequence of the following

lemma.

Ce4-17 lemma Let E be a Boolean expression which does not
involve complementation and let the variables

occuring in E be vi, \ R esey V e Then, the



disjunctive normal form of E contains the term v; A

V2 A eee A Vv if and only if E = 1.
n

Informally, the proof is outlined as followse Sufficiency is
trivial and necessity can be proven using induction on n, the
number of variablese. The basis step (n=1) is established by
considering the four possible disjunctive normal forms which E

may havee The induction step proceeds as followse.

Ce4-=-8 (i) Factor F into terms involving v; and v; using

Shannon's expansion theoreme

(ii) By the induction hypothesis, the terms

involving vy reduce to vy

(iii) Hence, F reduces to the form F = vy v v F,

where F; does not involve the variable vje

(iv) Since E can be written without
complementation, E; must be identical to 1 since
this is the only way v; can be subsumed. Hence,

F=1.

Lemma Ce4-7, together with the result from the proof of lemma
Ce2-5 that any f-cover C can be written in the form C = C(B) v
C' where C(R) is a minimal f-cover, can be used to prove lemma

Co4-9‘

9 lemmae If the disjunctive normal form of a minimal

f-cover for an expression B contains a term where

all the given expressions are complemented, the






Cef SIMPLIFICATION OF F-COVERS

The method for constructing minimal f-covers produces f-
covers in disjunctive normal forme In the examples we
manipulated these expressions into simpler formse A
systematic for this type of manipulation is the Quine-McClusky
method [ WOOD68,KOH70 ] which produces minimum-literal two-level
Enolean expressionse More simply, the method produces either
YAND'-of-'0OR'—terms or *'OR'~0f-"AND'-terms expressions in
which the number of times variables are used is minimume An
alternative but equivalent method has been proposed by Zissos
and Duncan [Z1s73]. In both cases,y, the expressions produced
are equivalent to the original expressionse

Further simplification of Boolean expressions may be
accomplished by functional decompositione. In general, this
process involves expressing a Boolean function of n variables
as a composition of a number of functions, each depending on
less than n variablese. A general introduction and references
to particular methods is found in Kohavi [ KOH70].

The simplifications above involve rewriting f-covers in
an equivalent manner, treating fj3453 f29 eeaey fn as variablese.
We have made no use of the fact that f34 f29 eesey fn are
themselves expressions depending on a (possibly) shared set of
variables. It is often possible to eliminate terms in f-
covers by using this informatione.

In general, we can write an f-cover C as an 'ORY-of!'-~-
YAND!'~-terms expressione In this case we can eliminate any

term which is covered by another terme. We determine whether






Ce6 APPLICATION OF F-COVERS TOQO SIDS

In this section we shall be concerned with the use of f-
covers with regard to Set—-theoretical Descriptive Storage

(STDS ). Aes a preliminaryy we define:

Ceb6-1 Definition: An STDS is a four-tuple <I A,D,%>
where
(i) T is a finite set of undefined elements

called data itemse

(ii) A is a set of Roolean conditions (attributes)
such that for each a€A and each d€l a value, true
or falsey ie defined and denoted E(dsa)e.
Similarly, for a Boolean expression B, depending on
variables from the set Ay E(dyB) is the evaluation
of expression B when all the variables of A are

replaced by their values with respect to de.

Thus, each S€% consists of all data items in 1 for which the
definition TD(S) of S is true.
(iii) A :8(A)->TT(1) defines a set for every Boolean
expression € of B(A) as follows:?:

Ale) = {dl(d€I) F(dya)=1)} .

(iv) 2 c { A (e) | =eeB(A) }. As a notational
convenience, we write D(S) for the expression which

generated the labelled set S€E .






that F(dyD(S1))=F(dyD(S2))=1, Herrcey by definition of
STIS, d€S, and  d€S,. Hence, d€S; nS» and so
S1nSac {dl(Hd€TICE(dyD(S1 )IAD(Sz))=1)}.

