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ABSTRACT

The weighted growth functions of DOL systems are introduced and
studied with the main goal to characterise growth functions of determinis-
tic propagating graph OL-systems. For graph systems ejther the number
of nodes, or number of edges, or their sum can be considered as criterion
of growth. It is shown that in the firsf and the last case we get the
same growth functions as for string systems. In the case that the number
of edges only is considered, the growth functions are exactly the same as

the weighted growth functions of the corresponding string systems.



1. Introduction

In [1] mathematical models for development of simple filamentous
(one-dimensional) multi-cellular organisms were introduced. These models
have been intensively investigated in recent years, in particular, the
growth functions of the DOL-systems were studied in [2,3].

Recently, a general model for the development of multi-
dimensional organisms was given in [4], where organisms are represented
as graphs and parallel rewriting on graphs is studied. The main goal of
this paper is to study the growth properties of the deterministic propaga-
ting graph rewriting systems from [4] (DPGOL-systems). In the case of a
string rewriting system we are observing the lengths of strings in the
sequence generated by the system. In the case of graph-rewriting we can
consider either the number of nodes, or the number of edges or the sum of
both of them, as a criterion of growth. For biological considerations
the number of nodes is of essential interest, since nodes represent cells
in these models. As for edges, the average number of edges per node
would also be interesting.

We will show that if we consider the number of nodes only, or the
total number of both nodes and edges, then we get exactly the same growth
functions as for the corresponding string systems. However, if we consider
the number of edges only, then we can get more complicated type of arowth.
To characterise these new growth functions we will introduce "weighted
growth" of string systems. Intuitively, the weighted growth means that we
consider cells of various types to be of various "sizes" including possibly

"zero size". Several results concerning various types of weighted growth



are shown in section 3, all of them only for integer nonnegative weights.
We will see that it makes an important difference whether or not the weight
zero is allowed. The weighted growth equivalence is shown to be decidable
for DOL-systems. We also note that instead of weighted growth of DOL-sequences
we can equivalently consider non-weighted growth of homomorphic images of
DOL-sequences

Finally, we will show that the edge-growth functions of determinis-
tic propagating graph OL-systems are exactly the same as the weighted growth

functions of DOL-systems or DPOL-systems.



2. Preliminaries

Given an alphabet I, 7* is the set of all strings over I,
rt o= 5*-{e}, e being the empty string. The length of w in L is denoted by
[w], in particular |e| = O.
A DOL-system G is a triple (Z,P,0) where:
% is a finite set, the alphabet of G.
P is a finite subset of & x £, such that for each a in %
there is exactly one w so that (a,w) < P. Elements of P are
called productions and are written in the form a +— w.
o in £¥ is the axiom.
The set of productions specifies the homomorphisms hG on &*
defined by hG(a) =w if a +— w is in P.
The sequence generated by G is denoted s(G) and defined to be
the sequence of strings XgaXyoXps- - where Xg = O and Xep] " hG(xk) for k = 0.

If Pci x Z+, then G is called a propagating DOL-system

(PDOL ~system).

The famiiy of all sequences generated by DOL-systems (PDOL-
systems) is denoted by DOL (PDOL).

In [4] a model of the development of multidimensional organisms
is introduced. Organisms are represented by directed labeled graphs, so
from mathematical point of view parallel rewriting systems on graphs are
considered.

Very roughiy speaking, a deterministic propagating graph OL-system
(DPGOL-system) G generates a sequence of graphs s(G) = XO’X]’XZ"“ in
the foliowing way. The graph XO is the axiom of G. For eech k = 0, Xk+1 is

obtained from K by first replacing every node of Xk (uniquely) by a graph,



according to "productions" of G; and then connecting the new graphs by
additional edges into one graph Xk+1’ again uniquely, according to
"connection rules". It is not surprising that graph generating systems
are much more complicated than corresponding string systems and we do not
have the space here to give even an informal but reasonably rigorous
definition of DPGOL-systems. We have to refer the reader to [ 4]
for definitions and hotation concerning this subject. We only need to add
the following.

