Lucid - A Formal System for Writing and
Proving Programs

by
E.A. Ashcroft
W.W. Wadge
Research Report CS-75-01

Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

February 1975

* Computer Science Department
University of Warwick

0. Introduction

Lucid is both a language in which programs can be written, and a
formal system for proving properties of such programs. These properties
are also expressed in Lucid. This is possible because a Lucid program
is itself simply a set of assertions, or axioms, from which other assertions
may be derived by conventional mathematical reasoning.

In this paper we present the formal basis for Lucid, giving its
semantics and justifying various axioms and rules of inference that are
used in Iucid proofs. We assume that the reader is familiar with [1],
in which an informal introduction to Lucid can be found, together with
a discussion of implementation considerations. Consequently, this paper
will be quite formal, with little in the way of motivating explanations
and examples. It is intended for those people whose need for detailed
information about Lucid has not been satisfied by [1].

Lucid is a formal system similar, in some respects, to first
order logic. On the other hand, Lucid can be viewed as a tense logic, a
pranch of modal logic which formalises certain kinds of reasoning about
time. (The suitability of modal logic for proofs about programs has
already been recognised by Burstall [2].) In Lucid a term, such as X > Y,
need not be simply true or false. It can be true at same 'times' and false
at others (and even undefined at others). Semantically, the value of X > Y
depends on various time parameters, because the values of the variables X
and Y themselves depend on time parameters. These time parameters are the
mmbers of iterations of the various loops in the program within which the

variables X and Y are embedded. The interpretations necessary to give such

-2 -

meanings to variables, and corresponding meanings to functions and
operations on variables, are essentially Kripke models (see [3]).
(However, no knowledge of modal logic is required to understand this paper.)
Lucid also differs fram first-order logic in that there is no
distinction between terms and formulas, since truth values are treated as
data objects. This is necessary to allow programs to compute truth values,
and to be able to deal with "undefined" within the logic. This means also
that the law of the excluded middle does not hold. Nevertheless, the rules

of inference for Lucid are almost identical to those for first-order logic.

Sections 1 to 3 of the paper are devoted to setting up the
interpretations mentioned above. Then in Section 4 we define the class of
sets of terms that are Lucid programs. We show that every program has a
unique minimal solution, or "meaning". In the rest of the paper we
discuss a formal system for proving properties of programs, justifying the
sort of reasoning used in the proofs given in [1]. In particular, in
Section 7 we justify a 'Nested proof' technique for proving things about
programs with nested loops. In this connection, it is worth mentioning
that the basic definition of programs does not allow the use of

begin ... end to delimit loops, using instead the function latest (see [1]).

The technique in Section 7 allows proofs of programs that use begin ... end,

and the proofs need make no use of the function latest.

1. Formalism
1.1 Syntax
A ILucid alphabet I is a set containing the symbols "U", "d" and,
for each natural number n, any mmber of n-ary operation symbols, including, for n=0
the nullary operation symbol T.
We also have at our disposal at set of variables, e.g. X,Y,Z.
The set of I-terms is defined as follows:
(a) every variable is a I~-term;
(b) if G is an n-ary operation symbol in I and A;,...,A are I-terms
then G, ,... ,An) is a I~term;
(c) if V is a variable and A is a I-term then IVA is a Z—term.'
1.2 Semantics
If I is an alphabet then a I-structure S is a function which assigns

to each symbol o in I a "meaning” oy in such a way that U is a set, g is a

S S
function fram subsets of Ug to elements of US and, if G is an n-ary operation

symbol, GS is an n-ary operation on US‘
An S-interpretation I extends S to assign to each variable V an

elament VI of US'
If A is a I-term, S a I-structure and I an S-interpretation then we

define an element IAII of Uy (the "meaning" of A) as follows:

(a) for variable v, |V| 1 is v

(b) for r-terms A;,B,,... /A and n-ary operation symbol G of I,

|G d) |1 s GgUa 1/ [Bylprenen A]

(c) for I~term A and variable V
& Vv aly = a5 (Al (y/q) @ € Ugh)

where] (V/a) denotes the S~interpretation differing from I only in that it
assigns a to V.

