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1. Introduction

Parallel rewriting systems on strings have in recent'years been
employed to model the development of multicellular filamentous organisms
[1,2]. In the present paper we propose to generalize parallel rewriting
to granhs in order to enable us to model the development of multidimensional
organisms.

For biological reasons we take cells to be the basic units since
they are known to be metabolically and genetically autohomous functional
units of most organisms. The most relevant aspect of their autonomy is
the fact that all cells of a given organism contain the same complement of DNA,
which each cell receives from its mother cell and passes on to its daughter
cells. OQur systems incorporate this uniformly programmed and highly
redundant aspect of multicellular development by applying the same rewriting
rules to all cells in a given multidimensional array.

A cellular array is essentially a subdivision of a limited space
into units which completely fill the space. Tessellations and maps are
examples of two-dimensional ceilular arrays. We wish to concern ourselves
primarily with neighborhood aspects of such arrays, i.e. topological aspects,
and not with their detailed metric descriptions. The timing and orientation
of a cell division, for instance, is to be affected by the state of the cell
and the states of neighboring cells, but not by their exact shapes, sizes
and positions, as would be the case in a metric description. Biochemical
and cell-physiological mechanisms make topological descriptions of cellular
development the more plausibie ones. This aspect of our models is expressed
by our choice of graph representation of ce11u1ar‘arrays.

We choose a graph to be defined as a set of ordered pairs (directed

edges) over a set of nodes. Both nodes and edges are to be labeled. This



definition of graphs precludes multiple edges with the same label between
the same ordered pair of nodes. Thus cases where cells in an array touch
each other along more than one discontinuous boundary cannot be expressed
by our graph notation. Such cases occur rather rarely in organisms, and
we gain considerable clarity by omitting them.

We also rule out cases where a cell touches itself (having an edge
from a node to itself in the graph) for the same reasons.

The node labels in our graphs correspond to states of cells. The
cells are considered to be finite automata, each cell changing its state
at discrete time intervals according to its previous state and its inputs.
The states and inputs of cells are interpreted as combinations of chemical
and physical factors present in the cells or entering them.

In-order to model development, new cells must be added to or
taken away from arrays at certain times and places. Thus we need to allow
the substitution of a graph for each node of the previous graph. These
substitution (or rewriting) rules are considered to be extensions of the
state transition functions of finite automata.

| By simultaneous application of node rewriting rules (productions)
to all the nodes of a graph, and then by application of suitable connection
rules, we obtain a new graph. By repetition of this procedure a set of
graphs is generated, which constitutes a developmental graph language.

Mayoh [3,4] has proposed and demonstrated on some particular
examples graph generating systems with connection rules based on node labels.
We are now presenting a powerful and general mechanism for defining connection
rules, dependent on node and edge labels, edge directions;, and on the

structuracofl: the neighborhoods.



Edge labels and edge directions play a generative role in our
systems just as node labels do. While the node labels control which sub-
graph is substituted for a particular node, the edge directions and labels
control how pairs of substituted subgraphs get connected with each other.

From a biological point of view the directedness of an édge corresponds to
polarity in the connection between two neighbor cells. Lack of polarity

can be expressed by having two edges in opposite directions between nodes.
Edge labels of more than cne kind in a graph generating system imply biologically
that cells have mechanisms by which they can distinguish between various kinds
of connections among neighbors. For instance, if it can be assumed that in

a certain animal dorso-ventral connections between pairs of ce]]s_are dis-
tinguished from bilateral distal-proximal connections, and from head-tail
axif: connections, then we are justified to model the development of this
animal by a graph generéting system having three edge labels. In other

words, there has to be a cellular or molecular mechanism by which different

- kinds of neighborhoods are determined.

Another way of looking at edge labels and directions is that they
enable us to include additional geometric properties in our graphs other than
topological neighborhoods. For example, by choosing one edge label for
horizontally touching neighbors, and another for vertically touching ones, .
we can obtain an obvious representation of some sets of planar graphs, namely,
representations on rectangular grids (see Example 1).

We wish to allow connections to be generated only between nodes
which are either within the subgraph substituted for a node, or between

nodes of which the "mother" nodes were connected in the previous step.



Generating systems (grammars) for graphs or for multidimensional
arrays (webs, cellular automata) have been proposed before
e.g. [5 - 11], but all of these éonstrutts were such
that the graphs or arrays were either allowed to grow only at the edges or
surfaces, or substitutions for nodes (subgraphs) were allowed only sequentially.
For biological reasons we insist on simultaneous rewriting and on being
able to add new cells in the interior of the array.

After completing the draft of thfs paper, we have seen a recent
work [12] in which two-dimensional cellular generating systems are defined
in such a way that they fulfill the two biologically motivated conditions
mentioned above. In these systems, the cells divide simultaneously into
at most two new cells, and new structures are defined by orienting the
newly fdrmed boundaries according to the configuration of all of the neigh-
boring cells. Cells can touch each other along more than one'boundary,
and they can also touch themselves. In order to have finite number of rules,
it is required in these systems that before each computation the number of
neighbors of each cell is counted, and if it exceeds certain bound, all
subsequent divisions of that cell and the cells in its neighborhood must be
oriented in such a way that the number of its neighbors does not increase.
The requirement to count the number of neighbors of each cell is a rather
artificial one from a biological point of view, although it certainly is
physically impossible for an actual cell to have unboundedly many neighbors
and there must be a mechanism which 1limits their number. In our'systems no
bounds are imposed on numbers of neighbors, except by the productions and

connection rules chosen. The reason why we can still define our systems



by finite numbers of connection rules is that we connect the substituted
subgraphs pairwise with each other, rather than considering all of the
neighboring subgraphs in the connection rules. However, our recurrence
systems also allow the latter kinds of connection rules, and in this case
infinite sets of such rules are defined by recurrence formulas. In contrast
to the systems defined in [12], our graph systems are not limited to two-

‘dimensional structures.



