A TEXT FORMATTER
by
Arndt von Staa
Research Report CS-74-21
Department of Computer Science
University of Waterloo

November 1974

A TEXT FORMATTER
e e e ek ok o ok ke sk ok

by Arndt von Staa
University of Waterloo
October 1874

A Text Formatter -1

1. Introductione.

This text formatter 1is a second generation text
formatter. It improves on the first generation formatter[a]
by inclusion of some new capabilities, removal of some
deficiencies found during the use of the first generation
formatter andy, finally, by reformulation of some of the
algorithms. The main features of this new text formatter

are?
i- to allow collecting figures and footnotes;

ii- to allow overprintingy, underscoring and accentuation

mark insertion by means of easy to use commands;

iii- to maximize the contents of a line by moving words
from the input 'stream' to the lines. Words may be
broken on user request if the line length |is

exceeded. The righf margin is usually aligned;

iv= to allow both word shifting as in (iii) above, or to

generate lines which are pseudo input record images;

v~ 10 be completely parametricy ie.ce. any formatting

parameter may be defined or redefined at execution

timeo.

The text <formatter has been written in SPITBOL. The
input text to the formatter is a file created through some
file editing systemy eege WITS or WYLBURy or by means of
some utility.

This manual is intended as a reference manual and not
as a tutorial guide. The author regrets the lack of
mnemonicity of the text commandse. still, the author
believes it to be a worthwhile investment to 1learn to use

this text formatter.

A Text Formatter -2

2. Basic Conceptse.

In this section we will define the terminology used
throughout this text.

The input text consists of words and text commandse. A

text command is one of several well defined strings
preceded by the escape character f. The text commands will
be explained in detail in later sectionse. Words are strings
of characters usually delimited by the blank character, or,
in all casesy, by end of input record or by delimiting text
commands [¢GH, €¢I, #P, ¥¢T, fU, £Z and £/].

The 8 last characters of an input record will glways
be stripped offe. This is done in order to avoid problems

when using text editors which introduce line numbers in the

recordse

The formatter may aperate in either of the following
two modesg: formatted and upnformatted. In the formatted
mode, words are delimited by +the end of card, delimiting
text commands and one or more blanks. Words are also
shifted to fill lines as much as possible. The input number
of blanks between words is not taken into accounte Usually
right alignment will be performed. Right alignment is
obtained by separating words by more than one blanke This
extra blank introduction is such that blank !'streaks' in a

page are avoidede.

In the unformatted mode, words are delimited only by
end of card and word delimiting text commands. Furthermore
only one word per line 1is printede In unformatted mode
blank characters are considered in the same way as any

other charactere. Unformatted mode is used when an output

A Text Formatter

-3

format is desired which cannot be achieved in the formatted

mode ,

At there

degscriptore.

parameters,

any instant
This indentation
which

are used

alignment, spacing and output

There are three types of

o
a new indentation

text command,

ii- paragraph line -

a paragraph text command [¢P

is

indentation request

paragraph command, the

nulle.

iji-

of the above.

A text block is a set
block delimitipng line,

preceding the next text block delimiting linee.

delimiting line is any of

first line — this is the first

descriptor

of lines starting with

first line or paragraph line,

for instance when building tablese.

is active Jindentation

several

of line

an
descriptor contains
the

for purpgose

controle.
lines:

line to be output when

becomes active [€Inam

see section 3.6].

this is the line to be printed after

see section 3.6]. If an
followed immediately by a
line is

output in between

Null lines are never output and never countede.

continuvation lipe — this is any line which is neither

a text

and ending with the line immediately

A text block

or

a line output after a text block delimiting text command
[2TN, #UN and #2ZN].

Lines of type first line may contain +two types of
words? primal words and pormal wordse Primal words are the

first n20 words in the line.

the indentation descriptor [see

are always concatenated one

one intervening blanke.

The value of n

to the other
The string obtained in

is defined in
section 3.6)]. Primal words
leaving exactly

this way is

A Text Formatter -

then right aligned at the primal right pargine There is no
left alignment for primal wordse A use of primal words
[n=1] can be seen in above indentations, where +the roman
numerals are instances of primal words. The remaining words
in the first line and &all words in paragraph and continua—-
tion lines are normal wordse. The first normal word in any
of the three kinds of lines, will always be left aligned,

regardless of the formatting modee.

There is only one right margin value per indentation
descriptore. This value controls the size of all the three
line types. The value corresponds to the rightmost print

column of each linee.

Each indentation descriptor must also provide the
value for the pinimal end groupe This minimal end group is
the set of physical lines at the end of a text block which
must remain together on the same pagee. This parameter is

used in order to avoid widow lines on the top of a pagee.

For lines of type first line and paragraph line, there
is a mipimal page size parameter definede This parameter
tells the minimum number of physical lines which must still
be available on the current page. If this number of
physical 1lines 1is not availabley, the current page is
terminated and a new one is started. This parameter is used
in order to avoid widow lines on the bottom of a page. This
parameter can also be used to force a complete text block

to be on the same page ['A', see section 3.6].

The minimal end group MEG and the minimal page size
MPS should satisfy following relation?
MEGSMPS

A Text Formatter -5

The difference MPS—NEG defines the number of lines of
the text block starty, which are certainly going to be
maintained on the same page. The effective minimal page
size is this difference rather than the MPS value, since
lines at the end of a text block may be stolen when pages
are cute Titles which are linked to the text, should be
given MPS—MEG lines away from the first line to which they
refer,y, or, when possible, after a line terminating~command,

Ceofle ¢Zc

For each of the line types, following parameters are

defined:

i- 1left margin - this is the print column minus one,
where the first character of the first normal word in
the 1line, is to be placed. In the case of first
lines, this parameter should be greater than or equal
to the primal right margin parameter, aotherwise the
end portion of the primal word string is loste.

ii- mipimal left string - this is the 1length of the
leftmost portion of the line within which all words

are separated by single spacese. If this parameter is
larger than right margin minus left margin, no right
alignment will e performed. This parameter is useful
also when a line may point out at the left, in which
case insertion of extra blanks would make the output

appear less neate.

iii- yvertjcal gspace -~ this parameter tells how many blank

lines are to be inserted preceding a line of this

typee.

On each page there will be one or more jheader lines
printed [the standard is 4]. The first 1line contains a

A Text Formatter -6=-

title, the page npumber, and a page number follower tjitle.
The other header lines will contain just titles [usually

blank].

The number of lines per pagey, i.ee page depth,s is
controlled by one parameter for all pages [usually 58+].

The page depth counts all 1lines excluding the first header

linee

The number of blank lines +to be given preceding a
certain kind of line [vertical space parameter], is always
increased by +the gspacipg parameter [see section 3.7].
However, spacing commands [£Z and £GZ] override the current
vertical spacinge. The normal value for the spacing
parameter is 1, for double spacing. Figures and footnotes
are always collected with spacing=0, excepty; of course, if

spacing is redefined [£GS command, see section 3.7].

3. Text commands.
3.1 Introduction.

In this section we will describe all available text
commandse. First however, we will provide some general

informatione

There is po erxrgr checking performed on text commands.
If any strange thing should happen to your output, check
whether all text commands are valid and if they occur in a
meaningfull sequence. For instance, footnotes within foot-
notes might produce some results, but this seems not to be

a meaningful sequencee.

+ A physical page contains 66 lines at 6 lines per inch and
88 lines at 8 lines per inch.

A Text Formatter -

The gage of the text commands is jgpgrtapty that means
that the text commands £J and £t are differepnt text

commandse

If a SPITBOL detected execution error should occur, an
error message will be printed. This error message contains
the rest of the input record and its sequence number, ie.ee.

the last 8 characters of the input recorde.

The format is:
*%ERROR**n1-STn2 | input record remainder string
where nl is the SPITBOL error code and n2 is the statement

number where the error occurede.

Some text commands initiate a gpecial collecting mode,

€ege string collectiony, unformatted mode collection, figure
and footnote collection. These commands normally require a
special collection mode termination text command. This
command is ¢Te The portion starting at the special collec—
tion mode issuing command up to and including the €T com—
mandy, will be considered as one single command, regardless
of whether or not there are text commands within the text

collected in the special mode.

Some text commands delimit words [¥#GH, ¢1, #P, €T, €U,
£Z and #/]e Other text commands will insert a string into
the word at the position of command occurence [¢£s§, £JD,
2ISy #Nee+fT, £¢€, £#]e All other commands do not affect the
input and behave as if they where null stringse.

Following is the meaning of the notation used by the

text command descriptions:

{X} X may occur optionally;

A Text Formatter -8

{X|¥Y} X or Y, not both, may occur optionally;
char a single character occurse. The set of which char is
to be a member is explained in the text command
description;
gtring a sequence of characters may occure. Usually a special
collection mode termination command will be required
[£T]. When string is being collected, only
underscore, constant text overprint, wordbreak
[always acts as a null text command], fhex, ¢¢, input
record concatenation ¢V, £JD, #JP and £JS are valid
text commands. In some contexts the overprinting and
underscoring will be loste The string is always
collected in the unformatted modey i.ee blanks are
normal characterse.
text any portion of normal text formatter input text,
always followed by a ¢1T command;
X X is a variable and its valid values are described in
the text command description;
X X 1is a character constant and must be literally
presente The character blank is denoted by ¥e.
3.2 Miscellaneous commandse.
£
this text command inserts the character ¢ into the
word at the place where it occurs. For example:
abcffdef is printed: abcfdef.
fhex

this text command inserts the character denoted by the

A Text Formatter -G

two hexadecimal digits [hex= two characters of the set
{0123456789ABCDEF}] into the word at the place where
the command occurs. For example?

afAADLZ3Bg23C is printed: aabpgY

Figure 3.1 shows a table of the gpecial characters

available on the UN print +train. Only characters which can
not directly be input through the IBM 2741 terminal are
listede.
o %80 ° ¢RBO [#aD] #BD ¢ ¢£BE a ZAA ‘
1 £31 1 ¢p1 { ¢88B } #9B 2> ZAE B £3B -
2 #32 2 ¢B2 r ZAC 4 £BC < ¢8C ¥ £3C N
3 £53 3 ¢B3 L ZAB 4 ¢BB + ¢9E b £41 ¥
+ %54 4 ¢Bp4 “ ZFA ~ ¢FB T #£62 t £42 ~
s ¢55 S ¢B5 + ¢8F @ £63 @ £43 =
6 £56 6 ¢B6 o ¢£9C ~ ¢EC da 264 p 244 -
7 #5717 7 ¢B7 « ¢9F - ¢EB b #£6S b €45 -
e £58 8 ¢B8 ® ZAF .. #DF & 266 K 246 ®
o ¥£59 9 ¢B9 7 ¢s51 T £A0 e £67 G ¢47 -
¢ ¥¢DC ¢ ¢8Dp é 220 1 %68 @ £48 .
y £CC) ¢9p + £73 i €21 . ¢g7s5 ~ ¢52 -
+ ZCA + ¢8E ¥ £9A \ £EO 3 ¢D0 3 2¢O <
- ¢BF - ¢FF ¢ ¢CE * ¢EE ?
Figure Je.1 Table of hexadecimal representatiocons of the special

cha

racters in the UN traine.

¢GR££

this command sets the left margin parameter of the
record number. The record number is defined as being
the last eight characters of the record.‘ In case the

text of the 1line is longer than this left margin, no

£0F
£08
£2B
Z0E
229
£2C
Z11
£09
£70
ZEA
£CF
£EF
269
Z8A

eV

£/

A Text Formatter -10-

record number will be output for this line. Originally
this parameter is set to 90.

This command terminates the current input record, how-
every it does not terﬁinate the current worde Thus it
might be thought of as if it were an input record con-
catenation commande If the current mode is formatted,
the first character of the new input record should not
be blank, ieee Yo [see #P command, section 3.6]« If a
blank is required at that pointy; it should be provided
by hexadecimal inclusion, ¢40. This command is very
useful when collecting text in unformatted mode and
the pseudo record image description does not fit com
pletely on one input recorde. Observe though, that this
command allows the generation of very 1long words. If
it happens to generate a word of more than 130
characters, this word will be split into several
consecutive single spaced linese To counter this
problem when in unformatted mode, place a ¢/ [see
below] command immediately after the last character of
the word obtained by ¢V concatenationse. For example,
the input text lines:

abc def ghi klmfVabcdefghi jk

nop qrs tuv
are printed:

abc def ghi klmnop qrs tuv
and the string 'abcdefghi jk® is loste.

this command terminates both the current word and also
the current input recorde. The same input example as

above, replacing ¢V by £/, yields:

A Text Formatter -11-

abc def ghi klm

nop grs tuv

£T {N | ¥}
this text command terminates special collection modese.
All commands which start a special collection mode,
must be followed by this command [#¢JS, ¢JP, ¢H, ¢N, ¢S
and #U, the commands £Ke.e. will automatically append a
¢T to the first character) found]s Recursive start of
special collection mode is allowede The user must
ensurey however, that this sequence is meaningful. For
exampley unformatted mode within a figure is a wvalid

sequencees

The form £TIN has meaning only if unformatted mode
is being terminated. In this case the command flags

also the end of text block [see section 2].

