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ABSTRACT

This paper discusses the applicability of "nested dissection"
(due to George) in the parallel solution of mesh systems by symmetric
elimination. For systems associated with an n by n regular mesh, it is
known that elimination by nested ordering, which requires O(n3) multi-
plications and O(nzlogzn) storage locations on sequential computers, is
optimal. In this paper, it is shown that the dissection technique coupled
with parallel elimination allows such mesh systems to be solved in
0(n) arithmetic operations. The doubly nested dissection, a scheme more

convenient for parallel computation, is also discussed.



§1 Introduction

The use of internal parallelism has a significant influence
on the development of recent computing systems. The availability of
parallel array computers makes it important to consider how such a capa-
bility can be exploited in various classes of computational problems.

In this paper, the method of symmetric elimination for solving

a system of mesh equations is analyzed from the viewpoint of its adaptability
for parallel computation. Our aim is to study the inherent parallelism
contained in a particular problem formulation and to determine by how much

we can increase the speed if we use the parallel mode of computation.

The computer model that we shall use in the analysis is assumed

to have an unlimited number of processors. They are identical arithmetic
processors, each of which can perform any of the binary operations +, -, x, +
in unit time. A1l processors obtain their instructions from a single instruc-
tiqn stream, so that'they execute this same instruction, but on different
operand pairs.

For our study, we ignore all problems of memory access, data
communication, and programming. Efficiency losses due to book-keeping,
scheduling and overhead are neglected. Our main concern is the parallel
content of the symmetric elimination algorithm for a system of mesh
equations.

Let M be the mesh consisting of n? squares (elements), formed
by subdividing the unit square with a mesh spacing of %: An unknown is
associated with each of the N = (n+1)? grid points, called nodes in M.

|
Following George [4], we define a finite element system or mesh system

associated with M to be any N by N symmetric, positive definite system



(1.1) Ax = b

with the property that entry Aij is nonzero only if unknowns X; and X5 are
associated with nodes of the same mesh element of M.

The numerical solution of (1.1) using the LDL' decomposition of A
on a serial computer has been studied by George [3,4], and Hoffman, Martin
and Rose [6]. With the assumption that we avoid operating on and storing
zeros in the decomposition, Hoffman, Martin and Rose use a graph-theoretical
approach to obtain lower bounds on the number of nonzero entries in L and
the number of multiplicative operations required to effect the LoL’”
decomposition. They show that at least O(n3) multiplications are required and

at least O(nzlogzn) storage is needed for any ordering of the system. The

nested dissection scheme developed by George [3,4] is found to attain these

Tower bounds. Thus, the nested ordering is optimal in the order of magnitude
sense with respect to computational complexity and storage, provided that
we use the symmetric factorization algorithm.

In this context, Birkhoff and George [1] point out that there is
enormous potential parallelism in the computations associated with nested
dissection. In this paper, we consider the computational complexity bound
for the parallel solution of the finite element system (1.1) using symmetric
elimination by dfssection techniques. Our measure of computation is taken
to be the number of parallel arithmetic operations required to factor A
into LDL' and to do the back substitution. In section 3, the nested
dissection scheme is used to show that the factorization of A can be done

in 0{n) parallel operations. In section 4, we show that the final solution



can be obtained again in 0(n) operations. The doubly nested dissection,
a scheme more suited for parallel computation, is discussed in section 5.

Section 6 contains our concluding remarks.



§2 Symmetric Elimination

In this section, we review the elimination process and discuss
its adaptability for parallel computation. For our purposes, we find it
convenient to describe the LDL' factorization of A by the outer product
formulation (Rose [10]).

Let D0 = A, We have
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where dk is a positive scalar,
v, is a vector of length (N-k),
B, is an (N-k) by (N-k) symmetric positive definite matrix.

The procedure eventually stops after the (N-1)st step with

Hence, A can be written as

T T, T _ T
Lily «+ Ly Dyo1bnoge- Lok = Lo,

172

where L = LyL,...Ly 1 s unit Tower triangular

and D = Dy_;y is diagonal.

In the sequel, we shall refer to performing the k-th step of the factoriza-

tion as eliminating variable x, .