2. Preliminaries

Let T be an alphabet (a finite, nonempty set of symbols). An

index set X = {Xa}aEZ is a family of sets. For each a ¢ I, Xy is a set.
We write XZ =2 Xa' We also write Z = X u Y, or in more detail
{Za}an = {Xa}aez u {Ya}an’ iff Z, = X, v Y, for each a ¢ £ Similarly

for other Boolean operations and relations, e.g. inclusion.
A concrete (directed) graph over I, A is a pair

({Va}an’{Eb}beA) in short (V,E) where

(i) V,n v, = ¢ forata’

(g%

(i1) E, V5 - I for each b € 4, where I = {(x,x):x € VZ}'

Thus our notation has the following meaning:

V. is the set of (al1) nodes;

E; is the set of (al1) edges ;

Va is the set of nodes labeled by a, for every a ¢ I;

Eb is the set of edges Tabeled by b, for every b ¢ A.

As noted before, V and E are index sets of nodes and edges,
respectively. The index sets of nodes and edges of a concrete graph a
over £, A will always be denoted by v* and EY, respectively.

Since we are not finterested in naming individual nodes, we will be

mainly concerned with isomorphic classes of concrete graphs. An isomorphic

class of concrete graphs will be called an abstract graph or in short graph.

The class of all concrete graphs isomorphic to a concrete graph o

is denoted by [a]. Concrete graph o is called a representant of the abstract

graph [a]. The empty abstract graph is the graph with no nodes or edges and

it is denoted by A.



A concrete graph o is a subgraph of a concrete graph B8, written

o < B, if Ve [= VB and E“ [ EB. For proper subgraph we write a < B.

An abstract graph A is a subgraph of an abstract graph B if there

exist concrete graphs a, B so that A = [a], B = [B], and a < B.

The subgraph of a concrete graph o induced by a subset of its nodes X

(X ¢ Vg) is denoted by <X>_, and is defined as the concrete graph (V,E} where
v, = Vg n X for each a ¢ I and E_ = Zg n X2 for each b ¢ A.

For concrete graphs a, B, we say that o is a full subgraph df,s

if v ¢ VB and <V°°>B = a. For abstract graphs A, B we say that A is a full

subgraph of B if there exist representants o, B of A, B respectively so that

a is a full subgraph of B.

For concrete graphs o, B, we write a v B = (Va U VB, %y EB).



3. Definition of graph generating systems

3a. Definition of e-~graphs and e-stencils

Organisms in our systems are represented by concrete graphs with
labeled nodes and labeled edges, having a special node (the environmental
node) labeled by e. Let &, A, A' be alphabets and e ¢ £ U A u A'.

A concrete e-graph over &, A, A' is a concrete graph (V,E) over

Zu {e}, Au A", where V } contains symbol = (called the environmental

zu{e
node), V, = {=}, B < (VZ)Z for each b e A, and E < (VZX{w}) u ({w}xvz)
for each b € A'. Accordingly, < is the only node labeled by e, all the

edges not incident with « (called in the following inside edges) are

" labeled by symbols of A, and all the edges incident with « (called

outside edges) are labeled by symbols of A'. The family of all concrete

e-graphs over I, A, A' is denoted by (Z,A,A'), or in short (Z,A), if A = A'.

If o is a concrete e-graph, then [a] is an abstract e-graph

(or in short e-graph).
The family of all abstract e-graphs over I,A,A' is denoted by’
[Z,A,0"], or in short [Z,A] if & = A'. We write [2,4,0"'], = [Z,8,0']-{21}.
| In our diagrams of abstract e-graphs the outside edges will be
shown as free arrows and the environmental node will not be shown. The
outside edges will in this context be called "hands".

In the next section we define the joining of two concrete (abstract)
e-graphs into one by adding new edges. This will be done with the help of
"stencils". Intuitively, a concrete stencil is a concrete graph with bipartition
of nodes into "source" and "target" nodes. Since we want to define also
abstract stencils we will give this partition by using an extended alphabet

of node labels. We will add symbols s and t to the labels of source and target

nodes, respectively.
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For an alphabet &, we define L, = {(a,s):a ¢ £}, Ly = {(a,t):a e £}

=% ugx, =% x{s,t}

st S t .
A concrete e-stencil over Z,A,A' is a concrete e-graph over

Zst,A,A'. Thus the family of all e-stencils over £,A,A' is the set (I_, ,A,A"),.

st?
Let o = (V*,E*) be a stencil over Z,A,A'. Then the set of nodes Vg of a is
st
by definition bipartitioned into the source set V% and the target set V% .
S t

An abstract e-stencil (in short stencil) over I,A,A' is an abstract

e-graph over Zst,A,A'. Thus the set of all abstract stencils over Z,A,A’

is the set [Z_,,A,A'],.

st’
The concrete e-graph B obtained from the concrete e-graph

o = (VE,E®) over I,A by merging a subset of its nodes X containing «

(X < V; u {=}) into « is denoted by mer(X,a) and formally defined as the

graph (VB,EB) where

(1) VS Vo - X for each a in I,

(E

(i) ES b " (V§)2) u {(o,x):x € Vg,y e X,(y,x) e Eg} u

{{x,®):x € Vg, y e X,{x,y) € Eg}.

Note that no loops of length 1 are created by merging, we are npt considering

graphs with such loops.

