GRAPH OL-SYSTEMS AND RECURRENCE SYSTEMS ON
GRAPHS*

K. Culik and A. Lindenmayer**
Department of Computer Science
University of Waterloo, Waterloo, Ontario, Canada
and
Theoretical Biology Group
University of Utrecht, Utrecht, The Netherlands

CS-74-18
October 1974

This is an extended abstract of a paper to be presented at
the Eighths Hawaii Conference on Systems Science, January, 1975.

* This work has been supported by the National Research
Council of Canada, Grant No.A7403

** Visiting Professor at the University of Waterloo in the
fall term 1974,

GRAPH OL-SYSTEMS AND RECURRENCE SYSTEMS ON GRAPHS¥

K. Culik II and A. Lindenmayer*#*
Department of Computer Science
University of Waterloo, Waterloo, Ontario, Canada

and

Theoretical Biology Group
University of Utrecht, Utrecht, The Netherlands

Parallel rewriting systems on strings have in
recent years been employed to model the develop~
ment of multicellular filamentous organisms [1,2].
In the present paper we propose to generalize
parallel rewriting to graphs in order to enable us
to model the development of multidimensional
organisms.

For biological reasons we take cells to be
the basic units since they are known to be meta-
bolically and genetically autonemous functional
units of most organisms. The most relevant aspect
of their autonomy 1is the fact that all cells of a
given organism contain the same complement of DNA,
which each cell receives from its mother cell and
passes on to its daughter cells. Our systems
incorporate this uniformly programmed and highly
redundant aspect of multicellular develaopment by
applying the same rewriting rules to all cells in
a-given mvltidimensional array.

A cellular array is essentially a subdivision
of a limited space into units which completely £1ll
the space. Tessellations and maps are examples of
two-dimensional cellular arrays. We wish to
concern ourselves primarily with neighborhood
aspects of such arrays, i.e. topologlcal aspects,
and not with their detailed metric descriptions.

. The timing and orientation of a cell division, for
instance, is to be affected by the state of the
cell and the states of neighboring cells, but not
by their exact shapes, sizes and positions, as
would be the case in a metric description. Bio-
chemical and cell-physiological mechanisms make
topological descriptions of cellular development
the more plausible ones. This aspect of our
models is expressed by our choice of graph repre~
sentation of cellular arrays.

We choose a graph to be defined as a set of
ordered pairs (directed edges) over a set of nodes.
Both nodes and edges are to be labeled. This
definition of graphs precludes multiple edges with
the same label between the same ordered pair of
nndes. Thus cases where cells in an array touch
each other along more than one discontinuous
boundary cannot be expressed by our graph notation.
Such cases occur rather rarely in organisms, and
we gain considerable clarity by omitting them.

The node labels in our graphs correspond to
states of cells. The cells are considered to be
finite automata, each cell changing its state at
discrete timg Intervals according to 1its previous
state and its inputs., The states and inputs of
cells are interpreted as combinations of chemical
and physical factors present in the cells or
entering them.

In order to model development, new cells must
be added to or taken away from arrays at certain
times and places. Thus we need to allow the substi-
tution of a graph for each node of the previous
graph. These substitution (or rewriting) rules are
consldered to be extensions of the state transition
functions of finite automata.

Purely topological descriptions of cellular
arrays would not require edge labeling. However,
sometimes we wish to include in our descriptions
geometric properties other than only the nefghbor-
hood relation. Edge labeling and direction of edges
enable us to express some simple geometric proper-
ties, for example, by choosing one edge label for
horizontally touching neighbors, and another one
for vertically touching ones.

By simultaneous application of node rewriting
rules (productions) to all the nodes of a graph,
and then by application of suitable connection
rules, we obtain a new graph. By repetition of
this procedure a set of graphs is generated, which
constitutes a developmental graph language.

