DEMYSTIFYING PROGRAM PROVING:
AN INFORMAL INTRODUCTION TO LUCID

by
E.A. Ashcroft:
and
W.W. Wadge*

Research Report CS-75-02
June 1975

Computer Science Department
University of Waterloo
Waterloo, Ontario, Canada

* Computer Science Department, University of Warwick, England

0. Introduction

There has been much work done recently on techniques of program
proving, but nevertheless most programmers still make little if any effort
to verify their programs formally. Perhaps the main obstacle is the fact
that most programming languages are not 'mathematical' despite their use of
some mathematical notation. This means that in proving a program it is
necessary either to translate the program into mathematical notation (e.q.
into the relational calculus) or to treat the program as a static object to
which mathematical assertions are attached. In either case, the language
in which assertions and proofs are expressed is different (often radically
different) from the language in which programs are written. Moreover, wildly
nonmathematical features such as pointer variables and side effects make it
even more difficult for proofs to be completely formal.

Our aim is to overcome this obstacle with a single formal system
called Lucid in which programs can be written and proofs carried out. A Lucid
program can be thought of as a collection of commands describing an algorithm
in terms of assignments and loops; but at the same time Lucid is a strictly
denotational language, and the statements of a Lucid program can be interpreted
as true mathematical assertions about the results and effects of the program.
For example, an assignment statement in Lucid can be considered as a state-
ment of identity, an equation. A correctness proof of a Lucid program proceeds
directly from the program text, the statements of the program being the axioms
from which the properties of the program are derived, the rules of inference
being basically those of first order logic with quantifiers. Furthermore, in
Lucid we are not restricted to proving only partial correctness or only
termination or only equivalence of programs - Lucid can be used to express many

types of reasoning.

Formal details of the syntax and semantics of Lucid, and of the rules
of inference and their formal justification are given in [1]. In this paper
we will describe the language and rules of inference informally, outline a
sample proof and also indicate ways of implementing the language. (Several

implementations have been completed, and others are under development.)

1. General Principles

There already exist formal mathematical systems which can serve as

programming languages. For example, the following recursion equations

root{n) s(0,1,n)

if j>n then i else s(i+1,j+2i+3,n)

fi

s(i,3,n)
can be considered both as a recipe for computing the integer square root of
n and also as assertions about the partial functions root and s. From the
program, considered as a set of assertions, we can formally derive the

assertion

root(n)2 <n & n«< (root(n)+1)2.

The problem is that most programmers find the purely recursive
approach too restrictive and are therefore likely to use iteration to express
the same square root algorithm, in an "imperative" language such as FORTRAN:

INTEGER I,J
10 IF(N.GT.

20 WRITE,

Although statements 1ike I = 0 are suggestive of mathematics, the program as
a whole cannot be considered as a set of assertions because of statements
such as I = I+1 and GO TO 10, which are nonsense or meaningless as mathematics.

The two main nonmathematical features in programming languages are
transfer and assignment, but the difficulty in eliminating them is the fact
that iteration seems to make essential use of these features, and programmers
find them 'natural'. So if we are to keep iteration we must find a way of
making assignment and control flow mathematically respectable.

Lucid does this by explicitly distinguishing between the initial
value of a variable in a loop (first I), the value of the variable during the
current iteration (simply I) and the value on the next iteration (next I).

In addition, Lucid has the binary operation as soon as which extracts values
from a loop. In Lucid the square root program is

(1) N = first input

(2) fixst I =0

(3) firstd =1

(4) next J = J + 2xI + 3
(5) next I =1+ 1
(6) output = I as_soon as J>N

The meaning of the program, considered as a collection of commands, is fairly
clear: statement (1) inputs N, statements (2) and (3) initialize the loop
variables I and J, statements (4) and (5), when executed repeatedly, generate
successive values of the loop variables, and statement (6) terminates the loop
and outputs the result. The loop is implicit in the use of first and next.