We say: |=I A (I satisfies A) iff IAII = Tg; if T is a set of terms
then |=Il“ iff }=IB for each Bin T; T]==S A iff]=Il“ implies |=IA for all

S-interpretations.T.

2. Basic results

2.1 Substitution

An occurrence of a variable V in a I-term A is bound if and only if
the occurrence is in a sub~term of A of the form d V B, otherwise the occurrence
is free. If A and Q are I-temms and V is a variable then A(V/Q) is the term
formed by replacing all free occurrences of V in A by Q. In this situation

V is said to be free for Q in A iff this substitution does not result in a

free variable in Q becaming bourd in A(V/Q), i.e. iff V does not occur

free in A in a subterm of the form I W B for same variable W occurring free
in Q.

lema 1 For I-structure S, S-interpretation I, I-terms A and Q and variable

V, 1f V is free for Q in A then
IA(V/Q)II = IAII(V/IQIT)

Proof The proof of the analogous result for first-order logic carries

over directly. 0]

2.2 Power structures

For any IL-structure S and any set X, SX is the unique I-structure

C such that
(a) Ue is the set of all functions fram X to Ug. If x ¢ Xand o € Ue
we will write o instead of a(x).
(b) If G is an operation symbol in I and a,B,... eUCandXeX
then (Gc(oc,B,...))X = GS(ocX,Bx,...).
(c) If K is a subset of U, and x ¢ X then (Ho (K) = gg ({ay o e Kb .

Thus SX carries over the operations and quantifiers of S by making them work
'pointwise' on the elements of Ue- In particular, Te is the constant function

on X with value TS‘

The following lemma establishes that every I-term acts "pointwise"
in SX, even those terms containing quantifiers.

Lema 2 For any I-structure S, Sx—interpretation 1, Z-term A and element X ¢ X,

(IAII)X = lAII
X

where IX is the unique S-interpretation which assigns each variable V the
value (Vq) .

Proof Let C be the structure sX. The proof proceeds by structural

induction on A.
(a) If A is a variable the result is immediate.
(b) If A is G(A,,... ,An) for n-ary operation symbol G in Z, and Z-terms

Al'-o"An, t:h.e:n.

(alpy = deay,...a)in,

Gg((|By |) yree-r (B 1))

It

i

Gg(IBylg seerrIByly)
X X

...B)|_ .
6B,/ n),|1x

v d

(c) If A is 9 V B for same variable V and I-term B then

(|a v B| e Upgh))

Dy = @Bl /g

= a.({|B| :a e U,
tg I (V/o) C
(since if I' = I(V/a) then I}'{ = IX(V/ocx))
= E[S({lBlIx(V/a) A € US})
(since as o, ranges over UC’ o, ranges over US)

= |aV B|; . 0
IX

It follows that S ard SX have the same theory:

Corollary 2.1 For any I-structure S, any set X,any X-term A and set T of

L-termsg

T =g A LEE T =c A

where C = s,

Proof Suppose first that T |=S A. ILet J be a C-interpretation such that

|=; T. Then for any B in T and any x in X, T = (T, = (|Bl;), = |B]; by
X

Lemma 2. Thus =, [and so =, A; hence |A = T.. Therefore
Jx J J S

(IAIJ)X = IAIJ = Tg = (To),. Since x was arbitrary, IAIJ T, and so =5 A
X
How suppose I' |=, A. Let I be an S-interpretation such that %I r.
Define the C-interpretation J by setting (VI)x = VI for each x in X and
each variable V, i.e. Jx = I for each x. Then, for any B in T,
(lBIJ)x = |B|JX = |B|I = Tg = (T,), for any x in X and so kj I'. Therefore,

=, A and, choosing any x in X, Tg = (|a|;), = [a]; = ||} and so = A O
X

3. Models of Camputation

We define Spec. to be the set of special Lucid function symbols

{first, next, as_soon as, hitherto, latest, followed by}.

3.1 Standard structures
An alphabet I is standard if in addition to T and g it contains the

nullary operation symbols 1 and F, the unary operation symbol —, the binary
operation symbols Vv and = and the ternary operation symbol if then else,
but none of the special Lucid symbols in Spec.

