DATA TRANSMISSION AND MODULARITY
ASPECTS OF PROGRAMMING LANGUAGES

by
Arndt von Staa

Research Report CS-74-17

Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

October 1974

Chapter
1.1
1.2

Chapter
2.1
2.2
2.3

Chapter

1. Introduction
Statement of Goals
Overview of the Dissertation

2+ Basic Concepts

Spacey, Names, and Textual Names
Scope of Names

Summary of Definitions

3. Types

Types and Spaces

Type Operations on Spaces
Type Descriptors as Values
Type lIdentification

Type Checking

4. Access Functionsg
Locator Function Parameters
Dynamic Space MNanagement

Establishing a Controlled Environment for Name

Typed Values
Access MNonitoring
Generator Functions

5. Information Transemie@sion

Association and Transmission

Parameter Lists

Parameter List Typed Variables

Miscellaneous Topics Regarding Information
Interchange

6. Exception Bandling

Exception Handling in Existing Programming
Languages

Exception Descriptors

Exception Handler and Program Interaction

Time Dependent Aspects of Exception Handling

7. Epilogue

Bibliography

B.1
B.2

Abbreviations
Bibliography Listing

)]
* 0o o []
o= R

®

[-G -S WO LWLWL W [SE S B S M

® o 2 @ o o o o o & o o
(SIS - 3 G S AN 0D
(X (SIS VN) »

4.34
4.47
4.54

S.1
Se3
5.22
5.33

ACENQWLEDGEMENIS
I wish to express my deep appreciation to my supervi-
sory Professor W.M. Gentleman, for his constant guidance,

suggestions and criticisms made during the writing and

research of thie dissertatione

I wish also to extent my gratitude +to Professor D.De.
Cowan for his encouragement and moral support during my

stay at the University of Waterloo.

The financial support of the Pontiflicia Universidade
Catolica do Rio de Janeiroy, Brazil, is gratefully acknowl-

edged.

ABSIRACT

In this dissertation we will study the problems
relative to the interchange of information between program
modules. Although the results apply also to information
transmission between machines, we are primarily interested
in developing techniques such that several program modules
may interchange information in a meaningful way, whether or
not these modules belong to the same ﬁrogram, whether or
not they have been independently compiled and whether or
not their corresponding source code applies to different

language Processgorse

As well as the problems related to information
interchange, we will also study how to build modules in
such a way that modules which produce the same computation
are interchangeable, that modules may be independently
compiled and that modules are adaptive to the program in
question in the sense that they do not have to be manually

encoded again in order to fit into this particular progranm.

We will devote our attention to (i) data types, (ii)
how information is accessed and protected from unauthorized
accessgsesy (iii) how modules interchange information, and
(iv) how modules behave in the presence of run—-time

detected exceptionse

Introduction . mlel~

1. Introduction.
1.1 Statement of Goals.

In this dissertation we will study the problems
relative to the interchange of information between program
modules. First let ue examine the relevancy of such a

study.

In today's engineering practice the use of building
blocks is becoming more and more widespread. The main
driving forces being economy due to the repeated use of a
same block, and speed of design due to the decrease of the
level of design detail. Building blocks exist in current
programming languages in several forms, such as functions,
proceduresy; macros etce. Usually though, they lack of
flexibility and/or accuracy of composition, where the
latter means that language processors seldomly perform a
validation of the data paths between modules. The design of
tools, or better of language constructs which allow the
construction of flexible and accurately composable modules
is thus badly needed in today's programming practice. Our
goal is then to design tools so as to produce modules which

are:

a~ flexible in the icnse that a given module may serve
for several differeant applications. For example, a
module implementing a stack should not freeze the
type of +this stack until this module is effectively
used. This would allow the same module to be used in
several different places, e.ge a8 a stack of inte-

gersy, or a stack of module instances etc.

b- composable as defined by Dennis[Den3]. That is, it
should be possible to build modules from other mod-
ules without any restriction of hierarchical depthe.