We need a mapping g from concrete e-stencils over £,A,A' to
concrete e-graphs over I,A,A' which discards the second components of node-
labels. Formally, for o in (Zst,A,A')*, where o = (V,E), we define

g{a) = (V',E) where v, = V(a,ﬁ) U“V(a’t) for each a e Zand V_ =V = {0},
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3b. Definition of joining pairs of concrete e-graphs

In a graph production system (defined in the next section), a
new abstract e-graph is produced from a previous one by simultaneous substi-
tutions of abstract e-graphs for each node in a previous abstract e-graph,
after which step the substituted graphs must pairwise be connected with each
other. We shall sometimes call the substituted abstract e-graphs "daughter
graphs", and the nodes for which they are substituted the "mother nodes".
The joining of an ordered pair of daughter graphs o,8 takes place if and
only if their mother nodes were connected by some edge labeled b, and directed
from the mother of o to the mother of B, and there is an abstract e-stencil
for b among the connection rules of the system which is applicable to the
pair a,B.

The procedure of checking whether a given stencil y is applicable
to daughter graphs o and B can be imagined the following way. We draw
the graphs o and B side-by-side on one sheet of transparent paper, and
similarly the stencil y on another sheet. We lay the first sheet over the
second and ascertain first of all whether all the source nodes of vy are
present in a, and all the target nodes of y are present in B. Secondly,
we make sure that all the edges which connect source nodes of y are present
between the corresponding nodes of o, and similarly that all the edges among the
target nodes of y are present in 8. Finally, we observe for every edge
labeled b in y which connects some source node with some target node, or
vice versa, whether there is a pair of "matching hands" with labels b on
the corresponding nodes of o and 8. By matching hands we mean two edges of
the same label, one of which is directed to the environmental node and the

other is directed away from it. This last requirement allows us to join up
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only those nodes of daughter graphs which bear properly matched in- and
out-going edges to and from the environment. Note that each substituted
daughter graph is assumed to have its own environment, implied by it

being an e-graph, in addition to the fact that the graph standing for the
whole organism has its environment. One particular hand on a node in a
daughter graph can be used in the joining of that node by several applicable
stencils.

Once it has been established that a particular stencil v is
applicable to graphs «, 8, then we copy the edges between source and target
nodes of y onto the sheet with pictures of o and 8. In this way we obtain
the joined graph of o and B.

Note that there may not be any new edge defined by a stencil vy to
be drawn between any node of o and any node of B. Intuitively this means
that the connection which existed between the mother nodes of o and B is now
broken. A special case of this is when y 1s.the empty graph A.

In this section defining recurrence systems on graphs we
shall make use of this same joining mechanism, except that there joining
takes place not between pairs of daughter graphs, rather between graphs
generated by the previous steps of compufation.

The formal definitions are as follows:

Given a concrete e-stencil y over I,A,A', we define

(i) Yg = g(mer(Vgt,Y)), the source part of v;
(i) Yr = g(mer(Vg ,Y)), the target part of .
s
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We say that a concrete e-stencil y over Z A,A' is applicable to

an ordered pair of concrete e-graphs o,8 over L,A,A' if

(i) V% n VS = ¢, i.e. the only common node of o and B is «;

(ii) Yg < o and v < B.

Note that (ii) implies VY < v* u VB, so informally (i) and (ii)
mean that o and 8 are disjoint and a(B) covers the source (target) part of vy
including the hands. Note also that there might be two types of hands in
Yq and Yt the "original" hands of y plus "new" hands which were created by
"breaking" of y into Yg and Y1

Let y be a concrete e-stencil applicable to a pair of concrete
e-graphs‘a,B. By "joining a,B by y" we mean that we add to a u B the edges

of g(y)—(yS v YT). Formally the joining of the ordered pair a,8 of concrete

e-graphs according to the concrete e-stencil y is denoted by o I» g, and is

defined as the concrete e-graph (V% u VB,(Ea-EYS) u (EB-EYT) u EY). Note
that <> is an operation not a relation.

Given a set of concrete e-stencils Q, vy in Q is said to be Q-maximal
for an ordered pair of concrete e-graphs a,8 if vy is applicable to «,B and

there is no & in Q such that & is applicable to «,8 and Yg U Y < 65 U 5T‘

3c. Definition of graph expressions

For formal definition of both graph production systems and graph-
recurrence systems we need the notion of "graph expression".

Let 2 be a finite set of subsets of [Z,A], and I be a finite set of
subsets of [Zst,A]*. A graph expression over I,A is an abstract e-graph
over Q,I,A. A graph repression A denotes a set of abstract e-graphs over I,A,

written as D(A), and defined as follows.
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Let o be a representant of A. A concrete graph n is a representant
of an element of D(A) iff
(i) For every n « Vg, j.e. for every non-environmental node of o,

there exists a concrete e-graph Bn as follows.

(i1) If ne V% for X e @, then B« [X], i.e. B, is a representant
of an abstract e-graph in X.
(i2) VBm a V. = ¢ for all m,n in VY, m #
r Yy 70 N A0 Aoy M7 -
8
(i3) V=g v
n€VQ

. B By
(i4) QD =<V >Bn'

(i1) For every inside edge of a, say (m,n) in Ey» Y T there exists a

representant vy, of an abstract e-stencil from Y as follows:
(ii1) Let Q= {y:[y] « Y}, i.e. Q. is the set of all the representants
of all the abstract stencils in Y. Then Yoon must be Qm n—maxima]

for 8 ,B .
m>"n
(1i2) let s =8 =8 Inany g Then <v6m’n = <v6""n
n m,n m.n m n X >n X >6m n

o Bn
(iii) For all n ¢ VQ, b e Aand x ¢ VZ .
)
(i1i1)  (o,x) € Eg iff (o,n) e Eg and {w,x) ¢ Eb”.