This completes the proof of (i)

Thus, we nay construct a set of data items,y, corresponding to
an f-cover of an expression B, by performing the set-
thecoretical operations in an expression defined as follows.
Take the expression for the f-cover and perform the following

(simultaneous) substitutionse.

Ce+6=-3 (i) Replace 'A' by 'n'.

(ii) Replace 'v' by 'y'e.

(iii) For all S€g replace D(S) by S.

Thusy the expression C = (D(Sy) v D(S2)) A D(S3) becomes an
expression (S v Sp) A S3e It is now apparent why the
simplifications in section C.5 are important: the set

corresponding 4o the f-cover in question can be constructed in
a correspondingly easier mannere.

For an expression By the minimal f-cover will have the
lseast number of data itemse. This is shown by +the following

lemme and its cnrollary.

Caeb6-4 lemmat In +the STDS <I,CyDy8%> where S;y5€8%8, if

D(Sy) ==> D(Sz)y then S; ¢ Sz

Ce6-5 corollary: In the STNS <I,CyDy8>, let B he an



expression depending on variables in Ce. Then

the

numbher of data items in the set corresponding to a

minimal f-cover of B is minimume.

lemma Ce6-4 may proven similarily to lemma Ce6-2.
corollary follows from lemma Ce6-4 and the definition

minimal f-covere.

The

a



Ce? CONCLUSIONS

.

In conclusiony, we have developed a theory whereby covers
may be cbnstructed for arbitrary Boolean expressionse These
COVETrsS, called f—-covers, are expressions where other Boolean
expressions are treated as variablese

Various constructions were presented and justifiede. The
basic constructiony, introduced in section C.2, specified how
to obtair a special f-cover called a minimal f—-cover. The
me thods in section Ce4 defined f-covers with other
restrictions placed upon theme In section Ce6 we developed
csome resultes for f-covers used in congjunction with Set-
theoretical Descriptive storagee. We were concerned with
construction of sets of data items which corresponded to f-
coverse Thus, the simplifications introduced in section C.5
were indicated to be usefule.

The purpose of the appendix has been to develop a formal
theory of f-coverse. Reference to the results obtained in this
appendix are made in the thesise. As is indiceted,y, this theory
may be used to define methods for retrieval of information in

STIS file systemse.



Appendix Dt Case study: GFNASYS

This appendix is a case study of a file currently used at
the Upiversity of Waterloo to provide mailing labels for the
university communi tye The system, named GENASYS (GENeral
Addressing SYStem), is presently implemented as a sequential
file stored on magnetic tapee The study is intended to
investigate the implementation of this system as an inverted
file stored on an IBM 2314 direct-access storage device (a
disk)e. We shall choose the optimal collection of inverted
lists, rased upon how the system was used during a period of
3% working dayse

Fach record in the GENASYS file corresponds to an
individual. These records consist of fields, each of which
contains an item of informatione. The data in these ftields

includes:

D-1: (i) name of the individual

(ii) title of the individual

(iii) home address of the individual
(iv) business address of the individual
(v) a collection of mailing—list names

(vi) the GENASYS number of the individual

The GENASYS number is an eight—-character field which uniquely
identifies each individual ( the GFNASYS number of the author
is "WFLO6500v), Various people and institutions within the

uriversity have specified collections of people to be included



on mailing listse The lists are identified by three-character
names ("XN&" js the name of the mailing 1list for the
University of Waterloo Computer Centre Newsletter)e A record
contains the names of those lists of which the individual is a
member. The relevant statistics concerning the GENASYS file
are summarized in table D-2.

Requests for mailing labels are initiated by wvarious
persons and institutions within the universitye. A special form

is used to specify

D=3 (i) the format of the mailing label
(ii) the order in which the labels are printed
(iii) the criteria +to be used to select records

from which the labels are to be constructedes

A department within the university manually ensures that
unauthorized access to the mailing lists is preventede. The
requests are collectedy, encoded, and submitted in a batch to a
program which produces the required labels.