Mayoh [3,4] has proposed and demonstrated on
some particular examples graph generating systems
with connection rules based on node labels. We are
now presenting a powerful and general mechanism for
defining connection rules, dependent both on node
labels and on the structure of the neighborhoods
{e.g. ordering of neighbors).

Parallel rewriting systems on one-dimensional
cellular arrays (represented by strings of symbols)
have been called "OL-systems'" if no interactiom
takes place among the cells, and "IL-systems' if
there 1s interaction. Deterministic string generat-
ing L-systems are those which have a single produc~
tion for each symbol, and propagating L-systems are
those which do not allow erasing of symbols (no
cell death).

* This work has been supported by the National Research Council of Canada, Grant No.A7403.

** Visiting Proféssor at the University of Waterloo in the fall term 1974,

Generating systems {grammars) for graphs or
for multidimensional arrays (webs, cellular
automata) have been proposed before (references
would be too numerous to be included here), but all
of these constructs were such that the graphs or
arrays were either allowed to grow only at the
edges or surfaces, or substitutions for nodes
(subgraphs) were allowed only sequentially. For
biological reasons we insist on simultaneous re-
writing and on being able to add new cells in the
interior of the array. We also wish to allow
connections only between nodes which are either
daughter nodes of the same mother node, or the
mothers of which were connected in the previous
graph.

Definition of propagating graph OL-systems

(PGOL-systems)

For lack of space, instead of formal defini-
tions (to be found in [5]), we present the needed
notions here only informally.

As stated before, organisms in our systems
are represented by directed graphs with labeled
nodes and labeled edges, having a special node
(the environmental node) labeled by e. Edges
going to or from the environmental node shall be
called outgide edges and the others inside edges.
Since we are not interested in naming individual
nodes, we shall only be concerned with isomorphic
classes of such graphs (in the following called
abstract e-graphs).

An abstract e-graph over (£,A,A') 18 an iso-~
morphic class of graphs with environmental nodes
labeled e (e ¢ I), all the other nodes labeled by
elements of I, inside edges laheled by elements of
A and outside edges by elements of A'. 'The family
of all abstract e-~graphs over (£,A,A') is denoted
by (Z,4,4'),. The empty abstract e-graph (the
abstract e-graph with single node labeled by e and
no edges) is denoted by A, and the set (Z,A,A")4~
{)A} 1s denoted by (Z,A,A')+. Whenever A = A' we
will write (Z,A,A') as (Z,A).

In our diagrams of abstract e-graphs the out-
side edges will be shown as free arrowg and the
environmental node will not be shown. The outside
edges will in this context be called "hands".

We want to define now the coalescence of two
abstract e-graphs into one by adding new edges.
This will be done with the help of "stencils". A
stencil is an abstract e-graph with a bipartition
of its nodes (strictly speaking, with a bipartition
of the nodes of any of the representants in this
equivalence class). In consequence, each stencil
has two subsets of nodes, and we shall call these
the "source" and "target'" nodes. The set of all
stencils over (Z,A,A') 1is denoted by (I,4,A")%.

An ordered pair of abstract e-graphs (or
simply graphs) o, B can be joined (coalesced)
according to the stencil y into a new graph §,
denoted as x L, 8, in the following way.

Only those pairs of nodes from ¢ and B may be
joined which have matching hands (i.e., one node

in o has an outgoing and the other in B an incoming
hand, or vice versa, with the same label). Which of
such pairs of nodes are connected is determined by
the stencil v in the sense that after all new
connections are made, Yy is a subgraph of § so that
(1) the source nodes of y are all in a, (2) the
target nodes of y are all in B, and (3) all the new
edges in § (between nodes in @ and in B8) are in y.
In the following, we shall call stencil y applicable
to the ordered pair a, B if o and £ can be joined
according to Y.