Bn

(iii2) (x,0) ¢ EN iff (n,») e E and (»,x) e E,"

b b

Note that D(A) = ¢ if for some edge (m,n) of a there are no B .8

and Ym,n @S above such that Ym.n is applicable to the pair Bm,Bn.
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3d. Definition of graph production systems

A propagating graph OL-system (PGOL-system) is an:-ordered quintuple
G = (£,A,P,C,S) where
Z is an alphabet of node labels;

A 1is an alphabet of edge labels;

]

is a finite subset of ¥ x [Z,A]+ of productions;

C is a finite subset of A x [Zst,A]+ of connection rules;

w

in [z,A], is the axiom (initial graph).

Productions and connections rules are written in the form a » a.
The set P must be complete, i.e. for each a ¢ I there is a so that a +» a ¢ P.
For U,V in [Z,A]+ we write U E> V if there exfsts a graph expression
W such that
(i) W is obtained by relabeling of U so that each occurrence of a
node label from I, say a, is replaced by {A} for some a +> A in P,
and each occurrence of an edge label, say b, at an inside edge
is replaced by the set of abstract e-stencils {B:bw B ¢ C} u {A}.
(i1) Ve D(W).
We want to stress that different productions may be used for

different occurrences of the same node label in U.

Note that we add the "empty" stencil X to every set of stencils to
aséure "completeness" with respect to connection rules. In this way, for
every U there exists a V so that U © V. If no connection rule is applicable
to a pair of right sides of productions, then the "default" stencil X is
always applicable, meaning that no new edges are created.

The reflexive transitive closure of relation => is denoted by E>*,

G
the transitive closure by E>+.

The graph language generated by G is denoted by L(G) and defined
. o * ‘
as{U:S = Ut.
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A PGOL-system (Z,A,P,C,S) is called deterministic if for every U

which can be generated from the axiom, i.e. S E»* U, there is exactly one
V such that U g V.
The following lemma shows that by examining P, C and S we can:

decide whether a given PGOL-system (x,A,P,C,S) is deterministic.
Lenma 1. A PGOL-system (Z,A,P,C,S) is deterministic iff the following holds:

(1) For each a in £ there is exactly one A so that a+>A is in P.

(2) Let an edge labeled by h occur in S, P or C, with its source and
target labeled a, and a,, respectively. Let a; A, be in P and A, = [ai]
for i = 1,2, and let Q = {y:hJ—+[Y] e C}. Then there must be at most one y
in Q such that y is Q-maximal for Qs Q-
Proof For any U, V such that S E»*'UJEQVV we have by condition (1) the unique
graph expression W such that V < D(W). From condition (2) and because of the
"default" stencil A in definition of relation E» it follows that D(W) is
a singleton set. ‘
Example 1. In all diagrams the nodes of stencils will be labeled by a or
a, rather than (a,s) or (a,t) for a ¢ A, Let G = <{a},{h,v},P,C,S> be a PGOL-
system, where set P consists of the single production:

h ‘L h

h
——— e N
v
p—im
a h l h h
e

—————}-a-———*

Q——~ﬁl<_h<—m <

C is the set of the following connection rules:

A ——ae A Q ———————a

S s s

h > vl Lv vV >y Lv
h h g

g™ a; e
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This, clearly, is a deterministic PGOL-system. The first two derivation-

steps are shown below, with edge labels omitted in the last diagram:
¥ ¥ v

—> g —> g —q —™ g —>

gr ¥ ¥ ¥ v
*v b, > @ o> @ > @ —> A —

w fn
X y

a
l —>3a —>3 —a—»a >
a~
¥

g’ - =P g e g g —

¥ ¥ ¥ ¥
If we interpret graphs in L(G) as planary maps with every a represented
by a square of equal size, and h and v by horizontal and vertical relative
positions of neighbors, then we seem to generate by this system square
grids of 4" ynits. In fact, the reader can verify that the stencils on the
right-hand sides of connection rules give us exactly those graphs which
correspond to square grids of 4" units, for all n = 0. Biological applica-

tions of graph OL-systems are aisc available (see [13]).

4. Results on PGOL-systems

4a. Subgraph problem and reduced normal form

We want to show that for every GPOL system there exists an equivalent
system without "useless” productions and connections rules. To do this
we first prove a theorem which is important in itself, namely, solvability

of the so called (full) subgraph problem.

Theorem 1 Given a PGOL-system G and an abstract graph A, it is recursively
decidable whether A is a (full) subgraph of L(G).
Note. Theorem 1 can be extended (without changing the proof) to

table PGOL-systems mentioned in section 4b.



- 18 -

Proof Let G = (2,A,P,C,S). We construct an unlabeled (concrete)
directed graph o = (V,E) where nodes V are all the abstract graphs over
Z,A with no more nodes than A and for X,Y in V (X,Y) is in E iff there
exists Z so that X g Z and Y is a (full) subgraph of Z. Let
VS = {X e V:X is a (full) subgraph of S}. Since G is a propagating
system, if X E> Z and Y is a (full) subgraph of Z, then there must exist
X' and Z' so that X' E> Z', X' has no more nodes than Y and Y is a (full)
subgraph of Z'. Therefore, clearly, A is a (full) subgraph of some
element of L(G) iff there exists a path in o from a node in Vs to the node A.
Since a is finite this is, of course, decidable. This completes the
proof. 0

Given a PGOL-system G = (2,A,P,C,S) a symbol in £ u A is said to
be useless if it does not occur in any element of L(G). Similarly, a
production in P or connection rule in C is said to be useless if it

cannot be “used" in any derivation of G, i.e. more formally:

(1) - the production at» A is useless if label a is useless.
(2) the conneciion rule b+ B is useless if there is no edge in an

element of L{G) labeled by b and pointing from a node labeled
a; to a node labeled a, 50 that: a, > [ai] is in P for i = 1,2,
and B is Q-maximal for Uys Oy where B is a representant of B
and Q = {y:bw [y] € C}.
A PGOL-system G is called reduced if it has no useless symbols, productions
or connection rules.
Theorem 2  For every PGOL-system G there effectively exists an equivalent

reduced PGOL-system G' ,
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Proof By Theorem 1 we can determine which symbols in Z u A will ever
occur in L(G), so we can omit useless symbols and useless productions.