A standard structure is a structure whose alphabet is standard and

such that

(a) TS ' FS and 14 are true, false, and undefined respectively.

(b) —g yields true if its argument is false, false if its argument

is true, undefined otherwise.

(c) vS yields true if at least one argument is true, false if both

are false, undefinced otherwise,

(a) =5 yields truc if its arquments are identical, false otherwise.

(e) if then elsqS yields its scoond argument if its first is txue,

its third if its first is false, undefined otharwise.

(£) for any subset K of U, GIS (K) is true if true ¢ K, falsc if
{ = {false}, undefined otherwise.
(g) all opecrations of S, except =gt are nonotonic, for the ordering

on US definad by x € y iff x = y or x = undefinod.,

Standard structures are our basic damains of data objects and corres-

pond most closely to ordinary first-order structures.

3.2 Coamputation structures

3.2.1 Comp(S)
If S is a standard I~-structure, then Comp(S) is the unique (£ u Spec)-

structure C which extends & * o the larger alphabet as follows:

For 0,8 ¢ Un and £ = £ t.t v.. € NV

C 07172
i) (first, (@))_=a
RS £ Ot t,e..
ii) (next, (@)_ =a
C £ t0+l tltz. .o
iii) (o as _soon as.B) _ = o if there is a necessarily unique s such
SRR T Stlt2' -
thatBstt... 1strueand8rtt

172 172"~
is false for all r < s, undefined if
no such s exists.

iv) (hitherto,(a)) = true if a is true for all s < t
t l 2...

false if o is false for same s < t,,
—— Stltzo o D 0

undefined otherwise.

OI

V) (latest.(a))_ = a .
atestol)) = o L.
vi) (o followed Jve B)or ¢ = %t ¢
1t 1ty
(o followed by B) =B
C t0+l tltzo .. totltz' ..

3.2.2 Loop(s)

If ¥ and S are as above and L' is the alphabet of Comp (S) , amitting
latest, then Loop(S) is the unique I'-structure C' which extends SN to 1
in such a way that first., , pext., etc. are defined as for Comp(S), but

with t,t,... onitted. For example

172

* N is the set of natural numbers and NN is the set of functions from N to N
i.e. the set of infinite sequences of natural numbers.

(£irste. (oc))to = a, and (next., (oc))to = ut0+l‘

3.2.3 Loop(S) and Comp(S) are used for modelling programs. Loop(S) is
simpler, but is adequate only for simple programs without nested loops

(i.e. without occurrences of latest). The usefulness of Loop(S) lies in

the fact that Loop(S) and Camp(S) have the same theory for terms not involving

latest:

Theorem 1 For any standard structure S and any term A and set I' of terms
all in the language of Comp(S):
if A and ' contain no occurrence of latest then

T = g iff T |=)

Proof Let C' be the restriction of Camp(S) to the language of Loop(S)

N

Then it is easily verified that C' is isamorphic to Loop(S)
and so the result follows fram Corollary 2.1.]

and let N' be the set of positive integers,

3.2.4 Quiescence and constancy

Let C = Camp(S) and o € Ue- If og is independent of the first element

of t (i.e. a = Oge ... for all to) then we say o is quiescent.

0tlt2... l 2
A term A is quiescent (in C) if I=C A = first A. Note that for terms A and B,

t

first A, latest A and A as_soon as B are all quiescent.

If of is independent of t, then a is said to be constant. Note that

G

e is constant for any nullary operation symbol G.

In Loop(S) we can use the same definitions, but then constancy and

quiescence are identical.

- 10 -

4. Programs
4.1 Syntax

A S-program P is a set of (I v Spec)-terms such that

(a) each element of P is an equation of the form ¢ = ¢, where ¥ is a
quantifier-free term having no occurrences of =, and ¢ is of the
form X, first X, next X or latest X for same variable X.

(b) The variable input may not occur on the left hand side of any
equation in P.

(c) Every other variable X occurring in P, when appearing on the left hand
side of an equation, may only do so as part of a definition of X.

X must be defined exactly once, in one of the following ways:

directly i.e, X = wl
indirectly 1i.e. latest X = b,
iteratively i.e. first X = lp3

next X = .