In more detail, the statement “"first I = 0" asserts that the initial

value of I is (was) 0; the statement "next J = J + 2xI + 3" asserts that at

each stage in the iteration the value of J at the next stage is the current
value of J plus twice the current value of I plus three; and the statement
is for the first time greater than . WNotice that the order of the state-
ments is irrelevant, in particular it does not matter if we reverse (4) and
(5).

But we can also consider the statements as true mathematical
assertions about the histories of the variables. More precisely, we define a
history (or even better, a "world-line") to be an infinite sequence, i.e. a
function with domain N (={0,1,...}). Then variables and expressions in Lucid
formally denote not single data objects, but rather infinite sequences cf
data objects. The i-th value of the sequence which, say, "X" denotes can be
thought of as the value which X would have on the i-th iteration of the loop for
X, if the program in which X occurs were executed as a set of commands.

If the variables and expressions are to formally denote sequences,
then symbols like "+" and "pext" must be interpreted as denoting operations on
sequences. The ordinary data operations and relations and logical connectives work
'‘pointwise’': if "X" denotes <x0,x],x2,...> and "Y" denotes <y0,y],y2,...> then
"X+Y" must denote <x0+y0,x]+y],x2+y2,...>, because the value of X+Y on the
j-th iteration will be the value of X on the i-th iteration plus the value of
Y on the i-th iteration. Note that "3", for example, must denote the infinite
sequence each component of which is three. Note also that the 'truth valﬁe'
of an assertion such as "X=Y" is also an infinite sequence and so may be
neither "T" (each component true) nor "F" (each component false).

The meaning of the special Lucid functions (first, next, etc.)

can now be made clear. The value of pnext X on the i-th iteration is the

value of X on the i+1Ist iteration; thus if "X" denotes XgsXysXpsaai>s

"next X" denotes the sequence <x;,X,,X3,...>; similarly "first X" denotes the
sequence <x0,x0,x0,...>. Furthermore, if "P" denotes <p0,p],p2,...> then

"X as_soon as P" denotes <xj,xj,xj,...>, where j is the unique natural number
such that P is true and P; is false for all i less than j (X as_soon as P

is undefined if no such j exists, i.e. it is an infinite sequence of undefined
elements). (Later we will also use a function hitherto, where "hitherto P"

VO)

denotes <true,py,py & py.Py & P % p2,...>.)

Applying these definitions to the statements of the Lucid square
root program, we see that statements (2)-(5) can be true only if I is <0,1,2,...>
and J is <1,4,9,16,...>. Furthermore, if input is, say, <12,8,14,...> then N
must be <12,12,12,...>, J > N must be <false,false,false,true,...> and so
output, which is equal to I as soon as J > N, must be <3,3,3,...>. This
result agrees with our intuitive understanding of the effect of 'executing'
the program in the conventional sense.

Using this semantics we can derive general axioms and rules such as
First(x+Y) = first X + first ¥

which allow us to reason about programs without referring explicitly to
sequences. In fact, proofs can be made knowing very Tittle of the formal seman-
tics. It is easily verified that all the basic rules of inference of first
order logic (e.g. from A and B infer A & B) are valid, with two exceptions: the
law of the excluded middle and the deduction theorem. The first rule, the law
of the excluded middle, asserts that either A or ~A is true,(—A means "not A")
and it fails because A may be undefined (the 'result' of a computation that

does not terminate). The second rule, the deduction theorem, allows us to

infer A ~ B ("A implies B") from a proof of B which has A as an assumption

(this "discharges" the assumption). It fails because of the way in which

the truth of Lucid assertions depends on time. For example, from I = 0

("I is always zero") we can derive pext I = 0, but i =0->next I =0 1is not

valid because -~ and = work pointwise. This type of inference is correct, however,
if in the proof of B we did not substitute equals for equals within the scope

of a Lucid function, and did not use any special rule, like the induction

rule, which depends on Lucid functions. (The induction rule is given below.)