Also by Theorem 1 it is decidable which subgraphs of the form
a]—E+ a, occur in L(G). For every a1, a, and b we can determine which
connection rules can be used. So we can determine which connection rules

can be ever used and omit all the remaining. 0

4b. Extension of some results on string production systems to graph
production systems

Parallel rewriting systems on one-dimensional cellular arrays
(represented by strings of symbols) have been called "OL-systems" if no
interaction takes place among the cells, and "IL-systems" if there is inter-
action. Deterministic string generating L-systems are those which have a
single production for each symbol, and propagating L-systems are those which
do not allow erasing of symbols (no cell death) [2].

Various special types or modifications of string OL-systems have
been extensively studied, see e.g. [14] or [15] to which we refer the reader
for formal definitions of the following "operators": F(finite number of
axioms), D(deterministic), T(table) and C(codings or literal homomorphisms).
We want to consider these "operators" and their combinations also for PGOL
systems. D has already been defined, and the meanings of F and T are obvious.
For C we will consider only "codings" of node labels and not edge labels, i.e.
formallys

Let =, %' be two alphabets. A coding f is a function from &  {e} to

' u {e} such that f-1(e) = {e}, extended to concrete é—graphs as follows.
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For o in (2,0)4y0 = ({V_} {Eb} {E

alacr? ), let f(a) =({Vé}

beA cer'? b}beA)’

where Vé = LJ] Va for all ¢ ¢ '. For abstract e-graphs f([a]) = [f(a)].
aef '(c)

We shall use the same notation for the families of graph languages
generated by various types of systems as it is common for the corresponding
families of string languages (see e.g. [14]) except that the names will end
in GOL rather than in OL. For example, the family of G-languages generated
by propagating deterministic table GOL systems with a finite number of axioms
will be denoted by DTFPGOL. Also for codings the notation is similar as
in [15], namely: Let X be a combination of "operators" F, D or T. Then
CXPGOL = {f(L):L « XPGOL and f is a coding}.

To conform to our formalism, in cases where we consider graphs
without edge labels, we choose A = {#}. However, we will omit label #
everywhere in the diagrams.

We introduce a transformation § which will ailow us to consider L-

systems on strings as a special case of GOL systems.

$ : " > (2,{#}),,defined as B(aja,...a ) =
= Ay A, ..o a7 where a; is in £ for i = 0,...,n.
For L < £¥, Tet 3(L) = {§(w):w  L}.
For an OL-system G = (Z,P,0), let §(G) be a PGOL-system
(z,{#},P',C,c'), such that
3(0),

{avr> Blw): a»weP}

———

—1a —

- — —

—te —r e da

o j o

o o g
i I I

{# V> a; > bt: a,b e T}
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Similarly let 3 be extended to XPOL systems where X is any combina-
tion of "operators" D, F, T or C. By an CXPOL system we mean an XPOL system
plus a coding.
Lemma 2. Let X be any combination of "operators” D, F, T or C. For every
XPGOL system G, F(L(G)) = L(3(G)).
Proof. Obvious.
Lemma 3. Let X be any combination of "operators" D, F, T and C. If
L e XPGOL n §(Z+), then there exists Ly e XPOL such that (L) = L.
Proof. We will do the proof only for PGOL-systems, but it can,clearly,
be modified to any XPGOL-systems. Let G = (2',A,P,C,S) be a reduced PGOL-
system, L(G) = L.

Since all intermediate steps of every derivation of G are in

§(Z+) and G is reduced we have:

(i) ' ¢z,
(ii) A = {#1,
(1i1) o' < g(z'"),
and (iv) P < ' x §(Z'+).

Now, let C' = {#¥Px > y:x,y € L'} and let G' = (2',A,P,C',S). We
claim that L(G) = L(G'). This is so because the connections with environment
are not allowed to change direction and therefore also connections of
"sisters" must preserve the direction of the connections of their mothers.
Otherwise, we would get a graph not in §(Z+).

G' is in §(POL)so there is a POL-system G so that §(G) = G'.

By Lemma 2 $(L(G)) = L(§(G')). Since L(J(G')) = L the proof is completed. [
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Lemma 4. Let X and Y be any combinations of "operators" D, F, Tand C. If

L e XPOL-YPOL, then J(L) e XPGOL-YPGOL.

Proof. Let G be an XPOL-system generating L. By Lemma 2 F(L(G)) = L(F(G)).

Since 3(G) is an XPGOL-system we have §(L) ¢ XPGOL. Let assume that F(L) is

also YPGOL. By Lemma 3 there is G' in YPOL such that F(L(G')) = &(L). Since

3 is one-to-one we have L(G') = L and L is in YPOL which is a contradiction. [J

Coroliary 1. Let X and Y are as before. If XPOL and YPOL are incomparable

then XPGOL and YPGOL are incomparable. If XPGOL < YPGOL and XPOL § YPOL

then XPGOL ¢ YPGOL.

Proof. Immediately by Lemma 4. Note, hﬁwever, that from Lemma 4 does

not follow that the inclusion XPOL c YPOL implies the inclusion XPGOL < YPGOL.
A number of results about various families of languages generated

by modified or restricted string OL-systems is summarized in the diagram of

Fig.1. The meaning of the diagram is the following. If two nodes, say X

and Y, are connected by an edge the node X being below the node Y, then X ¢ V.

If these two nodes are connected by a broken edge then X and Y are incom-

parable. The results summarized in Fig.l are either obvious, or given

in [14], [15], Corollary 2 or Lemma 7.