In [9]1, Pease studies the method of Gaussian elimination for
solving general N by N linear systems from the viewpoint of parallel
processing. For parallel machines having the capability of replacing a
row by a Tinear combination of two rows simultaneously, he shows that general
linear systems can be solved in O(NZ) parallel operations. For the computer
model used in our analysis, more parallel computations can be exploited
so that we have
Lenma 2.1 The symmetric factorization of an N by N symmetric positive

definite matrix can be performed in 3(N-1) parallel arithmetic operations.



Proof Consider the k-th step in the factorization algorithm (2.1).
One parallel division gives vk/dk. The outer product (vk/dk)vg can then
be formed using one multiplication. Another parallel subtraction
B, = B&—(vk/dk)v; completes the k-th step. Summing over the (N-1) steps,
we need at most 3(N-1) operations for the whole factorization process.

In lemma 2.1, if Vi is the number of nonzero components in Vies
it is straightforward to see that p-fold parallelism is necessary, where

_ ]
p = mix {zv (v 1)}

We note that the factorization algorithm given by (2.1) is itself
essentially sequential in nature. The computation involved in the elimina-
tion of variable Xy depends on the results of the previous eliminations.
Thus, we need to investigate the zero-nonzero structure of the finite element

matrix A as a source of parallelism.

Let X denote the set of variables in the linear systems. Let
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be two disjoint subsets of X.

Definition Subsets R and S are said to be independent if the off-

diagonal component A is zero for i = 1,...,rand j = 1,...,s. Other-
it i
wise, they are said to be connected.

Equivalently, R and S are independent if and only if there exists

a permutation P on A such that



.

A Cr

T _ T

(2.3) PAP' = A Cg
Cp Cg B

Px = X

For a subset S of variables, the boundary 3(S) of S is defined to

be the set of all variables not in S that are connected to S. If S = {x},
we shall write 3(x).
Lemma 2.2 R and S are independent if and only if R n S = ¢ and R n 3(S) = 4.

By the submatrix in A corresponding to S, we mean the submatrix

obtained by deleting all the rows and columns i of A, where i ¢ {q],qz,...,qs}.
The following lemma is a restatement of a result dde to Parter [8].
Lemma 2.3 The elimination of variables in S only affects the submatrix
in A corresponding to the subset S u 3(S).
We now discuss the solutjon of systems with independent subsets.
Let R and S be independent subsets (2.2) and P be as defined in (2.3).

The equivalent permuted system

(PAPT) (Px) = Pb



has a desirable block structure (2.3), where parallel elimination is

possible. Symmetric factorization of PAPT can be performed as follows:
Step 1a  Perform the first r steps of the factorization of

nT T '] -] T
(AR ‘R ) into (LR ><DR )(LR Dr'Lr Cr >
-Tn=~] 1.7 s
Cg O CRLR DR™ Inopes “CrAr CR IN-r-s

where AR = L,Dplp.
Step 1b  Perform the first s steps of the factorization of

T T -1, -1.7
(AS CS )into(Ls )(DS )(LS DS LS CS)
T 1T s
Cg 0 Cslg D Inp-g/\ ~CsAg Cg IN-r-s
- T
where AS = LSDSLS‘

Step 2 Compute B = B+(-C A']CT)+(—C A—]CT), and factor B into L_D_LT.
RR "R $7S S BB B

It should be clear that steps 1a and 1b can be executed
simultaneously due to the independence of R and S (George [5]). MWe shall

refer to this process as parallel block factorization (or elimination) with

respect to R and S.

In anticipation of what follows in the next section, we establish’
| some pre]iminaryvresults. The result in the following lemma is implicit
in the graph-theoretic treatment of elimination by Rose [10].

Lemma 2.4 If A is irreducible, Vi is a nonzero vector of length (N-k) for



A T
Lemma 2.5 Let the matrix A be partitioned as (C]

g )» where A, is an

M by M irreducible submatrix. If parallel elimination of (2.1) is used,
the number of parallel operations required to perform the first (M-1)

steps of the factorization algorithm for A is the same as that required to
factor A].