¢£23£ £{s1-3
where 2223 is any of the names of a word break
descriptor. This command is used to flag a valid word
break position. If the word overflows the current
liney it will be broken at the point indicated, pro-
vided that the break string and the initial portion of
the word fit 1in the line. There may be more than one
break indication per word. In this case the rightmost
break position which satisfies the break condition
will be usedes Underscores and overprints will be taken
into account, ieee the wunderscore and overprint
strings will also be "hyphenated" and continued on the
next line. Observe that word break commands occuring
in words which do not overflow a line are null

commandsSe

A Text Formatter -12-

¢XBchar('string*®)
define or redefine a new word break descriptore.

char is the word break descriptor name. It must be a

single character, and it must be disjoint from any
of the text command first characters, the under—

scorey, the word or line fill and the constant text

overprint descriptor names.

gstring 1is the string which is to be appended to the first
portion of the broken worde. string may be the null

stringe

Figure 3.2 shows the system defined word break

descriptors, and the commands used to define theme.

char gstring defining command
- - ZKB-('="')
? ¢KB,('.)
Figure 3.2 Table of system defined word break
" descriptorse

The following lines of input:

¢K171s8(0,0,40,0,0,30,0,0,0,430,0,0,0,30,0) £ITS
ZEKB%("%%"*)

abf-cd eff,gh ij klf=-mnf-opqr stf,uvwx
fhxyf%zabcdefg

produce following output:

abcd efgh
ijg Klmn-
opqr st
uUvwx xXy%%

zabede®g

£JD
this text command inserts the date into the word at

the place of occurence. The date is the SPITBOL date,
i.es the string mm/dd/yy where mm is the number of the

A Text Formatter -13-

monthy, dd is the day and yy are the last 2 digits in

the yeare. For example:

eoeZIDece is printed: e0e10/15/740 e«

2JSstringf?T

in this command string must be a valid SNOBOL4 object,
iece right hand side. The expression string should
deliver a value of +type string or convertible to
stringe The result of the evaluation of string will be
inserted into the word at the place of the commqnd

occurrencee. For example:
abcfJS DUPL('*',5) £Tefg is printed:

abeckkikkxkefg

£IPstringfT

ZJ #

in this command string must be a valid SNOBOL4 program
sectione When ending, this program should either flow
through the end, or use the label RETURN, in order to
return control to the text formatter. It is also
advised that this command be used only gfter full
understanding of the text formatter program has been
achieved. After string has been collected, the program
represented by string is compiled and executed [see
CODE function in SNOBOL4]. For example the string

abcfJP ESCAPEFN = "hm hm hm hm' €Tdef

generates the next strange output

abchm hm hm hmdef

insert the current page number into the output text at
the place of occurrencee. The current page number is

not necessarily the page number output at the top of

A Text Formatter -14-

the physical pagee This is a consequence of the
existence of +the page number redefining command €G#
[see section 3.7]. Furthermore if the command £J# is
given within a minimal end group, it may happen that
the line containing the reference is printed on the

next pagee

Example:

abcdfJ#efg is printed: abcdldefg

fYIgtring¥
assign the current page number to gstringe. Recall that

the current page number 1is not necessarily the number
printed on the page containing the text surrounding
£YI4 cefe ¢J# abovee The numbers will agree if the
relation MEGSMPS [see section 2.] holds, and if the
command #YI is given so that it follows the complete
text of a text block starting line.

string is delimited by a blank, ieee ¥Ye This
blank is automatically deleted from the input texte.
Care should be takeny so that string is not equal to
any of the variables used by the text formatter
program itself. This will be the case if string does
not follow the SNOBCL variable name conventions, or if

the string string consists of lowercase characters.

£YRstring¥
insert the value associated with gitring into the text.

This text command retrieves the value associated with

string by a #¢YI text command.

Example:

abcfYIxx deffYRxx ghi is printed: abcdefldghi

A Text Formatter -15~

The text commands ¥YI and ¢YR have been designed to
facilitate the creation of tables of contents, or indicese.
A practical example of their use is appendix 2. Observe
though, that such tables of contents can only be provided
after all the text referred to by the table of contents has

already been read ine.

£char, ¢wchar or flchar g{lwll} {i}

where char is any of the word or line fill descriptor

namese

Used in the form fchar, the current word will be
appended by a string which length is the length
defined by the descriptor, and which characters are

taken from those defined in the descriptor.

Used in the form ¢v&£2£, the current word will be
filled with the string defined in the descriptor up to
the length defined by the descriptor. Used in the form
¢1$£3£, the current 1line will be filled, under the
assumption that words are single spacede. It the
filling string is blank, ¢1££2£ corresponds to a tab
to the position defined by the length parameter in the

descriptor char.

Observe that the filling of the 1line is defined
relative to the physical left margine Thus the line
£ill size corresponds to some virtual right margine
The word £ill is defined relative to the start of the
worde In unformatted mode the word <f£ill is +then
relative to the line left margine.

The f£illing string may be of any length. If the
portion to be filled does not hold an integer multiple
of the filling string, the first portion will be

A Text Formatter -16~

filled with a sufficiently 1long trailing substring of
the £filling string.

¢KFchar('string',size)

define or redefine a word or line fill descriptor.

char is the word or line f£ill descriptor namee. It must

be a single character, and must be disjoint from
the text command first characters, the word break,
the underscore and the fixed text overprint

descriptor namese.

strin is any nonnull string which will be used to fill
M
the line or word up to the specified lengthe.

gize 1is the length up to which the line or word will be
filled.

Figure 3.3 shows the system defined word or limne Ffill

descriptor, and the command used to defime it.

char gtring sgize defining command
i . 69 £KFi('« ',69)

Figure 3.3 Table of the system defined word or line fill
descriptore.

For some documentsy, the characters available on the
print chain being used are insufficient. Spacing will then
be required wherever such a character is to be used. The
character will, then, be introduced later by means of a
typevwriter for instance. For example the declaration:

C£KFz(*'¢70',1)
defines a new line and word £fill descriptore. This
descriptor will reserve one single spacey and print the

character ° in this space. It is then quite easy to spot

A Text Formatter -17-

and introduce the required character by means of a
typewritere.
Examples:?
£Z1 ab cd e¥fflig ij is printed:
ab cd

ef...“...‘.....‘...............Q.‘...............‘...8 j.J
€71 ab cd effwig iJ is printed:
ab cd

ef.................".‘..‘..Q...Q..Q....O......................‘.....g

ij
Definition of '2z! £KFz(*12345',15)
€71 afz abf%z abcfz is printed:
a123451234512345 ab123451234512345 abc123451234512345
¢71 aflz ab¥lz abcflz is printed:
al1l2345 ab abc
71 afwz abfwz abcfwz is printed:

a23451234512345 ab3451234512345 abc451234512345

3.3 Underscoripg and Qverpriptinge.

fchar or #&char 2{l€e} {vidinl .}
where 2&3& is one of the underscore descriptor names,
is the command which controls underscoring. If char is
the character '.' [point] no further underscoring will
be performed. If any underscoring was in progress when
a new underscore command 1is issued, the underscore in
progress will be terminated at the point where the new
one 1s issued. Thus the command £. has the same effect

as an underscore stop commande.

If the command is of the form fchar, underscoring

will automatically be terminated at the end of the

A Text Formatter -18~-

worde Care must be taken to not succeede such a com—
mand by an empty word, ieee blank, for otherwise no
underscoring will occur. Observe that in unformatted
mode the whole line is a sigle worde Thus, explicit

underscore termination must be providede.

If the command is of the form ZEchar,

underscoring can only be terminated by the end of

underscore command €., ieses the underscoring remains

active over word boundariese.

Underscoring is done only under the affected
word, thus blanks between words will not be
underscored. Observe that, in unformatted mode, blanks
are part of the word and, consequently, they will be

underscorede.

¢KUchar('string','assaoc')

define or redefine a new underscore descriptore.

char~- is the underscore descriptor name. It must be a

single character, and must be disjoint from the
text command first characters, the word break, the
word or line £ill and the constant text overprint

descriptor namese.

gtring- this is the string to be used to underscore the
worde. It should be exactly one character long,
otherwise the underscoring might overflow the word

boundariese.

assgec~ is the 1line association of the underscore
character. If assoc=N, the underscore line will be
associated with the next physical print line. This
is needed if the character used to underscore is

not a true underscore character, such as "'*', If

A Text Formatter -19-
assoc=Cy, the line association of the underscore is
the current line.

Figure 3.4 shows the system defined underscore

descriptors and the commands used to define theme.

char string assoc defining command

n - C ZKUn('_',%C')
d - C ZXUd('¢EB','C?)
b -~ N ZKUDL(*ZEC','N')

Figure 3.4 Table of the system defined underscore

descriptorse.

Some examples:
ab €nword xyz is printed: ab word xyz
ab #&nde fgf. hi is printed: ab de fg hi
ZRUR('k, 1N)
isnfEn't thf#g*at nicef.? is printed: isnt't that nice?

e skdkskok
£char f{alcltlgls|t|u}
where gchar is one of the constant text overprint
descriptor names, causes a constant text to be
overprint on the current word starting at the

character preceding the commande This command is used

mainly to introduce accentuation marks into the text.

¢K0char('str1n§','assoc')

define or redefine a new constant text overprint

descriptore.

char- is the constant text overprint descriptor name. It
must be a single character and it must be disjoint

from the command first characters, the word break,

string—

A Text Formatter -20~

the word or line £ill and the underscore

descriptor namese.

is the string used to overprinte. string might be
of any length, however, care should be taken that

it never overflows word boundariese

has the same meaning as agggoc in the underscore

descriptore.

Figure 3.5 shows the system defined constant overprint

descriptors and the text command used to define theme

char string assoc defining command

‘ £KOa("£0F','C"')
* ZKOg('£2B','C')
Z£EKOL£(' €08t ,'C?)
ZEOt("£29¢t,'C?)
£EKOu(*£11','C*)
£KOc('209','C')
ZKOs('/','C')

€ e M & p

0
v
G 0 60 6 0o 6 a

n
~

Figure 3.5 Table of the system defined constant overprint

descriptorse.

Examples:

facfcade

is printed: fagade

ZKC| ("] "y *N?)
upf |pointé| is printed: quoinT

stringlf#base-stringa{#}overla{#}over2 «.. overn#string2

this
The

command generates a variable overprint stringe.

resulting word is obtained from the following

concatenation:

A Text Formatter -21-

stringl||base-string||string2 ¢

any or both of stringl or stringz may be emptye. If the
character # following the @ overprint delimiter
character 1is present, the line association of the
overprint string is to the next line. The overprint

strings overl, over2, eceey overn, are all placed at

the first character position in the base=string. The
basewstring and the gveri strings are all subject to
the same restrictions as for string described in
section 3¢l If no overprint string is present, i.e. d
does not appear within the f#...# text, the ¢#string#
text command can be viewed as an unformatted mode

string collecting commande.

For example:

abcf#deta///a#| | |#eghi is printed: abc?ffghi

The string: f#user defined separation 11t #

is printed: user defined separation 111
3.4 Figures and footpotese.

Figure and footnote commands do not delimit wordse. The
footnote command automatically inserts the footnote refer—
ence mark into the word. Figure and footnote text should be
given in the place where they are supposed to occur in the
output texte Thus, if some word makes a reference to a
footnote, this footnote should be provided at the place in
the word where the footnote reference should occure. For

example:

footféN This is a footnote. £Tnote

generates following word and the footnote reference below:

+ || is the concatenation operatore.

A Text Formatter -22-

foot¥tnote

Figures are placed in the page where they fit. If the
text for a figure is too large for the remaining part of
the page, it will be placed in a waiting queue in order +to
be printed on one of the succeeding pages. The order with
which figures occur in the text is strictly obeyed in the
output of the texts If a figure is too large to fit on a
complete page, it will be broken into several pages, the
first page will be occupied completely by the figure.
Howevery, no text block formatting occurs when a figure is
broken, thus the user 1is responsible for end of page

formattinge.

Footnotes which are too large are also brokene. A
footnote must have 3 lines at least in order to be broken.
Furthermore, there must be at least as many lines in the
remainder of the page as needed +to contain the line
refering to the footnote and two lines of the footnote. One
limitation existsy, however, no line may refer to more than
one footnote. Footnotes may be broken into several portions
such that there is footnote continuation text over more
than one pagee. This feature and the figure break feature
allow for very long footnotes and figures, but they also
allow missing ¢T commands to pass unnoticed. Thus if there
is any problem with gemory gvexrflow during execution, check
if all of the special collection mode start commands have

their necessary termination command #T.

A footnote goes to a text page only if the 1line
refering +to it is on the same text pagee. Thus it is
possible to have =figures refering to footnotes, without

that the synchronism is violated.

A Text Formatter -23-

£Stext?T
this command starts the collection of a figure texte.
Within a figure text any text command may be issued,
even definition of a new figuree The status of the
formatter at the point of the command £S is preservede.
The indentation descriptor which is normally active
when collecting figure text, is the ¢IFIG descriptor
[see section 3.6]¢ It may be redefined by the user at
any timee. The automatic spacing increase is normally

0y, thus figures are single spaced texte.

Figures are null string commands, i.ee. they do
not affect the word in progression when the figure
collection command is found. After the corresponding
€T command has been found, the status of the text
formatter is reset to what it was when the collection

of the figure text begane

fNtext?T

this command starts the collection of a footnote texte.
Within the footnote text, any text command may be
issuede The status of the formatter at the point of
the ¢N command will be preservede. The footnote
reference character will be concatenated to the word
being builte This character will alsoc be inserted into
the input text such as to form the first word to be
collected by the footnote.