Lemma 5. CDPOL is incomparable to both POL and FPOL.

Proof. The language {aznb a3n:n > 1} is clearly in CDPOL-FPOL. The language
'{a}+»{b}+ is clearly in POL but by Lemma 3 from [9] it is not fn COPOL.. O
Lemma 6. Let Ly be {aaa} u (a2 in > 2}. Then Ly  CDPOL-TFPOL.

Proof. Let G be the DPOL-system ({a],a2}5 {a] > agay, a, > a]},a]azaz)

let h(ai) = a for i = 1,2, Obviously, h(L(G)) = L, and clearly Ly ¢ TFPOL. O
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Lemma 7. Let h be the homomorphism on {a,b}* defined by h(a) = a, h(b) =
- on
(where € is the empty string), and let L, = h ]({a n > 1}).

L, e TPOL (TFPOL) but L, ¢ FPOL, CPOL, CFPOL.

Proof. It is shown in [19] that L, < TPOL - EOL and all three families
FPOL, CPOL and CFPOL are included in EOL. 0

Corollary 2. Any of the families CDPOL, CFDPOL, CPOL and CFPOL is incom-
parable to both TPOL and TFPOL.

Proof. Follows immediately from Lemmas 6 and 7 and obvious inclusions. [

Now, we will extend all the results from Fig.1 to gfaph-]anguages.

Theorem 3. The results summarized in the diagram of Fig.2 hold.

Proof. A11 the inclusions (but not necessary proper inclusions) from
Fig.2 are obvious. Since all the corresponding inclusions in Fig.]l are
proper, by Corollary 1, also all the inclusions in Fig.2 are proper.

Each incomparability result of Fig.2 follows from the corresponding result

of Fig.1 by Corollary 1. 0
CFPQL- - — - = = - — - - - -TFPOL
CFDPOLT =~ ~ - C e e AT -

\ T --

\ ~CPOL
\\ ) -
T -

CDPOL/:f r? T

Figure 1



- 24 -

CFPGOL- - - = — — - - — - _TFPGOL

e - .
-7 -

DPGOL

Figure 2

We call a PGOL-system bifurcating if the right-hand side of its
every production has at most two nodes.
Theorem 4. For every PGOL-system G = (£,A,P,C,S) there exists a constant k

and a bifurcating PGOL~-system G' = (£',A,P',C',S) such that S %> Wiff

S %#» W, where %» means "derives in j steps"”.
Proof. It is quite easy but rather tedious to prove this result and we
are leaving it to the reader. [

Almost all living cellular developmental systems are bifurcating.
However, the above theorem provides justification for studying and using
non-bifurcating systems as well, since the developmental behavior of.such
systems corresponds to infrequent observations of the detailed sequence of

the actual bifurcating behavior.
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5. Recurrence systems on graphs

5a. Definition of stencil expressions

For definition of recurrence systems we need not only graph
expressions but also stencil expressions.

Stencil expressions of two kinds are used. The first kind (I)
of stencil expressions are graphs over stencils, and are used to produce
larger and larger stencils from previously defined stencils. In other
words, a stencil expression of kind I is an abstract e-graph over Q,I,
where both the set of node labels Q and the set of edge labels I are
finite sets of sets of abstract e-stenciTs.

The second kind (II) of stencil expressions arevstencfls over
graphs, and are used to produce stencils from larger and larger graphs.

A stencil expressions of kind II is an abstract e-stencil over Q,II,
where Q is a finite set of sets of abstract e-graphs and II is a finite set
of sets of abstract e-stencils.

A stencil expression A denotes the set of stencils D(A) which is
defined analogously as the set of graphs defined by graph expressions,
with the following modifications.

The formal definitions are as follows:

Case I: Let o be a representant of A. A concrete e-stencil n is
a representant of an element of D(A) where A is a stencil eXpression over
Q, 1 iff | |
(i) For every n ¢ Vg there exists Bn as follows:

(1)  If n e V¥ for X < @, then [g ] is in X.
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B 8
G2) v oA v =6 for all myn in V&, m # n.
Zst Zst 2
n By
(i3) vi=Qy_ v"
neVQ
8 8
(i4) v,y =¢v
| < Zst>’n Zst>5n

(i1) For every inside edge of o, say (m,n) e Eys Y € T there exists a

representant Ym.n of an abstract e-stencil from Y as follows:
s

(1) Letq .
(ii2) Let Gm,

{y:[v] € Y}. Then Yinon is Q

Ym,n
L= 9(8) "Bl g(g ). Then

-maximal for Bm’ B .

m,n n

8 $
sN — m,n
g( vy D) = <y %0

fa a . . By
(iii) For all n 1in VQ, b in A and x in Vs,

: B
(1ii1)  (o,x) € Eg iff (»,n) ¢ Eg and (eo,x) € Ebn R

B
(i1i2)  (x,°) EQ iff (n,») e Eg and (x,») « Eb".

Case II: We will show only differences from Case I.

(1) If ne iy oy u¥iy.¢j for X e 2, then [8] is in X.
By B N

(i2) VZm n VEn = ¢ for all myn e Vo , m# n.
st
B
(i3) v} = {J v.", for all a ez and x ¢ {s,t}.
(a,x) = Mo 'a

X

. Bn Bn
(1) gl = <M,
n

Y .
(1i2) Let Gm n = Bm«—m4ﬂ+ By - Then the same holds as in Case I.
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5b. Definition of recurrence systems on graphs

Analogously to string recurrence systems [16], we need one or

more recurrence equations for defining sets of graphs. But in the case of

graph recurrence systems we also need one or more recurrence equations for

sets of stencils to be used as connection rules in each of the recurrence

equations.

Let d = {i:1 <1 < d} for every positive integer d.