Proof Lemma 2.4 implies that the outer products of all vkv; for A, have
to be computed. Thus, in carrying out the first (M-1) factorization step
for A, the same number of outer products is required, although vectors of

longer length are involved. This does not increase the parallel operation

count.
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53 Nested Dissection and Parallel Factorization

In parallelism exploitation, recursive doubling (Stone [12]),

a technique generalized from the log product rule for the product of 2"
numbers, is often used. The basic technique involves the splitting of the
given task into two smaller, similar and independent subtasks. The
subtasks, being independent, can be executed simultaneously in different
processors. The intermediate results of the subtasks are then combined

to complete the computation. It is important to realize that each subtask
can in turn be performed by successive splitting so that the computations
will be spread over more processors.

The important idea of nested dissection, developed by George [3,4]
in solving finite element problems, has precisely the characteristics of
recursive doubling. In this section, the applicability of dissection
techniques in the solution of the mesh system (1.1) by parallel elimination
will be discussed. We shall follow the approach of Birkhoff and George [1],
where nested dissection is treated as partial orderings of partitions of
the mesh into disconnected components.

Consider the linear system (1.1) associated with the reqgular n by n

9

grid on the unit square. Without loss of generality, we assume that n = 27-2

for some integer % > 2. The case for n = 6 is shown in Figure 3.1 below.
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Figure 3.1 Dissection of 6 x 6 regular mesh
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By using a "+" shaped set of separating vertices (enclosed by
dotted 1ine in Figure 3.1), we can disconnect the mesh M into four regular
(%--1) by (2—-1) submeshes. From the definition of a finite element system,
it is easy to see that variables associated with the four components are
mutually independent. The partition, hence, induces the following block

structure on (1.1):

A AR by
Az ¢ 1 [ %2 b,
(3.1) Az Cg x3 | =| b3 |
Ay Cqf | % by
C; Cp C3 €y B Xg by

where A], AZ’ A3, A4 are irreducible finite element matrices associated

with the four submeshes. The matrix of (3.1) is in a desirable form in
which the parallel block factorization of section 2 can be applied. Let

F(n) denote the number of parallel operations required to factor a finite
element matrix associated with the n by n grid by parallel block elimination.

Lemma 3.1 F(n) = F(%—-1)+0(n).

Proof On performing the parallel block factorization for

=1,2,3,4,

N
o x>
-ty
[e] O
wnad
N—
—d
[}

it follows from lemma 2.5 that F(%—-])+0(1) parallel operations

are required. The entire factorization can then be completed by forming
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4
= 1.7
B =8B -1Z]CiA1. C;

and factoring B. Since B is an 2n+] by 2n+1 matrix, by lemma 2.1, 4+6n
parallel operations are sufficient. Combining, we have

F(n) = F(5 -1)+0(1)+4+6n = F(3 -1)+0(n).

Successive application of splitting is implicit in the recursive
relation of lemma 3.1. Thus, each independent component of the dissected
mesh is itself dissected, so that with infinite parallelism, we have
Theorem 3.2 F(n) = 0(n).

Proof The theorem follows directly from lemma 3.1 and the inequality

8

1.5,

0 2!

1.1 1
'|+-2-+ 57+.,,+ —7<

I~

[aS]

i
Theorem 3.2 shows that the dissection idea is well suited for
parallel computation. In fact, we may reinterpret the idea as that of -
ordering the vertices in the mesh M. From the matrix point of view,
elimination by nested dissection may be regarded as the elimination of a
maximal set of pairwise independent variables at each stage. It should be
clear that elimination of independent variables can be treated as independent
tasks and hence can be performed in parallel. This helps to explain the

effective use of parallel capability by nested dissection from another

point of view.
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For completeness sake, a nested dissected ordering for n = 6
is given in Figure 3.2. We have adopted the notation that variables

that will be eliminated in parallel are given the same number in the nested

ordering.

Figure 3.2 Nested Ordering for n = 6
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§4 Final Solution of the Mesh System
After completing the symmetric factorization of the finite
matrix A into LDL', the solution of the n by n mesh system (1.1) can then

be found by solving the systems

Ly = b,
(4.1) Dz =y,
and LTx = Z.

Recall that the lower triangular matrix L has O(nzlogzn) nonzero entries.
It is then easy to see that on a serial computer, (4.1) can be done in

2

0(n 1og2n) operations. In this section, we shall see how this substitution

step can be speeded up by parallelism.