C=

Introduction -1e2~

accurately composable in the sense that, when
composing modules, the data paths are examined for

meaningfulness.

non—interfering but through well defined data paths
[Den3]. This implies that the amount of information
which can be interchanged between two modules should

be kept minimal{Myel].

diagnosable in the sense that exceptions detected
during run—time are either recoverable or produce
descriptive information at the source language level

rather than at hardware level.

It is a natural consequence of this statement ot

objectives that we should answer following questions:

what 18 a data type? This question must be answered,
since we desire to impose a meaning on the informa-
tion being interchanged, where this meaning conveys
more information than Jjust a description of the set

of possible values [chapter 3].

how 1is information made available and/or accessed?
This question must be answered, since we desire to
minimize the amount of information a module makes
available and/or reqires, although we do not want to
impose restrictions on the class of programs which

could be written [chapter 4].

how are data paths established between modules? This
question must be answered, since we must be able to
define how modules interchange information in a

meaningful way [chapter S].

Introduction -1e3-

d- what actions are to be taken when exceptions are
detected at run—~time? This queation must be answered,
since exceptions could be valid information in the
sense that they may drive the elaboration of a pro-
gram and, consequently, may be interchanged between

modules [chapter 6].

In order for such a study to be of practical value, we
may not solve problems by imposing restrictions on the form
or content of programs which could be written. Since we are
unable to foresee all possible applications, this amcounts

to not restricting the power of expression of the language.

It should be emphasized that we are not proposing a
new programming language. Rather we are studying the
semantical aspects of the constructs required in order to
achieve the stated goals. A8 a consequence we have not
attempted to define a syntaxe. Instead, we borrow notation
from several existing programming languages, more notably

ALGOL 68[Winl,Lin1] and PASCAL[Wir2,¥ir4].

This study is not completey i.e¢ not all problems
relative to modularity and information lnferchanae are
examinede. For instancey, we are not dealing with problenms
related to the existence of multiple access paths to a same
data space. The reason for this incompleteness is that it
seemed to be quite natural to break the study at a point
where dynamic interference began to appear more

prominently.

Introduction -1.4~

1.2 Qverview of the Dissertation.

In chapter 2 we examine the concepts relative to
storage and the use of storage within progrems written in a
symbolic language. The main purpose of this chapter is to
define basic concepts and terminology which will be used

throughout the remainder of this dissertatione.

In chapter 3 we will study the meaning of data objects
ieee typese. Following Norris[Mor2] we do not consider a
type as dbeing Just the definition of a set of values, but,
rather a type defines both a set of values and a set of
operations on these values. Thus, our concept of type re-—
sembles the concept of data structure{Earl,Ear2,Flel,Har2,
HoalyHoa2,knu2yStal;Tur2,Weg2] rather +than a simple space
descriptor as, for instance, structures in PL/1l. From the
implementational point of view, our types can be viewed as
being similar to classes in SIMULA67[Dah3] or to clusters
as defined by Liskov and Zilles[Lisl].

It follovs from our definition of type, that it makes
sense now to talk about types such as: "gtack of user
type", "string of user type", "buffer of user type" etce,
where these types are characterized primarily by the
operations which can be performed on them. We will also be
able to define types such as?: "prime integers", "square
upper triangular matrices" etc.y where these types are
characterized by being a proper subset of some well defined
basic type, such as the integers or s8gquare matrices

respeétively.

The first advantage of generalizing the concept of
types, is that we will be able to talk openly about the

_ properties of a given type. That is, we are no laoanger

Introduction —1.5—

obliged to hide these properties in code which is sometinmes
difficult to understand. It does contribute then to:

a= understandability of programs, or, as sometimes cal-

led, structuring of programs;

b~ interchangeability of implementations, this follows
from the fact that the implementations are greatly
transparente. Thus we are abdble to chose the best
suited implementation of a given type without
affecting other portions of the programe.

c= modularity, that isy programs can be broken into
several small programa, where the interaction between
thesge programs occurs through clear and well defined

interfaces.

