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ABSTRACT

A representation of a set A is just an injection of A into a set
of functions (considered as families of reference objects). Two distinct
treatments of representations are provided.

The former treatment is of analytic nature. It breaks a
representation into certain parts and studies a kind of homomorphism
between them. This yields three properties of representations (Reducibility,
Redundancy and Independence) which describe how a representation "transmits"
information from the objects being represented to the reference ones. All
these properties are characterized and their mutual relationships are shown.

The latter treatment is of synthetic nature. It characterizes
representations in terms of lattices of equivalences. Thus, all
representation properties are mapped into basic properties of lattices.

Besides these treatments, several commonly used representations
are considered, in order to check how the formal definitions are able to
model them together with their properties. Moreover, to check the practical
value of the theory, the solutions of two problems are outlined.

The former problem is to characterize the structural features of
computation which depend on the representation of the data. The latter is
to extend an independence notion used in Probability Theory. Its solution

gives a third characterization of representation independence.

i Supported by NRC of Canada, Grant A-4096.
Present address: Istituto di Matematica, Universitda di Parma.



Section O - INTRODUCTION

0.1 Motivation

Representations of numbers, state assignments for sequential machines,
representations of functions by series or transforms and geometric reference
systems are cases of representations. Each of them is treated in the
literature by a distinct theory. The main purpose of this work is to
begin a general theory of such representations regardless of the nature
of the objects being represented.

The opportuneness of a general theory arises in treating the
problem open in [11]. There, it is shown how certain local features of
some algorithms depend both on the nature of the operation to perform
and on the representation chosen for the data. This was an extension of
the similar approach for sequential machines [7].

The open problem was to characterize the structural features of a
larger variety of computations. This also required to study how a general
representation transmits information from the set being represented [12].

Afterwards, B. Forte pointed out to the author a problem
arising from Information Theory. Its solution (see 8.4 and 8.6) makes use

of the very theory formerly devised for computational purposes.

0.2 Notation

Set notation is as in [9] except what listed below:

¢ the empty set

A the complement of A relative to a set understood from the context
i the set {i} (when safe from ambiguity)

a% A x A

A {9}



N the set of natural numbers

n the set {0,1,...,n-1} < N

W the identity relation on some set

P(A) the set of subsets of A

r(A) the r-image of a relation or function r (if B is the domain and

B nP(B)# ¢, this notation is ambiguous. However, the

context will help to distinguish images from values)

BA the set of functions from A to B

fg the composition of g and f

(a1.)I a family of index I, i.e. a function with domain I
¥ A, the product of the family (Ai)I

fazb) the value at b ¢ B of function f(a) for a ¢ A and f:A + CB

f(;b) the function from A to C, which, for f as above, takes value
f(a;b) at a < A.

f(A';b)  the set of f(aj;b) for a € A'c A and f as above

P(A) the boolean set lattice (P(A), <)

E(A) the lattice of equivalences on A, (E(A), <)

We always will use intersection in some P(A) (A being understood
from the context). Thus, ndp = A. Moreover, to denote surjections and

injections, we will use the modified arrows »> and 1~ respectively.



0.3 Notions assumed

We assume the reader familiar with complete lattices [13], [2],
[6]. However, we list some notions which are not frequent in the literature.

Sets of generators. In a complete lattice (A,<) a set G < A is called a

set of (upper) generators if any a « A is infimum generable from G, a = AG'
for some G' < G.

Basis. An (upper) basis of the above lattice is the partially ordered set
(B,<), where B is the smallest set of generators. If B exists, it is given
by the set of infimum irreducibles.

Reducible lattice. If a complete lattice has a basis, it is called reducible.

An example of an irreducible Tattice is an oriented closed segment of the real
line.
Branching. Let A:P(A) >~ A be an infimum and let A':P(P(A)) - P(A)
be the function which yields the images of A. The identity Ar' = Au, where
the union is on P(P(A)), will be referred as the branching property (see
also the complete associativity in [2], p.118).

Moreover, the natural mapping of an equivalence will be referred

as the block function of the corresponding partition. Thus, f:A > is a

block function iff it satisfies the membership property: b = f(a) iff a ¢ b

for all a « A.
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Section 1 - PRELIMINARIES

We introduce the preliminary notions about representations, namely
embedding in a representation, isomorphism and equivalence among representations.

1.1 Assignments and Representations- Definition

We first introduce some auxiliary notation and terminology.

Consider a function
(1) riA > UL,

As an example, r might assign to each point P of the ordinary space A the
triple of its coordinates in a cartesian reference system, r(P) = (xo,x1,x2).
Here, I = 3, U is the set of real members and the triple is thought of as a
family. |

For any J ¢ I Tet rj:A » U be the function such that rJ(a) is the

restriction to J of the function r(a):I -~ U. We will call ry the J-projection

of r and rJ(a) the J-projection of r(a). For a singleton J = {j} we should
consider two different functions, namely the j-projection rj:A > U{j} and

the function r(;j):A > U. However, we can safely identify these functions

as well as their values, which will be called axes and coordinates respectively.
Since the atoms in I determine the axes, also the elements of I/w, or of I
itself, will be called axes.

Function r will be called a (coordinate) assignment of A if no

axis r is a constant. (If we delete this minor restriction, proposition 4.3
will become weaker, but all the remainder will not). An assignment will be

called a representation if r is one to one. In this case, a value r(a) will

be called the representation of a.




Let C. = r(A;i) for i ¢ I, then we have a family (Ci)I of sets of
- coordinates which will be called the components of r and r will be called
an assignment on this family of components. Note that r:A - HCi and that,

I
since no axis is constant,

(2) ¢ < r;](c) c A for all i e I and ¢ « Ci‘

Moreover, since r, is a constant with value ¢,

¢

(3) r¢(B) = x for all B with ¢ < B c A,
whereas
(4) rJ(¢) =¢ forall Jcl.

These 1imiting cases will be useful later on.

1.2 Embedding and Equivalence - Definition

Let r be an assignment as above. We will say that a set L ¢ I of

axes is embedded into another set K < I and we will write K > L, if

(5) er = for some f:rK(A) +> rL(A).

Function ¥ will be called the embedding coefficient between K and L or between

ry and r.- If f is a bijection we will say that K and L are eguivalent, K = L.
Embedding and equivalence are relations in P(I), but it is convenient

to extend them. Given any g:A > X, thought of as an additional axis, we will

say that g is embedded into K and we write re > 9s if er = g for some

A) »>> X. Let now s:A > v be another assignment. If (5) holds after

f:rK(



substituting S| s with L < J, for rLs then we still say that K > L and,
when f is bijection, that K = L. Thus embedding and equivalence become

relations in P(I) v P(J).

1.3 Embedding Properties - Proposition

Given assignments r and s as above, we have the following

properties:

a) Embedding is a preorder on P(I) u P(J).

b) Embedding contains the containment orders of P(I) and P(J).

c) The equivalence induced by the embedding preorder is equivalence =.
Proof a) follows from (5) and from the composition associativity of

functions applied to the embedding coefficients. b) follows from the fact

that, if K > L, the values of L-projections are determined by restricting the

K-projection values. c¢) composing all the embedding coefficients along a circuit
from a set to itself, we must get the identity. Hence, these coefficients

have to be one to one as required. Q.E.D.

1.4 Isomorphic and Equivalent Representations - Definition
I

Two assignments r:A >~ U" and s:A - VJ are said to be isomorphic
if there is a bijection of equivalent axes between the two indices, i.e.
for some p:I Ib> J, p(i) = i for all i ¢ I.

Assume now that we have p:P(I) - P(J) and q:P(J) - P(I) such that
p(L) =L and q(K) ~ K for all L c I and K cJ. Then r and s will be called
equivalent. In other words, two assignments are equivalent iff every set

of axes of the one is equivalent to some set of the other.



A trivial consequence of these definitions is the following.

1.5 Isomorphism and Equivalence - Proposition

If two assignments of a set are isomorphic, then they are equivalent.