In the above, the terms 11)2 and tp3 must be syntactically quiescent

in P, a property which is defined as follows:

(1) first ¢, latest ¢ and ¢ as soon as Y are syntactically quiescent in P.
(ii) if q>l,¢2,... ’¢n are syntactically quiescent in P and G is an n-ary

operation symbol in I, then G(¢l,¢2,...,¢n) is syntactically quiescent
in P,
(iii) if Y=¢ is in P and ¢ is syntactically quiescent in P, then Y is

syntactically quiescent in P.

- 11 -

4.2 Semantics

The meanings of programs are specified by Comp(S)-interpretations,
where S is the standard structure correspording to the damain of data.
4.2.1 Solutions

For any I-program P and standard I-structure S, if C = Comp(S)

and o is an element of Ue then a (S,a)-solution of P is a C-interpretation 1

such that input; = o and I'I P.

4.2,2 Theorem 2

For any I-program P and standard I-structure S, if C = Comp(S) and
a e Up then there is a (S,a)-solution I of P that is minimal, i.e. for any
(S,0)-solution I' of P, for all £ ¢ N' and all variables V in I, (V,)_= Vp)-

t
Proof (sketch)
The first step is to transform P into a set of simple equations.
This is done by replacing each pair of equations of the form first X = ¢,
next X = ¢' by the single simple equation X = ¢ followed by o', and
replacing each equation of the form latest X = ¢ by the simple equation

X = latest"lq). The operation latest ! is defined by (latest) (a)) = o
] SRR ARSTRS(tOtl Ototl e

This transforms the program P into a 'program' P' of the form

= 7(X), where X is the vector of all the variables in P other than input

b
I

We now note that the 'programs' P and P' have the same solutions.
That every solution I of the original program P is a solution of the
transformed program P' is clear, and the converse follows from the quiescence

restrictions on P, as follows.

- 12 -

Suppose that |=; X = ¢ followed by ¢'. Then by the definition of
followed by, |=; first X = first ¢ and =) next X = ¢'. But if
X = ¢ followed by ¢' in P' came from first X = ¢ and next X = ¢' in P, then
the syntactic quiescence of ¢ ensures that |=; ¢ = first ¢, so b=, first X = ¢.
similarly, =, X = latest = ¢ implies k= latest X = first ¢, and so by
syntactic quiescence [=; latest X = ¢.

Now we note that the ordering on UC given in the statement of the
theorem makes Ue into a cpo (camplete partial order), and it is easily
verified that all the operations in C that are used in the 'term' 7
are continuous.

Therefore, the transformed program P' has a unique minimal (s,0)-

solution, and hence so does P. 0

4.3 Syntactic Enrichment

To facilitate the writing of programs we introduce 'nesting'’ in

programs, as a syntactic abbreviation. We say that the expression

- 13 -

where q;]!_ is obtained from d)iby replacing each 'global' variable V by latest V.
A global variable is one which occurs within the rest of the program enclosing

the original begin ... end expression. The symbols begin and end are used

to denote inner loops (not "blocks"), since, within inner loops, global
variables become quiescent. Loops can be nested to any depth. Note that
for a program using begin ... end to be legal, the result of removing the
begin ... end's must be a program.

5. Axiams

5.1 The following abbreviations will be used in the rest of the paper:
AAB means ~(™ A VvV ™ B)
A>B means (A=T) VB
YV A means ~gV -~ A
5.2 Parentheses will be (and have been) dropped fram terms by using the
following ranking of priorities for operators (fram highest to lowest):
first, next, latest, hitherto, =, A, v, if then else, as soon as,

followed by, =, .

~roS ’

— LT —

5.3 Theorem 3 The following are valid in Camp(S) for any standard -

structure S, and (I u Spec)-terms X, Y and P

(a) X=Y) vlx=7Y)
(b) (A=T)=(C"A=T) A(A=F) = (MA=T))
(@ (fizst first X = fizst) A (pext first X = fizst X)
@ (first(X followed by ¥) = first X) A (next(X followed by ¥) = Y)
(e) (first hitherto P = T) A (next hitherto P = P A hitherto P)
(£) X as soon as P = if first P then first X else (next X as soon as next P)
(9) X as_soon as P = (X as_soon as P A hitherto —P)
(h) first(X as soon as P) = X as soon as P
(i) P A hitherto —P + (X as scon as P) = X
(3) T as soon as P » (first X as soon as P) = first X
(k) (if T then X else Y = X) A (if F then X else Y = Y)
Proof These results (for variables X, Y and P) are easily verified in

Loop(S) and carry over to Comp(S) by Theorem 1. The variables can then be

replaced by (L u Spec)-terms. 0

If we define eventually P to be T as_soon as P, we have the following

corollary.