A collection of mailing 1lists |is spec}fied on each
requecst forme The program produces a label for every person
that occurs on any of these listse Thus, only the restrictive

query format

D=4 q =Ly v L V eee VvV L

s

is allowed, where L, is treated as an attribute with the
i

mearing "person is a membher of mailing list L "e.
i

Ve shall investigate the implementation of GENASYS using



the direct-access storage at the University of Waterloo
Computing Centree The system shall be modelled as an inverted
file and we shall use the branch-and-bound (BEB) method to
determine the optimal collection of inverted listse With the
cooperation of the Data Processing Department at the
University of Waterloo, all requests for mailing labels were
collected for a period of 35 working dayse. 135 requests were
collected and will be used as a characterization of how the
system is expected to be used.

In the proposed system, the inverted lists will be

assumed to have the following characteristics:

D=5 (i) Every data item (record) in an inverted list
is represented as a pointer which is to he «tored
in a format reguiring four characterse.

(ii) These pointers are stored in blocks of b
pointers eache An access to direct—-access memory
is required to read a block of pointers into the
memory of the computere.

(iii) There is no ordering of the pointers within

an inverted list or within a blocke

Because of the restrictive format D=4 of the queries, two

methods of determining the retrieval set for a query will be

D=-6: (i) If inverted lists exist for all of the k
attributes in query D-4, then the retrieval

algorithm D~7 will be used.



(ii) If +the condition in (i) is not true for a
given gqueryy, then the retrieval set for g will be
determined by reading every record in the file and

choosing those which satisfy qge

In the case where all the &k attributes in query D-4 have
inverted lists to correspond to them, we determine the

retrieval set for q as follows:

D=7: (i) Dispersiop phage: For each of the blocks of
pointers in the list for Li (12i<x), order the
pointers within a block.

(ii) Merge phase: Use a balanced two-way merge to
order the pointerse

(ijii) Elimination phase: Retrieve the records
identified by the sorted pointers and evaluate the
query for each recorde. WVhen the evaluation is
truey, add the record in question to the retrieval

set (ieecey produce a label for the record)e.

Let there be b(i) blocks of pointers for the list Li (12icK)

where

Dl

D=8 n = b(i)

i=1
and suppose that there are m unique pointers at the end of the
merge phase (mSn)e.

Ve shall assume that the accounting procedures are






(constant) cost to evaluate q for a recorde

(iv) We shall assume that a (constant) cost Cg is
required to determine whether or not the algorithm
D~-7 may be used in preference to reading all

recordse.

Combining the factors in D-10, we derive

D-11: cost = Cg * (D+2%A)n + p(neMt2eneps) + (mtn)eA + meE

i

When one or more of the attributes in query D-4 does not have
an inverted list defined, the cost of sequentially reading the
file to determine a retrieval set is assumed to be a
(constant) S
The determination of the optimal collection of inverted
lists was accomplished in three phases:?
D-12: (i) A program was written +to perform the
retrievals for the queries, according to algorithm
D-9. This program produced an accounting record
(D-13) for every retrieval performede.
(ii) The queries were partitioned according to the
equivalence relation 6 (D-15).
(iii) For every partition, the optimatl sub-
collection of candidates was determined using the
branch—-and-bound method outlined in chapter three.

The first stage simulated the retrievals using an extract of

Co * n*D + peneM + meE + Ae{2ep + 2epne,, + p + ni



the actual GENASYS file, when all 87 lists are definedes The
accounting record for every query contains the following
information:
D-135: (1) the query
(ii) cCpPU time spent scanning, to decide if
algorithm D=7 could be usede.
(iii) CPU time for dispersion phase
(iv) CPU time for merge phase
(v) CPU time for elimination phase
(vi) +the number of blocks of pointers
(vii) the number of passes in the merge phase
(viii)the number records read in elimination phase
(ix) the number records in the retrieval set
(x) the number of accesses to DASD
From this information the constants Coy Dy My and ¥ were
estimatede. The constant S was estimated by the relationship:
D-14: S = Cg *+ reF + rej
where r is the number of records in the fileo We define an
equivalence relation 8 in the manner described in Je2.1 as
follows:
D-15: (i) For a query q=L1vL2voo-va, define K(q)={L;,
Loy eeey Lk}.
(ii) For any two gqueries ql,qn, qleqn if and only
if there exists a set of queries qi. gz XK qn
such that K(qi) n K(qi+1) £ Do