Most of the concepts are based on, and extend,
concepts introduced by the SIMULA67 class mechanisms[Dah2,
Dah3,Dah4,Hoad]. Several ideas were also taken from work
done by Hoare[HoaS], Wirth[Wir2,Wir4] and Parnas[Par2,
Par3].

From the point of view of inter—module transmission,
this chapter is important mainly because we want to assure‘
that programs receive thé data they expect. In this case it
becomes even more necessary that we do not Jjust pass
unqualified ”inteaer-" for instance, but that we are able
to pass a "prime integer". If we observe the techniques
used conventionally, what we aro‘ptoposlng is nothing more
than to mechanize part of what is done verbally or through

documentationy, i.e. programming discipline.

In chapter 4 we study how information is accessed and/
or made available. Internal spaces of some module My, e.ge a

procedure or type descriptory, may be accessed by means of

Introduction -1,6~-

some access function defined by M or global to M. Such ac-
cess functions, or locator functions, could occur in a va-
riety of forms and degrees of complexity. For example, sone
access functions could be made responsible for traversing a
tree in some predefined order. Others could be made respon—
sible simply for accessing dynamic storage spsces. Finally,
others could perform checking operations in order to
determine whether a given procedure may effectively access
the data space in gquestione We may say then, that access

functions serve at least for the following two purposes:

i- to characterize the storage behaviour of a given

type, eege treey, stack, buffer etc.;

ii~ to protect the data spaces internal to the modules

defining the access functione.

Access functions, or locator functions, could take the
degenerate form of Jjust loading an address into some regis—
tere. Other access functions could compute such addresses by
means of some user provided parameter. Finally, others
could receive or establish control information <from which

these addresses could be abstracted.

When performing list processing, usually some pointer,
or reference, is used to refer to a particular element of
the liste. It has been recognized though, that the generali-
ty of pointers may cause the certification of programs to
become quite difficult{Hoa7]. This suggests then, that an
alternative for pointers be found, where this alternative

should:

a— not restrict the power of expression of the program-
ming language, nor cause the textual dissociation of

related entities;

Introduction -] o=

b=~ restrict as much as posssible the set of data spaces

able to be accessed;

c~ hide as much as possible the implementation of
modules which make internal spaces available +to the

exterior;
d~- allow verification of access rights.

We will show in this chapter that these objectives can
be mete As a result we show that several language con-
structs become necessarye. However, we will not study wheth—

er some of these constructs are necessarily inefficient.

In this chapter we will also examine how successive
elements of a given ordered gset could be generated. It
should be noted that these seta or, better, sequences could
be defined in a computational manner, e.g. the sequence of
nodes visited when traversing a tree in some order. We will
examine then the constructs which are necessary in order to
implement generator functions. The concept of generator
functions has been defined for a long time already, e.ge
IPL-V[New1,Gell1]; it has received little consideration in
present programming languages thoughe. It will be shown that
by means of generator functions the implementational char—
acteristics of a module could be hidden, thus contributing
significantly to the interchangeability and flexibility of

modulese.

Another problem which arises when information is
interchanged between modules 1is that of privacy and access
path controly, e.ge reference counte. It will be shown that,
in order to overcome these problems, we must be able to
redefine or extend language processor defined operatorsy in

particular the store operator. Of course, these access con—
ARAPRRAR

Introduction -1e8~

trols are weak in the sense that the language caonventions

must be obeyed, sincey, otherwise, the controls become

ineffectivee

In chapter S we will study the problems relative to
information interchange between modules. In particular we
will examine how independently compiled modules may inter—

change information.

Information may be interchanged in several ways, e.g.
by means of global areas, actual/formal parameter lists as
well as by means of nessage transmissione. Ve will show
thaty, from the point of view of actually making information
availabley, we can study these three different forms of

information interchange in a unified mannere.