A
S

w

graph recurrence system is an ordered 8-tuple

= (x,A,I',0,d,A,F,w) where:
is an alphabet of node labels.
is an alphabet of edge Tabels.

is a finite set of graph variables.

is a finite set of stencil variables.

is a positive integer, the depth of S.

is a function assigning to each (x,n) in (T v ©) x d a finite

set A s where A c [z,A], for x € T and

3

Ay € [Zst’A]* for x ¢ 0. A is the axiom function.
? }

is a function assigning to each x in T v © a finite set FX
where F < [(r xd) vz, 0 xd, A], for each x in T and
Foe LT xd) vi),0xd, al,uloxd, 0xd, al
for each x in ©. The set {(x,0) = q:ix e T v 0, q € F !

is the set of recurrence formulae and we will write them in

the more usual form where each (x,i) in (I' v 0) x d is

replaced by Xpoi®

in I' is the distinguished variable.
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Now, we give the usual computational interpretation of recurrence systems.

Let S = (£,A,T,0,A,F,w) be a graph recurrence system. For x inT u ©

v

and n = 0 we define Lx n(S) as follows.

If n < d, then Lx,n(s) = Ax,n+1'

Let F,  be the set of graph (stencil) expressions obtained from
F, by replacing every label (z,i) in (I v ©) x d by the set of graphs
)

(stencils) L, and every label from T, x d by the label (Lz;n-i q

SN=1i

for q e {s,t}. Ifn=d¢thenlL,  (S)= {J D(B).
XN BeF
X 4N

Finally, the graph language generated by recurrence system S

is denoted by L(S) and defined as L(S) = (L (S).
n=1 7

Example 2. Now, we give a recurrence system for the graph language
generated by the PGOL-system in Example 1.

Let S = ({a},{h,v},{Q},{H,V,H,V},1,A,F,Q) be a graph recurrence
system with functions A,F given in Figure 3. Each entry in the table of

Figure 3 is a singleton set.
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€ a4nbL4

¥

A

]
™ ~g (I (T 0)eg—
(1°8) (r'm) |
- (T°A) (TN
€ € — [4 g [ fmnane. A.H >v
= (T < (0= (T*D)=g
# (1°H)
\A A A
B T TN R J L ‘
>_ A L, % B - e - B .“s 0 x<
mmllnl u.m.Alﬁ'ﬁ Alnlmm.bls- N; k; L
A H A H 0 X
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Using the more usual notation our recurrence system is as follows,
where fl and V are considered to be "constant" (setsof) stencils. According
to the formal definition, initial values for each variable is a set, but
in this case all these sets (AO,HOQVO,Q,V) are singletons and we write

them without curly brackets.

e A — = A e
v n-1 n-1
A = .-—-—,:-.h a }’1——»-
0 =7 A = v
n n-1
lv - n-1
B—)— A —E:-];—» A .—}l—’—
-1 n-1
I v
¥ N v
_ h H
HO = as—w-—-——;m» at _l
yv lv Hn = \Y
Hn—l
lv
i h
i g e _
h
Vo T J," e
b h
1 ——
t
a h a a h a
g &= "t s
S
o
aS —=a, a, a,
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Let S = (%,A,',0,d,A,F,w) be a recurrence system. If Acn

is a singleton or empty set for every (x,n) in I x d and there is only
one recurrence formula for every x in I', then we call S a pseudo-
deterministic system. This property does not necessary imply that

L. (S) has no more than one element for every Xx in T and n = 0.

x’n
The recurrence system from Example 2 is pseudo-deterministic.
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6. Relationship of graph production and recurrence systems and decidability
results -

In the following we consider only so-called A-free recurrence
systems on graphs. In these systems the empty graph A can only be used as
a constant stencil but not as an initial value nor at the right side of
any equation.

Since neither PGOL-systems nor A-free recurrence systems allow
erasing we clearly have the following.

Theorem 5. The membership problem is decidable for both PGOL-systems
and A-free recurrence systems on graphs.

The following theorem is a generalization of a similar result
- for string-systems [16].

Theorem 6. For every PGOL-system there effectively exists an equivalent
A-free recurrence system, i.e. a A-free recurrence systems generating the
same graph language.

Proof. Given a PGOL-system G = (£,A,P,C,S) we construct recurrence

system

Q= (£,0,% v {w},A,1,A,F,w) where w ¢  u A

$=1{a:a ez}, A=1{b:be A}

i

Let u be a mapping on graphs or stencils which changes any

label Zin Z u A u Zop U Agt to {(z,1). Let
Aw = {S},
Aa = {W:a — W ¢ P} for each a in I,
A = {W:bt+ W e C} for each b in A,
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F, = {u(s)?
FS = {u(W):a &~ W ¢ P} for each a in Z,
FB = {u(W):b v W ¢ C} for each b in A.

It can be verified by induction that La n - {Y:X ¢ Aa,X £> Y}

1

for all a ¢ &, and Lw,n = {Y:S %9 Y}. Thus L(G) = L(Q).

Note that using the construction of the above proof we can obtain
another recurrence system equivalent to the PGOL-system from Example 1.
It is essentially different from the one shown in Example 2, namely, the
stencils Hn and Vn are much larger (unnecessarily) in this general construc-
tion which uses the stencil: expressionsof type II.

In Example 2 a more natural ad hoc construction is shown using
stencil expression of type I.