This restricted sort of reasoning corresponds to considering one particular

stage in an iteration.

2. A Sample Proof

Our goal is to derive the assertion output2 < first input < (output+1)2

from the text of the Lucid program (considered as a set of assertions) together

VAN~

The first step is to establish J = (I+1)2

using the basic Lucid
induction rule, which states that for any assertion P,

first P, P > next P |=P

(where for any assertion A and set T of assertions, T |= A means that if

everything in T is true, then A is true) .

Taking P to be "J = (I+1)%" we have

first P = first(d = (1+1)%)

LY YN

= (first J = (first 1+1)%)
- (1= (0+1)?)

which, of course, is true. WNow we assume that J = (I+1)2 is true at some

stage in the iteration. Then we have

next J = J + 2xI + 3

(I+1)2 + 2xI + 3 (by the assumption)
2

((1+1) + 1)

(next 1+1)2

1

"

next((1+1)%)

2.

and so we have next(J = (I+1) Thus

(9 = (1+1)%) » pext(d = (141)%)

is always true, since we were reasoning only about a single stage in the

iteration (and consequently didn't substitute within the scope of a Lucid
function or use "time dependent" rules). We can now apply the induction

rule and conclude that J = (I+])2 is always true.

(Reasoning using the induction rule is the Lucid analog of the induc-
tive assertion method of program proving. Note that we use properties of
integers in the proof in a very cavalier manner, without worrying that we are
actually talking about infinite sequences of integers. This is one of the

beauties of Lucid proofs.)

In Lucid, "=" denotes true equality so since we have proved that
J = (I+])2 we may infer that J and (I+1)2 are identical (have the same
histories) and so every occurrence of J in the program may be replaced by
(I+])2. This produces the following equivalent "cleaned up" program:

N = first input

first I =1

next I = I+1
output = I as_soon as (I+1)2 > N

To complete the proof we use properties of the function as_soon as.
The first is an axiom stating that the result of the function is constant:

first(X as_soon as P) = X as_soon as P.

The second is a rule which appears rather complicated. Let y be an assertion
containing a free variable X, and ¢' be the result of replacing all free

occurrences of X in ¢ by X as soon as P. The rule is then
P & jitherto P > ¥, first v' = y', eventually P [=y'.

Informally, this says that if assertion y is true of X when P is true for the
first time, and ¢ is constant apart from X, then provided P eventually does
become true we know that y is always true of X as soon as P. (To prove
first ¢' = y' we must use the axiom above., The expression eventually P is
just shorthand for T as_soon as P.)
In this example we apply the rule by first establishing by
induction that
nitherte ((1+1)% < W) » 1° <

This is straightforward using first input = 0 and the facts that

N.

first hitherto P = T
and next hitherto P = P & hitherto P.
We thus have a suitable premise for the as soon as rule:

2 N < (I+])2.

(1+1)% > i & hitherto((1+1)% < N) » I
So here y is 12 < il < (I+1)2, and P is (I+])2 > N, Note that y is constant
apart from I, or more formally

first((I as soon as P)2 < N < ((I as_soon as P) + 1)%)

NS NI SIS NI

first y'
)2

(first(I as soon as P))° < First N < (first(l as soon as P) + 1
)2

H

(I as _soon as P)2 < N < ((I as_soon as P) + 1

= w'.

This gives us the second premise for the as_soon as rule.
We can establish the third premise, eventually P, by using the following
'termination rule':

integer A, A > next A |- eventually(A < 0).
)2

To use this, we take N+1-(I+1)" for A, which is clearly integer, and we

have

W1-(1+1)2 > next(N+1-(1+1)%),

because this reduces to (I+1)2 < (I+2)2, and we know that I is positive. Thus
we have that gxgg&ggllx((l+])2 > N+1), i.e. gxgggggllx((l+1)2 > N).
We now apply the as soon as rule, giving y', and

since output = I as_soon as (I+1)2 >N and N = first input, ¢' is the same as

output2 < first input < (output+1)2, which is the correctness condition,

Note that this implies that output is defined; proving gxggggallx((1+1)2 > N)

is the Lucid analog of proving termination for this program.