The basic concept which we will use for interchanging
information is the parameter list. We will define parameter
list association 1in such a way that it becomes explicit
which parameters are to be associateds As we shall see,
this allows us to plecemeal associate parameter lists. It
also allows us to dissociate the textual order of parame-—
ters from the order in which parameters occur in parameter
listse That is, we will depart from the positional associa-
tion rule of parameters which is common to most of the
present day languages. Finally, due to our parameter list
association rule, it becomes possible to define one single
parameter 1list which contains formal, global as well as

message (sender/receiver) parameterse.

Besides parameter lists, we will also study module
typed variables and the activation forms of modules. Thus,
we will study control flow and data flow driven modules.
Furthermore,; we will relate interrupt handlers with data

flow driven modulese.

Introduction -1 .9~

Module typed variables pose several problems of their
owne We are particularly interested here in defining
association of parameter lists in the presence of module
typed variables. As we shall seey such module typed vari-
ables imply that association will act upon parameter list
typed variables. Furthermore, module typed variables imply
the need for template parameter lists in addition to actual
and formal parameter lists. Such a template parameter list
describes the parameter list related to the uses (calls) of

module typed variables.

Module typed variables will be treated in the same way
as any other variable. It is thus valid to define arrays of

modules or functions which return module typed valuese.

Finallyy, in chapter 6 we study exception handling.

There are several reasons why such a study is important:

a- programs might bde interrupt driven. For example,
interactive systemng, e€oge time~gharing systems,
usually allow executing programs to be preempted and

later to be resumed by means of user interaction.

b~ gome operations may fail and this failure may direct
further action, where such a failure is not to be
regarded as an error. For example, when reading
records from a sequential file, ee.ge tape tile, a
read request may fail due to the file having been
exausted. In this case a summary submodule is

frequently started.

c- a given module N could define several -ubqodulon,
each of which attempts to solve the same probles in a
different way, ec.ge using different algorithms and/or

starting valuese By means of successive trials of

Introduction

~1.10~

these submodules and/or starting values, the module N

could eventually produce the desired result.

d~ machine failures could cause program elaboration

failurese. Such failures are non—avoidable since every

machine possesses a (usually very slim) probability

of malfunction. Notice that such failures

occur

frequently in 1input/output handling modules and

appropriate safeguards are incorporated into

modules.

these

e~ the program itself may contain errors and thus reach

abnormal states. Ideally programs should be proved

correct[DPij4,FlolyHoa2] Pragmatically, though, this

ideal cannot be achieved when using the

currently available[Horl]. Thus even when

tools

programs

have been '"proved" correct, they may still be

incorrect{Sch4] possibly due to incorrect
misunderstanding of the program environment,

seen conditions etce.

From 1items (a) through (c) it folows that
desire to use exceptions as a tool for solving
problem. From items (d) and (e) it follows that we
able to cope with unexpected exceptions in order to
serious damages to the program (or system) and to

information which, hopefully, aids fault diagnosise.

proofs,

unfore—

we may
a given
must be
prevent

produce

We will study in this chapter how exception conditions

can be defined so0o asg to allow user defined conditions and

parameters to exception handlers. Since exception handlers

can be equivalenced to data flow driven modules, as

will be

shown in chapter S, we are in fact studying here the tools

necessary to implement data flow driven modulese.

Introduction -1.11~

The point where an exception is detected 1is not
necessarily within the module instance which defines the
corresponding exception handler. We must examine then how a
detected exception may be passed from module instance to
module instance in order to be serviced eventually. VWe will
examine also the ways in which control can be given back to

the module instance where the exception was detected.

Due to the parallel or gquasi-parallel nature of excep—
tion handlers, there are several timing problems which must
be examined. Our study will concentrate in determining the
different timina problems and how they could be overcomee.
However, we will not study how deadlocks could be detected

and/or preventede.

Basic Concepts —2¢1=

2. Bagic Concepnts Regarding Storasge.

In this chapter we will study concepts relative to
storage and the use of storage within a program written in
a symbolic language. Furthermore, we will consider only the

aspects of unstructured storage.