The indentation descriptor which is normally
active when collecting footnote text is the €£IFQOOT
descriptor [see section 3.6]. It may be redefined by
the user at any timee The automatic spacing increase
is normally 0, thus footnotes are collected as single

spaced texte.

A Text Formatter -24-

Several parameters govern the collection of figures
and footnotese. Two have already been mentioned, these are
the figure indentation descriptor €IFIG and the footnote
indentation descriptor £IFO0OOT.

¢HFstring¢T
this command redefines the figure delimiter line which

is alwa&s used to surround the figure texte Its normal
value can be seen 1in the figures within this texte.
When several figures are placed on a page, one
following the other, only one figure delimiter line is
outputs Thus 1if several figures in a close sequence
are given, they should be given one after +the other

without intervening texte.

£Glan
sets the figure start spacing parameter to nne All
figures are automatically spaced from the preceding
text line by a number of lines equal to this parameter

(normally 0].

¢G2g£
sets the spacing parameter between the last 1line in

the figure text and the figure delimiting 1line to nn
[normally 0].

£G3an
sets the spacing parameter between the figure
delimiting line and +the next normal text 1line to nne
The spacing will occur only if the wvalue of +this
parameter is larger than the the normal spacing of the

current line being built [normally 1].

A Text Formatter -25-

¢HN§£ring¢T
this command sets the footnote delimiting line +to
sStringe. Its normal value can be seen in the footnote

reference containing pages in this texte.

¢BMstring¢T
this command sets the footnote marker list to stringe.

Whenever a new footnote reference is issued on a pagey,
a footnote counter per page is increased by one. This
counter is then wused to acces a character out of the
footnote reference string. When a new page is started,
this counter is set to zero. This might cause a same
marker to be used +twice on a pagey, if the 1line
containing the footnote is passed on to the next page
due to lack of spacee. This is an algorithm bug, but it
will be noticeable only if the footnote density is
highe It can be countered by using conditional page
ending command £GZe. The normal value of this list is
+ix123as

£GNnn
this command sets the maximum number of footnote lines
per pages. If a footnote has to be broken due to being
too large, there will always be less than nn lines of
footnote text on the next pages, regardless of the

size of the footnote text.

A Text Formatter -26~

3.5 Unformatted mode.

£U {N} pseudo record images?T {N}

this command starts collection in the unformatted
modee. The only basic difference between formatted mode
and unformatted mode is that in unformatted mode the
character blank is used as a normal charactere. Thus
the user is able to specify his own spacing require-
mentse Furthermore, in unformatted mode only one word
per line is outpute Notice however, that this word
might be quite large due to the inclusion of blankse.

The standard line parameters are those of the
continuation 1line in the current active indentation
descriptore Within unformatted mode any command may be
issuede This ability of using any text command makes
counting of characters quite difficult if null string

commands, or commands inserting strings, are issuede.

When a U command is found, the current line is
terminated, the remaining of the input record is
erased and the input starts from a new recorde. If also
N is specifiedy, ie.ee £UN, the next line will be a text
block delimiting line. The parameters used to verify
if the new text block can be placed on the page are
those from the paragraph line in the currently active

indentation descriptore.

An example of the use of unformatted mode can be

seen in the figure texts within this text.

A Text Formatter -27-

3.6 Text line affecting commands.

ZP or first input record character ¥ in formatted mode
this command terminates the current line, and sets the
next line type to paragraph linee. It acts thus as a
paragraphing commande It may be issued in unformatted
mode, but then only in its explicit form €£P rather
than first character blank. This command delimits text
blockse

¢I£2£
this command terminates the current line. It then sets
the indentation descriptor with name nam to active and
the next line to be printed to firstline. The name nam
is any string not containing blank or ¢. Care must be

taken to assure proper name nam delimitation. If a non

existing indentation request is issued, only line and
text block termination will occure. The next line will

be continuation line in this case, and the string nam

will remain in the texte.

£XInam(pwyiryrmymeyvsfylmf,ssfytbfyvspylmpysspytbpyvscylmec,ssc)
this command defines a new indentation descriptor with

name name. The parameters are?
pw= the number of primal words
ir-~ the primal right margin
rm— the right margin
me= the minimal end group size

vs—- the vertical spacing previous to a line of this

typee First vsf; paragraph vsp; continuation vsc

A Text Formatter -28-

lm— the left margin of a line of this type

ss-= the minimal single spaced left string of a line of
this type

th— the minimal page remainder for a 1line of this
typee If some integer value, it is the minimal
number of lines which must remain free on the
current page, in order that a line of this type be
placed on the current page. If this value is the
character 'A', the text block must go to the page

as a single unite.

Figure 3.6 shaws the system defined indentation

descriptors and the defining commands used to define theme

Hint for letters. Start text with:
¢KIN(0,0,74,3,1,38,100,5,1,8,100,5,0,3,100) £IN #¢GSO
This will cause a non right aligned single spaced text to
be printed. Lines of type first line may be used for date

and signature linese.

¢z {L|N} {1} {R}pa
This command terminates the current line and, then,
starts a new line of type continuation line which will
be preceded by nn blank lines. If the value of nn is
null, i.e. has not been provided, the vertical spacing
of the 1line following this text command will be the
continuation line spacing added to the current spacing
parameter [seefGS]e If the option Ly, i.e. £ZL, is
given, the line will be right Jjustified, otherwise no
Justification occurs. If the option Ny, i.ee. £ZN, is
given, this command also terminates the current text
blocke The parameters used to initialize the next text
block are those of the paragraph line of the currently

A Text Formatter

-2G=

parameter indentation descriptor
N R L D DEF FOOT FIG
pw 0 1 1 1 2 1 0
ir 0 13 16 19 17 7 0
rm 68 68 68 68 68 65 68
me 4 4 4 4 4 0 0
vst 4 1 1 1 0 0
imf 4 15 18 21 18 8 6
sst 0 0 0 o 0 0
tbht 18 s S 0 0
vsp 1 1 1 1 1 0 0
lmp 14 20 23 26 23 13 16
ssp 0 0 0
tbp s 0 4]
vsc 0 0 0 0 0
imc 9 15 18 21 18 8 11
ssc 0 0 0 0 o 0 0
¢KIN(0,0,68,4,4,4,0,18,1,14,0,5,0,9,0)
¢KIR(1,13,68,4,1,15,0,5,1,20,0,5,0,15,0)
¢KIL(1,16,68,4,1,18,0,5,1,23,0,5,0,18,0)
¢KID(1,19,68,4,1,21,0,5,1,26,0,5,0,21,0)
¢KIDEF(2,17,68,4,1,18,0,5,1,23,0,5,0,18,0)
¢K1F007T(1,7,65,0,0,8,0,0,0,13,0,0,0,8,0)
¢XKIF1G6(0,0,68,0,0,6,0,0,0,16,0,0,0,11,0)
Figure 3.6 Table of system defined indentation
descriptorse.
active indentation descriptore If the option Iy iecee.
£€ZI or ¢ZNI, is used, 23+1 blank lines are output

immediately.

This

is needed if there

may be vertical

A Text Formatter -30-

spacing redefining commands [¢GH, ¢GZ, ¢I, ¢P, ¢T, ¢U,
£Z, ¢/] following the £Z commande If the option R is
given, ie.ee £ZR, the number of lines to be skiped nn,

will be increased by the current spacing parametere.

At the top of pages, vertical spacing is always
set to zeroe. If vertical spacing is needed <from the
top of a page, the sequence £ZI0 £ZInn-2 will satisfye.
Observe also that the remainder of spacings in a page

will be set to zero if a new page is begune

£Gzaon {R}
This command sets the vertical spacing of the line
currently being built to nne This command does not
terminate the 1line being builty, nor does it set the
line type parameter. If the option R is giveny ieee.
¢G222R, the number of lines to be skipped will be

increased by the current spacing parametere.

3.7 Page affecting commands.

£GHnn
set the number of page header lines to 2220 [usually
3]s It terminates also both the current line and the
current pagee The number nn does not count the first
title line. It nn is not a valid integer, this command
takes the degenerate form of a page ending command,
howevery no page will be generated if the current page
is emptye. In the degenerate case footnotes and partial

figures are not loste.

¢GC&£
if there are less than nn available lines in the page

remaindery, the current page will be terminated. The

A Text Formatter -31~-

line in progression is not placed on the current page
previous to the terminatione Also the 1line type

parameter is not modifiede.

£GDan
set the page depth to nn [usually 58)}. It only
medifies the page depth if the value of onn is larger
than the number of header 1lines [see #GH command
above]« This text has been printed at 8 lines per inch
and with a page depth of 68.

£GSnn
set the automatic line space increase to 3220 [usually
1]}e This parameter is used to control single and
double spacinge. Whenever a new line is begun, this
parameter will be added to the vertical spacing
parameter of the line type begun. However, explicit
spacing commands overwrite this spacing of the current

line [e.ge ¢Znn and ¢GZnn].

¢G#£a
set the page number to nne. If nn is empty, the page
number will not appear on the page and will not be
increased automatically for each new pagee. This
command might be issued anywhere in the text and will

set the number of the page currently being built.

fHAString?T
This command will set the page number follower title
to stringe It may be issued anywhere in the text and
will affect the page currently being built. There may

be no overprinting or underscoring command in string.

A Text Formatter -32~

¢B2 string¢T

This command sets the nth header line to string, ie.ec.
it sets titles and subtitles. The subtitles in the
page header lines i>£ are set to blanke The first line
in the page header is 2=0. Overprints underscoring are
all valid within gtring and will be output on every

pagee

4. JCL needed to run the programe.

Following is the JCL needed to run this text

formatter:

//name JOB accountees

/7 EXEC SPITBCL,REGION.GO=200K,PARM.GO='R=15K"

//GO+SYSIN DD DSN=file~name

// DD *
in file—name there must be the source text of the text
formatter. It takes less than 0.02 of a minute to compile

the programe

Normally a text page, double spaced, will take
slightly less than 0.01 of a minute to be processede.

S5« Referencese.

[1] Griswold, R.E+.; Poages JeF.; Polonsky, I.P.
Ihe SNOBOL4 i Lapguage; Prentice Hall Ince.;
second edition; 1871

[2] Dewar, ReBeKe
s INMlinocis Institute of Technology; Feb 1971

[3] wvon Staa, A.

AOTEF = Arndt's OQwp Text Formatters Sep 1873;
Unpublished

A Text Formatter -33-

Appendix 1.

The input text for the first 3 pages of this manual

are exactly as follows:

ZHO €T ¢G# ¢HA €T €710

ZZI18 ZKU%X("%t , 0N)

g.lSll)gpL(t 1 .20)ETE¢XE#A TEXT FORMATTER#
z1

ZJSDUPL("33)¢Thy Arndt von Staa

£Z0£JSDUPL(1,36)¢TUniversity of Waterloo

£Z0Z£JSDUPL(" ',36)4T June 1974

¢GH ¢£G#1

ZHOZJSDUPL(' ',28)¢TA Text Formatter -ZT

CHA=-ZT ZIN

1. ZnIntroductionf.. ¢YI1.

This text formatter is a second generation text formatter. It
improves on the first generation formatterfAD3¢BD by inclusion of some
new capabilities, removal of some deficiencies found during the use
of the first generation formatter andy finally, by reformulation of
some of the algorithmse. The main features of this new text
formatter are:

IR i- capabilities to collect figures and footnotes and placing them
in the page text;

ZIR ii- allow overprinting, underscoring and accentuation mark
insertion

by means of easy to use commands;

£IR iii- to maximize the contents of a line by moving words from the
input 'stream' to the lines. Words may be broken on user request if th
line length is exceededes The right margin is usually aligned;

£IR iv~ to allow both word shifting as in (iii) above, or to

enerate lines which are pseudo input record images;

IR v- to be completely parametric, i.e. any formatting parameter may
be defined or redefined at execution time.
£IN ¢P The text formatter has been completely writtem in SPITBOL.
The input text to the
formatter is a file created through some file editing system,
eege WITS or WYLBURy or by means of some utilitye.

This manual is intended as a reference manual and not as a tutorial
guides The author feels very sorry for the lack of mnemonicity
of the text commands. Still, the author believes it to be
a worthwhile investment to learn to use this text formatter.
£IN 2. £8&nBasic Conceptsfe. £YI2.

In this section we will define the terminology used throughout this
texte.

The input text consists of fnwords and £&ntext commandsfe. A text
command is one of several well defined strings preceded by the
¢Gnescape characterf. £¢. The text commands will be explained in
detail in later sections. Words are strings of characters usually
delimited by the blank charactery, or, in all cases, by end of
input record or by delimiting text commands ZAD¥¢GH, £¢I, ¢¢P,
£¢T, £¢€U, ¢2Z and £Z£/¢BD.

The 8 last characters of an input record will f£dalways be stripped
off. This is done in order to avoid problems when using text editors
which introduce line numbers in the recordse.

The formatter may operate in either of the following two nmodesf.:
fnformatted and f£nunformattedf.. In the formatted mode, words are
delimited by end of cardy delimiting text commands and one or
more blankse. Words are a{so shifted to f£ill lines as much as
possibles The input number of blanks between words is not taken into
account. Usually right alignment will be performed. Right
alignment is obtained by separating words by more than one blank.
This extra
blank introduction is such that blank 'streaks' in a page are

Appendix 2.