We begin with a careful study of the solution of an N by N unit

lower triangular system:

(4.2) Lu = b.

Let L be expressed in the following form:

where each £, is a vector of length (N-k). The system (4.2) can be solved

as follows:
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Step O: Initialise u; = bi for i = 1,...,N.
Step k:  Compute ukzk and form

Uit Uk
(4.3) : = : - Uklk.

Un Uy

After (N-1) steps, the vector u contains the solution of (4.2). A direct
exploitation of parallelism in (4.3) gives
Lemma 4.1 The solution of an N by N unit lower triangular linear system
can be obtained in parallel using 2(N-1) operations.

For those L's arising from the LDL' factorization of mesh systems,
the operation count in lemma 4.1 can be significantly improved. Let R

and S be two independent sets of variables. The symmetric factorization of

.
A Cr
i

Ag Cg
Cp Cs B

yields an L with the block form (see section 2):
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where Ap = LeDelps

Ag = LoDsles

C = G LR D5

Cs = C§]L§T051’
and B = B - CoAz'Cr - CAAT'CE = LEDELE.
The forward substitution in

LR YR bp

L Ys }={ Ps
C, C LE y bg

can be performed by the following parallel block substitution scheme:

Step la  Solve

(2,000 ()

where I is the identity matrix of order (N-r-s).

N-r-s

Step 1b  Solve

(& )

Step 2 Compute bé = bB + bé + bé, and solve
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Again, steps la and 1b can be executed independently. We need

the following lemma:

T

Lemma 4.2 Let A = ( Ap € )
C B

submatrix. If parallel substitution of (4.3) is used, the number of

, where A, = L]D]L{ is an M by M irreducible

parallel operations required to perform the first (M-1) steps of the back
substitution for

(2 )C-(2)

B

is the same as that required to solve L]y] = b].

Proof By lemma 2.2, the columns below the diagonal in L-| are nonzero.
Thus the two tasks require the same amount of parallel operations although
the first one involves scalar multiplication and subtraction of Tonger
vectors.

Similar scheme and results can be obtained for upper triangular
systems. We are now ready to improve the complexity bound for the
parallel solution of (4.1). Recall that the mesh system (1.1) associated
with the n by n grid can be reordered by the dissection technique into the
block form (3.1). If A = LDL', the corresponding unit lower triangular

matrix L takes the form:
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_ T
- -T _'I .
C | CiLi Di , fori=1,2,3,4.

]

Let S(n) be the number of parallel operations required to perform the
forward and backward substitution (4.1) by parallel block substitution.

With lemmas 4.1 and 4.2, it is not difficult to obtain:
Lemma 4.3 S(n) = S(%--1)+O(n).

Theorem 4.4 S{(n) = 0(n).
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§5 Doubly Nested Dissection

A careful study of the parallel block factorization algorithm
with respect to independent subsets R and S (section 2) shows that the

modifications of B by -CRARCE and —Csﬂgcg are performed sequentially in

step 2. If we were to factor the apparently more appropriate submatrices

in step 1, that is, to compute B-C KJCT and B-C K]CT synchronously, we
R™R*R §$'STS

encounter the problem of memory interference. This arises because some

entries in B may need modifications from the contributions of both

AT =17
Problems of similar nature occur in the parallel block substitu-

tion scheme (section 4), if

Le YR\ _ [ P&

CR Inor-s /\ P bg
and

L RYRAW S

Cs Inops/\ bg bg

\

were to be solved simultaneously. The treatment in sections 3 and 4 offers
a solution, but it requires some additional computations and extra storage.

In this section, we give an alternate solution to this problem.
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Recall from lemma 2.3 that the elimination of variables in S
does not change the submatrix corresponding to variables in X\(S y 3S).
Bearing this in mind, we introduce the concept of complete independence.

Definition Variable subsets R and S are said to be completely independent

if they are independent and 3R n 3S = ¢.