In msection 2.1 we define space, names, access paths
and textual names. In section 2.2 we define se#eral forms
of scopee. In section 2.3 we list the formal definitions of
the more important concepts introduced in sections 21 and

22

2.1 Space., Names and Iextual Names.

A storage gedium is a device where information may be
placedy, and/or from where it may eventually be retrieved.
Examples of media are: core; magnetic tapes, disks and

drums; punched cards; output forms.

A piece of information occupies a portion of the
medium where it is stored. This portion is characterized by
a starting position within the medium, i.e. addresg, and by
an extente Examples of addresses are: core address; the
tape drive designation and the position of the tape on this
unit. Examples of extents are: word lengths and record

lengthse.

The storage space characterized by the triple <medium,
address,extent” will be called gpaces Notice that the
concept of space presented here is completely void of
structure and interpretation [i.e. type]. Furthermore, the
way in which space has been defined implies contiguous

sections of storage onlye. In chapter 3 we will study how to

Bagsic Concepts =242~

attach meaning to spaces, and also how different spaces may

become interdependente.

The next important point with regard to spaces 1s that
they are viewed at the level the user sees the machine.
That 1is, if the hardware allows the implementation of
virtual memory[Ben2,Bob2,Denl], the spaces within the main
store are placed on the medium "virtual memory". This
medium appears then as if it were homogeneous, although in
reality it is note. This may affect the behaviour of the
program, in particular with regard to efficlency[Conhl,
Hatl].

Finally, there may be several devices containing a
certain kind of medium, e.ge magnetic tape units. In these
cases the addresses will be composite in that they detine
both the unit and the 1location of the information within
this unite.

When executing a program, spaces will be accessed
either to retrieve data, i.e. read accegg, or to save data
for eventual use, i.e. ¥y¥rite accesge In order to decide
which space the program will access, the program must first
obtain a wvalue which defines the +triple <medium,address,
extent>. Such values will be called pames. Since names are
values, they also require storage space in general. In
order to break the infinite recursion generated in this
form, we need the concept of japlied nameg. Implied names
are established by convention in such a way that there is
no need to keep explicit information for this kind of namee.
For example, the binary operator in a Burroughs B6700,
accessesy by convention, the topmost two elements in the

current execution stackt{ Burl,Haul,0rg2,0rg3]e Thus by

+ Ve have simplified the access form of the B6700 for
reasons of simplicity only. In fact more complicated
access forms, such as indirect references, are possible.

Bagic Concepts =-2.3~

convention when a binary operator is decodedy the medium of
both operands are the stack, the addresses are the topmost
and the next to the topmost stack elements, and the extent
is the word length. Consider now the case of a single
operand [address] machine, e.g. Honeywell 6000, IBM 1130,
IBM 7090. A binary operator in such a machine implies the
accumulator register as one of the operandse The other
operand 1s defined by the core address defined by the
instruction. For reasons of sgimplicity, let us assume that
there is no indexing and/or indirect addressing available.
In this case the implied name would be <instruction
register, address portion start, address length>. Observe
that this is the name of a space from which the name of the

operand space is effectively retrieved.

In the same way as implied names define by convention
all three fields of the space characterizing triple, there
may be conventions which imply the definition of one or
more fields of a name value. For instance, in many machines
instructions imply core as the mediume Also in several

machines the extent is predefined to be a word 1ongth.

We will call gpace allocation the operation of
obtaining a space on some mediume Notice that this

operation corresponds to the creation of a name value, or
of a set of name values. To perform this operation a name
value is also required, since we need +to know of the
existence of the space being allocatede Thus, in fact this
operation does not correspond to an effective "creation" of
space, but just a means to give +the user a name value to a
space he did not already possesse. Observe that space
allocation does not imply any data transmission to the
allocated space. Conversely, deallocation is the operation

of relinquishing a space. Again, this operation just serves

Basic Concepts -2.4-

for the purpose to take the space away 2Lrom the set of
spaces dedicated to the user. An immediate consequence of
deallocation, is that any name value characterizing a
deallocated space is no longer a valid name valuee. In
chapter 4 we will study the operations of allocation and
deallocation with more detail.