A Text Formatter -34-

Summary of commands

Command

200 e+ £FF
£GCn

£GDn
¢GHn

£GNn
£GRn
£GSn

£GZn

£G#n
£G1n

£G2n
£G3n

¢nAsJu;uus¢T

HFstring?T
¢Hugjzhnﬂ¢T
¢HNgtripg¥T
fHnstring?T

¢Ipam

£JD
£IPstring?T

£JSstring¥?T

CI#
¢KBC!!&]:(eece)
¢KF_h§£(eee)

¢KI‘1§m(LA))
¢K0__M(eee)

¢KU (‘..)
ZNtext?T
Zp

581231¢T
T
ZUtext?T
£V

£Ylstringh
¢YRstring¥

Page

Meaning

-8~ hexadecimal character inclusione.

-30-

-31-
-30-

-25=

skip to a new page if less than n lines remain
on the current pagee. Lines are not terminated.
This command guarantees at least n lines on
the pagee.

set page depth to ne.

terminate the current line. Skip to a new page
if the current page is not empty. If 0=n<9,
set the number of header lines to ne

set the maximal footnote size per page to ne.

=9~ set the record number left margin to ne.

-30~

-31-
-4

-4
-24-

-31~-
Dl
=26
-25=
-32-

-2 T

-12-
-13-

-1 3=

-13-
-12-
-16=-

-2
-19-

-18-
-23=~
-2

-23=
-11-
-26~
-10Q-

-14-
-14-

set the line spacing to ne. [0 is single
spacedy, 1 is double spaced].
set the spacing preceding the current line to
ne Do not terminate the current linee.
set the page number of the current page to ne
set the spacing preceding the figure delimiter
line to ne.
set the spacing after the figure text and
preceding the figure delimiter line to ne.
set the spacing after a figure delimiter and
the text succeeding the figure to ne.
set the page number follower title to stringe.
set the figure delimiter string to gstringe.
set the footnote marker string to gtringe.
set the footnote delimiter string te stringe.
set the title of the header line 05n<8 to

e Set all titles m'>n to nulle.
terminate current line and text block. Turn
nam into the current indentation descriptore.
insert the SPITBOL date into the texte.
obtain and execute the SPITBOL program section

L J
obtain, evaluate and place into the text of
the current word, the SPITBOL ob ject
insert the current page number into the text.
definition of the word break descriptor
definition of the word or line f£ill descriptor

chaye.

definition of the indentation descriptor name.

definition of the constant text overprint

descriptor chare.

definition of the underscore descriptor chare

generate a footnote with text

terminate the current line and text blocke.

Initiate a new paragraphe

generate a figure with text texte.

special collection mode termination commande.

collect text in unformatted mode.

terminate the current input record, proceed

from the next input record without signalizing

end of recorde

associate the current page number with gtring.

%ﬁse:t the value associated with gtring into
e exte

A Text Formatter -385~-

£Zn -28= terminate the current line and set the spacing
for the next line to n.

z/ =10~ terminate the current input record and signal
end of recorde.

CHstring# =20~ collect gtring in unformatted mode, and
ginerate overprints for substrings initiated
with .

~8= insert a £ into the texte.
flg slt}u} ~19- constant text overprinte.
nl|le} =17- underscore.
=15 word or line fill.
~11- word breake.
column blank in unformatted mode, see ¥#P.

-36=

A Text Formatter

Appendix 3.

Hexadecimal correspondence tables.

6 7 8 8 A B C D E F

2 3 4 5

1

i ©

b E & o

o]
P

~

O w AN M W

J k 1

Al

9
I
R

B
C
D

4
3 A B C€C b E F G H

3 4J

K L M N © P Q

T U vV W X Y 2

2 3 4

s

§ 6 7 8 9

1

N

O 0 N &0 0 o W

~

£80
€31
£32
£53
£54
55
£56
£57
£58
£59
£DC
Z£cc
ZCA
£BF

»

¢ ® N & u

~

¢BO
£B1
£B2
¢B3
B4
¢BS
¢B6
¢B7
£B8
£B9
£8D
¢9p
¢8E
¢FF

O 4 3 ;r =5 m ™

Text Formatter

ZAD
8B
ZAC
£AB
£FA
Z8F
£9C
£9F
ZAF
251

t 273

£9A

£BD
¢9B
¢BC
£BB
ZFB

ZEC
ZEB
£DF
ZA0
€20
€21
ZEQ

v #

B 8 = O & & H A

[]

£BE
ZAE
£8C
Z9E
262
263
€64
£65
£66
£67
£68
275
ZD0
ZCE

VO A T U R K" T % W K

W

[

ZAA
Z3B
£3C
z41
z42
£43
£44
£45
Z46
z47
£48
£52
£Cco
ZEE

-37-

¢0F
208
£2EB
Z0E
€29
£2C
£11
£09
£70
£EA
£CF
ZEF
269
£8A

A Text Formatter -38~

Appendix 4.
System defined parameter values
Noe. of header lines - 3 (¢GH3)

Page number 1 (2G#1)
Page title - <51 blanks> <date> <10 blanks> -

Page no. follower title = = (ZHA-ZT)
Record noe. left margin - 90 (£GRS0)

Figure spacings - ¢£G11 £G621 £2G32
Footnote size - 20 (#GN20)
Footnote markers - CHM+i%x1234S¢T
Page depth - 58 (ZGDS8)
Line spacing - 1 (#GSs1)
Current indentation - N (£1IN)

System defined descriptors

char string defining command

- - EXB-('=1)
' EXB,(1)

Table of the system defined word break descriptorse.

char string size defining command
i . 698 ZEKFi(' ', 69)
Table of the system defined word or line £fill descriptore.

A Text Formatter

char string

assoc defining command

n

d

-
an

b

C £KUn('_*',*C")
c ZXUd("¢EB','C")
N ZKUb(" £EC','N"')

Table of the system defined underscore descriptorse.

char string

assoc defining command

-3

a : c £KOa(*£0F','C"')
e - C £KOg(*£2B','C")
£ - c ZEOF(*208','C")
t . C ZKOt(*£29%,'C?)
u C ZEOu('¢£11*,'C?)
c . c £KGc(' £09¢,1C?)
s / C ZKOs('/t','C")
Table of the system defined constant overprint
descriptorse.
parameter indentation descriptor
N R L D DEF FOOT FIG
pw (1] 1 1 1 2 1 0
ir 0 13 16 19 17 i 0
rm 68 68 68 68 68 65 68
me 4 4 4 4 4 (1) 0
vst 4 1 1 1 1 0 0
m$ 4 15 18 21 18 8 6
ssf 0 0 0 0 0 0 0
tbt 18] S S 5 1] 0
vsp 1 1 1 1 1 0 1]
1mp 14 20 23 26 23 13 16
ssp 0 0 0) 0 0 0
tbp s S S S S 0 0
vsc (1] 0 0 0 0 0 (1)
lmc g 15 18 21 18 8 11
ssc ()] 0 0] 0 (4] 0
£KIN(040,68,444,4,0,18,1,14,0,5,0,9,0)
¢KIR(1,13,68,4,1,15,0,5,1,20,0,5,0,15,0)
ZKIL(1,16,68,4,1,18,0,5,1,23,0,5,0,18,0)
ZKID(1,19,68,451,21,0,5,1,26,0,5,05,21,0)
ERKIDEF(2,17768:451718,05551,23,0,5,0,18,0)
ZKIFOOT(197365,020,8,0,0,0713,0,0,0,8,0)
¢KIF1G(0,4046840,0,6,0,0,0,16,0,0,0,11,0)
Table of the system defined indentation descriptorse

A text formatter, version 2

Definition of list nodese.

List of words to be placed in one line
DATA('"WRDLST(WRDSTRyWRDOVRyNXTWRD)"')

The fields are?
WRDSTR - the character string of the word
WRDOVR - pointer to the list of overprint strings per word
NXTWRD = pointer to the next word in this list

The associated variables are?
WRDLSTHD — Pointer to the header of the wordlist. Must be
properly initialized at start. Remains unchangede.
CURWRD - pointer to the last word entry in the word liste.
Must be set to WRDLSTHD when initiating a new line.
WRDCNT = Counts the number of words in the word liste Initialized
to 0 when a new line is started.
LINLEN - the character column position of the first character
of the wordy, if the line is built single spacede.
Must be initialized to LEFT MARGIN when starting new 1lin
WRD - the string of the word being currently builte.
Must be initialized to NULL when starting a new worde.

List of overprint strings per word
DATA('USCLST(USCSTR,USCPOS,USCASC,NXTUSC)!)

The fields are:
USCSTR - the character string to overprint
USCPCS -~ the starting position of the string relative to the
beginning of the word
USCASC - the line with which the overprint is to associated,
ieee 'C'" for current line and 'N' for next line
NXTUSC - a pointer to the next element in this list

The associated variables are:
USCLSTHD - Pointer to the top of the overprint string stack
of the current word. Must be NULL for new worde.
USCLSTPT - pointer to the USCLST node for which the underscore
must still be completede.
USCFLG - flag telling whether underscoring is in progresse.
0 - not in progresse. 1 - in progress not continuouse.
2 - in progress and continuouse.
SEPLSTHD ~ pointer to the word separator entry stacke It must
be NULL when starting on a new worde.

List of lines to be printed
DATA('LINLST(LINSTRyLINSPCyLINOVR,LINFOTNXTLIN)")

The fields are:

LINSTR - the character string of the line to be printed

LINSPC - the number of blank lines to precede this line

LINOVR = pointer to the list of overprint lines

LINFOT - pointer to a footnote descriptor node. This
node is one of type FIGLST. The footnote is associated
with this next line in the liste.

NXTLIN = pointer to the next line in this list

The associated variables are:?
LINLSTHD -~ pointer to the first title line of the page liste It
remains unchanged throughout the executione.
CURLIN - pointer to the last line in the page line liste It must
be set to PAGHAD whenever a new page is startede.
LINCNT - total number (heading lines and all) of physical print
lines in the pagee. Must be set to PAGINI for new pagees

36 36 36 36 35 36 36 36 36 30 0 30 36 30 I 36 36 36 6 36 36 3 30 3 36 36 30 36 36 36 3 2 36 36 3 3 36 I3 36 I 36 3F 30 3 36 36 36 3 96 3 3 I 6 36 36 6 I S 3

A text formatter, version 2

Definition of list nodese.

3

PAGHAD -~ pointer to the last line of the page header line liste.
It is modified only by '£GH' commandse

PAGINI - counter of the physical lines in the page header list.
It is modified only by '¢GH' commandse.

FOTLSTHD -~ pointer to the header of the footnote liste Remains
unchangede.
CURFOT - pointer to the last footnote list linee.

List of overprint lines per line
DATA('OVRLST(OVRSTRyOVRASC, NXTOVR)')

The fields are:
OVRSTR - the character string of the line to be overprinted
CVRASC = the line association for the overprint (see USCASC)
NXTOVR - pointer to the next overprint line in this list

The associated variable is:
OVRLSTHD - pointer to the top of the overprint line stacke.

Figure list entry definition
DATA('FIGLST(FIGBEG+FIGEND,FIGCNT,NXTFIG)"')

The fields are:
FIGBEG - pointer to the first line in the figure liste.
FIGEND - pointer to the last line in the figure liste.
FIGCNT - number of lines in the figure liste.
NXTFIG - pointer to the next entry in the figure list.

The associated variables are?
FIGLSTHD -~ pointer to the figure list header node. Remains
unchangede.
CURFIG - pointer to the last figure entry. Must be FIGLSTHD if no
figure existse.
LINFOT() - associates next line with footnote list.
FIGIND - pointer to the figure descriptor just built
FCTIND -~ pointer to the footnote list descriptor just built
FIGFOT() - function returning a figure or footnote descriptor

Underscore and sigle overprint descriptor
DATA(*ULNDEF(ULNSYM,ULNASC)")

The fields are:
ULNSYM - the character to be used when overprinting
ULNASC - the line association of this descriptor

The associated variables are:
ULNPTR - pointer to the underscore descriptor currently in usee.
ZUSC char - pointer to the underscore descriptor 'char?.

SINPTR - pointer to the current single overprint descriptor
in use.
ZSIN char - pointer to the sigle overprint descriptor 'char'.

Indentation block entry definition

DATA("IDNDEF(INTCNT, PRMRGTy RGTMRGy BLKEND y SPACFy LEFTF4 MINLF, TXTMF, "'
'SPACP,LEFTP,NINLP,TXIMP, SPACC,LEFTIC,MINLC)"')

The fields are:

LG R R SRR R EEEETEREEEEEELEEEEL IR YRR Y L LYY R R R R X

A text formatter, version 2

Definition o
*

36 3t 36 36 36 36 36 3k 36 3F 36 3¢ 3 3 ¢

The

f list nodese.
INTCNT - number of primal words for the first line.

PRMRGT = primal word right margin for first linee.
RGTMRG - right margin of the hlock
BLKEND = number of lines at end of block which have to remain

together on a pagee.

SPAC (F4P or C) - number of blank lines to precede each of the
three line typese.

LEFT (F4yP or C) - left margin of each of the three line typese

MINL (F4P or C) - minimum sigle spaced left string length of
each of the three line types.

TXTM (F or P) = the minimum number of lines of the beginning of
a new text block, which have to remain together on a pagee.

associated variables are:
CURIDN = pointer to the current indentation block descriptore.
ZIDN nam -~ pointer to the indentation block descriptor "nam'.

A text formatter,y, version 2

Read cards, break them into words, initiate text commandse.

oo

o b
-0

b b

b fmd ek
[VoTv s TN o Y4]

% Define the reading patternse. These patterns fail only if the rest of
ithe card is blanke.