The sequence (of abstract e-graphs) generated by a DPGOL-system
G = (£,A,P,C,S) is denoted by s(G) and defined to be the sequence
AO’A]’AZ"" where AO = S and Ak T Ak+1 for all k = 0. The family of
all sequences generated by DPGOL-systems is denoted by DPGOL.



3. Weighted growth functions of DOL-systems

Let » be a finite alphabet and let s be an infinite sequence of

strings over &, i.e. s = XgoXys: - where X5 € 5* for i > 0. Let N be the

set of natural numbers, N = {0,1,...}. The function fS:N = N, defined

by fs(i) = Ixil for i = 0, is called the growth function of s.

A function p:Z+ N is called a weighting function on 2. For w

in 2*¥ and a « ¢ let na(w) be the number of occurrencies of a in w.

The p-weighted growth function of s, denoted by fs, is defined

by f9(i) = 7 n_(x.)p(a) for all i in N.
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[f{:s over & is in F and p:Z +— {k e Nip < k < ql}.

Clearly, W}(F) = F(F).

Lemma 1 W (DOL) = Wy(PDOL).

Proof . Inclusion WH(PDOL) < W(DOL) is trivial.
If fis in W;(DOL), then there exists a DOL-system G, G = (%,P,0),

and a function p:z + N so that = fg(G)‘ Let ¢,d be two new symbols
not in %. Let homomorphism h on & is defined by h{a) = adﬂ(a) where n(a) = 0
if p(a) - 1 and n(a) = p(a)-1 otherwise.

We construct PDOL-system &' = (&',P',0') where
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Let p:z'+ {0,1} be defined by u(a) = 1 for a in & and pla) = 1,

pu(a)y = 0 for a in % and p(a) = 0, u(c) = 0 and u(d) = 1. Clearly,

H = fP . . w .
fs(G') fs(G)‘ Thus, we have the second inclusion WO(DOL) c wO(PDOL). L

Theorem 1 WQ(PDOL) = W (PDOL) = Wy (DOL) = Wy (DOL).
Proof The following inclusions are obvious:
-I (%0 0
WO(PDOL) = wO(PDOL) [= WO(DOL)
] ~ ] (<5}
WO(PDOL) s WO(DOL) c wO(DOL).

So the equalities follow immediately by Lemma 1. I

Theorem 2 W;(DOL) = F(DOL).

Proof Let f be in wT(DOL). By definition there is DOL-system G = (3,P.o)

and weighting function p:%+— N-{0} so that f = fg(G)' Llet 7 = {a:a « %},

and let h:z%— (% v £)* be the homomorphism defined by h(a) = aéO(a)"]

for each a in Z.
We construct DOL-system G' = (I u #,P',h(q)) Where
P={ars hiw):ar>w e P} u {ar> e:a ¢ £}. Clearly, s(G') = h(s(G)).

Thus fE( fs(G') and WT(DOL) < F(DOL). Since the reverse inclusion is

G)
trivial the proof is completed. [}

Theorem 3 #(PDOL) g W, (PDOL)

w](DOL) = F(DOL) ¢ WO(DOL).

+0

(ee)

Proof The equation W](DOL)

i

F(DOL) is proved in Theorem 2, all the
inclusions arc obvious. It remains to show that they are proper.

There are only monotonic functions in F{PDOL) but clearly not

in WT(PDOL) so the first inclusion is proper.



Let function f:N— {0,171} be defined by f(0) = 1, f(i) = 0 for

-
I\

1. Clearly, f is in w?(DOL)-wT(PDOL).

Finally, let G = ({a,b},{a — bb, b — aa},a) and let function
p:{a,b}— {0,1} be defined by p(a) = 1, p(b) = 0. Let s = s(G). Clearly,
#2(21) = 2" and £2(21+1) = 2™T for i e N. Since G is a DOL system f° is
in wz(DOL) but from the properties of growth functions of DOL systems
[2,3] it follows easily that fg is not in F(DOL). Thus the last inclusion
has been shown to be proper. Ll

It is easy to see that weighted growth functions of family of
sequences F is the same as non-weighted growth functions of homomorphic
images of sequences in F. We will formulate and prove this observation
formally.