3. Proofs

The example has illustrated most of the axioms and rules for simple
'Lucid proofs. We will summarise these here, The formal system is given in
detail in [1].

Lucid proofs proceed mainly by straightforward mathematical reason-
ing, using properties of the data domain, and properties of logic. In addition,

we use properties of the Lucid functions,

- 10 -

Properties of the Data Domain
Any axioms or rules of inference that are valid for the basic data
domain D are also valid in the context of Lucid proofs. For example, in the
proof above we used axioms Tlike
0+1 =1 and
2 _ 2
x[(x+2)° = x° + 4xx + 4].

However, there is one thing to be careful of. The data domain D
must include an 'undefined' element L, and the axioms and rules must be
valid in the presence of this undefined element. For example, Vx =(x = x+1)

is not valid since L = 1+1,

Logical Properties

In the same way we can use most of the axioms and rules in inference
of ordinary logic. The few we cannot use fail either because we must allow
an 'undefined' truth value, or because we are talking about sequences. As
explained earlier, the law of the excluded middle fails because of the undefined
truth value, and the deduction theorem fails because of sequences.

Since the law of the excluded middle fails so does.reasoning by contra-
diction. Also certain propositional calculus tautologies become invalid, such
as (A~ B) » —-A v B.

There are weaker versions of the law of the excluded middle, and reason-
ing by contradiction, that do work, namely, (A=T) v A= T) is true,
and from A ~ F we can conclude =~(A = T).

With practice it is easy to avoid the few pitfalls caused by the

undefined truth value.

- 11 -

We can also regain the deduction theorem, as explained previously,
by reasoning essentially about a single stage in a computation. This turns
out to mean that we cannot substitute equals for equals within the scope of a
Lucid function, or use any of the Lucid rules given in the next section.

(Lucid axioms are admissible.)

Lucid Properties

The following lists are not exhaustive.

Axioms

(a) The most useful property is that first and next commute with
data operations and relations and logical connectives,
e.g. first A+B = first A + first B

(b) first first X = first X & next first X = first X

(c) first(X as soon as P) = X as soon as P &
next(X as soon as P) = X as soon as P

(d) first hitherto P =T &
next hitherte P = P & hitherto P

Rules of inference

(a) P |=first P
(b) P |=next P
(c) first P, P> next P |-P

(d) P & hitherto =P - w(X), first w(X as_soon as P) = (X as_soon as P),

Y VL

RO AU I i v ot

(e) integer A, A > next A |=eventually (A < 0).

4. Programming
This paper is not intended to be a guide to programming in Lucid, but
to indicate the new approach to program proving that the ideas behind Lucid

provide, In fact, Lucid itself is being developed and extended in various ways,

- 12 -

and to publish a programming manual now would be premature.

However, it is important to realise that Lucid manages to treat assign-
ment statements as equations, and to make loops implicit, only by making drastic
restrictions on the control structure of programs and on the ways in which assign-
ment statements can be used. We will consider these restrictions in this section.

Every Lucid program can be considered as being built up from nested

and concatenated loops. Every variable X which is "defined" by first X = €.,

next X = EE, for expressijons éﬁ and é%, implies the existence of a loop, and
X is called a 'loop-variable'. These basic loops can be linked together in
various ways.

Two such loops can be synchronised, giving essentially one loop, if

one refers to the other. For example, if first X = 1, next X = X+1, first Y = 1
‘next Y = Y+X+1, the loops for X and Y are synchronised because to compute
the values of Y for the next iteration we need the 'current' values of both
X and Y.
We can extract particular values from a loop using as soon as, as
we did in the square root program. This gives another way of linking loops, by
of the other). This implies that the first loop has to be computed first, anc the

loops are concatenated. For example, if

fixst ¥ = 1
next Y = Y+

X =Y as soon as Y > N

NN II O (S i~ Pt

the Z'1oop cannot start until a value for X has been picked out of the Y loop.