FINDA = (SPAN(' *) | '?*) FENCE BREAK('! ¢') . FOUNDWRD
FINDB = BREAK('#') . FCUNDWRD

The input variables are?
WRD - the word being formede.
LINLEN - the length of the current line plus one if single
spaced lines where builte.
LINSIZ - the character position of the right hand margine
CURWRD - pointer to the last word inserted into word liste.
WRDLSTHD - pointer to word list headere.
WRDCNT - number of entries in the word list
CRDEND - the termination and paragraphing flag — serves to
distinguish between formatted and unformatted modee.
USCLSTHD - pointer to the stack of word overprint stringse.
SEPLSTHD - pointer to the separator point stacke. This stack is
ordered from the rightmost to the leftmost separator
when traversing the stack from top to bottome.

Define the function header

36 36 9t 36 36 3F 36 3 I 36 I 3 3E 3 36 2% 3¢

DEFINE('FINDER()') 3¥ read on entry point
DEFINE(*READER()') :(END«READER)

Read a card and create a paragraph command if first column is blank
EADER INPUT RTAB(8) « CARD REM . SEQN tF(RETURN)

CARD CRDEND = t£ZpP? 3% Create paragraph command
CARD = CARD CRDEND $1¥ Guarantee word break

2 3 3¢ 3

*
¥ Find a word segmenty i.e. a string delimitted by an escape
&

FINDER CARD FIND = :F(READER)
WRD = WRD FOUNDWRD 3 * FOUNDWRD is generated by FIND
CARD '¢¢ = SF(PUTWRD)
WRD = WRD ESCAPEFN(CENCMD) SF(PUTWRD)

" CARD IDENT(FINDAL,FIND) ' ' = SF(FINDER)

: Verify if the word found overflows line

PUTWRD TEMP1 = DIFFER(WRD,'"*) LINLEN + SIZE(WRD) SF(ENDWVORD)
LINLEN = LE(TEMP1,1LINSIZ) TEMP1 + 1 $S(ACCNWRD)

*

% Find a word separation if any is available

*
LINRE1 DIFFER(SEPLSTHD,'?') SF(PUTWRD2)

TEMP1 = USCPCS(SEPLSTHD)

TEMP2 = TEMP1 + LINLEN + SIZE(USCSTR(SEPLSTHD))

SEPLSTHD = GT(TEMP2,LINSIZ) NXTUSC(SEPLSTHD) $S(LINR1)

A valid separation exists. Complete any pending underscoree.
DIFFER(USCLSTPT, '') SF(LINR2)

USCSTR(USCLSTPT) = DUPL({ USCSTR(USCLSTPT), SIZE(WRD) —-
USCPOS(USCLSTPT))

3¢ 3¢ 3¢

+
%
: Break the word into two portions
L

INR2 LINLEN = TEMP2 + 1 3% there is a space after
WRDCNT = WRDCNT + 1 ;¥ account word
NXTWRD(CURWRD) = WRDLST('')
CURWRD = NXTWRD(CURWRD)
WRD LEN(TEMP1) . WRDSTR(CURWRD) = ;% break word
WRDSTR(CURWRD) = WRDSTR(CURWRD) USCSTR(SEPLSTHD)

¥ Initialize to break overprints

A text formatter, version 2

Read cardsy break them into words, initiate text commandse.
&

34 TEMPZ = USCLSTHD
35 TEMP3 = ¥ next word overprints
36 TEMP4 = 3* this word overprints
s
% Loop through all oveprints and break them if needed
&
37 LINR4 DIFFER(TEMP2,'') tF(LINRS)
38 TEMP3 = GT(USCPOS(TEMP2),TEMP1)
+ USCLST(USCSTR(TEMP2),USCPOS(TEMP2) -~ TEMP1,
+ USCASC(TEMP2),TEMPJ) :S(LINRJ3)
39 TEMP4 = LE(USCPOS(TEMP2) + SIZE(USCSTR(TEMP2)),TEMP1)
+ USCLST(USCSTR(TEMP2),USCPOS(TEMP2),
I USCASC(TEMP2),TENMP4) $S(LINRJ3)
i Overprint string must be broken
40 TEMP3 = USCLST('',0,USCASC(TEMP2),TEMPI)
41 TEMP4 = USCLST('',USCPOS(TEMP2),USCASC(TEMP2),TENP4)
42 USCSTR(TEMP2) LENITEMPI) e USCSTR(TEMP4) REM . USCSTR(TENPF3)
43 LINRJ3 TEMP2 = NXTUSC(TEMP2) t(LINR4)
*
¥ The word and all its overprints have been broken line it
*
44 LINRS WRDOVR(CURWRD) = TENP4
45 USCLSTHD = TEMPJ
46 * LFTMIN = LINER(LFTMIN) :(PUIWRD1)
¥ Line has been filled to exaustion. Generate a text line.
*
47 PUTWRD2 L¥FTMIN = LINER(LFTMIN) tF(ACCNWRD)
48 gUTWRDl LINLEN = LINLEN + SIZE(WRD) + 1
i Account this word in the line
49 ACCNWRD WRDCNT = WRDCNT + 1
50 NXTWRD(CURWRI) = WRDLST(WRD,USCLSTHD)
51 * CURWRD = NXTWRD(CURWRD)
¥ Verify if end of word escape requested
i
52 ENDWORD USCLSTHD = 31¥ clear overprints of word
53 DIFFER(ESCAPE, ') :S(ESCND)
54 ESCAPRE1T WRD = :(FINDER)

A text formatter, version 2

Escape handling within READER()

* The used variables are:
¥ ESCAPE - a lsit of single character escape commandse.
3 ESCTMP -~ a list of single character escape commands which is
: to be followed after the next word is completede.
i Distribute the escape commands
§5 ESCND ESCTMP = 3¥ initialize result string
56 ESCAPEND ESCAPE 1EN(1) . I1 = SS($(*ESCAP' 1I1))
S7 ESCAPE = ESCTMP S(ESCAPRET)
*
*
:ESCAPu - see underscore command handling in overprint functions.
*

¥ Primal word handlinge.
i Initialize parameters. TEMP1 -= NULL if WRD-=1!?

58 ESCAPp TEMP1 = NXTWRD(WRDLSTHD)
59 DIFFER(WRD, ") :F(PRIM4)
60 * DIFFER(TEMP1 ,CURWRD) :F(PRIM3)

% Combine 2 words into one single word
*®

61 TEMP2 = SIZE(WRDSTR(TEMP1)) + 1
62 WRDSTR(TEMP1) = WRDSTR(TEMP1) ' * WRDSTR(CURWRD)
%k
i Correct USCPCS entries of all overprint list entries of 2nd word
63 TEMP3 = WRDOVR(CURWRD)
64 DIFFER(TEMP3,'') tF(PRIM2)
65 PRIM1 USCPOS(TEMPGS = USCPOS(TEMP3) + TEMP2
66 TEMP3 = DIFFER(NXTUSC(TEMP3),'?') NXTUSC(TEMPJ) $:S(PRIM1)
*
: Insert overprint list of 2nd word preceding that of 1lst word
67 NXTUSC(TEMP3) = WRDOVR(TEMP1)
68 * WRDOVR(TEMP1) = WRDOVR(CURWRD)
% Reset word list pointers to one only word so far
%
69 PRIM2 CURWRD = TEMPFP1
70 * NXTWRD(TEMP1) =
i Count primal words and test if end
71 PRIM3 PRMCNT = PRMCNT - 1
72 PRIMM ESCTMP = GT(PRMCNT,0) ESCIMP '"p! $S(ESCAPEND)
73 LINSIZ = RGTMRG({CURIDN)
74 WRDCNT = DIFFER(TEMP1l,'%') 1 SF(ESCAPEND)
15 * LINLEN = LINLEN - SIZE(WRDSTR(CURWRD)) - 1 2 (ESCAPEND)
*
: Paragraph escape handling '¢#P!
76 ESCAPP TERMIN('P*) t(ESCAPEND)
-3

* Indentation command escape handling 'fInam(bk|Z)?
: Complete line and finish previous block if nescessary

71 ESCAPI TERMIN('F') s* complete line
i obtain indentation descriptor

78 CARD BREAK('" #¢') o I1 = DIFFER(S$S('ZIDN®' 1I1),'%') :F(ESCAPEND)
79 CURIDN = $('ZIDN' 1I1) 3% current indentation descre.

A text formatter, version 2

Escape handling within READER()
80 ESCTMP = INDENT() 2(ESCAPEND)

*
%
% Skip nn lines command escape handling "¢Z(N|{L) I)(R)nn'
*
E

81 ESCAPZ CARD "N' = TERMIN('P!)
82 CARD 'L' = tF(ESCAPZ1)
83 LINER(LFTMIN) S(ESCAPZ2)
84 ESCAPZ1 LINER(1000) s* done if not new block
85 ESCAPZ2 LINPARSET('C!')
86 CARD (*%1I* | "*) , I1 ('R | tv) , I2
+ SPAN('0123456789') « SPCLIN = tF(ESCAPEND)
87 SPCLIN = DIFFER(1I2,'') SPCLIN + SPCING
88 « DIFFER(1I1,'") SF(ESCAPEND)
I Construct inconditional space
89 NXTWRD(WRDLSTHD) = WRDLST("! ')
90 LINER(1000) :(ESCAPEND)
*
*
: Definition of a new set of page header lines '¢GH(n)!
91 ESCAPG TERMIN(*P')
92 LINPARSET('C')
93 " DIFFER(CURLIN,PAGHAD) PAGER(LINCNT)
i Obtain number of page heading spaces
94 CARD ANY('0123456789') ¢« TEMP2 = tF(ESCAPEND)
95 PAGINI = TEMFP2
96 LINCNT = PAGINI 3* reset page line count
917 PAGSAV = PAGINI
98 PAGHAD = LINLSTHD
99 TEMP1 =
100 * PAGHAD = GT(PAGINIL,0) LINLST(! tal,00,00 018 SF(ESCAPG2)
: Create PAGINI-2 lines
101 TEMP1 = PAGHAD
102 ESCAPG1 TEMP2 = GT(TEMP2,1) TENP2 - 1 tF(ESCAPG2)
103 * TEMP1 = LINLST(! 1,0, TEMP1) S(ESCAPG1)
: Put created list into page header list
104 ESCAPG2 NXTLIN(LINLSTHD) = TEMP1
105 * CURLIN = PAGHAD 2(ESCAPEND)
*
: Termination command escape handling "£T(N|bk)?
106 ESCAPT CARD ('N' XTERMIN('P') | * 7)) =
107 LINER(1000) 3* done if not end of block
108 LINPARSET('C') 3* set to continuation line
109 « FNSTACK LEN(1) = tF(ESCAPEND)S(RETURN)
*
* Unformatted mode escape handling '£U(N)!
i Terminate line and block if required
110 ESCAPU CARD 'N' = TERMIN('P') 3¥ end of block too
111 LINER(1000) 3* done if not end of block
112 LINPARSET('C') 1% by defn continuation line
*
* Set unformatted mode parameters
-3
113 FIND = FINDB no blanks as delimitters

3 3

114 CRDEND = t'¢€/? force end of word

A text formatter, version 2

Escape handling within READER()

115
116
117

adadan
DD b b
oW

121
122
123

124
126

127
128

WRD = 1¥ erase contents of word
FNSTACK = 'U' FNSTACK 3% T may proceede
READER() $1* read from new card

*

i Reset formatted mode parameters. This point is reached by '£T' return
FIND = FINDA 3* blanks are delimitters again
CRDEND = v ¢ +1¥ normal end of card and parag
CART RTAB(2) « I1 "¢/ = 11 v ¢ S(ESCAPEND)

*

*

% End of card and end of line command '¢/?

*

ESCAP/ LINER(1000)
LINPARSET('C')
CARD = $(ESCAPEND)

*

e an

i Footnote referencing word has been accountede. Line is next one '¢N!

ESCAPN LINCNT = LINCNT + FIGCNT(FOTIND)
LINFOT(CURLIN) = FOTIND 3 footnote to previous line

ESCAPNI FOTIND = S(ESCAPEND)

%

* Word has been accounted. Erase separator record

*

ESCAPs SEPLSTHD = $(ESCAPEND)

END.READER

A text formatter,

version 2

Generate a text line from a word liste.

129

130
131

145
146

o ok ok
b i
0o~

ok k. ok
910419
N=O

*

¥ The input variables are:

* WRDLSTHD, WRDCNTy LINLEN, CURWRD, LINSIZ as in READER()

* LFTMRG = the left margin of non primal words

* INTRGT ~ the right margin of the primal words

* LFTMIN - the minimum string length of the single spaced

* portion of the line being builte.

: SPCLIN ~ thelnumher of blank lines to preceede the line being
built

* LINLSTHD -~ pointer to the header of the line list of the

* current text block being built.

% LINCNT - the number of physical lines in this block

% CURLIN - pointer to the last line in this block

* OVRLSTHD - gointer to the top of the overprint line stack of

* ine being formed

* CURIDN -~ pointer to the current indentation block descriptor

* SPCING - number of blank lines to provide between two lines if

i not overridden by a spacing text commande.

« DEFINE('LINER(LFTMIN)?') $(END.LINER)

: Initialize

LINER CURWRD = DIFFER(NXTWRD(WRDLSTHD),'")

+ NXTWRD(WRDLSTHD) SF(FRETURN)

« LIN =% ¢ DUPL(' '",LFTMRG) s*% Beginning of line is blank

: Put the intermediate right margin in if there is anye.