Let s = XgoXysee- be a sequence over 7 and h:n%— A* be a

homomorphism. We write h(s) = h(xo),h(x1),... . Let F be a family of

sequences of strings. We write

HF = {h(s):s ¢ F and h is a homomorphism!

HF

1t

{h(s):s « F and h is an e-free homomorphism}.

Theorem 4 For every family F of strings

o) -

Wg(F) = F(HF) and Wy (F) = F(AF).
Proof Let ¥ « WE(F). By definition there are s over & in F and weighting
function p:2*= N so that f = ff, Let h be the homomorphism on £ defined
n{a) = a“(a) for each a in @ (aO = ). Clearly, fh(s) = fg and thus



Let f € F(HF). By definition there are sequence s over I and
homomorphisms h on I such that f = fh(s)' Let p:Z ~ N be defined by
= p: c >
o(a) = |h(a)|. Clearly, fo fh(s) and thus F(HF) < WO(F).

In the above constructions, h is e-free if p(a) # 0 for all
a in Z in the first part and vice versa in the second part. So also the
second equation holds.

Coro]iarz 1 For every family of strings F

w‘a’(HF) = w‘g(F) = F(HF) and NT(HF) = WT(F) = F(HF).

Proof Clearly, HHF = HF and therefore also F(HHF) = F(HF). So by
Theorem 4 WE(HF) = F(HHF) = F(HF) = wg(F). Similarly for the second
equations.

In [2] and [3 ] it was shown that the growth functions of DOL-
systems can be expressed in a special form. This characterisation was
then used to show the decidability of the growth equivalence problem
for DOL-systems. We will generalise these results to the case of weighted
growth functions.

For a DOL-system G = (I,P,0) with & = {a],...,ak} and for a
weighting function p:Z +> N we define the following matrices. The initial
vector, m, is the k-dimensional row vector (ﬂ],...,ﬂk) where . = na.(o).
The growth matrix, A, is the k-dimensional square matrix whose (1,j)1th

entry a; ; =N (w) for a; W in P. The weighting vector,6, is the

k-dimensional column vector (e],...,ek) where 6, = p(ai) for i = 1,...,k.

The following theorem is a direct consequence of the definitions.



Theorem 5 For any DOL-system G and any weighting function p the p-weighted
growth function of s(G) can be expressed in the form fS(G) = A"
where A0 is the identity matrix I. 0

The generating function of a function fg is defined to be the

Py N . O _ P s P _ P
fs(n)x . Obviously, Fg FY iff £ £ .

formal sum Fg(x) = Z .
n= 1 2 1 2

0
Lemma 2 For any DOL-system G and any weighting function p, F?(G) = n(I-Ax)']Q,
where m and 6 are defined above and I is the identity matrix.

Proof Clearly, the matrix I-Ax is nonsingular. By Theorem 5 we have

FS(X) = ) Aex".  We complete the proof by using the matrix equation
n=0

(1-Ax)71 = 7 A",
n=0

Now, we are prepared to show that p-weighted growth equivalence
is decidable for DOL-systems.
Theorem 6 Given two DOL-systems G], G2 with alphabet Z and weighting

] ) cL . o) - P
function p:Z+— N, it is decidable whether fs(G]) fs(Gz)'

Proof The generating functions of fs(G1) and fs(G ) are of the form

2
p(x)/q(x) where p and q are polynomials with integer coefficients.

Clearly, the generating function FS(G ) = pi(x)/qi(x) where p.,
i

and q; are polynomials with integer coefficients for i = 1,2. So

fS(G]) = fo(a,) iff FE(G]) = FS(GZ) iff py(x)a,(x) = pp(X)qq(x). We can,

of course, decide whether two polynomials are identical.

(6,
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4. The growth functions of DPGOL-systems

Let s be an infinite sequence of abstract e-graphs, s = XgaXyseeeo
X; € [2,A],. We will have three different growth functions associated
with the sequence s depending on whether we count nodes, edges or both of
Xs for each 1 > 0.