For a stencil y let ¥y Yo denote the subgraphs
induced by its source and §arget nodes, respectively.
Let C be a set of stencils, and y be in C. We say
that vy is C-maximal for o, B if y is applicable to
o, B-and 1f there is no n in C such that n is appli-
cable to a and B, Yg is a subgraph of Tigs and Yo is
a subgraph Nope

Next we extend our definition of joining of
graphs by a stencil to the case where two graphs o
and B are joined with respect to a set of stencils
C, giving rise to a set of graphs D = ¢ B, as
follows:

D= {a)s B:y € C and vy 1s C-maximal for a,B}

For the formal definition of both graph produc-
tion gystems and graph recurrence systems we naed
the notion of "graph expression". A graph express-
lon over (I,A) denotes a set of graphs over (I,A)
and it has actually the form of an abstract e-graph
of which the nodes are labeled by graphs over (I,A),
the inside edges are labeled by sets of stencils
over (Z,A), and the hands are labeled by elements
of A. In other words, a graph expression over (I,A)
i3 an abstract e-graph over (,7,A) where is a
finite subget of (I,A),, and 7 is a finite set of
subsets of (I,A)$.

A graph expression A over (I,A) defines the set
of graphs over (I,A) denoted by D(A). The defini-
tion is as follows:

Let the nodes of A except the environmental
node be indexed by numbers 1,...,n, and let graph
ay be the label of the i-th node (ay; ¢ Q) for
1 <1 sn. Then § is an element of D(A) if there
exists a partition of the nodes of § into n+l sets,
namely {e}, ViseeesV . 80 that

1) The subgraph of § induced by V; 1s the graph
af{, for each 1 < 1 < n.

2) For every edge of A the following must hold:
let the edge go from node indexed by 1 to node
indexed by j and let it be labeled by stencil-set H.
There must exist an element Yy of the set of graphs
afu+ oy such that the subgraph of y induced by the
non-enVironmental nodes of Yy must be identical to
the subgraph of § induced by vi u Vj.

3) There is an in(out)-going hand labeled h to
(from) a node a of §, say a is node of ay, 1ff there
is an in{out)-going hand with label h to (from) a

in ay, and to (from) the mother node indexed by i

in A.

Having given an informal definition of graph
expressions, we can now define a propagating graph

OL-system (PGOL-system). A PGOL-system G is a
quintuple <%,A,P,C,S>, where

L is an alphabet of node labels;

A 18 an alphabet of edge labels;

P is a finite subset of I X (Z,A)+ of
productions;

C is a finite subset of A X (Z,A): of
connection rules;

S in (,4), is the axiom (initial graph).

Productions and connection rules are written
in the form aj—s ¢. The set P must be complete,
i.e. for each a in I there is an a so that avr—> q
ig in P.

For v,8 in (E,A)+ we write y => & if there
exists a graph expression W such that:

1) W is obtained by relabeling of y sethat each
occurrence of a node label from I-{e}, say a, is
replaced by o for some a =+ in P, and each edge
label, say b, of an inside edge is replaced by the
set of stencils {B:bwr=B is in C} u {A}.

1i) 6 is in D(W).
The reflexive and transitive closure of rela~-
tion 2> is denoted by E>*.

The graph language generated by G is denoted
by L(G) and defined as {a:S Eb*ra}.

A PGOL~system (%L,A,P,C,S) is called determin-
1stic 1if P and C satisfy the following conditions:

i) Por every a in L there is exactly one a so
that 4> o is in P.

ii) Let an edge labeled by h and pointing from a
node labeled a, to a node labeled a, occur in S,
Por C; let 31'_’0‘1 and a, w0, be in P; and let
H = {B:h =B ¢ C}.” There must Be at most one Y
in H such that y is H-maximal for al, Oy

In the following example we represent abstract
e~graphs by diagrams showing only node labels, not
the nodes themselves. In stencils the source node
labels are circled.