GT(INTRGT,0) SF(INLEFT)
LIN = ¢ ¢ DUPL(' 'L,INTRGT = SIZE(WRDSTR(CURWRD)))
+ WRDSTR(CURWRD)
DIFFER(WRDOVR(CURWRD)) OVERLAYER(CURWRD)
LIN = LIN DUPL(' *,LFTMRG = INTRGT)
CURWRD = NXTWRD(CURWRD)
WRDCNT = WRDCNT - 1 +* one word is in already
INTRGT = 0 $* inhibit further primals
« ESCAPE BREAKX('p') . I1 'p* = I1
i Put the initial single spaced section of the line in
INLEFT DIFFER(CURWRD,'?) TF(PUTLIN)
LIN = LIN WRDSTR(CURWRD)
DIFFER(WRDOVR(CURWRD),'*) OVERLAYER(CURWRD)
CURWRD = NXTWRD(CURWRD)
« WRDCNT = WRDCNT - 1
: Test if initial portion of line has been exausted
LIN = LT(SIZE(LIN),LFTMIN) LIN ¢ ¢ :S(INLEFT)
* DIFFER(CURWRD, ') SF(PUTLIN)

¥ Compute space factor for weighted extra blank insertion
*

SPFCT = (100 * (LINSIZ - LINLEN + 1)) / WRDCNT + 100
CLDSPC = 0
* WRDCNT = 1
¥ Put word in line preceding it by sufficient spaces
*
ALLWRDS NEWSPC = (WRDCNT * SPFCT + 52) /7 100
LIN = LIN DUFPL("' ' ,NEWSPC - CLDSPC) WRDSTR(CURWRD)
* DIFFER(WRDOVR(CURWRD),'?) OVERLAYER(CURWRD)
* Account inserted word
*
OLDSPC = NEWSPC
CURWRD = NXTWRD(CURWRD)

A text formatter, version 2

Generate a text line from a word list.

185

156

157
158
159
160

161

WRDCNT = DIFFER(CURWRD,'') WRDCNT + 1 $S(ALLWRDS)
3
: Line building has been completed. Put line into page list
PUTLIN DIFFER(MINLIN,'') DIFFER(MINLIN,'A') SF(PUTLO)
*
¥ It is the first line of a text block. Test if block fits
*
PUTL3 GT(LINCNT + MINLIN,PAGSIZ) tF(PUTL2)
LE(LINCNT,PAGSIZ) PAGER(LINCNT) :S(PUTL3)
PAGER(LINCNT - MINEND) S(PUTL3)
£UTL2 MINLIN = s(PUTLO)

: Introduce the record number into the line

PUTLO LIN = DIFFER(CRDEND,'#V') LIN DUPL(' ',SEQALN -
I SIZE(LIN)) SEQN

% Account this line in the line list

*
PUTL1 SPCLIN = IDENT(CURLIN,PAGHAD) O +¥ no space on top
LINCNT = LINCNT + SPCLIN + 1
NXTLIN(CURLIN) = LINLST(LIN,SPCLIN + 1,0VRLSTHD)
CURLIN = NXTLIN(CURLIN)
OVRLSTHD =
*
z Reset the line alignment governing parameters to continuation line

SPCLIN = SPACC(CURIDN) + SPCING
LFTMRG = LEFTC(CURIDN)

LINER = MINLC(CURIDN) + LFTMRG
*
i Reset word list pointers and counters
CURWRD = WRDLSTHD
NXTWRD(CURWRD) =
WRDCNT = 0O
« LINLEN = LFTMRG
i Is this end of page?
GT(LINCNT -~ MINEND,PAGSIZ) PAGER(PAGSIZ) $(RETURN)
END.LINER

A text formatter, version 2

Auxiliary functionse.
&

189
190
191
192

193

¥ Reset the line and block governing parameters

*
* CURIDN - pointer to the current indentation descriptor
* SPCING = number of blank lines between two consecutive lines
*«
« DEFINE("LINPARSET(TIMP)?) :(END.LINPARSET)
: no further primal words
LINPARSET INTRGT = 0
LINSIZ = RGTMEG(CURIDN)
ESCTMP = s¥ guarantee no escape after

*
* Set line parameters
*

SPCLIN = EVAL('SPAC' TMP '(CURIDN)') + SPCING

LFTMRG = EVAL('LEFT' TMP *'(CURIDN)')

LFTMIN = EVAL('MINL' TIMP *"(CURIDN)') + LFTMRG

LINLEN = LFTMRG
* IDENT(TMF,'C"') $S(RETURN)
: Set block parameters

MINEND = BLKEND(CURIDN)

MINLIN = EVAL(*TXTM' TMP *'(CURIDN)')

MINEND = IDENT(MINLIN,'A®') PAGSIZ - PAGINI $(RETURN)
END.LINPARSET

s

¥

i Convert a hexadecimal character to decimal value

DEFINE("CONV(TMP)') :(END.CONV)
CONV TMP ANY('0123456789') . CONV :S(RETURN)
CONV = REPLACE(TMP,'ABCDEF','012345') + 10 :(RETURN)
END.CONV

Build a string until '£T7' is found

DEFINE('BUILDSTR()INTRGT, PRMCNT,LINSIZ , MINEND, SPCLIN, LFTMRG, "
' LFTMIN, MINLIN, FIND, ESCAPE ,CRDSAV, WRDLSTHD , CURWRD y WRDCNT, *
*LINLEN;WRD, USCLSTHD,USCLSTPT, USCFLG,USCPTR, LINLSTHD, !
* CURLIN,LINCNT,PAGSIZ,LINSAV,FOTIND, SPCING, CENCMD,I1,12")
'(END.BUILDSTR)

+
*
: Inhibit 1line building during string building
B

UILDSTR LINLEN = 0 1% set fake line parameters
LETMRG = 0
LFTMIN = 1000 3% guarantee no line building
LINSIZ = 1000

- LINCNT = 0

¥ Set reading pattern and inhibit cent functions

*
FIND = FINDB 3% unformatted string
CENCMD = tVTJE#!?
CRDSAV = CRDEND
CARD RTAB(SIZE(CRDEND)) « I1 CRDEND = I1 *'€V!?
CRDEND = t'¢ZVy!?

*

% Create list headers needed to properly function

*

CURWRD = WRDLST('?')

WRDLSTHD = CURWRD

CURLIN = LINLST(*'?) ;% guarantee headers
LINLSTHD = CURLIN

A text formatter, version 2

Aux%éiary functionse.

PAGSIZ = 1000 $* allow no printing activity
209 FNSTACK = 'B' FNSTACK 1% allow £T to return
210 FINDER() ‘* g0 and readon
*
* The return is achieved by '¢T', the line has been built
*
211 CRDEND = CRDSAV
212 CARD RTAB(2) . I1 '¢V' = 11 CRDEND
213 BUILDSTR = CURLIN S(RETURN)
214 END.BUILDSTR
*
*
¥ Terminate a block with a paragraph command
&
215 DEFINE(*TERMIN(TEMP1)') S(END.TERMIN)
216 TERMIN LINER(1000) 1% force end of line
*
¥ Test if complete block goes on one page
*
217 * IDENT(MINLIN,"A'") GI(LINCNT,PAGSIZ) PAGER(LINSAV)
¥ Redefine line and page parameters
*
218 LINSAV = LINCNT ;¥ forsee case no paging
219 DIFFER(TEMP1,'F') LINPARSET('P') :(RETURN)
220 END.TERNIN
* —
: Set all parameters for a new indentation block
221 DEFINE(*INDENT()?) t(END. INDENT)
222 %NDENT LINPARSET('F') 1% block and line parameters
* Set constant indentation block parameters
*
223 INTRGT = PRMRGT(CURIDN) 3% primal right margin
224 PRMCNT = INTCNT(CURIDN) 3% noe of primal words
225 PRMCNT = EQ(INTRGT,0) 0 3% prevent definition errors
226 « LINSIZ = RGTMRG(CURIDN)
: Prepare primal words parameters
227 INDENT = GT(PRMCNT,0) 'p? SF(RETURN)
228 LINSIZ = 1000 2(RETURN)
229 END.INDENT
o
* Collect footnote and figure text. This function serves only to save
zand initialize values
230 DEFINE('FIGFOT(CURIDN)INTRGT,PRHCNT,LINSIZ,MINEND,SPCIIN,LFTMRG,
+ 'LFTMIN,MINLIN,FIND,CRDEND,ESCAPE,WRDLSTHD,CURWRD,WRDCNT,
+ ¢CLINLENsWRD, USCLSTHD ,USCLSTPT4yUSCFLG,,USCPTRy LINLSTHD,*
+ 'CURLIN,LINCNT,PAGSIZ,LINSAV,FOTIND,SPCING,CRDSAV')
231 S(END.FIGFOT)
232 FIGFOT PAGSIZ = 1000 ¥ inhibit paging
233 WRDLSTHD = WRDLSTI()
234 CURWRD = WRDLSTHD
235 LINLSTHD = LINLST()
236 CURLIN = LINLSTHD
237 * ESCAPE = INDENT() 1% set parameters of line
: Set remaining parameters
238 FIND = FINDA ¥ blanks delimmit
239 CRDEND = ' ¢ 31¥ normal paragraph
240 FNSTACK = 'N' FNSTACK 3* allow '£T' to operate

241 FINDER()

A text formatter, version 2
Auxiliary functionse
*

i The figure and footnote have been completed reset

242 FIGFOT = FIGLST(NXTLIN(LINLSTHD),CURLIN,LINCNT) :(RETURN)
243 ENDLFIGFOT

A text formatter, version 2

Generate overprint lines from overprint liste

244

245
246

247
248

249
250

251

252
253

*
: The input parameters are:
* WRD - as in READER() and LINER()
* LIN — the current line being formed by LINER()
* OVRLSTHD - pointer to the top of the overprint line stack
: of the line currntly being formed by LINER()
« DEFINE('OVERLAYER(VWRD)') :(END.OVERLAYER)
* Initialize
&
OVERLAYER POS = SIZE(LIN) - SIZE(WRDSTR(WRD))
* WRED = WRDOVR(WRD) +¥ enter overprint string start
* Loop through all overprint strings of the word
*
OVRLOOP2 DIFFER(WRD,'') SF(RETURN)
* TMP = POS + USCPCS(VWRD)
¥ Loop through overprint lines in search for one where string fits
*
PTR = OVRLSTHD
gVRLOOPl DIFFER(PTR,'%) :F(OVRLOOPS)
: This line is valid iff line associations are equal and field is blank
OVRSTR(PTR) IDENT(OVRASC(PTR),USCASC(WRD)) LEN(TNMP) . I1
+ DUPL(?' ',SIZE(USCSTR(WRD)))
; = I1 USCSTR(WRD) :S(OVRLOOP4)
: get next line. If lines are exaustedy, build a new linee.
PTR = NXTOVR(PTR) 2(OVRLOOP1)
OVRLOOPS OVRLSTHD = QVRLST(('+' DUPIL("' ', TMP ~ 1) USCSTR(WRD)
+ DUPL(*' ',120 — TMP - SIZE(USCSTR(WRD)))),
; USCASC(WRD), CVRLSTHD)
: Get next overprint string in word
CVRLCCP4 WRD = NXTUSC(WRD) :(OVRLOOP2)
END.OVERLAYER

A text formatter, version 2

Output a page of linese.

269
270
271

273

274

275
276
277
278

The input variables are:?
BLKLSTHD, CURBLKy PAGCNT, PAGSIZ as in LINER()
PAGENO - the number of the current page
TITLE2 - the title portion to follow the page number
PAGINI - the number of lines in the page header
PAGHAD - pointer to the last line in the page header
FOTLSTHD -~ pointer to the header of the footnote line list
PNDFOTHD - pointer to the first line of a continuation

footnote
PNDCURFOT - pointer to the last line in the pending footnote
line liste.