In the following example

- 13 -

first Y =20
next Y = Y+1

first S = YxY

A

next S = S + YxY
N =35 as soon as Y eq M
first I =0

next I = I+1]
first J = 1
next J = J + 2xI + 3

output = I as soon as J>il

the Y and S loops are synchronised, and the I and J loops are synchronised.
The Y,S and I,J loops are concatenated, in an indirect way; values for output

cannot be picked out of the I,J loop until a value is known for N, which means

the Y,S Toop must go first. (This program sums the squares of the integers 0
through M, and outputs the integer square root. The relation 'eqg' is
‘computable equality'; its value is undefined if either of its arguments are
undefined,)

Note in the above example that Y = I, We can therefore simplify the
program by eliminating Y:

first 1= 0

next I = I+]

first § = IxI

next S = S + IxI

N =S as soon as I eq M

first J = 1
next J = Jd + 2xI + 3
output = I as soon as JxN.

- 14 -

Here the I and S loops are synchronised, and the I and J loops
are synchronised, yet the S and J loops are concatenated. This example
illustrates that it is possible to write programs whose control structure
is difficult to interpret.in terms of conventional concepts. Howevef, by
adding copies of variables, like Y fbr I, it is possible to get to equivalent
programs with straightforward control structure,

We can also have one loop nested within another, as will be
shown in the next section. With these ways of connecting loops together we have
the basic control structures of structured programming, except for the conditional
statement. Instead of the conditional statement, in Lucid we use the conditional
expression. (Semantically, the ternary function if ... then ... else is just
another function, like addition for example, that works pointwise on histories.)

Thus we can write Euler's algorithm for finding the gcd of two integers N and M

as follows:
first X = N
ficst Y = M

next X = if X>Y then X-Y else X
next Y = if X>Y then Y else Y-X
output = X as _soon as X eq Y

(We can extend the language to avoid duplication of tests by using
vectors of variables. Thus the two statements with conditional expressions
could be replaced by the following single statement |

next (X,Y) = if X>Y then (X-Y,Y) else (X,Y-X).)

This example also illustrates one of the restrictions on assign-

ments. Each loop variable must be updated each time around the loop, even if

- 15 -

its value is not changed. Moreover, a variable can be updated only once on
each iteration; if some intermediate value is needed it must be held in a
separate variable. \

The main restriction on assignment is that each variable can only
be assigned to at one place in the program (with loop variables there can be
one initialisation and one updating assignment). There are other restrictions

on assignments when we consider nested loops.

5. Nested Loops

A completely general approach to iteration must allow nesting of
Toops. For example, to test a positive integer N for primeness we might
generate successive values 2,3,4,... of potential non-trivial divisors of N,
using a variable I say, and for each value of I use an inner loop to generate
multiples of I, using a variable J. (It is sufficient to generate multiples
of I starting with 12.) Some value of J will be equal to N if and only if N
is not prime.
In Lucid the program Prime is as follows:
N = first input
first I =2
begin
first 9 = Ixl
next J = J+I

IdivN = J eq N as _soon as J=N

end
pext I = I+]
output = —Idivil as_soon as IdivN v IxI=N.

The inner loop is delimited by begin and end. Intuitively the

inner loop is invoked on each iteration of the outer loop. Within the inner

- 16 -

Toop, the 'global' variable I is constant (I = first I) for each invokation,
fixed at the value of I for the current iteration of the outer loop. Each
invokation of the inner loop produces a constant truth value for the variable
Idivii, which is then used in the current iteration of the outer loop. The
variables I, IdivN and N are called globals of the inner loop, because they
are used outside the loop. Inside a loop, globals are constant, though they
may vary outside the loop (here both I and IdivN are not constant in the
outer loop).