If they are equivalent, they need not be isomorphic.

Proof If two assignments are isomorphic, each axis of the one is
equivalent to an axis of the other. Thus, given any set of axes of the one,
the corresponding set of axes of the other is clearly equivalent to the
former. Therefore, we have equivalence.

To prove that the converse is not true, take a representation
r with a finite number of axes. We always can find an equivalent representa-
tion by adding to r an axis which is an exact copy of one of the axes of r.

Yet the latter representation cannot be isomorphic to the former. Q.E.D.



Section 2 - REDUCIBILITY

Isomorphism and equivalence coincide in a class of representation
which are called reduced. This class has a natural extension into a very
1argé class of representations, called reducible, which still does not
exhaust the class of all representations. This study of reducibility is

included mainly for mathematical completeness.

2.1 Useless Axes and Reduced Representations

Definition An axis i of an assignment r:A - UI will be called useless if it

is equivalent to a set of axes J not containing it, i.e. J = i for some

J ci. If r has no useless axes, then r will be called reduced. Note

that reduction is preserved under isomorphism.

2.2 Equivalence in the Reduced Case

Proposition Two reduced assignments are equivalent if and only if they are
isomorphic.
Proof Let r:A - UI and s:A ~» V‘J be two assignments. By 1.5 we have
only to show that, when they are reduced, equivalence implies isomorphism.
Let p:P(I) »~ P(J) relate equivalent sets of axes, then we may
assume it to be "atomic", i.e. p(L) = up(L/w) for all L ¢ I. The same is
assumed for q:P(J) - P(I).
By transitivity, i = q(p(i)) for all i ¢ I/w. Thus, since r is

reduced,

(6) icqlp(i)),



which implies by atomicity that, for some j ¢ J/w, j < p(i) and i < q(j).
Therefore by 1.3, i > j and j > i. This shows that for each i € I/w we
have a j e J/w such that i = j, i.e. we have a p":I » J relating
equivalent axes.

We claim that ' is the required bijection. In fact, it must be
one to one, because p'(i) = j = p'(i') implies i =~ i' and, by reduction,
i =1'. It also must be onto, because by repeating the reasonment for (6)
we get j ¢ p'(q(j)) < p'(I) for all j ¢ J. Note that the hypothesis of
reduction on s is used only to prove this surjectivity.

In conclusion r and s are isomorphic. Q.E.D.

This theorem shows that the (possible) reduced representation
in a class of equivalent representationsis unique (up to an isomorphism).
We want to characterize this reduced representation by means of the follow-

ing definition and theorem.

2.3 Reducible Representations - Definition

An assignment r:A - UI is said to be reducible if there exists a
K < I such that ry is a reduced assignment of A which is equivalent to r.
In other words, r is reducible iff we can get an equivalent reduced assign-
ment only by deleting some axes. By 2.2 we are allowed to call ry the

reduced assignment of r.

2.4 Reducibility characterization - Proposition

An assignment s is equivalent to a reduced assignment r if and
only if s is reducible. (Hence, the only way to get equivalent reduced

assignments up to isomorphisms is through axis deletion.)
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Proof ("If" part). Trivial.

("Only if" part). Recall the proof 2.2. The only missing hypo-
thesis is the reduction of s. Thus, we still have the ipjection p':I ¥ J
Take K = p'(I). Then Sk is an assignment isomorphic to r. Hence Sk is
reduced and by transitivity, it is equivalent to s, which turns out to be

reducible. Q.E.D.

The following is a direct corollary of definition 2.3. It
characterizes equivalence among reducible representations in terms of

isomorphism.

2.5 Eguivalence for reducible assignments - Proposition

Two reducible assignments are equiva]ent if and only if their
reduced assignments are isomorphic.
Proof Trivial. Q.E.D.
Since the reducible representations are just reduced representa-
tions with some useless axes added, we could restrict our attention to
reduced representations (and by 2.2 avoid equivalence problems). However,

there are representations which are not reducible.

2.6 Irreducible representation - Example

Let A be the set of continuous real functions of a real variable.
Let R be the set of (finite) real numbers and for i ¢ R let (i] be the
open-closed interval of the reals up to i inclusive and let (i) be the open-
open one.

Define a representation r of A on (Ci)I by
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I =R,
Ci = {fl f e R(iJ and f is continuous} for all i ¢ I,
ri(f) = f(i] for all i ¢ I and f ¢ A.

Trivially r satisfies the conditions for being a representation. Here
the coordinates of a function f ¢ A are its "left-hand portions" obtained
by considering f in a real interval from -« to i inclusive. We could say
that r gives us a "cumulative" representation of f, by an analogy with the
terminology of the integral calculus; see also 3.5.
Observe that, since A is a set of continuous functions, an axis
i € I can be equivalent to a set X ¢ I of axes if and only if i is the supremum
of X according to the usual partial order of the real line, i.e. iff i is

a "right accumulation point" for X.

n
—
-

We show now that r cannot be reducible. Suppose that for J c
ry is equivalent to r. Since each axis i ¢ I must be equivalent to some
subset X of J, then, by the previous observation, J must be everywhere
dense on I. This implies that each j ¢ J ¢ I is equivalent to (j) n J < J-].
So all the axes in J are useless in ry- Hence, no ry can be reduced.

Therefore, r is not reducible.
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Section 3 - REDUNDANCY

Redundancy is the simplest notion arising from embedding. It
appears in commonly used representations frequently and has a very natural

characterization in terms of embedding.

3.1 Redundant Representations - Definition

An axis i of an assignment r:A - UI will be called redundant

if it is embedded into a set of axes not containing it, i.e.
(7) J >i for some J ¢ i.

If r has redundant axes, it will be called a redundant assignment. An axis

or an assignment which are not redundant will be called nonredundant.

In (7) any J « P(E) can be used. There are cases where a restricted
choice of J is interesting. For instance, in 5.3 we will consider the
finite sets in P(i) and we will speak of finite-redundancy. However, these
subcases of a definition will not be studied.

A useless axis is redundant. Hence a nonredundant assignment is
reduced. However, the converse need not be true. The following is an example

of a reduced and redundant representation.

3.2 Error-detecting Code - Example

The simplest error-detecting code which is a reduced and redundant

representation is a three-bits encoding of a four-elements set as in Fig.l.

A r

Fig.1

[= TN ol w g%
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By inspection on this table we see that no axis is useless. Yet
any axis is redundant. For instance, the third axis can be computed as
the "parity-bit" of the first two, but we cannot derive the latters from
the former.

As known, this representation has the power to detect errors
which may affect a single bit. This can be done by comparing the values
of rs with the values of r and ro. Essentially, this comparison makes
use of the embedding coefficient between {1,2} and 3. Hence, here the
embedding coefficients have the role of "control" function for error detection.
A similar role might be seen for error-correcting codes like those using
crossed parities.

The property of being nonredundant is characterized in terms of

embedding by a converse of proposition 1.3b).

3.3 Redundancy and embedding - Proposition

An assignment r:A - UI is nonredundant if and only if its embedding
relation reduces itself to the contaminment order on P(I).
Proof ("only if" part). By 1.3 we know that > contains 2. Suppose
that r is nonredundant and by contradiction that > does not contain >,
j.e. d >Kand K ¢J for some J,K < I. Take an axis k ¢ K-dJ, then K > k
and by transitivity J > k contrary to the nonredundancy of k.
("if" part). Suppose that > and > coincide. Thus J > k for some

J c k is a contradiction. Therefore, there are no redundant axes. Q.E.D.
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3.4 Contractile assignments - Definition

An assignment r:A - UI will be called contractile if there

exists J c I equivalent to I such that ry is nonredundant. We find an
example of this in 3.2, where we can delete any-Ooneof the axes and still
get a two-bits representation of A which clearly is nonredundant.