PNDCNT -~ number of lines in the pending footnote line list
FIGLSTHD ~ pointer to the header of the figure list
CURFIG - pointer to the last figure in the figure list

DEFINE(PAGER(CNT)TEMP1,TEMP3, TEMP4"') :(END+PAGER)
Cutput title line and count pages

AGER OUTPUT = LINSTR(LINLSTHD) PAGENO TITLE2
PAGENO = DIFFER(PAGENQ,"'') PAGENC + 1

Get ready to print CNT lines

3630 MO SEE 30 36 3R 36 36 3 36 3 3 3E 3 3 3 3 K 3t

NXTLIN(FQILSTHD) = +* no footnote on this page
CURFOT = FCTLSTHD
TEMP4 =
LINCNT = LINCNT - CNT
* PRINTER(LINLSTHD) :S(PAGER1)
* The list has been exausted.
*
CURLIN = PAGHAD 1* page heading only
LINCNT = PAGINI + CNT S({ PAGER2)
%
: There are still lines to be printed in the list
PAGER1 LINCNT = LINCNT + CNT + PAGINI - LINSPC(TEMP2) + 1
LINSPC(TEMP2) = 1
PAGER2 NXTLIN(PAGHAD) = TEMP2 1*% delete printed lines
*
¥ Prepare to print all the footnote lines
CNT = 1000
PRINTER(FOTLSTHD) 3% print collected footnotes
NXTLIN(FOTLSTHD) =
FOTCNT = 0
DIFFER(TEMP4,'') PENDER(' ')
* ;
i Initialize pointers to figure and figure insertion
TEMP1 = DIFFER(NXTFIG(FIGLSTHD)) NXTFIG(FIGLSTHD)
+ SF(PAGERY)
TEMP3 = LINCNT -~ PAGINI s figure goes on top
TEMP4 = PAGHAD $+* top of page
NXTFIG(FIGLSTHD) = s¥ avoid recursive figures
* FIGBEG(TEMP1) = LINLST(FIGTIT,044FIGBEG(TEMP1))
: Insert the figure into the pagees TEMP4 points to last line
PAGER4 NXTLIN(FIGEND(TEMP1)) = NXTLIN(TEMP4) ;% put continuation
NXTLIN(TEMP4) = FIGBEG(TEMP1) 3% figure is in now
CURLIN = IDENT(CURLIN,TEMP4) FIGEND(TEMP1l)
TEMP4 = FIGEND(TEMP1l) 1% last line = TEMP4
* LINCNT = LINCNT + FIGCNT(TEMF1) 3* account space

% If now the text overflows the pagey, then print as many pages as need

A text formatter, version 2

Output a page of linese.
*

293
294

295
296

297

298
299

301

302
303
304

305
306

307

£AGER5 GT(LINCNT — TEMP3,PAGSIZ) PAGER(PAGSIZ) S S(PAGERS)
: The line TEMP4 has not been output due to GT relation. Get next figure

TEMP1 = NXTFIG(TEMP1)
CURFIG = IDENT(TEMP1) FIGLSTHD :S(PAGERG6)
LE(LINCNT + FIGCNT(TEMP1) - TEMP34PAGSIZ) ¢S PAGER4)
*
: No more figures can be placed. Set minimum after figure spacing
PAGER6 IDENT(NXTLIN(TEMP4)) :S(PAGER7)
TEMP2 = LINSPC(NXTLIN(TEMP4))
LINCNT = LT(TEMP2,FIGSP3) LINCNT -~ TEMP2 + FIGSP3
+ SF(PAGERS)
LINSPC(NXTLIN(TEMP4)) = FIGSPJ3 :(PAGERS)
gAGER? SPCLIN = GI(FIGSP3,SPCLIN) FIGSP3
% Terminate the paging activity
*
PAGERS NXTFIG(FIGLSTHD) = TEMP1
GE(LINCNT + MINEND -~ TEMP3 + 1,PAGSIZ)
+ PAGER(LINCNT - TEMP3)
PAGERY9 LINSAV = LINCNT :({ RETURN)
END+.PAGER A
*
Ko -
: Print CNT lines .
DEFINE('"PRINTER(TEMP1)', *PRINTBEG?) t(END+PRINTER)
% The input ouput parameters are?
* TEMP1 - pointer to the line preceding the first line to be printed
* TEMP4 - pointer to a pending overprint line list
: TEMP2 = pointer to the first line which has not yet been printede.
PRINTER TEMP2 = NXTLIN(TEMP1)
DIFFER(TENP2,'") SF(FRETURN)
TEMP3 = CNT -~ LINSPC(TEME2)
TEMP6 = DIFFER(LINFOT(TEMP1),'') LINFOT(TEMP1) SF(PRINT7)
sk
: This line refers to a footnote list. Sece if it fits
LINFOT(TEMPL1) = $1*¥ erase footnote pointer
TEMPS = TEMP3 - FIGCNTI(TEMP6)
* CNT = GE(TEMPS5,0) TEMPS SF(FOT1)
i This footnote list fits in page
NXTLIN(CURFOT) = FIGBEG(TEMP6)
NXTLIN(FOTLSTHD) = IDENT(FOTLSTHD,CURFOT)
+ LINLST(FOTTIT,1,%?,*t NXTLIN(FOTLSTHD))
« CURFOT = FIGEND(TEMPG6) S(PRINTS8)
: The footnote does not fit. If larger than 3 break ite.
FoT1 GE(FIGCNT(TENP6),4) GE(TEMP3,2) :S(FOT2)
LINFOT(TEMP2) = TEMPO6 S{ RETURN)
%
% The footnote does not fit but may be brokene Compute break
*
FOT2 TEMP7 = CNT
CNT = LINSPC(TEMEF2) ;¥ at least the line
CNT = GT(TEMP7 - FOTISTT,CNT) TEMP7 - FOTSTT
TEMP7 = TEMP7 - CNT 3* remaining lines
*

¥ Print text to be broken
*
PRINTER(TEMP1)

- = & a oa .

A text formatter, version 2

Output a page of linese.
315

316
317
318
319
320

[RTATN
NN
(ATST

324
325

326
328

329
330

331
332

335
336

337
338
339

340
342
343
345

TEMPS = TEMP2 1% save next line to print
TEMP7 = TEMP?7 + CNT
CNT = 1000
OUTPUT = IDENT(FOTLSTHD,CURFCT) FOTTIT
PRINTER(FOTLSTHD)

* NXTLIN(FOTLSTHD) = $* no more footnotes

* Print long footnote until break is found
*

CNT = TEMP7
FIGBEG(TEMF6) = FIGBEG(TEMP6) — CNT ;¥ compute remd
* PRINTER(LINLST("',0,'*,"'',FIGBEG(TEMP6)))

* TEMP2 points now to the first line in the footnote which has not

*been printed. Insert it into footnote list
*

TEMP2))

FIGBEG(TEMP6) = LINLST(DUPL(' ',PRMRGT(ZIDNFOOT) - 5)
+ UCont'dW,1,'','¢ , TEMP2)
FIGCNT(TEMP6) = FIGCNT(TEMP6) + CNT + 1
&
¥ Insert footnode descriptor in list heading
*
TEMP2 = TEMPS
LINFOT(PAGHAT) = TEMP6
DIFFER(TEMP2,'') :F(FRETURN)S(RETURN)
*¥ Normal line printing
%
PRINT7 CNT = GE(TEMP3,0) TEMP3 SF(RETURN)
PRINTS TEMP1 = TEMP2 $¥ walk through list
*
i Are there any blank lines to give
TEMP2 = LINSPC(TEMP1)
« GT(TEMP2,1) tF(PRINT1)
: Put pending overprints if any
DIFFER(TEMP4,'') PENDER(') SF(PRINTJ)
TEMP2 = TEMP2 - 1
*
* Print all space lines
&
PRINT3 TEMP2 = GT(TEMP2,2) TEMP2 -~ 2 IF($(*PRINT?
OQUTPUT = 'O ' S(PRINT3)
*®
: Print the current line
PRINT2 LINSTR(TENP1) ¢ ' = (¢
PRINT1 OUTPUT = LINSTR(TEMP1)
zRINT4 DIFFER(TEMP4,'') PENDER(*+¢)
¥ Collect next line overprints and print currentline overprints
*
PRINTBEG TEMP2 = LINOVR(TEMP1)
PRINTS DIFFER(TEMP2,'%Y) SF(PRINTER) :
TEMP4 = IDENT(OVRASC(TEMP2),'N') OVRLST(OVRSTR(TEMP2),
+ 'N*,TEMP4) $S(PRINTG6)
QUTPUT = OVRSTR(TEMP2)
PRINTG6 TEMP2 = NXTOVR(TEMP2) $(PRINTS)
END.PRINTER

Print pending overprints
The input outpu variables are?

is never NULL, on exit TEMP4 is always NULL.

36 3t 36 36 36 3¢ 3 3%

TEMP1 - the control character of the first line to print
TEMP4 - pointer to the first line to printe On entry TEMP4

A text formatter, version 2

Decode text commandse
% Hexadecimal character insertion pattern definition

352

383

356

357

358

3588

360
362

¥* 4+ 3

HEXER = ANY('0123456789A
ANY('0123456789A

DEFINE(*ESCAPEFN(CENCMD)"')

3 3¢ ¥#

ESCAPEFN

Test

3 3¢ 3¢

Test

Test

Test

Test

33 e 33 3 #

if

if

i

ix

if

ESCAPEFN =
CARD HEXER =

it is an underscore comma
CARD ANY(UNDCMD) . Il =
it is a single overprint

CARD ANY(SOVCMD) . I1

word break commend

CARD ANY(SEPCMD) . I1

word or line f£ill command

CARD ANY(FILCMD) . Il =

any cent function command

CARD ANY(CENCMD) . Il =
I1 ANY('PZIUT/')
ESCAPE = ESCAPE 11

BCDEF'") . I1
BCDEF') . 12

$(END.ESCAPEFN)

Test if hexadecimal inclusion command

31¥ set to null string
$S(HEXINC)

nd
:S(ISUNDER)
command

:S(ISSINOV)
:S(SEPAR)
$S(ISFILL)

tF(RETURN)
tF($('*CENT' I1))
:(FRETURN)

A text formatter, version 2

Overprint string generating functionse.

363

364
365

366
367
368
369

370
372

373
374

375
376

77
378

379
380

383
384

¥ Underscore handling function

&

* Test if underscore was in progressione. USCFLG tells thate.
*

ISUNDER GT(USCFLG,0) :F(UNDLOOP1)

* Satisfy underscore in progression then reset to no underscoree.

¥ ESCAPE may contain at most one 'u'! andy, this, iff underscore is in
*progressions The memory variables are USCLSTPT, USCFLG and USCPTR.
&

USCSTR(USCLSTPT) = DUPL(USCSTR(USCLSTPT), SIZE(VWRD) -
+ USCPOS(USCLSTPT))
* ESCAPE BREAK('u') I2 %u?! = 12 3* no further
* Verify if this command initiates a continuous underscore
*
UNDLOOP1 USCFLG = 1 +¥ set to non continuous
UNDLOOP2 IDENT(11,'€"') ¢tF(UNDLOOPJ3)
USCFLG = 2 1% set to continuous
% CARD ANY(UNDCMD) . Il = :S(UNDLOOP2)F(UNDLOOP7)
* Test if underscore end command
* .
UNDLOOPJ IDENT(I1,'.%) tF(UNDLOOPS)
UNDLOOP7 USCFLG = 0 $¥ no more underscore
* USCLSTPT = :(RETURN)
: Obtain Underscore descriptor pointer and build an underscore entry
UNDLOOPS USCPTR = $('2USC!' 11) et pointer
USCLSTHD = USCLST(ULN“YM(USCPTR ,SIZE(WRD),ULNASC(USCPTR),
+ USCLSTHD)
USCLSTPT = USCLSTHD
* ESCAPE = ESCAPE 'u! S(RETURN)
i Processing of end of word underscore alarm
ESCAPu USCSTR(USCLSTPT) = DUPL(USCSTR(USCLSTPT),SIZE(WRD) -
+ SCPCS(USCLSTPT))
USCLSTHD = EQ(USCFLG,2) USCLST(ULNSYN(USCPTR),0,
+ ULNASC(USCPTR),USCLSTHD) ¢F(UNDLOOP6)
USCLSTPT = USCLSTHD
* ESCTMP = ESCTIMP 'u! S(ESCAPEND)

* There are no further underscores

*
UNDLOOPG6 USCFI1G = 0

* USCLSTPT = ¢t(ESCAPEND)
_*
* Single character over print handling
*
ISSINOYV SINPTR = $('ZSIN' 1I1)
USCLSTHD = USCLST(ULNSYM(SINPTR),SIZE(WRD) - 1,
; ULNASC(SINPTR),USCLSTHD) :({ RETURN)
&
: Word separating command handlinge
SEPAR SINPTR = $('ZSEP' 1I1)
SEPLSTHD = USCLST(ULNSYM(SINPTR),SIZE(WRD),'*',SEPLSTHD)
« ESCAPE = ESCAPE 's! ¢(RETURN)
%
: Long over print command handling
CENT# TEMP1 = 0 s1* Base string flag
TEMP2 = 'C?¢ 1¥ current line association

A text formatter, version 2

Overprint string generating functionse.

390
391

382

393
395

396
397

398

NS A)
[=Y=]0]
(X =1<"]

TEMP3 = SIZE(WRD) 1* where it starts
gVFLOOPl TEMP4 = 3¥ overprint string

: Cbtain overprint command
gVFLOOP2 CARD BREAK('#a@¢') o I1 LEN(1) . I2 =

M $S(S("OVFN' I2))F(RETURN)

¥ The overprint string command is @ or #
*
OCVFEN#
OVFN® TEMP4 = TEMP4 I1
ESCAPEFN = EQ(TEMP1,0) TEMP4 :S($(*OVFN1t* 12))
USCLSTHD = USCLST(TEMP4,TEMP3,TEMP2,USCLSTHD)
* TEMP2 = 't S(S('OVFEN1' 12))
* Complete case of #
&
gVFNl# :(RETURN)
¥ Complete the case for 2
*
OVFN12 TEMP1 = 1
CARD '#' = :F(OVFLOOP1)
TEMP2 = 'N¢ :(GVFLOOP1)
*
% Complete the case for ¢
*
OVFEN¢Z TEMP4 = TEMP4 I1 ESCAPEFN('£V?') :(OVFLOOP2)

A text formatter, version 2

Non delimitting cent commands.