The node growth function of s, denoted Voo is defined by vs(i)
being the cardinality of V;i(set of all non-environmental nodes of xj) for
each i = 0. The edge growth function, denoted by e is defined by es(i)
being the cardinality of Ezi (set of all edges of Xi) for each i = 0.
Finally, the total growth function is denoted t where ts(i) = vs(i)+es(i)
for each i > 0.

Now, we will consider families of graph growth functions corres-

ponding to families of graphs. Given a family of abstract e-graphs F

we write

V(F) = {v_:s ¢ F},

S
E(F) = {eszs e F},
T(F) = {tS:S e Fi.

F(PDOL).

i

Theorem 7  V(DPGOL)
Proof Let G = (£,4,P,C,S) be a DPGOL system. We choose any fixed
ordering of the symbols of %. Let u be the mapping from [Z,A], to ¥
which maps each abstract e-graph A over I,A to the alphabetically ordered
string of all the occurrences of symbols from & as node labels in A.

We construct the PDOL-system G' = (&,P',u(c)) where P' = {ar u(A):ar> A ¢ P}.



-1 -

Clearly, fs(G') = Vs(6) Thus we have V(DPGOL) c F(PDOL) and the proof is
completed since the reverse inclusion is obvious. [l
Theorem 8 T(PDGOL) = F(PDOL).
Proof Let 6 = (£,A,P,C,S) be a DPGOL system. Let @ =% x A x £ and let
there be some fixed ordering of Q. Let Wy be the mapping from [Z,A]+ to oF
which maps an abstract e-graph A over Z,A to the alphabetically ordered
string w in 2 such that for every edge of A labeled h with source and
target nodes labeled a,b, respectively, there is one occurrence of
(a,h,b) in w. Let Wy be the mapping from [z,4], to 570" defined by
uz(A) = u(A)u1(A) for each A in [7,A], where u is as defined in the proof
of Theorem 7.

We construct PDOL system G' = (X v Q,P',0') where o' = uz(o) and
P' = {a k*~u2(A):a#—+ A ¢ P} u {(a,h,b) + w:{a,h,b) « Q,a—h+ b = B,u](B) = wl.
Clearly, fs(G') = ts(G)' Thus T(PDGOL) < F(PDOL). The reverse inclusion
is easy to show, we can simulate the growth function of a PDOL system with
the node-growth function of the PDGOL-system which generates a sequence of
graphs without any edges.
Theorem 9 E(DPGOL) = Wy (PDOL).
Proof Let 6 = (»,A,P,C,S) be a DPGOL-system. Let G' be the corresponding
DPOL system from the proof of Theorem 8 and let p be the weighting function
defined by p(a) = 0 for all x in & and p(x) = 1 for all x in Q. Clearly,

P - 1
fS(G') = e(6) Thus E(DPGOL) < WO(PDOL).

Let H = (2,P,0) be a DPOL system and p:Z > {0,1} be a weighting
function. First, we define two auxiliary mappings v,n from sF to

[Zu {$},{#1] . where §, # are not in Z. The mapping v maps a string



- 12 -

RRRE:M inzt to the abstract e-graph with n isolated nodes labeled Aqseensd -

The mapping n maps a string ay...a in 5t to the abstract e-graph

a

/ﬁ/g,,a]

$-——->~a2

~,,

Now, we construct DPGOL system G' = (2 u {$},{#},P',C,S) where S = n(o),
P' = {a— v(w):at—w € P} u {$+— $} and C = {# — Ssj-+ at:p(a) =1} v

. = ; : - £P
u {#+ X:p(a) = 0}, A being the empty stencil. Clearly, e (6" ) fs(G)'

1

Thus WO

(PDOL) < E(PDGOL). 0

By Theorem 1 family wg(PDOL) is equal to a number ¢f other

growth function families. So we have for example the following corollary
of Theorem 7.

Corollary 2 E(PDGOL) = WO(DOL). 0

To summarize our results about growth functions of DPGOL-systems,
we have shown that if we count only nodes or both nodes and edges we are
getting the same type of growth as for string DPOL-systems (without weighting
symbols). On the other hand, if we count only edges we get the same type

of growth as if we allow weight zero for symbols in string DPOL-systems.
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