We will not characterize the class of contractile assignments
as we did for the reducible ones. We want only to point out the independency
of this notion from the preceding ones. An irreducible assignment, indeed,
can be contractile. Take, for instance, the irreducible representation
of 2.6 and add an "identity" axis « such that r(f;~) = f. The new r is still
irreducible, but it is contractile, because ry is still a representation,
if we take J = {=}. Moreover, even a reduced representation need not be

contractile as shown below.

3.5 Unavoidable redundancy - Example

Recall example 2.6 about continuous functions and modify it
slightly. Take the coordinates to be reals, Ci =R for all i ¢ I =R,
and assume r to be the identity, r(f;i) = f(i) for all f ¢ A and i ¢ I.
(Note that by a "left to right accumulation" of the axes we come back to
the representation of 2.6).
r is still a representation, but it is reddced. In fact, since
we cannot guess a value of a continuous function by another value at a
different point, no axis can be equivalent to a different set of axes.
However, every axis is redundant. In fact, in order to know
the value of a continuous function at a given point i it is sufficient to
know its values in any set X of points which have i as an accumulation point.
Thus X > i, though the converse fails. (Note also that every axis is finitely

nonredundant as in 3.1).
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If we throw away any single axis i, the set i remains equivalent
to I. We can do the same for any set of i's provided that what remains
is everywhere dense. Hence, again we will always have redundant axes in
what must remain, since it will be dense. In conclusion, there is not a
subset of axes equivalent to I which forms a nonredundant representation.

Thus, r is not cohtracti]e.



- 16 -

Section 4 - INDEPENDENCE

Many commonly used representations satisfy an independency
condition. This condition can be characterized in terms of embedding as
the generalization of the idea of using the "right" number of coordinates for
a geometric variety. The condition of independence, together with the
conditions treated in the preceding sections, forms a hierarchy among

representations.

4.1 The Independence Notion - Comment

In order to introduce the notion of independence between axes
or set of axes, we consider first the various relationships introduced so
far between sets of axes of a given representation. The first relationship
was equivalence which means equa]ity of transmitting power. This was an
extreme case; we then considered a weaker case with the relation of embedding
which means containment of transmitting power. If we go on in this direction,
we have to consider the extreme case which is the opposite of equivalence,
j.e. the case in which no transmitting power is shared between different
sets of axes.

To say that no transmitting power can be shared is a stronger
requirement than to say that no equivalence or embedding may exist. Indeed
we are requiring that "nothing" can be done by a set of axes if it is done
elsewhere.

Suppose that a set J of axes is able to "express" a property P
of the set to be represented. (E.g. the last bit of the binary positional

representation of a natural number expresses the fact that the number
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is odd or even). Suppose now that a set of axes K, disjoint from J, is
able to express property P. Then J and K are able to express at least one
property in common, and we will say that they are not independent. Hence,
we will say that J and K are independent if no such a property P exists.
We can extend the previous notion from the case of disjoint J
and K to the general case, by saying that no property P as above may exist
unless it is expressed by the axes in J n K. So two arbitrary sets J and
K are independent if the properties expressed both by J and by K are also
expressible by the axes which are common to J and K. Finally, from a
couple {J,K} we can pass to any set of sets of axes and this extension

leads us to the following definition.

4.2 Independence - Definition

Let r:A -~ UI be an assignment and J ¢ I be a set of axes. We
will say that J expresses a property of certain elements of A or that it
expresses the set B ¢ A of the elements which satisfy this property, if B
can be identified through the J-coordinates, i.e. if B = ral(rJ(B)) or
equivalently if rJ(B) n rJ(E) = ¢. In this case we will write JnB.

We can extend the relation n < P(J)XP(A) to additional axes.
Thus, if g:A > X can be substituted for ry in the above equalities, we
will write gnB. Note that J > K and KnB imply JnB and that the same
holds substituting g for J.

We will say that a set Q < P(I) of sets of axes is independent
or that the sets in Q are independent, if any property expressed by all

sets in Q is expressed by their intersection, i.e. for all B < A.
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(8) JnB for all J ¢ Q implies nQmB.

Note that from (3) and (4) we get ¢mB iff B = ¢,A. Thus condition (8) for
nQ =¢ tells us that no (nontrivial) property can be expressed by all sets in Q.

We will say that r is (completely) independent, if each Q < P(I)

is independent. If an assignment or a set are not independent, they will
be called dependent.

Note that an independent assignment must be an (independent)
representation. In fact, for Q = ¢ the hypothesis in (8) is always true
and, since np = I, we must have InB for all B < A. This requires that r is
one to one.

As for the case of redundancy, weaker notions of independence
are possible. This can be done by restricting the choice of sets Q (e.g.
in order to define a "pairwise" independence) or the choice of the members
of Q. In the latter case, because of (8) we would require that the class of
these members is closed under intersection (e.g. finite sets, recursive
sets, etc.). We could also restrict the choice of the sets B. Weaker
independences may arise in some cases (sée e.g. 5.5 and 5.3), but we will

1imit ourselves to the study of complete independence.

4.3 Independence and redundancy - Proposition

If a representation is redundant then it is not independent.
However, there are nonredundant representations which are dependent.
Proof Let i € I be a redundant axis of representation r. Since i>i
and i > 7, we easily get i > I. (In general, we could show that embedding
defines a "pair" lattice). Thus, since r is one to one, inB for all B c A

as observed in 4.2.
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Take B = r;](c) for some c e Ci' From (2) we know that B
cannot be trivial and by construction that i n B. Therefore, Q = {i,i}

¢, the conclusion in (8)

and B satisfy the hypothesis in (8). Since nQ
cannot be fulfilled by a nontrivial B. Hence, r is dependent.

To prove that there are dependent assignments without redundant
axes, consider the representation of the table in Fig.2 which is "reversed"

by the matrix of Fig.3.

Al 0 1 2
a 1 0 0 o
b 2 0 1
o 0 1 2
d 0 2
Fig.2 Fig.3

From the table we see that no axis is redundant. Yet from the matrix we see

that 1 n B and 2 n B for B = {a,b}. This contradicts the independence

condition in the case of disjoint sets. Q.E.D.
The following example will introduce a characterization theorem

for independence which will play an important role.

4.4 Independence and right dimensionality - Example

Let A be the surface of the three dimensional sphere x2+y2+z2 =1

and, as usual, denote the axes of the cartesian representation employed by

X, y and z; see Fig.4

X Fig.4
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Consider the set B c A of the points lying on two parallels
of symmetric latitude. From the figure we easily see that z n B and
also that {x,y} n B. These two sets of axes are disjoint, but the set B
is not trivial. Therefore, the representation is dependent.

(Note that this representation is nonredundant as well as the
counterexample of 4.3. Moreover, that examplie is a simplification of
the present one. In fact, the matrix of Fig.3 may be thought of as the
circle x2+y2 = 1 in the field of remainders mod.3).

Let us modify our representation by taking the longitude of a
given point rather than its x and y coordinates. Thus we have the axis z
as above and a new axis ¢ defined by y(P) = arctang y(P)/x(P).

The new representation is independent. In fact, z n B and
Yy n B are tantamount to saying that B is an union of parallel circles
and that B is an union of meridion semicircles. Clearly, this implies that
B must be either empty or the whole surface. Since the other cases of (8)
are trivial, this shows that the independence condition is fulfilled.

In conclusion, the former representation with three axes was
dependent whereas the latter (with as many axes as the dimension of the
variety being represented) is independent. This suggests us that
independence might be related to an idea of "right" number of axes. This,
indeed, is the case as the following proposition will show by extending the

above geometric concepts to our general set-theoretic case.
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4.5 Independence and embedding - Proposition

Let r:A - UI be a representation. A set Q c P(I) is independent

if and only if, for all additional axes g:A - X.

(9) ry > g forall J e Q implies " > g.