*
: Hexadecimal inclusion
403 HEXINC ESCAPEFN = SUBSTR(EALPHABET, 16 * CONV(I1l) + CONV(1I2) + 1,1)
+ S(RETURN)
*
*
'i Double cent command
404 gENT¢ ESCAPEFN = t¢¢ ¢t(RETURN)
o
* Start a new card without starting a new line
*
405 gENTV CARD = ¢(RETURN)

*x

% Page parameter definition command £G
*

406 CENTG CARD ('H' , I1 | ANY('123CDNRSZ#') . I1
+ (SPAN('0123456789') | "*') . 12) =
' ($(*CENTG' I1))F(RETURN)

+ S
407 CENTGH ESCAPE = ESCAPE 'G* S(FRETURN)
408 CENTGD PAGSIZ = GT(I2,PAGINI) 12 S(RETURN)
409 CENTG# PAGENO = 12 S(RETURN)
410 CENTGN FOTSTT = GT(1I2,4) 12 S(RETURN)
411 CENTG1 s CENTG2 sCENTG3
+ $('FIGSP' 1I1) = 12 + 1 ${ RETURN)
414 CENIGR SEQALN = 12 2(RETURN)
415 CENTIGS SPCING = 12 S(RETURN)
416 CENIGZ SPCLIN = 1I2
4177 CARD 'R®' = SF(RETURN)
418 SPCLIN = SPCLIN + SPCING S(RETURN)
4198 CENTGC XY1 = 12 s ¥ save value
420 CENTGC1 GT(LINCNT + XY1,PAGSIZ) SF(RETURN)
421 IDENT(MINLIN,'A') PAGER(LINSAV) SS(CENTIGC1)
422 LE(LINCNT,PAGSIZ) PAGER(LINCNT) $S(CENTGC1)
423 « PAGER(LINCNT - MINEND) S(CENIGC1)
o
: String generating functions #J
424 CENTJ CARD ANY('DSP#') « I1 = SS(S(*CENTJ' I1))F(RETURN)
425 CENTJD ESCAPEFN = DATE() S(RETURN)
426 CENTJS ESCAPEFN = EVAL(LINSTR(BUILDSTR())) S(RETURN)
427 CENTJP :<CODE(LINSTR(BUILDSTR()) '3 :(RETURN)!)>
428 gENTJ# ESCAPEFN = PAGENC :(RETURN)
*
i Page title reading command €H
429 CENTH CARD ANY('AFMNQ123456789%') « SAVHAD = SF(RETURN)
430 TEMP1 = BUILDSTR() 3% Obtain title string
431 LINSTR(TEMP1) ' ®* RTAB(1) - I1 * ¢ = 11
432 TITLE2 = IDENT(SAVHAD,'A') LINSTR(TENMP1) IS(RETURN)
433 FIGTIT = IDENT(SAVHAD,'F') LINSTR(TEMP1) 2S(RETURN)
434 FOTTIT = IDENT(SAVHAD,*N') LINSTR(TEMP1) :S(RETURN)
435 FOISTR = IDENT(SAVHAD,'M') LINSTR(TEMP1) :S(RETURN)
436 « SAVHAD = GT(SAVHAD,PAGINI) PAGINI
: Loop through header lines until title line found
437 TEMP2 = LINLSTHD
438 LINSTR(TEMP1l) = EQ(SAVHAD,0) *1' LINSTR(TEMP1) $S(CENTH2)
439 LINSTR(TEMP1) = ' ' LINSTR(TEMP1)
440 CENTH1 SAVHAD = GT(SAVHAD,(Q) SAVHAD - 1 tF(CENTH2)
441 TEMP2 = NXTLIN(TEMP2) S(CENTH1)

442 CENTH2 LINSTR(TEMP2) = LINSTR(TEMP1)

A text formatter, version 2

Non delimitting cent commands.

443

444

445
446

447
448
449

450
451

452
453
454
455

456
457
458
459

460
461
462

463
464

466

467
468
469

470
471
472

473
474
475
476
477

LINOVR(TEMP2) = LINOVR(TEMP1)

*
* Clear all lower level titles
*
CENTH3 TEMP2 = DIFFER(TEMP2,PAGHAD) NXTLIN(TEMP2)
+ tF(RETURN)
LINSTR(TEMP2) = ¢ ¢
LINOVR(TEMP2) = t(CENTH3)

*
*
z Footnote command '¢N!'. Obtain Footnote mark character or string
C

ENTN FOTCNT = FOTCNT + 1
ESCAPEFN = SUBSTR(FOISTR,FOTCNT, 1)
CARD = ESCAPEFN ' ' CARD

*

: Collect footnote text
FOTIND = FIGFOT(ZIDNFGOT)

" ESCAPE = ESCAPE 'N! ¢(RETURN)

*

% Collect figure text '£S', Surround it by delimmiting strings

&

CENTS FIGIND = FIGFOT(ZIDNFIG)
NXTLIN(FIGEND(FIGIND)) = LINLST(FIGTIT,FIGSP2)
FIGEND(FIGIND) = NXTLIN(FIGEND(FIGIND))
FIGCNT(FIGIND) = FIGCNT(FIGIND) + FIGSP2

&

* Test if figure fits in page

*
TEMP1 = LINCNT + FIGCNT(FIGIND)
TEMP2 = TEMP1 1% verify if previous fig
TEMP2 = DIFFER(LINSTR(CURLIN),FIGTIT) TEMP1l + FIGSP1
LINCNT = LE(TEMP2,PAGSIZ) IDENT(FIGLSTHD,CURFIG)

; TEMP1 :S(CENTS1)

i Figure does not fit in page. Place it in the figure queue
NXTFIG(CURFIG) = FIGIND
CURFIG = FIGIND

* FIGIND = S(RETURN)

: Figure fits in pagee. Test if preceding is also a figure

CENTS1 NXTLIN(CURLIN) = FIGBEG(FIGIND)
IDENT(LINSTR(CURLIN),FIGTIIT) SS(CENTS2)
NXTLIN(CURLIN) = LINLST(FIGTIT,FIGSP1l,,44sNXTLIN(CURLIN))

* LINCNT = LINCNT + FIGSP1

* Complete figure insertion

*

CENTS2 CURLIN = FIGEND(FIGIND)
FIGIND = 1% delete figure reference

* SPCLIN = GT(FIGSF3,SPCLIN) FIGSP3 2(RETURN)

*

: Descriptor definition commands '#K'

CENTK CARD ANY('IQUBF') . I1 BREAK('(') . I2 = :F(RETURN)
CARD (BREAK(')') *)') , I3 = I3 '¢T * SF(RETURN)

LINSTR(BUILDSTR()) (SPAN(®* *) | ¢ ?f% « TEMP1

+ : S($(*CENTK" JF(RETURN)
CENTKI $('"ZIDN' I2) = EVAL('IDNDEF' TEMP1l) :(RETURN)
CENTKC $('ZSIN' 1I2) = EVAL('ULNDEF' TEMPFP1)
SOVCMD = SOVCMD 12 :(RETURN)
CENTEKU $('2USC'" 12) = EVAL('ULNDEF' TEMP1)
UNDCMD = UNDCMD I2 :(RETURN)

A text formatter, version 2

Non delimitting cent commandse.

478 CENTKB $('ZSEP' I2) = EVAL('ULNDEF' TEMP1)

479 SEPCMD = SEPCMD 12 :(RETURN)

480 CENTKF $(*'ZFIL' I2) = EVAL('*ULNDEF' TEMP1l)

481 * FILCMD = FILCMD 12 S(RETURN)
*

482
483
484
485

486

487
488

489
490

491

493
494
495

¥ Fill word or line to predefined length
: Compute existing length

ISFILL 's* £JP hook

ISFILLO TEMP1 = DIFFER(I1,'1') DIFFER(I1l,'w') O $sS(ISFI1I1L11)
TEMP1 = SIZE(WRD) i* decrease wordsize

* TEMP1 = IDENT(I1l,°'1') TENP1 LINLEN 3* decrease line size

* Find descriptor name to fill a line

*
CARD ANY(FILCMD) . I1 = SF(RETURN)

* .

¥ Fill with integer multiple of fillstring

x

ISFILL1 SINPIR = $('ZFIL' 11) 1% obtain pointer
ESCAPEFN = DUPL(ULNSYM(SINPTR),(ULNASC(SINPTR) - TEMP1)

+ / SIZE(ULNSYM(SINPTIR)))

*

*¥ Fill remainder of string with begin portione.

*
TEMP1 = ULNASC(SINPTR) ~ SIZE(ESCAPEFN) = TEMNP1l ;% remd len
ESCAPEFN = SUBSTR(ULNSYM(SINPTR),SIZE(ULNSYM(SINPTIR)) -

I TEMP1 + 1,TEMP1) ESCAPEFN 2(RETURN)

*

: Table of contents and index generator functions

CENTY CARD ANY('IR') o I1 BREAK(' t*) ., I2 = I2 t¢gT* :F(RETURN)
I2 = LINSTR(BUILDSTR()) S($(*CENTY' 1I1))

CENTY1I $(I2) = PAGENGC S(RETURN)

CENTYR ESCAPEFN = $(12) S(RETURN)

END.ESCAPEFN

A text formatter,

version 2

Main programe
*

486
497
498
499
500

501
502

503
504

505

oanm am
oo Qo
0w N0

[9,04, 14, X9, X, 4914]
b b b ok s ik b
ANBLONRO

527

528
529
530

532
533
534
535

536
$37
538

*
*

ERRHND

+

ARGUND

3 3 3¢ 3%

#* *

3 3 3 3¢

3 3 3¢

3 3¢ 3

3 %

Initialize environment

EANCHOR = 1
ESTLIMIT = 16000000
SETEXIT(.ERRHND)
SETEXIT(« ERRHND)
OUTPUT = ' *%XERROR¥%?
CARD SEQN
EERRLIMIT = 10
OUTPUT(«OQUTPUT,,'"?)

Initialize lists

WRDLSTHD = WRDLST()
CURWRD = WRDLSTHD

FOTLSTHD = LINLST()

FIGLSTHD = FIGLST()
CURF1IG = FIGLSTHD

LINLSTHD = LINLST('1"
PAGHAD = LINLIST(® 1,1)
NXTLIN(LINLSTHD) = LINLST(
PAGINI 3

LINCNT PAGINI

PAGSAV PAGINI

PAGENO 1
CURLIN PAGHAD
TITLE2 t—t

wuianun

Initialize descriptors
Indentation descriptors

ZIDNN =
ZIDNR =
ZIDNL =
ZIDND = IDNDEF(1

ZIDNDEF = IDNDEF(
ZIDNFOOT = IDNDEF
ZIDNFIG = IDNDEF(

IDNDEF(O,
IDNDEF(1,
IDNDEF(1,

?

Underscore descriptors

ZUSCn = ULNDEF('_','C*)
ZUSCd = ULNDEF('_',*'C')
ZUSCb = ULNDEF('™%,'Nv)
UNDCMD = *'ndbE.!

descriptors

ULNDEF(']','C!
ULNDEF(' ¢
ULNDEF('Y,
ULNDEF(' ¢
ULNDEF(? ¢
ULNDEF('_','C")
ULNDEF('/t',Ct)
tagftucs!

N

W

o

2

-+

e

-
e}

SOVCMD =
Word separator descriptors
S(YZSEP-"') ULNDEF('=1,'C

$('ZSEP, %) = ULNDEF("'','C*
SEPCMD = '-,?

EERRTYPE

DUPL(?

s*¥ allways on string start match

S(AROUND)

¥ reestablish error exit

1=ST * SLASTNO ' |

¢t(CONTINUE)

3% allow errors to be handeled

*+51) DATE() *
' Y91,,LINLST("

—I,O)
*91499sPAGHAD))

)
)

aA & & A A A A 4 4 & & & & = &2 & = =

A text formatter, version 2

Main programe
¥ Word or line fill descriptors
*

539 ZFILi = ULNDEF('.',69)
540 x FILCMD = *liwt
: Initialize figure and footnote parameters
541 FIGTIT = DUPL(®' ',14) DUPL('_"',50)
542 FIGSP1 = 1
543 FIGSP2 = 1
544 FIGSP3 = 2
545 FOTTIT = DUPL(' ',S) DUPL('-"',20)
546 FOTSTT = 2
547 . FOTSTR = '+1%1234S
i Initialize reading environment
548 FIND = FINDA
549 CRDEND = ¢ ¢
550 CENCMD = 'Y¢GHIJENPSTUVYZ/#"
551 SEQALN = 90 $* record no left margin
8§62 PAGSIZ = 58
553 SPCING =1 +1¥ set to double spacing
5§54 CURIDN = ZIDNN
555 « ESCAPE = INDENT() +¥ set parameters of line
i Read until end of file
556 READER()
557 TERMIN('P?)
558 LOOP IDENT(CURLIN,PAGHAD) IDENT(LINFOT(PAGHAD),'!) SS(LAAP)
559 PAGER(PAGS1IZ) :(LOOP)
560 LAAP OUTPUT = %1 ===== END OF RUN =====1

§61 END

Index

1.
2.
3.

4.
Se

A Text Formatter

Introduction e @ e @ o ® e o e o o

Basic Concepts e o @ o e o o o o o

Text
3.1
3.2
3.3
3.4
3.5
3.6
3.7

Commands o o o o ¢ o o ¢ o o o
Introduction « e« ¢ ¢ e ¢ o ¢ o
Miscellaneous Commands e« ¢ o o
Underscoring and Overprinting
Figures and Footnotes e o e o
Unformatted Mode ¢« ¢ o o o o o
Text Line Affecting Commands .
Page Affecting Commands ¢ ¢ o

JCL Needed to Run the Program ¢ «

References e e ® e e o e © o o o o

Appendix 1 Example e o @ @ o o e e o o

Appendix 2 Summary of Commands e« o o o

Appendix 3 Hexadecimal Correspondence Tables

.

Appendix 4 System Defined Parameters and Descriptors

-40-

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