Example. Let G = <{a},{h,v},P,C,5> be a PGOL-
system, where set P consists of the single

production: S is the graph:
v lv v
Li_‘; LN h,&.".,
s b ¥
hoYhth
{v iv

and C is the set of the following connection rules:
R o ia)l»@
v v v v
[o
hegh o=

This, clearly, 1s a deterministic PGOL~-system.
first two derivation-steps are shown below, with
edge labels omitted in the last diagram:

The

v klvk Vl’| —9:———->a-—~)a——>a——->

W \ =3 —>a— 4 ¥ ¥)
——>3v~—w —> " 1\, lv > : —>a ""’*c‘i —»a

LN QELIS 3 ¥ —g ——-+§ —3 -__»é —

A S S S
¥ ¥ ¥ v

If we interpret graphs in L(G) as planary maps with
every a represented by a square of equal size, and
h and v by horizontal and vertical relative posi-
tions of neighbors, then we seem to generate by
this system square grids of 4™ units. 1In fact, the
reader can verify that the stencils on the right-
hand sides of connection rules give us exactly those
graphs which correspond to square grids of 40 units,
for all n 2 0. Biological applications of graph
OL-systems are also available (see [6]), but cannot
be presented in this abstract.

Results on PGOL-systems

Various special types or modifications of
string OL-systems have been studied, sce e.g. (7]
or [8] to which we refer the reader for formal
definitions of "operators": F(finite number of
axioms), D(deterministic), T(table) and C(codings
or literal homomorphisms). We want to consider
these "operators" and their combinations alsc for
PGOL systemg. D has already been defined, the
meaning of F and T is obvious, for C we need to say,
informally, that we will consider here only codings
of node labels and not of edge labels.

We shall use the same notation for the families
of graph languages generated by various types of
systems as 1s common for the corresponding families
of languages (see e.g. [7]) except that the names
will have suffix GOL rather than OL. For example,
the family of graph languages generated by deter-
ministic table propagating GOL-systems with finite
number of axioms will be denoted by DIFPGOL.

Theorem 1 Let X and Y be any combinations of
"operators"” D, F, T and C. If the classes of string
languages XPOL and YPOL are incomparable classes of
graph languages, then the XPGOL and YPGOL are
incomparable.

Theorem 2 If XPGOL & YPGOL and XPOL $ YPOL then
XPGOL $ YPGOL.

Idea of proof of Theorems 1 and 2: For every com-
bination of operators X we define a special subclass
of XPGOL systems such that any XPOL-system can be
simulated by a special XPGOL-system, and vice versa.

In the above figure we have summarised the proper
containment (solid lines -~ if A is below B then

A ¢ B) and incomparability (dotted linesg) results
for classes of XPGOL languages. They follow from
the above two theorems, since it can be shown that
the same diagram (when omitting G) is valid for
classes of string languages.

We call a PGOL-system bifurcating 1f the
right~hand side of its every production has at
most two nodes.

Theorem 3 For every PGOL-system G = (X,A,P,C,S)
‘there cxists a constant k and a bifurcating PGOL~-

system G' = (&',A,P',C',8) such that S 69 Wiff

S 2$> W, where %D means ''derives in j steps"

Almost all living cellular developmental
systems are bifurcating. However, the above
theorem provides justification for studying and
using non-bifurcating systems as well, since the
developmental behavior of such systems corres-
ponds to infrequent observations of the detailed
gsequence of the actual bifurcating behavior.

Recurrence systems on graphs

In this section we can give only a brief
outline of the material that is contained in the
full paper {5]. Using a generalisation of graph
expressions and in addition similarly defined
stencil expressions we can define graph recurrence
systems. Analogously to string recurrence
systems [9], we need one or more recurrence
equations for defining sets of. graphs. But in
the case of graph recurrence systems we also need
one or more recurrence equations for sets of
stencils to be used as connection rules in each
of the recurrence equatioms.

Example. Now, we give a recurrence system (with
the distinguished variable A) for the graph
language generated by the PGOL-system in the ~
previous example. Note that H and V are
constant stencils.