(In other words, independence means minimal use of axes or, if we want,
maximal expressive power for the axes used. Note that, for nQ = ¢, (9)
means that there are no (nonconstant) additional axes which may be embedded
into disjoint sets of axes).
Proof ("If" part). Suppose that (9) is satisfied for all g and that
the hypothesis of (8) is true. To prove the conclusion of (8), define
g:A > {B,B} by g(a) = B iff a « B, i.e. g is the block function of the
partition determined by B in A.
Clearly, ry >g for all J € Q. Thus by (9), "o >g, i.e. we
can detect membership in B simply from the axes in nQ. Hence nQ n B.
("Only if" part). Assume the hypothesis of (9) is true for an
independent Q as in (8). In order to show (9) we must provide the embedding
coefficient for its conclusion.

Define a relation f c rnQ(A) x X by
(10) (c,x) e £ iff ¢ = rnQ(a) and x = g(a) for some a ¢ A.

Clearly, if f would be a function, then it will be the required embedding

coefficient. Therefore, to prove the theorem we only have to show that

(c,x), (c,y) e f imply x = y.
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Let a,b ¢ A satisfy

O

(1) rqld) = rolb) =

(12) ga)=x,  g(b) =y.

Define B = 9"1(g(a)). Since g n B and since by hypothesis J > g for all J ¢ Q,
we get J n B for all J € Q. Thus from (8), nQ n B which by (11) implies

b € B. Therefore, from (12) we get x = y as required Q.E.D.

We conclude this section by collecting the results about the

relationships among the properties studied.

4.6 The representation hierarchy - Proposition

Assignments or representations of sets can be classified into six
classes with respect to embedding properties. These six classes form a
hierarchy with respect to proper inclusion as indicated in the diagram

below, where a class at the top is more general than one at the bottom.

I |General

II |Reducible

[ III | Contractile

IV ‘Reducedl

V  |Nonredundant

|

VI |(Independent

Fig.5
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Proof Everything has been substantially proved before. We only give

a table of reference where one can check inclusion and noninclusion.

2 2 £

Pair of classes =

I, II 2
I, III 3
II, IV 2
v, v 3.
3
4

-
o3}
pu—]

I11, V

| NS D S DN A |
_|
—_

LWWPWWws W

vV, VI

OGPpwhn< OTO

IT, III - 3.5
III, 1v - 3.2

Q.E.D.
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Section 5 - MODELS OF REPRESENTATIONS

We describe how our formal definitions fit the "real"
representations. This yields some further problems about independence.
We also discuss how we can handle those "representations" which do not

satisfy completely our definition.

5.1 Finiteness characters - Definition An assignment r of a set A on a

family (Ci)I may satisfy some conditions of cardinality which we 1ist below

in order to provide a descriptive terminology for the following.

(13) I is a denumerable set.
(14) A1l the Ci are finite and we assume them to be finite ordinals.
(15) For each a « A there is a cofinite d < I (i.e. J i finite)

such that rj(a) = rk(a) for all j,k ¢ J. In other words, there
are only a finite number of significant coordinates for each a.

(16) There is a finite ordinal u such that C; cuforalliel.

We will say that r is
discrete if (13) holds,
finite if (13) and (14) hold,
Timited if (13), (14) and (15) hold,
if (

bounded 13), (14), (15) and (16) hold.

5.2 Positional representations - Example

Taking I = N, C; = 10 for all i ¢ I and r(n3i) = [n/1o‘]mod 10
for all i e I and n ¢ N we get the decimal positional representation of the

set A = N of natural numbers. This is a case of bounded representations.



- 25 -

We easily see that r is nonredundant, since no set of digits of a
natural number can determine another digit (not included in it). r also
is independent, but this needs a more detailed proof as follows.

Observe at first that for each pair b,b' ¢ A and for each set

L < I there exists a b" ¢ A such that

(17) rL(b) = rL(b") and r[(b') = r-(b").

L
By contradiction, let r be dependent, i.e. for some B < A and Q < P(I) we have
(18) ry(B) n ry(B) = ¢ for all J € Q

and rnQ(B) n rnQ(E) # . Therefore, there are b ¢ B and b' ¢ B such that

(19) rnQ(b) = rnQ(b').

Let D(b,b') = I be the set of digits in which b and b' differ.

Clearly, D(b,b') is finite. Moreover, by (18) and by (19) we have that

(20) D(b,b') nJd # ¢ for all J € Q,
(21) D(b,b') n nQ = ¢

Let K ¢ Q; then we can take a d « D(b,b') n K = K such that
by (21) there exists J e Q with d ¢ J. Hence by (18) we can take a b" « B
such that (17) holds for L = d:

(22) ra(b") = ra(b') and rd(b”) = rd(b).

Consider now the pair (b,b"). The only change from (b,b') is that D(b,b")
has one element less than D(b,b'). Indeed, (19) continues to hold for b"
also. Thus we can iterate our process until (20) fails, D(b,c) nJd = ¢

for some ¢ ¢ B. This contradiction implies the independence of r.
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The above demonstration holds for every representatfon which
satisfies (22) and the finiteness of D(b,b'). Note also that ? Ci has
the cardinality of the continuum whereas r(A) has the same cardinality
of N, i.e. we have a poor utilization of the reference objects though the
representation is independent.

We can get the decimal positional representation of non-negative
real numbers simply by changing the index I to the set of integers. Thus,
the representation is finite but not more limited since an irrational
number has an infinity of significant digits. Adding to I a binary axis
for the sign, we get a representation for all the reals and clearly other
easy changes yield other representations related to the positional one,

e.g. the floating-point representation. However, in the case of reals,

independence opens a larger problem as in the following.

5.3 The pencil and the onto conditions - Comment

Condition (17) requires that whenever r(A) contains two elements,
then it must also contain any element obtained by a "mixing" of the two.
The following "pencil” condition will turn out to be equivalent to (17).

We will say that r:A -~ UI satisfies the pencil condition if

(23) r (rjl(d)) = rj(A) forall J c I andd e ry(A).

This condition says that for each "handle" d we have in r(A) a pencil which
has "bristles" in all rJ(A).
Clearly, if rJ(b) = d then (23) yields (17) and conversely.

Hence the pencil condition is equivalent to (17).
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If we require that r:A >~ 1T Ci is onto, we clearly get a stronger
condition than the pencil condition ;s shown by the cardinality considera-
tions in 5.2. Neither this onto condition nor the pencil one are necessary
to get independence. The representation of A = {a,b,c} by two binary digits

is not onto, but it is independent as one can check by the matrix below.

Fig.7

A problem which seems to be difficult (and we leave open) is
proving (or disproving) that the pencil condition or the onto condition
are sufficient to get independence. In favor of this conjecture we have the
proof in the previous example. In fact, while we require the finiteness of
D(b,b'), we do not employ the whole pencil condition (17) but a finite one
as in (22).

Another point in favor of the conjecture is that the pencil
condition is sufficient to prove some conditions of weak independence. E.g.
it would not be difficult to prove pairwise independence.

The motivation of this problem lies in the role of independence
in several applications (see section 8) and in the role of the onto condition

in the literature (see 8.4).

5.4 Modular representation - Example

The modular representation of the set A = N of natural numbers is

defined by I = N, Ci =P; for all i ¢ I and

(24) ri(n) = [n] for all i ¢ I and n € A,

mod p.l
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where p denotes the (i+1)-th prime number. This representation is limited,
because for i 2 n, ri(n) = n; but it is not bounded.

As far as the embedding properties are concerned,we easily see
that r is dependent and moreover that it is redundant, because every axis is
redundant. Indeed, the values of an axis i are determined by the infinite
set of axes j > i (which contains, for all n ¢ A, an axis j such that pj = n).
However, r is not finite-redundant as in 3.1. Indeed, if J is a finite set
of axes and i is an axis to be embedded in J, then the set J u i is also
finite and by the Chinese remainder theorem it determines a finite set of
equations (24) which always has a solution no matter what the ri(n) are. So

J cannot contain enough information to determine i (if i ¢ J).