In other words, complete independence implies a permutation P on

A such that
Ar
symmetric
Ag
T—
PAP = CR ABR
Cs Crs Ass
Carp Cys B

It is obviously desirable to have B = 0, the zero submatrix. This shall
be assumed in the remaining part of this section. The parallel factoriza-

tion algorithm can now be reformuiated as follows:

Step 1 Perform in parallel the first r steps and s steps of the

factorization of

T T "] ‘1T
A CroY L Lr Dp Lp Dplg Cp
into T -1 -
CR AaR CRLR DR IN-r—s AER IN-r—s
T T -] "]T
As Cs 1\ . Ls Dg Ls Dg'lg Cg
into -1 -1 -
Cs Ags Colg D' Inops Ays/ N Inopss
. - -1 - -1
respectively, where AaR = AaR'CRAR Cg and ABS = AaS'CSAS Cg.
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_ (A, C;
step 2 Factor B = °R ® Jinto LEDELI ,
Crs A3s B
where
Lar
Lé= - .
Crs Las

LR YR bR
Ls ys | [ s
Cr Lar Y3R bar
Cs Cps Las/ “as bas

can then be solved by

Step 1 Solve

L YR bg

Cr Tar/ \Par baR
and

L A&s b

Cs Ips (bés bys

in parallel.

Step 2 Solve

Lag )(yaR > (béR
Crs  Las/\Yss/ \ b3
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The algorithm for solving the corresponding upper triangular
system can be similarly formulated. We note that complete independence
enables modifications to be performed in parallel. To incorporate the

idea of complete independence into our model problem, we modify our nested

scheme given in section 3 to the so-called doubly nested dissection.

The mesh M is divided into four regular submeshes by a hollow "+"
shaped set of separating vertices. The doubly dissection of the 13 x 13

regular mesh is given in Figure 5.1.
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Figure 5.1 Doubly Dissection of 13 x 13 mesh

Variables associated with the four components are completely independent
due to the double screening effect of the separator. Recursive application
of the dissection technique yields a doubly nested ordering. We shall end

this section by stating the following theorem and providing a complete

doubly nested ordering for n = 5 in Figure 5.2.
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Theorem 5.1 Any finite element system (1.1) associated with M can be

solved using the doubly nested dissection in 0(n) parallel operations.

r y -
3 |4 |6 8 |3 14

9 (1011 {12113 {14

15116 17 {18119 [20

1 (2 J5 17 {1 |2

)
3 |4 (6 18 I 3 |4

Figure 5.2 A Doubly Nested Scheme for n = 5
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6 Concluding Remarks

The nested dissection technique, which is due to George [3], is
found to have the essential features of recursive doubling. In this context,
we have shown that the finite element system derived from a regular n by n
mesh can be solved in 0(n) parallel operations, provided that we have a
large degree of parallelism. Following Stone [12], we define the speed-up

ratio as a measure of efficiency evaluation

computation time on a serial computer
computer time on the parallel computer °

speed-up ratio =

It is known that the direct solution of the linear system (1.1) must take
a time proportional to 0(n3) on a serial computer (Hoffman, Martin and
Rose [6]). Thus, the speed-up ratio for parallel elimination by nested
dissection is proportional to nz, which indicates that the technique is
well suited for parallel computation.

We have also discussed the doubly nested dissection scheme, a
technique developed so that parallel eliminations and parallel substitutions
of blocks can be carried out in an absolutely independent manner. The
corresponding a1§orithms are simpler and better suited for parallel
computation. It is believed to have practical significance.

The same kind of dissection technique can be applied to problems
with Tess regular domains. Computation can be speeded up by eliminating
and back substituting (completely) independent sets of variables. However,

it would be difficult to analyze the speed-up ratio precisely.
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An important assumption in our analysis is the availability
of any number of parallel processors. It is not hard to see from the
remark after Temma 2.1 that to achieve a complexity bound of 0(n), 0(n2)—
fold parallelism is required in carrying out the symmetric factorization of
matrix A and the back solution of LDL'x = b. O(nz) is discouragingly
large when compared with the maximum degree of parallelism allowed in
existing parallel computers. For example, the ILLIAC IV computer can
perform at most 512 simultaneous computations. Yet our analysis shows
how the logical independence of subtasks in solving mesh equations may be
exploited to increase the speed of computation. As a matter of fact, the
“same ideas can be used if we do not have as many as 0(n2) parallel processors.
Suppose k processors are available, where k is less than 0(n2). EYimina-
tion by nested dissection can still be employed using O(n3/k) number of

parallel operations.
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