For stringsthere is a complementary result, namely, that every
language L described by a recurrence system can be expressed as L1 n Z?
where L] is an OL-language over I and £y < L. This result cannot be
extended to graphs. We see from the following decidability results (compare
also with Theorem 1) that recurrence systems for graphs are much more complex
than PGOL-systems. So the generalisation of recurrence systems from strings
to graphs is much "stronger" than the generalisation of production systems
from strings to graphs. |
Theorem 7. The emptiness problem is undecidable forv(x—free, pseudo-
‘deterministic) graph recurrence systems.
Proof. Let A = Xpoe oo Xy and B = Yyseee oYy where Xis¥; € Z+ for 1 <1 <Kk
be the Tists in an instance of Post Correspondence Problem, see [17]. Let
X; = Xi]XiZ"'Xip > Yy T y11y12...yiqi where Xij’yij e L fori=1,...,k

, i
and j = 1,...,p1 (qi). Let K = {a],...,ak} be an alphabet such that £ n K = ¢.
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We will construct graph recurrence system S which generates
the empty graph language iff the given instance of Post Correspondence
Problem has no solution.

Construct S = ( £ v K,{#,v},I',0,1,A,F,Q) where

VxRt v, @ = {W,ULVLLLRMLHY and A, F are defined

r = {Q,A,B,X
as follows, using the usual notation rather than strictly our formalism.
Note that X', Y' for i = 1,...,k and W,X,Y,L,R,M are "constant" graphs or

stencils. Edge label # is omitted in all diagrams as usually.

1l
—
-
.
.
-

i :
X' = {~» Xip > X5p >eue™ xipi -} for i

Y1={+h]+ﬁ2+“ﬁym.ﬂ for i =1,...,k
i
Ay Xqp e X1p, *
1
b An  Xem e X N (A, is a singleton set
Ay = 2 T "2p, cgntaining one graph
: : : which is not connected.)
+ak—+xk_|—> +xkp+
k
W U 1
> a.— A —> X >
1 n-1 (On the right side of this
W U .2 recurrence formula there
An = Ty An-1'_+ ¥ + is aga;n one disconnected
: . : graph.
> a,— A ka%‘
k n-1
T e N 7
B - : :
0 -+ 8 >
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(ay);

(a,), 1<

(a )

(xj7)g + 1 <

(.y.i'l)t : ] <
t¢c,delu Ks

1 <i=<k f

A

IN

IA
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(xﬂ)s+ (xiZ)s%"+ (Xipi)s+
R = lN lv v 1 <4<k
> (xi1)t+ (x1'2)t—*"'-> (X'ip_i)t+
Hy = » L% R
_ M M,
o= >t ro

Clearly, Qn = ¢ for n > 0 iff no stencil from H is applicable to a pair

n-1
of graphs from An—] and Bn-] respectively. It is easy to verify that this
happens iff there is no sequence of integers i],...,in_] such that
Xy eeXy R ZIREE 2N Thus, L(S) = ¢ iff the instance of Post

1 n-1 1 n-1
Correspondence Problem with lists A, B has no solution. 0
Lemma 8. Let F be any family of graph generating system with decidab]e
membership problem, e.g. PGOL-systems or A-free graph recurrence systems.
If subgraph problem is recursively decidable for family F then emptiness
problem is also decidable for F.
Proof. Assume that subgraph problem is décidable for F. Given a system
S in F over node label alphabet I we can check for every a in I whether
the graph with single node labeled by a is a subgraph of some element of L(S).
Clearly L(S) = ¢ iff the answer is "no" for every a in I and X is not in
L(S) which is also decidable. [

Theorem 8. The emptiness problem is recursively decidable for PGOL-systems.

Proof. By Theorem 7 and Lemma 8. 0
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Theorem 9. The subgraph problem is recursively undecidable for (\-free)
graph recurrence systems.

Proof. By Theorem 7 and Lemma 8. 0

From the undecidability of the equivalence problem for (string)
POL-systems [18] and Theorem 6 it follows immediately
Theorem 10. Given two PGOL-systems G] and G2 (or two graph recurrence
systems S1 and 52) it is recursively undecidable whether L(G]) = L(Gz)
(L(Sq) = L(S,)).
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7. Prospects for further research

The definition of graph generating systems without interactions
{PGOL-systems) can be readily extended to system with interactions in the
following way.

A propagating graph system with interactions (PGIL-system) is a
quintuple G = (X,A,P,C,S) where £,A,C.S are as in a PGOL-system and P is a
finite subset of [ZaA]i x [Z,A]+» where [Z,A]I is the set of abstract
graphs over I,A with exactiy one cccurrence of a label distinquished (changed)
by underlining it.

The definition of relation o is very similar as for PGOL, only
when replacing nodes by subgraphs we consider their “context". For U,V
in [Z,A]+, we write U o V if there exists a graph expression W such that

(i) W is obtained by relabeling of U so that:

(i1) Each occurreace of every node label, say a, is replaced by {A}
for some Q&=+ A in P such that ¢ is a subgraph of U', U' being
obtained from U by undertining the currently considered occurrence
of a.

(i2) Fach occurrence of an edge label, say b, at an inside edge is

replaced by the set of abstract stencils {B:b +» B e C} u {X}.

(if) Ve D(W).

Note that (i2) and (ii) are exactly as in the case of PGOL systems.

Because these systems are nonerasing, it is clear that the
membership problem for tham is decidable (analogous result to Theorem 5).
On the contrary, both emptiness and subgraph problems are undecidable for

PGIL~system. The undecidability of their emptiness problem could be
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transferred to the known result of undecidability of emptiness problem
for context-sensitive languages [17]. The undecidabi]ity.of subgraph
problem then follows by Lemma 8.

A further natural extension of graph L-systems is to omit the
restriction to propagating systems, i.e. to allow the erasure of nodes.
Concomitantly the graph recurrence systems may be extended by omitting the
A~free restriction. These extensions would be easily implemented by
defining the effect of erasing of a nbde as breaking of connections.
However, using this definition, string systems with erasing, as considered
in the literature [2], would not be special cases of graph systems with
erasing. A definition which fulfills this requirement can be given, but it

would be outside the scope of the present paper.
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