‘v

*v ———-A —"»
AO - h’.3:L> ! B-h>AYE——>i-—JL

LN
[
v

v v
Hy = L’é)"’ib" Hop ™ in

Moo I
H
o "
Vg = h av_‘\. Vo -—*v—*V“
——V{v
h (3-iL-a L%
i = v ‘v
@b ah a—-»—a

‘v

A-free recurrence systems on graphs.

.than PGOL-aystems.

In.the following we consider only so-called
In these
systems the empty graph A can only be used as a
constant stencil but not as an initial value nor
at the right side of any equation.

The following theorem can be proved [5] which
is a generalisation of a similar result for strings.

Theorem 4 Every PGOL-language can be defined by
a recurrence system.

For strings there is a complementary result,
namely, that every language L described by a
recurrence system can be expressed as Ly n Zf
where 1., 18 an OL-language over 7. and I. < L.
This result cannct be extended to graphs. We sece
from the followinp decidability results that
recurrence systems for graphs arc much more complex
.80 thae generalisation of
recurrence systcms from strings to graphs 1is much
"stronger"” than the generalisation of production
systems from strings to graphs.

Theorem 5 Given a PGOL-system (FTPGOL-system) G

and an abstract graph a it is decidable whether a
is a subgraph.of some element of L(G).

Theorem 6 Given a recurrence system and an
abstract graph a it is recursively undecidable
whether o 1s a subgraph of some element of the
language defined by the given recurrence systemn.

Theorems 5 and 6 hold also when we ask whether
o 18 a full subgraph rather than subgraph. A full
subgraph of B is a subgraph of B induced by a sub-
set of nodes of B. Since neither PGOL systems nor
A-free recurrence systems allow erasing we have
the following.

Theorem 7 The membership problem is decidable for
both PGOL-systems and recurrence systems

. on graphs.

In [5) a definition is given for propagating

. graph. aystems with interactions (PGIL-systems) in
.. which the left~hand side of every production is a
. graph with a distinguished node.

The distinguish-
ed.node. 1s the one to be replaced and the graph
provides the restrictional context for the
replacement.

REFERENCES

1. A. Salomaa, Formal lanquages, Part 2, Section 13, Academic Press,
New York, 1973.

2. G.T. Herman and G. Rozenberg, with a contribution by A. Lindenmayer,
Developmental Systems and lanquages, North-Holland Publ.Co.,
Amsterdam (in press).

3. B.H. Mayoh, Mathematical model for cCellular organisms, Dept. of
Comp. Sci., Aarhus Univ., Denmark, Rep. No. DAIMI PB-12,
Apr.1973, 38 pp.

4, B.H. Mayoh, "Multidimensional Lindenmayer organisms", in L Systems,
edited by G. Rozenberg and A. Salomaa, Lect.! Notes in Computer
Science No.15, Springer Verlag, Heidelberg (in press).

5. K. Culijk II, and A. Lindenmayer, "Parallel rewriting systems for
graphs”, (paper in preparation).

6. A. Lindenmayer, and K. Culik II, "Graph systems and languages for
multidimensional cellular development" (paper in preparation).

7. M. Nielsen, G. Rozenberg, A. Salomaa, and S. Skyum, Nonterminals,
homomorphisms and codings in different variations of OL systems,
Parts I and II", Dept. of Comp. Sci., Aarhus Univ., Denmark,
Rep. No. DAIMI PB-21, Jan. 1974, 50 pp.

8. K. Culik II, and J. Opatrny, "Literal homomorphisms of OL-languages",
Int. J. Computer Math. (in press), extended abstract in Proceedings
of the 1974 conference on biologically motivated automata theory, pp.50-53.

9. G.T. Herman, A. Lindenmayer, and G. Rozenberg, "Descriptions of
deve]opmgnta] languages using recurrence systems", Math. Systems
Theory (in press).

	
	
	
	
	
	