5.5 Series - Example

An example of a representation which is discrete, but not finite,
arises in considering the set A of functions analytic at 0. In this case,
we can represent an element a ¢ A by a series, e.g. a series of powers. I.e.
we can use the representation r defined by I = N, Ci = C (set of complex
numbers) for all i ¢ I and ri(a) = D(i)(a;O) for all a ¢ A, i € I, where
D(i) denotes the operator of i-th derivative.

We cannot show that this representation is independent by using
the proof we have used for the positional representation, because here also
D(b,b') need not be finite. However, we clearly can use that proof in
order to prove a kind of "finite" independence, namely the independence of
all the sets Q < P(I) which contain a finite set K of axes. Indeed (22)
continues to hold since the change of a single coefficient in a power series

does not change its convergence.
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This reasoning could clearly be extended from analytic functions to
functions with a singularity at O by the bilateral Laurent's series, or also (with
some caution) to larger classes of functions by using "series with a continuum

of coefficients" e.g. the Fourier transform.

5.6 Linear spaces and groups - Example

Consider the set A of the points of a linear space which we can
assume, for simplicity, to be a pre-Hilbertian space. I.e. we assume there
is a binary operation, the scalar product, which takes arguments in A and
values in another set C. Then if G is a set of generators of A, we have a
representation r of A by taking I = G, Ci = C for all i € I and ri(a) = <a,i>
for all a € A, i ¢ I, where <a,i> denotes the scalar product of a and 1i.

We can easily prove that r is independent if and only if G is a
linearly independent set of generators, i.e. if it is a basis of A. 1In
other words, our definition of independence is just the extension of the
geometric one. (However, in this case independence and nonredundancy
coincide.)

What we have said for linear spaces can be repeated (mutatis
mutandis) for abelian groups. In fact, in this case, the carrier set of
a group can be represented conveniently by representations which are
independent and which correspond to the various bases of the group.

The case of abelian groups is perhaps more interesting than
the case of a linear space because the reference sets Ci can be quite
heterogeneous, e.g. in a normal basis there are both finite Ci’ which
correspond to the torsion coefficients, and denumerable Ci corresponding
to the generators with infinite period. Moreover, for a given group there
can be quite dissimilar bases [8]. In other words, groups are intermediate

between geometry and sets as far as representations are concerned.
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5.7 Assignments and representations - Comment

In practice assignments are more common than representations.
To handle a real number we do not use its full positional representation
as in 5.2; rather we use an assignment obtained by selecting, from its
positional representation, a finite number of axes, which are considered
more significant. Similarly, in order to treat functions, we use tabulations,
i.e. assignments extracted from the "natural" representation of functions
as in 3.5.

Since assignments are motivated by these "extractions", a
theory of assignments should look at two problems. The first is to study the
properties of such represéntations from which a possible assignment can be
extracted. The second problem is to define, for a given representation, the
criteria of selection of the axes forming an assignment.

Numerical analysis consider the latter problem, e.g. when it

introduces the notion of truncation and of step of tabulation. It also
considers the former problem, e.g. when it compares the representation of a
function by series of powers or of polynomials.

Our main concern is the study of the general properties of
representations and it is more related to the first of the two problems
discussed. Indeed, the second problem should consider some kind of evaluation
of the choice of the axes forming an assignment, i.e. it is related to the
problem of measuring how information is transferred from a set to the
reference sets. We prefer to limit ourselves to studying how information is

transferred without measuring it.

5.8 Linked data structures - Example

Some practical representations do not satisfy the condition of
having a unique representation of every object. An example of this arises
when we consider the use of "linked data structures" for representing objects

like strings, trees, graphs, etc.
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Consider the case of a string, say w = 001055 OVer an alphabet
Z. We may have a set I = N of locations, each of them having a set
C, = (£ u B) x (I u p) of configurations, where B is a symbol neither in
Z nor in I. In other words, any location may contain a pair (o,i), where o
is a letter of I or is P and i is a location of I or is p. Then we can

"represent" w by starting from a fixed location, say i = 0, by any one of

the allocations of I, depicted in Figure 8 (where § is written as a space).

1 2 3 4 5
T T ] {
% og t1 oy 2) g ' ! oo I
0 1 2 3 4 5
!
| o' 2] o, 011 1 ! T I I
0 1 2 3 4 5
EEI i | 02' ol 3 [ I
etc.
Figure 8

We see that we have a lot of different representations for our
unique string w and we know from programming practice that this abundance
means a very useful flexibility of representation and not a strange waste
of our representation facilities.

Here it is still possible to get uniqueness of representation
by enlarging the set under representation, i.e. by saying that the objects
which we really want to represent are not simply the words over %, but

something containing more information. In the following we will explain a
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way to do so, which also will suggest to us that trying to get uniqueness
can sometimes be a good method for understanding the real nature of the
representations considered.

If we want a representation of strings by linked data structures
with their flexibility, then it means that we are interested in all the
possible ways of assigning the index locations. In general, a location
assignment for a string w:n > Zwill be any 1-1 mapping y:n » I, with
¥(0) = 0. In conclusion, when we want to represent a word w by a linked
data structure, then we really want to represent a pair (w,) containing a
word and its location assignment.

Under the previous point of view, the representation we are
considering is a usual representation r of the set A of pairs (w,y) as
above. In fact, r is the (biunique) representation mapping defined by
r{(w,0);v(i)) = (w(i),u(s(i))) where s is the successor function (which
identifies our special kind of Tinking) and where the values are filled by k
when they are undefined.

Note that in order to get the set A we have added to the set of
strings the information about the location assignment. This is information
about the representation itself! This trick is useful particularly for
objects which are functions with a varying domain as strings or trees.
(Moreover, Lagrange's multipliers technique might be interpreted in this
way [12].)

Note also that we have got uniqueness of representation in a way
reminding the "state splitting" technique of [7]. In fact, we have splitted
a word w into a set of pairs (w,y). However, the study of "extended representa-

I

tions" r ¢ A x U", where r'] is a function, is still an open problem.
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Section 6 - REPRESENTATION LATTICE

This section introduces the notion of representation lattice.
The representation lattice corresponds to an extension of some classical
notions of synthetic geometry (sheaves of coordinate surfaces or coordinate
Tines, etc.). Well known facts of a geometric nature continue to hold
in this extended case. The representation lattice is also an extension
of the notion of information used in [7] and elsewhere, and it is a very
natural aspect of the notion of representation. The precise relationship

between representation lattices and representations is stated and proved.

6.1 Assignment lattice - Definition

Let r:A - UI be an assignment. We will call induction map the

function e:P(I) >~ E(A), such that e(J) for J < I is the equivalence induced
by rj, i.e. (a,a') e e(d) iff rJ(a) = rJ(a'). The values e(J) will be

called J-equivalences and their set e(P(I)) will be denoted by E,..

In the 1imiting case, by (3) we have the total equivalence

(25) e(o) = A,
Moreover, when r is a representation, we have
(26) e(l) = w.

We can order the set Er by set inclusion (in the same way as
for the lattice of all equivalences E(A)) and we get a partially ordered
set E_ = (Er’g) which is a Tattice by the next proposition. Thus E  will

be called the lattice of the assignment r.
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6.2 Infimum containment - Proposition

The set of J-equivalences Er of an assignment r:A - UI forms,
under the inclusion order, a complete lattice which is infimum contained in
the lattice E(A) of all the equivalences on A. Moreover, the induction map
e:P(I) » Er is a dual supremum-homomorphism between the corresponding
lattices.

Proof To prove the first statement it is enough to prove that the
infima of sets of J-equivalences in E(A) are J-equivalences. Now, since

the infima in E(A) are intersections, we have for all F ¢ E.
AF = oF = {(a,b)|a,b ¢ A and ry(a) = ry(b) for all J e G}
where G is any set in P(I) such that e(G) = F. Thus

.(b) for all i € uG} = e(uG) € Er'

AF = {(a,b)]a,b ¢ A and ri(a) = r;

To prove that e is a dual supremum homomorphism, simply observe
that for any G < P(I) the set evaluation e(G) = F is contained in E.. Thus

by the previous argument
(27) e(uG) = ne(G) for all G c P(I).