Names may be computed at rumn time. For example, when
adding [or subtracting)] index registers and when performing
indirect referencinge. The values used to perform the
computation may even be defined by the space being accessed
[eege the B6700 for indirect references]« Name values used
to access some spacey will then be obtained by a series of
operationsgy i.e« by means of a functione. This tunétion will

be called agccess pathe

From the discussion in the preceding paragraph we may
observe that the information contained in & space |is
subjected to some interpretation, i.e. type. Observe that
we already mentioned name typed values and instruction
typed values. ¥We will leave the detailed discussion of
types to chapter 3.

The operation which associates a certain name value
with a given access path for a given set of parameters will
be called pindinge Ve will use this term despite the fact
that it is used by some authors with a slightly different
meaninge. For example, Watson[Watl] uses the term binding as
an operation which associates a virtual address with a real
address within virtual memory machinese. In the MULTICS
system[Dall,Orgl], the term is used to denote the
replacement of external references by actual addresses [the
make known process J. Notice that binding in our definition

assocliates a name value with one element of the cartesian

Basic Concepts =25~

product of access paths and parameters to acces pathse
However, this does not imply that a set of such elements
cannot be bound all at the same time. For example, when
defining the starting address of an array, usually the

whole array is bound at oncee.

We have to emphasize at this point, the difference
between space allocation and bindinge The space allocation
operation basically creates a valid name value. On the
other hand, the binding operation enables an access path to

compute a, hopefully valid, name value.

Binding is not necessarily done all at one single
instant. For example, when using Dijkstra's[Dijl1] approach
to implement ALGOL60, we have partial binding occuring at
compile time. The displacement of local variables from the
block start can be defined at compile time. However, the
position of the block start is defined at run time. Binding
of this Xkind will be called partial [static] binding.
Compile timet binding will be called gtatic binding. For
example, FORTRAN IV non parametric variables are statically
bound in most implementationse Run time binding will be
called dypnamic binding. For example, FORTRAN 1V parameters

passed by reference are an instance of dynamic bindinge.

In the case o0f indirect addressing we have several
levels of binding, since we must provide bindings from each
indirect address word to the corresponding space in the

indirect chaine

Since access paths are 1in fact computations, they may
deliver wrong name values. This may occur due to an
improper use of the access path, or due to the nonexistence

of bindinge. From this we have that there should be a

+ Notice that loading is an instance of compile time.

Basic Concepts -2.6~

' #
special name value, say not bound, which flags this latter

LA A
case. Thus any evaluation of an access path which delivers
not _bound results in an error condition. Evaluation of
access ﬁath- may also fail during the evaluation, ieee
before even delivering a name value. We have then the

following error conditions associated with access paths:
i=- attempt to use the "space" denoted by not _bound;

ii- improper use of the access path, @ege parameter

errorse

Vhen programming in symbolic languages, we do not
refer to spaces by means of name values. Rather we use
symbols, il.e. jngggl, namegy which stand for such name
values. There is then a need for an operation which
transforms a textual name into an access pathe This
operationy ie.e. function, will be called pname map. Observe
that the name m=map is a "function value" delivering

functione.
Examples of textual names are:
a— POINTER-DBASED_ARRAY_A(I,J) in PL/1
b= $('"Name' STRING) in SNOBOL4
c= <<PROJECT_DIRECTORY>CONMPILER1 in MULTICS file system

In several programming languages a given textual name
may refer to several different spaces. This may occur due
to the adbility of generating several different access paths
ory then, due t0o the associated access path being capable
of delivering several different name values. For example,
local varisbles in recursive procedures generate one access
path capable of accessing several different spaces. Since

we want to achieve deterministic results, each successful

Basic Concepts -2e7~

evaluation of an access path must deliver exactly one name
value. Furthermore, each successful evaluation of a name
map must produce exactly one access pathe Thus, there must
be two sets of parameters, each one sufficient +to define
explicitly which of the several values is to be chosen. Of
course, some of these parameters could be implied by the

programming language or its implementatione.