Corollary 3.1 With S, X and P as above, the following are valid in Camp(S) :

(a) eventually P ~ first X as soon as P = figst X
(b) eventually P = eventually (P A hitherto — P)
(c) eventually P = if first P then T else eventually next P.
Proof These follow from the axioms of Theorem 3. U
5.4 The next theorem justifies 'pushing' first and next past quantifiecs

and non-Lucid operations.

Theorem 4 For any standard I-structure S and any I-term A in which Xy rKoreee s X
are the variables occurring freely:
(a) first A = A(X,/first xl,xz/ggggg X,re+-) is valid in Carp (S) ,
along with corresponding equations for next and latest.
(b) eventually P ~ A ag soon as P = A(X;/X, as soon as P, X,/X, 8s seon as P ..
is valid in Comp(S).

Proof et I be a Camp(S)~interpretation and let t(= totltz‘ ..) be any

element of NN Let t' = Ot]_t2"‘ . Then, if X denotes xl’XZ""’Xk’

(|£irst Al g = (|al)z,

(Al Gy tema 2) = Al & &)

= |a < . = = |al, = . =
| |IE.(X/(Iglrst XII)E) | lI*-:(X/(|f1rst~: XII)E)
(since A has no other free variables)

= UAl7 g/ pivse 7)) BY Lema 2) = (IAG/Elest ¥ p)g

(by Lemma 1)

Similar reasoning verifies the other results. il

6. Rules of Inference

Lucid cannot be a complete formal system because the Lucid
functions are powerful enough to characterige unsolvable problems that are not
even partially decidable. All we can do is add to Lucid whatever axioms and
rules of inference seem natural and useful. In this section we give rules of
inference for the logical connectives, and useful rules for the special
Iucid functions. The 'logical' rules of inference are those of a simple

natural deduction system (see, for example [4]).

- 16 -

6.1 Natural Deduction Rules

6.1.1 Theorem 5 The following rules are valid for standard I-structure S,

I-terms A,B,C,D,P,Q, finite sets I' and A of r-terms and variable V, provided V does

not occur freely in I or D, and is free for P and Q in A:

(A1) AB r:s AAB (AB) AAB }:S A
AAB l:‘:s B
(vI) Al=gAVB (VE) A+C, B+CAVB |5 C
B =g AVB
(FI) A, —A | F (FE) F }=¢ B
(+1) if A, =g B then A =g 2> B (*E) A+ B,A |= B
(Vi) ifT |=gAthenT =5 YV A (VE) V VA = Alv/A)
Gl A(V/Q FgdVaA (I) if T |=gA » D then T, aVa |=; D
=) g V=V (=E) A(V/P),P =Q |=g A(V/Q).
(TI) Al A=T (TE) A=T |55 A

Proof The validity of the rules can be established by straightforward
calculation from the definitions. 0

There are no rules for — because we do not have the law of the
excluded middle: A v —A is not valid in general, because A may not be truth-
valued. This means that some of the tautologies and derived rules of first-
order logic are not valid in standard structures. For example (A >~ B) > mA VB
is not valid, and if we were to define A<>B to mean (A > B) A (B~>A),

then we would not have substitutivity of <> (note, for example, that 1 «> .

- 17 -

6.1.2 Most of the rules of Theorem 5 hold also for Comp(S):

Theorem 6 All the rules of Theorem 5, except (+I),are valid for C = Comp(S)

in place of S.