We see that globals like I mean different things inside and outside
loops. Outside the inner loop we have next I = I+1 but inside the loop next I = I,
since I is constant. Clearly, we must take care, in proofs, to keep track of
the 'level' at which something is true. Both these assertions cannot be
true at the same level (either both in the inner Toop, or both in the outer
loop) or we would have I = I+1. However, if we do take care of the levels
in this way, we don't get into trouble.

There are some assertions which are true at more than one level,
In fact, any assertion without Lucid functions that is true at some level is
true at all lower Tevels (within inner Toops) and if in addition it refers
only to globals of this level, it is also true one level higher (in the
enclosing loop). For example, in the Prime program, we can prove I>1 at the
outer level, and this is then also true within the inner loop. (We say we
can 'move the assertion' into the inner loop.) Using this, and I = first I,
we can then prove J>I within the inner Toop, but this assertion can not

be moved to the outer level, because it refers to J, which is not a global.

However, we can prove

IdivN = 3K I<sK<N & IxK = N

- 17 =

in the inner loop, and this can be moved out. In fact, continuing the proof,

provided first input > 0, we can actually get
output = -3L 3K 2<K & K<first input & LxK = first input

at the outer level (see [2]), which proves that the program is correct,

To prove things about programs with nested loops we just have to
make 'nested proofs',

These 'meta-rules' for doing nested proofs are justified by the following
formal semantics of nested loop programs. Without nesting, the history of a
variable is simply a sequence, a function from the natural numbers to D, the
set of data objects (including 'undefined'). With nesting, histories are
more complicated, and in general depend on more than one time parameter.

Each variable or constant occurrence has a level - the number of loops
within which it occurs. (With no nesting, everything has level 1.) The level
is also the number of time parameters on which the value denoted by this
variable or constant occurrence depends. Thus I in the outer loop depends on
one time parameter, the number of iterations of the outer loop. In the inner
Toop I and J depend on two time parameters, the numbers of iterations of
the inner and outer loops. ItO is the value at 'time' to of level 1
occurrences of I, and I, =ty + 2. I, ., J, are the values at 'time'

0 ot Yt

t.t, of level 2 occurrences of I and J, and we have I =t, + 2, and
01 tOt] 1

J
toty
occurrences of I are constant,

£t 1S independent of tO’ since level 2

= (t,+2)(t, +t,+2). Note that I
] 0 "1 ot

In A to is the number of iterations at the level of the

tatit,...?
012" ,
occurrence of A, t] is the number of iterations of the enclosing Toop, t2 is the
number of iterations of the loop enclosing that one, and so on. Then all the func-
tions, including Lucid functions, are defined as pointwise extensions to the 2nd,

3rd etc. time parameters of the level 1 functions we used when there was no nestinc

- 18 -

For example, (ggﬁg A)tot]tz = At0+1t]t2' Note that with these definitions

the values of I, , and J, . stated above satisfy next J = J+1, as required.
01 01

Also it is easy to see that the meta-rules for nested proofs are valid.
Although adequate, this definition of the semantics is inelegant in
some respects. We can avoid the distinctions between different level
occurrences of the same variable by introducing a function latest, which
makes the begin...end notation redundant. The function Jatest increases the
number of time parameters: (latest A)tOtT'= AtT'. Thus the program Prime

can be written

N = first input

fixgt 1 =2
first J = latest Ixlatest [

next J = J+latest I

D

latest IdivN = J eq latest N as soon as Jzlatest N

next I = I+]

output = -IdivN as_soon as IdivN v IxIz=N

and for all occurrences of I, Ito = t0+2. (The rule for removing begin and end
is to replace all contained occurrences of a global variable X by latest X.

To be strictly correct we should also do the same for constants, but this |
becomes unnecessary with the next improvement.)