6.3 Representation lattice - Example

Consider a cartesian representation of the euclidean three-
dimensional space as the reference system given by the axes x,y,z of

Figure 9.
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Fig.9

The J-equivalences are given e.g. by the sheaves of planes parallel

to a given axis. (Each plane is a block of that equivalence). Other
J-equivalences are given by the (bidimensional) sheaves of Tlines
parallel to an axis or by the space or finally, by all the points of the

space. In Fig.10 we have drawn the diagram of the representation lattice,

where e.qg. ()
el¢
/"‘ -
e(x)
(x,z)
e(x, ) > e(y,z)
7
X5Ys2)
Fig.10

the sheaves of planes correspond to the equivalences e(x), e(y), e(z).
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The interpretation of the previous theorem about infimum
containment is now very simple. It states for instance that the intersections
of coordinate planes are coordinate lines. This property is a very trivial
one for our cartesian representation, but it holds for any representation
of any object. As we will see in section 7, this property is characteristic

for a representation lattice.

6.4 The synthetic approach - Comment

The previous example justifies the terms "synthetic" and "analytic"
we are using for the present treatment and for the past (functional) treat-
ment respectively.

A synthetic approach differs from an analytic one mainly because
the former does not use "foreign" objects like coordinates to treat the
space which is really considered. Axes and coordinates simply become equiva-
lences and blocks defined on the space considered.

A synthetic approach allows a ready and clean exploitation of
the intuitive knowledges we may have about the environment we are studying.
Thus, setting a problem and interpreting its solution is easier when we
already have a good knowledge of the objects being studied.

In [7] the notion of equivalence (or partition) induced by an
axis is referred as the "information" conveyed by that axis. In the Theory
of the Measure of Information [4] the "things" which are measured (i.e. the
information) are again defined as partitions and their blocks. Therefore
the synthetic approach which leads us to study representation lattices is

the informational approach.
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The analytic approach was concerned more with how information is
transmitted than with the information itself. Its main advantage is its
formalization ability.

We know that at least for existing Geometry, the analytic and
the synthetic treatments are equivalent, i.e. they are two different
ways of stating the same things. Hence we could ask whether studying
representation lattices is as general as studying representations. The
two following propositions will show that for many purposes we have such an

equivalence.

6.5 The embedding lemma - Proposition

Let e:P(I) »> E. be an induction map as in 6.1. Then the embedding
relation > of r is mapped by e onto the inclusion order of Er’ i.e.
J > K iff e(d) < e(K) for all J,K € P(I). (Consequently, two sets of axes
are equivalent if and only if they have the same J-equivalence.)

Proof Suppose J > K, i.e. there exists a function

(28) f:rJ(A) >> rK(A)

such that fry = ry. Then clearly, if rJ(a) = rJ(a'), we have also rK(a) = rK(a').
In other words (a,a') ¢ e(J) implies that (a,a') e e(K). Therefore, e(J) c e(K).
Conversely, suppose that, for all a,a' ¢ A, rJ(a) = rJ(a')

1

implies rK(a) = rK(a'). Then the relation f = rKra js a function as in

(28). Hence, we have the required embedding. Q.E.D.
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6.6 Representation lattice and equivalence - Proposition

Two assignments r and s of a set A determine the same representa-
tion lattice, Er = ES, if and only if they are equivalent.
Proof. If r and s are equivalent as in 1.4 then any set of axes of
one of them is equiva]ent to a set of axes of the other. Hence, by the
previous lemma the set of J-equivalentes must be the same.

Conversely, if Er = Es and if e and e' are the induction maps
of r and s respectively, then mappings p and q as in definition 1.4 can

To and e7le respectively.

be defined by the previous lemma through e'
So r and s are equivalent. Q.E.D.

Note that, since equivalence is a weaker notion than isomorphism,
as in 1.5, the synthetic approach is weaker than the analytic .one. However,
the difference between the two approaches is interesting mainly in the case
of irreducible representations as in 2.6. Moreover, we could avoid this

difference by using families of J-equivalences rather than sets of

J-equivalences.
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Section 7 - SYNTHETIC CHARACTERIZATION

This section shows how the analytic properties of representations
can be translated in terms of a representation lattice. Hence, we give
synthetic characterizations of reducibility, redundancy and independence.

We also show how to define a representation, given some essential information

about the representation lattice.

7.1 Existence and uniqueness - Proposition

If a complete lattice E' of equivalences on a set A is infimum
contained in the Tattice E(A) of all the equivalences on A, then there
exists an assignment r of A which has E' as representation lattice,

E' = Er' (This assignment r is unique up to equivalences.)

Proof. Let £' = (E',c) be a complete lattice, and let G < E' be an
upper generating set. Since the upper bound given by A2 = Ap, is trivially
reducible, we can always take an upper generating set I which does not
contain A%, T = G-A%,

We can define an assignment r:A - I Ci by Ci = A/i for all i €1
and r(a;i) = [a]i, for all a e A, i ¢ I. In gther words, the coordinates
are the blocks of the partitions and the axes are given by the block
functions.

Since A2 ¢ I condition (2) is satisfied and r is an assignment.
The infimum containment of E' and (27) make Er < E'. In fact, for all
Jcl, e(d) =e(ul/w) = ne(d/w) ¢ E'. Moreover, since I is an upper generating

set for E', we can reread the previous passages in reverse and conclude

that E' ¢ Er‘ Therefore, Er = E' as required.
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By 6.6 the assignment found is unique up to equivalence. However,
this "uniqueness" is rather Targe. As an example, we could take I = E'-{Az}

and get a very non reduced assignment.

7.2 The synthetic characterization corollary - Proposition

A set of equivalences determines an assignment lattice if and
only if it contains all its infima. It determines a representation lattice
if and only if it contains the null equivalence w and its infima.

Proof. Trivial by 7.1 and (26). Q.E.D.

7.3 Reducibility characterization - Proposition

An assignment is reducible if and only if its representation
lattice is reducible (as in 0.3).

Proof. ("Only if"). If an assignment s of a set A is reducible, then
by 2.4 it is equivalent to a reduced assignment r:A - UI. Therefore, it is
enough to prove that the assignment lattice Er has a basis.

Consider the set B ¢ E_, B = e(I/w) determined by the single
axes. Since any J ¢ I is an union of atoms, by 6.2 we have that B is an
upper generating set of Er' The equivalences in B must be infimum irre-
ducible (otherwise in I/w we should have useless axes by the embedding lemma 6.5
contrary to the reduction of r). Hence, B forms the required basis of Er'

("If" part). If an assignment Tattice is reducible, we can take
its basis B as the upper generating set as in the proof of 6.2. We get in
this way an assignment r (equivalent to the original one) which is reduced

by the embedding lemma, as in the only if part. Q.E.D.
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The following is partly a corollary of the previous characteriza-

tion of reducibility.

7.4 The basis corollary - Proposition

The basis of a reducible lattice containing its infima, determines
a unique assignment lattice which determines a unique (up to isomorphism)
reduced assignment.
Proof. An upper generating set (or a basis) of a lattice of equivalences
containing its infima determines it. In the case of a basis, i.e. in the

case of a reducible lattice, by 7.3 we know that there exists a corresponding

reduced-assignment lattice. By 2.2 the equivalence between assignments
and the jsomorphism coincide in the case of reduced assignments. Hence,

we get the uniqueness. Q.E.D.

The previous corollary tells us that for the reduced representa-
tions, the bases of the corresponding representation lattices are a very
"representative" concept. Thus, we might ask how to characterize such

bases.