Proof Apart from the quantifier rules, and (-I), all ruies are of the form

¢ = v and carry over directly because of the point wise definition of the
oonnectives. We illustrate this for the (VE) rule. Consider any C-interpretation

I for which }=, A~ C, }=; B~ C and }:IAVB. Then, forallEeNN,(|A—>C|I)E '

I
(|B ~ CII)E and (|]A v BII)E are all true. By definition of C, we then have

(alpg +S(|C|I)_E Al g g (jclp)g and (IAlI)E Vg (IBII)E are all true.

By the (VE) rule for S (Theorem 1) we then have (ICII)E = true. This holds

for all € ¢ NV, so %I C.

We illustrate the proof for the quantifier rules by considering
(VE) and (EE).

(VE) : Let I be any C-interpretation for which |¥ V AII = T;.
Then for all € ¢ NV

true = (|¥ V A|)x

= VS{(IAII(V/OO)E : 0 € Uc}.

Therefore for all € e N' and all o ¢ U, we have || = true. Now
C I1(V/a) ——

IAII(V/|Q|I) = IA(V/Q)II, by Lemma 1, and so, for all t e NN,]A(v/Q)]I = true,

that is |=I A(V/Q) .

(3E) : Assume T FC A > D and consider any C-interpretation I
for which |=I B, for all B ¢« I', and f=I ¥ VA. Consider any t « N, By the
definition of Hor there is same o € Uy such that (IAII(V/OL))E = true. Now I (V/a)
[] —l v » v 13 — D
is a C-interpretation and }=I (V/a)I‘, since V is not free in I'. Thus FI WP TP
and so (ID:|I(V/OL))‘E = true. Since V is not free in D, we then have (IDII)E'

We chose t arbitrarily, so f=I D, 0

- 18 -

6.2 Lucid Rules

6.2.1 One of the most important rules is that a standard I-structure S

and Comp(S) have the same theory, when restricted to I~-terms, so any

"elementary" property can be used directly in any proof about a program.

Theorem 7 For any standard I-structure S, any I-term A and any set T of I-terms

I =g A iff T }=; A, where C = Comp(S).

Proof Since I' and A are in the language of S and since Comp(S) is an
extension of SNN the result follows immediately from Corollary 2.1. 0
6.2.2 Other Lucid rules including induction and termination are given by

the following theorem.

Theorem 8 For any standard L-structure S, if C = Comp(S) then

(a) P |=c first P and P |=(next P

(b) first P, P> next P |=. P

() Q = first 0, P > Q, eventually P }=¢ 0

(@) P>F |=cXassoonasP=1

(e) integer Y, Y > next Y }=(eventually (Y < 0)

where in (e) we assume S includes the integers.

Proof Immediate. a

6.3 Recovering the Deduction Theorem

We have seen that the (»I) rule is not valid in Camp(S). However,
we can recover this rule, at the expense of weakening the (=E) rule, by a
form of reasoning which intuitively corresponds to confining oneself to a

particular moment during the execution of a program.

— Ly —

6.3.1 Definition of |%

If S is a X~structure, C = Comp(S) and A is a term and I' a set of
terms on the alphabet of C, then we define T IzC A to mean that for any
C-interpretation I, if (IBIT)E = true for every B in T', then (IAII)E = true.

Thus T Izc A means that, at any time, if all the terms in I are
true, then A is true. It is immediate that |= A implies |~ A, and that

I' |~ A implies T' |= A but not vice versa, e.g. P =, next P but not P |z, next P.

6.3.2 Theorem 9 For any standard I-structure S, if C = Comp(S)
(a) every rule of Theorem 6 except the (=E) rule remains valid if
b= is replaced by |~.
(b) for I',A,B as in Theorem 6 if I',A lzc B then T lzc A~>B
(c) for A,P,Q as in Theorem 6, if A contains no Lucid functions then

A(V/P), P =Q |z, A(V/Q).

Proof Iet T',A,B and V be as in Theorem 6.

(a) We will illustrate the proof by considering the (HE) rule. Assume

T A>Band T |z, 8 VA. Let € ¢ N and let I be a

Izc
C-interpretation such that (|D|) for every D in I'. Then by the
second assumption (|& VA|;)f = true and so (IAII(V/O{.))E = true
for same o in UC by the definition of chE Since V does not occur
in any D in T, (ID|I(V/oc))E = (IDII)E = true for any such D, and so
by the first assumption (IBII)E = true. Therefore T Izc B.