A program was written to read the accounting file D-13 and to



partition the queries into equivalence classes of the relatiocn
X The 135 queries were divided into 35 groupse. Recalling
the analysis of the number of steps in the branch algorithm,
D-16: 135 e 287 - 2,089 e 1028 (approximately)

is the maximum number of steps when partitioning is not usede.
The maximum number of steps when partitioning was used is
11,520. The actual number of steps was 310 and 17 (out of a
possible &7) lists were in the optimal «collections. The
following CPU times (IBM 360/75 computer) were required in the
three stages?:

PHASE CPU_TIME (in minutes)

2 e 07
3 «16

All programs were written in PL/I, augmented by several sub-

rocutines written in 360 Assembly Language.



multilist file

In this appendix we derive the probability of a

transition from a record with the attributes

k k

to a record with attributes

F-1: {AlyAz,oooyA v A +‘90001A}
s

FE-2: {A11Azy0eegA 3A 41reeeA 4 }
k s s u

when the query being processed by the generalized trace

algorithm is of the form

F-3: q = Ag A A2 A eee A At

Ve assume that the probability that an arbitrary record has an

attribute Ai (1%i<t) is given by pi and that +the attributes

are distributed throughout the records of the file uniformly

and independently of one another.

let us suppose that a transition from a record with the

attributes E-1 to a record with the attributes E-2 occurs n

records after the original recorde This transition can occur

if and only if all the following conditions are true:

¥-4: (i) A record exactly n records following the
original record has exactly the attributes E-2;
(ii) At least one of the attributes Ajgy A2y ooy
A does not occur in the intervening n-1 recordse

k

(iii) All of the attributes Ak+1y A 429 eeey A
s
occur in the intervening (n=-1) recordse.

The probability P3; that condition(i) of E~4 is true is given

by:

ENDIX F: Derivation of conditional probabilities for transition

in



k s s+u t
-5 Py = [ M o, ][ I (1-p ) ][ n p, ][ Mn C1-p ) ]
i=1 1 i=k+1 ! i=s+1 iz=s+u+1?l

under the assumptions abovee.

The probabilities that conditions (ii) and (iii) of E-4
are true are derived as follows. The probability that an
arbitrary record does not have attribute A (15i<t) is given

i
by (l-pi). The probability that n-1 intervening records do not
n-1
have this attribute is given by (l-pi) . Hence, the
probability Po(n) that condition (ii) of E~4 is truey, and the

probability P3(n) that condition (iii) of E-4 is true are

given by:

k n-1
F-6: Pa(n) = 1 - 1 (1—(1—p.) )
i=1 1
s n-1
P3(n) = 5 (1=(1-py) )
i=k+1

Then the probability of transition is given by

F-R: P = vy Pi®Po(n)eP3(n)
n=1

oo K s
P,e 3 [1- i (1—(1—p_)“'1)][ i (1~(1-p,)“'1)]
n=1 i=1 L i 1

i

o) s S
Py® ¢ [ H(1—(1—p_)n) - I (1—(1-p.)n) ]
n=nli=k+1 * i=1 *

In order to find the limit of the series E-8, we shall first

find some identitieses

As we shall showy the series






which is the reqguired limite

As an example, we shall use small letters to represent

the probabilities in the sets

1}

E-18: H, {1-a,1~-b}

L}

Ha {1-a}

when the complete set of attributes is f{as;bycyd}e Then, we

have

E-16: Py= a®(1-b)ece(1-d)
H1= {l—a,l-b}

Hz= {1-a}

[}

L(H;) 1+ 1 - 1

a b 1 -~ (1-a)e(1-b)

L(H2)

1
a

P = a®(1-b)sce(1-d)*{ 1 - 1 }
b 1 = (1-a)*(1-b)

representing the probability of a transition from a record
with the attributes f{a,b} to &a record with +the attributes

{a,c} .
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