7.5 Bases characterizations - Proposition

A set B c E(A) of equivalences over A is a basis of an assignment

lattice, if and only if
nB' ¢ B implies nB' ¢ B' for all B' ¢ B,

i.e. if and only if B does not contain its infimum reducibles.
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Proof ("Only if" part). If for some B' c B we have nB' ¢ B-B',

then no assignment Tattice with basis B may exist. Indeed, this lattice
should be infimum contained in E(A), but this means that nB' is a reducible
element, contrary to the fact that it belongs to the basis.

("If" part). Suppose that B does not contain its infimum
reducibles, then define C as the set of all the equivalences obtained by
intersection from some subsets of B. We claim that C is closed under
intersection (i.e. it defines an assignment lattice), and that its basis is B.

Let C' < C and let P' c P(B) be the set of subsets which generate
the equivalences of C' by intersection. Consider now B' = uP' which is a
subset of B. By the branching property as in 0.3 we have nC' = nB' ¢ C.
Thus C is closed under intersections.

It remains to show that the lattice determined by C has B as
basis. Clearly, B is an upper generating set. Moreover, it cannot have
reducible elements because b = nC' for C' < C means b = nB' for some B' < B
as we have just shown. Therefore, B is the required basis and we conclude

that C is the required set of equivalences. Q.E.D.

7.6 Redundancy characterization - Proposition

A reduced assignment is nonredundant if and only if its assignment
lattice is a boolean set lattice. (This lattice is dually isomorphic to the
boolean lattice of the sets of axes,)

Proof. ("Only if" part). Let e:P(I) = Er be the induction map of an

assignment r. It is enough to prove that, if r is nonredundant, e is a dual

isomorphism of P(I) onto Er. Indeed, the embedding relation > on P(I)
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reduces to the inclusion order > by 3.3. By the embedding lemma 6.5, e must
be 1-1. Thus, if r is nonredundant, e is a bijection which preserves the
order (dually), i.e. it is a dual isomorphism. Hence, £ is a boolean set
lattice.

Note that we can now add to (27) the similar formula for the case

of intersection
(29) e(nG) = ve(G)  for all G c P(I).

("If" part). If E. is a boolean set Tattice, its basis is defined
by the set B of its dual atoms. According to 7.3 and 7.4 the (unique) reduced
assignment r is given by taking I = B in the construction of the proof 7.1.

By contradiction, assume redundancy, J > i for some J c I - 1.
By the embedding lemma we should have e(J) < e(i), but e(i) is a dual atom,
e(i) = i. This is a contradiction, because in a boolean set lattice any
element is exactly the intersection of the dual atoms which contain it, but
e(J) = ne(J/w) and i = e(i) # e(j) = j for all j € J/w. Therefore, this

booleanity implies nonredundancy. Q.E.D.

7.7 Nonredundant representations - Comment

Formula (29), as well as (27), expresses in the geometric case a
well known fact. It says, for instance, that the coordinate planes in a
cartesian representation of a space, can be obtained as "spans" of couples
of coordinate lines.

Almost all the representations used in classical mathematics are

nonredundant, though they may be or may not be independent as in example 4.4
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concerning the sphere. Redundancy does not have a great deal of importance
for many theorical purposes. So nonredundant representations can be used,
and we get the nice property that the representation lattice is isomorphic
to the lattice of the sets of axes. In this situation we can handle a
representation by considering the Tatter boolean set lattice only. This
means that we could introduce representations or reference systems (as
we do in classical mathematics), only by speaking of single axes which are
the atoms of that lattice.

In our generalized approach we have not used single axes, but
we have defined the main notions and properties of representations in terms
of sets of axes. This indeed enabled us to handle representations in

general.

7.8 Modularity and distributivity - Comment

In our classification of represenfation lattices, we have gone
directly from the reducible lattices to the boolean ones. On our way we
have missed some intermediate classes of lattices, e.g. the modular and
distributive ones. The properties of being modular or distributive are
algebraic properties of lattices, which can be characterized in terms of the
absence of some sublattices [2].

For instance, a Tattice is not modular iff it contains a sub-
lattice as in Fig.11, it is not distributive iff it contains a sublattice

as in Fig.11, or in Fig.12.
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We have not given a formal definition of representations which
are characterizable in terms of modular or distributive lattices. However,
it should be clear that such "analytic" notions can be introduced and that
they correspond to meaningful facts. For instance, the nondistributive
case of Fig.12 corresponds to the representation lattice of an error detecting
code as in 3.2. Indeed, the elements a, b and ¢ in Fig.12 correspond to the
equivalences e(1), e(2) and e(3).

Error detecting codes such as those using parity bits, have a
redundancy well shared between the axes as Fig.12 shows. On the contrary,
the case of Fig.11 represents a case of "concentrated" redundancy.

However, we will not consider such a detailed classification
of representations. Instead, we go on to consider the last case of the

previous chapter, namely, independent representations.

7.9 Independence characterization - Proposition

A reduced representation r of a set A is independent if and only if
its representation lattice is a boolean set lattice contained in the equivalence

lattice of A.
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Proof. ("Only if") If r:A v ul is an independent representation, then
by 4.3 it is nonredundant and by 7.7 Er is a boolean set lattice dually
isomorphic to P(I) by e. Since the infimum containment has already been shown,

we need to show only that E,. is supremum contained in E(A):

(30) e(nQ) = V'e(Q) for all Q < P(I),

where V' denotes the supremum in E(A).

Observe that e(nQ) is an upper bound, e' < e(nQ) for all e' ¢ e(Q),
because e is a dual isomorphism. Consider now any equivalence e" ¢ E(A)
such that e' c e" for all e' ¢ e(Q). Let g be the block function of e"
and consider the hypothesis in (9). Since we can apply the embedding lemma
6.5 to also an additional axis g, this hypothesis is fulfilled and by the
independence of r we get rnQ > g. Therefore, using the embedding lemma again,
we get e(nQ) c e". Hence, e(nQ) is the required supremum as in (30).

("If" part). In order to prove that containment implies independence
it is enough to prove that it implies embedding condition (9). This is

immediate by the embedding lemma. Q.E.D.

7.10 Independence and the synthetic approach - Comment

We have shown how the main properties of representations can be
recovered by the synthetic approach. This means that essentially we can
study a representation simply by some structures defined on the set to be
represented. This is particularly easy to do in the case of independent
representations, because the representation lattice is a sublattice of the

"natural” lattice of equivalences.
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On the contrary, when the representation is dependent, one has to
use some caution. For instance, in the dependent representation of the
sphere 4.4, one finds that the blocks of e({y,z}) v e({x,z}) in E(A) are

not parallel circles &, but 4-tuples of points; see Fig.13.

Fig.13
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Section 8 - APPLICATIONS

We describe two applications of the present theory. The former
which motivated this work [12], studies certain properties of computation
which depend on the representation chosen for the data. It is treated here
by few examples. The latter is related to probabiiity theory and provides

a further characterization of independence.

8.1 Sequentiality structures - Comment

Assume we have a representation r of a set A and an operation
a:A®> + A, where s is another set (usually it is a finite ordinal representing
the number of arguments). To compute o we determine the coordinates of the
result by those of the arguments. This process may compell us to consider
certain coordinates before certain others.

For instance, to add natural numbers in the decimal positional
representation, we must proceed from right to left. In fact, we can compute
a digit of the result only after we have got the carry from its right.

In general, it is possible to define a relation which expresses
such a sequentiality among the axes (or sets of axes) of r [12] and we say
that o induces a sequentiality structure on r. By an analytic treatment
this structure can be characterized in terms of a very natural structure
over the "invariant" sets of axes [12]. Here, invariance is just the
extension of the geometric invariance of axes under a motion of the referenced
space.

Under this extension, the (geometric) eigenvalues become the local

operations to perform on the coordinates of the invariant axes [12]. Given
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a,a change of r yields a change of the invariant sets and, hence, a change
of the sequentiality structure as well as of the local operations.
A corollary of our synthetic treatment yields a further characteri-
zation. It states that a sequentiality structure is dually isomorphic to
the basis of a certain lattice of congruences [12]. We will not precise these

two characterizations nor the definitions involved, but we exhibit them by a

simple example.