(b) Iet t « NN and suppose that every C-interpretation which makes A
and everything in T true at £ .also makes B true at t. Suppose
now that C-interpretation I makes everything in I' true at t.

If T makes A true at t then it must make B true at t and so makes

- L\

A +~ B true at £, On the other hand, if I makes A other than true
at T then A + B will be true at t regardless of the value I assigns
B at t. In either case A > B is true at t and so T |zCA—>B.

(c) Suppose that (|A(V/P) |T)E = true and (|P=Q|I)E = true. Now
|A(V/P)II = IAIT(V/|P|1) by Lemma 1 and (IAlz(V/IPII))E =
IAlIE(V/(IPII)E)) since A contains no Lucid functions. But (|P=Q|;)f
implies (IPII)E'—" (IQII)E' Thus
= |a
2l /el pp = Pizazdeh g

= (Al yjo e

Therefore (IA(V/Q)]I)E = true. 0

We call the rule in Theorem 9(c) the (weak =E) rule. To illustrate
that (=E) does not work for |~, note that next P, P = Q |~ next Q is not valid
(informally, if P equals Q at some time when P will be true at the next step,

it does not necessarily follow that Q will be true at the next step).

6.3.3 There is another way in which we can regain the deduction theorem.
If we are reasoning about a simple loop, and the assumption A is constant, i.e.

A = first A, then the assumption can be cancelled:

Theorem 10 For any I-structure S, if C = Comp(S) and A and B are terms and
I a set of terms on the alphabet of C amitting latest, then

I, first A |=; B implies T |=, first A~ B

Proof The theorem holds for Loop(S) in place of Camp(S), because if first A
is ever true it is always true. The result carries over to Comp(S) by

Theorem 1. a

- 21 -

7. Proofs within Loops

The structuring of programs that is made possible by the use of
begin and end also allows "structured proofs". We will show that

(a) Within a begin .. end loop, all the rules of inference are valid

and so is the assumption that X = first X for every global variable
X. Anything that can be proved by introducing latest can also be
proved without latest, in this fashion.

(b) Any assertion that does not use Lucid functions can be moved into

and out of begin .. end loops.

Theorem 11 For any standard I-structure S, if C = Comp(S), then for any term A
and set of terms I' on the alphabet of C, and any finite set of variables X,
(a) X=first X, T |, A iff

I (X/latest X |=; A(X/latest X) .

(b) If A is a Z~term and X is the set of variables occurring freely in
A, then

P f=c A iff T |=, A(X/latest X).

Proof (a) Assume X = first X, T |==C A, and that, for C-interpretation I,
[=; T (®/latest X). Let a be |latest X|;, and I' = 1(X/5). Then f=;,X = first X

and =, T, therefore b=; /A, and so = A(X/latest X).

Conversely, assume that I (X/latest X) |=, A(X/latest X) and that
for C-interpretation T, |==I X = first X and |=I I'. Then |}—(|I is latest, o
for some o in U,* Iet I' be 1(X/a). Then F—-I.F(i/m X), and so
#I' A(X/latest X). Hence }=I A.

(b) Iet I be a C-interpretation such that f~=1 I'. Then since

(|latest AII)totltz...

(|a])g = true for all t. Then since |=; latest A = A(X/latest X) by Theorem 4(a) ,

= ‘lAlz)tltz...' (|latest Al)g = true for all E iff

the result follows. ad

* In fact a = ILQE,%%E—l }'Z|I (see the proof of Theorem 2, Section 4.2.2).

- 22 -

8. References

[1] E.A. Ashcroft and W.W. Wadge, "Demystifying Program Proving",
Technical Report CS~75-02, Computer Science Department,
University of Waterloo.

[2] R. Burstall, "Program Proving as Hand Simulation with a Little
Induction", Proceedings IFIP Congress 1974, Stockholm.

[3] G.E. Hughes and M.J. Cresswell, "An Introduction to Modal Logic",
Methuen (1968).

[4] 2. Manna, "Introduction to Mathematical Theory of Camputation",
McGraw Hill, New York, 1974.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