Having got rid of begin and end we lose the concept of level. It is

then inelegant that different variables can depend on different numbers of
time parameters. For uniformity we should rather consider all variables and
constants to depend on an infinite number of time parameters, probably only a

finite number of which determine the value.

- 19 -

These two modifications give very simple and elegant syntax and
semantics for Lucid, as presented in [1]. However, in practice, both for writing
and proving programs, it is better to stick to the begin...end notation and
not use latest.

Nesting introduces further restrictions on the use of assignment
statements., If a variable is assigned to at one level, it can be referenced
one level higher if the expression assigned is syntactically constant, i.e.
built up from constants and first and as_soon as expressions, by applying
data operations. The variable cannot be referenced two or more levels higher.
These restrictions are necessary to ensure that programs make sense, i.e.

have unique "meanings".

6. Extensions

To make Lucid a useful programming language several additional features
are needed. These include arrays, data structures and user-defined (possibly
recursive) functions.

To some extent, adding new features to Lucid is non-trivial because
as well as being natural to use as programming features, extensions must also
fit smoothly with the existing formal semantics and be amenable to proof
techniques within the (expanded) formal system,

On the other hand, the formal semantics is strictly denotational, and
adding new features should not cause difficulties of a mathematical nature,

The basis of Lucid should remain as described in this paper.
It is interesting to note that user-defined functions need not

work pointwise. For example, we could define a function tot by

tot(x) = z

where
first z = first x
next z = z+next X

- 20 -

If we called this function in, say, the program Prime, tot(I) would give

us the sum of all the values of I so far, and tot(Jd) (in the inner loop of
course) would give the sum of all the values of J so far in the current
invokation of the inner loop. The efficient implementation of such functions
might be difficult - here we would require that running totals be kept for future

use, before the function is ever called.

7. Implementation

The implementation of Lucid is nontrivial for several reasons.
Firstly, there is the necessity that the implementation be 'data-driven';
only such values should be computed as are needed in order to determine the
value of output. More awkward however is the problem of 'time'., The formal
semantics is given in terms of 'time-parameters', but, without complicated
restrictions on the syntax of programs, the time parameters need not correspond
with actual time. For example, we could write

X =1if A > B then T else next X
so that, at any "time", X will be true provided A > B is going to be true

some time "in the future". Moreover, the function as soon as gives us

problems. Assume "X" is <{false,false,false,true,... ,> then
"Y as _soon as X" should give <ys,yg,...>
where Y3 is the value of Y at "time" 3 (the fourth element of "Y"). But "Y"
may be <7,'uhdefined',2,5,...>, where each value of Y is the result of some inner
loop say. Clearly, to compute Y as soon as X we must not try to compute Y
- until we have to, i.e. at "time" 3, or we will get stuck in the non-termina-

ting second invokation of the inner loop. But to evaluate y3 we may

- 21 -

have to use the values of other variables at "previous" times. At any

given time we cannot decide what values of the variables will definitely

be needed in the future, and it is unsafe to evaluate an expression unless its
value is definitely needed because we may get stuck in a non-terminating
computation.

The solution is to follow the formal semantics closely, treating
the "time-parameters" simply as parameters, not as actual time. We start by
demanding the value of output at some particular "time", which will require
the values of other expressions at other "times". These subcomputations
should proceed in parallel, demanding other values at other "times" until
such values are found.

Two interpreters have been written, at Waterloo (Tom Cargill) and
Warwick (David May) that follow this scheme. There is also a compiler
(Chris Hoffmann) at Waterloo which treats time parameters as actual time
(and which therefore can only correctly handle a subset of the language)

which produces as fast code as, say, an Algol compiler.

8. References

[1] Ashcroft, E.A. & Wadge, W.W., "Lucid: a Formal System for Writing and
Proving Programs". CS7501, Computer Science Dept., University of
Waterloo.

[2] Ashcroft, E.A. & Wadge, W.W., "Program Proving Without Tears", Proc. Int.
Symposium on Proving and Improving Programs, Arc et Senans (1975).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