8.2 Isomorphic basis - Example

Consider the (monadic) operation o on a set A and a binary repre-
sentation r of A as in Fig.14. Under this encoding we can realize a by a
sequential machine with three complementation flip-flops and an "and" gate as

in Fig.15.

ST Q Hh 0 Q0 T o>
-~ - = - 0O 0O O o

— - 0O 0O = —= O O |

- 0O - O — O = O
T o 0 - ® T u le

Fig.14
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Clearly, we must logically operate first in c¢ff 1 and cff 2 to
get their present states and then in cff 3. In this case, the logical
constraints expressing the sequentiality structure are materialized in the
hardware structure of our device. The sets ¢, {1,2}, {1}, {2}, {1,2,3} are
the "closed" sets of [7] and correspond to our invariant sets. However,
the first two ¢, {1,2} can be deduced from the last three by union. The
last three (which are union-irreducible) are somehow sufficient to identify
the sequentiality structure of Fig.15 [12]. This is the essential meaning
of the former characterization.

As far as the latter characterization is concerned, we consider the
J-equivalences of the invariant sets(which are congruences). These form a
lattice as in Fig.16, where partitions denote the corresponding congruences.
The basis of this lattice (shown in Fig.16 by thick lines) is dually isomorphic
to the structure of Fig.15. In other words, the latter characterization

states that we can detect sequentiality from synthetic information.

abcd efgh abef cdgh
ab cd ef gh,

Fig.16
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The theory of sequential machines [7] has a somehow similar result

(it relates the lattice of congruences to that of closed sets only).
However, it holds under certain conditions of nonredundancy. These are
more restrictive than the nonredundancy of our theory (which is sufficient

to get the outlined synthetic characterization [12]).

Both characterizations of 8.1 hold for any operation a:AS > A,
whatever the cardinalities of A and s are. Thus, they hold for tree-automata
as well as for infinitary operations. Hence, this application of representa-
tion theory continues the structural study of these objects begun in [11].

In this more general setting, of course, we cannot speak of hardware structure,
but of sequentiality structure only, as in the addition case of 8,1.

Though the representations we are considering are not extended
representations as in 5.8, they can give rise to unusual structural properties.
One of these can be interpreted in terms of structural reliability és shown

in the following example.

8.3 Reliability - Example

Consider the (monadic) operation o on A and the representation

r of A as in Fig.17.

Al r ja

al01(b f f!
b{02]a 01070
c/10]d 1112

d{20]|c 21211

Fig.17 Fig.18
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We can use two identical "components" C' and C" with two operations as in
Fig.18. To operate each of them, we use the identity (delay) operation f
if the argument (state) of the other is not 0, otherwise, we use f'.

Thus o can be realized by a structure as in Fig.19 (solid lines).

If at each component we become unaware of the state of the other
(scissor), we can still operate the device correctly. In fact, since the
state of a component is O if and only if the other state is not, we can make
each single component able to decide about f or f' by itself through some
additional device (dotted lines). In this way, we get a structure with two
macrocomponents. If one breaks the additional devices (hammer), one can use
the (uncut) connections.

In conclusion, the machine described has the property that a single
failure either in the (macro)-components or in their connections can be
recovered. Note that we have no repetition nor redundancy in the components.

Representation r is the dependent representation of the proof 4.3.
One can check that an independent representation (e.g. by two binary axes)
would not give rise to such a reliability against failures. It is possible
to prove that, in general, being dependent is a characterizing condition for

representations allowing such a reliability [12].
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8.4 The Onto Condition in Switching and Probability - Comment

The onto condition, r(A) = 1 Ci’ discussed in 5.3, seems to be
much more known than independence. Séitching Theory [3], [10] relates it to
the realizability of functions (on a represented domain) by simpler boolean
polynomials. However, as far as structural properties are concerned, the
previous example shows that independence rather than the onto condition
ﬁ]ays the main role.

In Probability Theory, the onto condition is sometimes called
algebraic independence [4]. Essentially, it requires that the block functions
b' and b" of two partitions A' and A" (called algebraically independent) on
a set A form an onto assignment of A. This is a necessary and sufficient
condition for the existence of "stochastic independence".

Stochastic independence requires that any probability function
p:A > [0,1] can be computed by any pair of (marginal) probability functions
p':A' > [0,1] and p":A" - [0,1] by the product formula p(a) = p'(a')-p"(a")
where a' and a" are the blocks determined by a. This also is the basis for
the additivity of information measures.

Though foundamental and important, algebraic independence has
severe drawbacks. If the cardinality of A is a prime, algebraic independence
can never hold. The same is true, if the cardinalities of A and A' are
relatively prime. Even the very important set of integers cannot have (non-
trivial) onto representations (its cardinality is a "prime").

Since, we must give up algebraic independence in an infinity of

cases, some of them being very important, we might ask to state a condition



- 54 -

weaker than stochastic independence without these drawbacks. This implies
that we cannot require that the product formula (or information additivity)
holds (everywhere). However, we still would be able to freely assign
marginal probabilities.

For sake of simplicity we state such a weaker condition for general

real valued functions on finite partitions.

8.5 Cumulative independence - Definition

Two finite nontrivial partitions A' and A" on the same set are

said to be cumulatively independent if, given any two real valued functions

f':A' - R, f":A" > R such that

(31) Y fr(x) = T f'(y),
xeA' yeA"

there always exists a real valued function f:A > R, where A = A' A A",

such that

(32) ] f(a) = f'(x) , for all x ¢ A',
acx

(33) J f(a) = f"(y) , for ally e A",
acy

In other words, cumulatively independent partitions are those
which allow a free choice of marginal functions. These turn out to be well-

known partitions.

8.6 Cumulative independence and independence - Proposition

Two partitions are cumulatively independent if and only if their

block functions are independent.
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Proof. ("Only if") Let A' and A" be two cumulatively independent partitions
with block functions b' and b" respectively. By contradiction, assume that
b' n B and b" n B for a nontrivial B. Thus we can choose f':A' -~ R and
f":A" > R such that f'(x) = 0 for x ¢ B, f'(x) > 0 elsewhere and
f'(y) = 0 for x < B. Clearly, we can make f" satisfying (31).
Consider now a function f as in 8.5. Since
Jfla) = ] fla)+ Jfla)= ] f'(x)+ J_f'(y),

aeh acB acB x<B y<B
this sum is zero. But, using (32) only, we get a positive value. This
contradiction implies that b' and b" are independent.

(“If" part). To prove cumulative independence we will show the
solvability of the system of all linear equations (32) and (33) with
unknowns f(a) whenever the given terms satisfy (31). Therefore, it is
enough to show that there are no linear dependences among the rows of
coefficients in this system, except when the sum of left-hand sides of (32)
equals the corresponding sum on (33).

No linear dependence may exist among rows either in (32) only or
in (33) only. In fact, in each one of these two subsystems, there is no
column with two or more nonzero elements. Hence, any possible linear
dependence must have the form:

(34) I ou'(x)- ] fla)= ] u"(y)e ] fla),

xeA' acx yeA acy

where u' and u" should be non-constant column vectors, u':A' - R and u":A" -~ R .
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Consider now the block functions b' and b" of A' and A" which are
independent. We can set b' = d'b and b" = d"b where b is the block function
of A. Thus, d' and d" form a representation of A which is independent
as one can easily check.

From characterization 4.5 we get that d' > g and d" > g, for all
g:A » R, implies that g is a constant. This minimality condition will
finally yield the required solvability.

By associativity, we can rewrite (34) as

) u"(d"(a))f(a).

achA

L u'(d'(a))f(a)
aehA

Thus the function g = u'd' = u"d" satisfies the hypothesis of the minimality
condition and it must be constant. Hence, u' and u" also must be constant.

This makes (34) never fulfilled. Therefore, our system is always solvable
Q.E.D.
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