Our definition ot textual names is such that, for
instance an object name in SINMULA67 is not a textual name,
unless qualified by an object reference. This follows from
the ob,ject name being unable to define a unique access
pathy, unless it specifies which of the many objects |is

being refered toe.

We could argue that there is no distinction between
access paths and name mapse For instance, a construct like
$('ABC' FUNCTION(I)) in SNOBOL4 is a textual name. No work
can be done by the name map though, since we do not know
what is being accessed,; j.e. the effective textual name.
Observe that this construct contains several other textual
namesy eege 'ABC', FUNCTION(I), 1. This example also shows
that textual names are in fact values and that they could
be computed at run time, ee«.ge the result of ('ABC!
FUNCTION(I)).

Textual names could be created and/or erased in a noﬁ—
computational way. For instance, in APL\360 a programmer
may suspend execution and later request the resumption of
the execution of some program. During the suspended state,
textual names may be created and/or deleted [)JERASE, see

Pakl].

We will call lggator function the composite function

corresponding to the name map and the access path delivered

Basic Concepts -2.8-

by a given evaluation of this name map. Locator functions

will be studied in detail in chapter 4.

2.2 Scope of Names-+

Let A be a textual name. The locator function of A,
say Ly, may deliver several name values, say 8398290098,
This set of possidble acceses paths may vary at run time. Ve
will call dynamic sgcope of A relative to a;, the time
interval during which the textual name A is capable of
representing aj;. Ve will call A-gctivation of a;, the
operation which associates a; with A, ieee the definition
of the beginning of the dynamic scopes The operation
A=-deactivation ot a is the operation of relinquishing the
agsociation of A with a ;. Obsmerve that the dynamic scope is
a continuoug time intervale. Obhserve furthermore, that the
dynamic scope could possibly be the duration of execution
ot the whole program, as for 1instence static storage in

PL/1, or non parametric variables in FORTRAN 1IV.

Our definition of dynamic scope differs slightly from
the usual definition. Usually dynamic scope is defined as
being the set of time intervals during which a given
textual name A stands for some specific name aj. We have
chosen a different definition for dynamic scopey, in order
to explicitate the existence of a selection procedure which
selects one of a possible set of names associated with a
given texthal name. A further consequence of our different
approach to dynamic scope is that we establish a
correspondence between the dynamic ahd the textual scope

aspecta. This will become apparent later in this section.

Basic Concepts -2Q9-

Notice that binding is an instance of activatione This
shows also that, in the presence of name typed values,
there may be several dynamic scopes of a textual name A
relative to the seme name aje For instance, a pointer to a
node in a list may point to the same node at different time
intervals, without being restricted to point to this node

during intervening intervals.,

Similarly we will call dynamic gscope of a space a, the
time interval gtarting at the allocation of ay and ending

at the deallocation of a.

There must be several parameters which specify which
of the many name values is the one required, say aje. We
will say +then that all name values ‘j’ i#jy are in the
supreased gcope with respect to these parameterse. The
importance of suppressed scope arises wheh implied
parame ters are used. For example, all instances of a local
variable in a recursive procedure, except for the most
recent oney are in the supressed scope. The operations of
guppregasion and regctivation., are the operations which,
respectively, define the starting and the ending of the

suppressed scopee.

To clarifty some fine points, let us consider the

tollowing examples:

a— the dynamic gscope of a non—-parametric variable in
FORTRAN 1V is the whole duration of the program's

executione.

b= the starting and terninatioh of the executionm of a
block in a block structured language, delimit a
dynamic scope instance of the local variables defined

in this block. Observe that a new execution of the

Bagic Concepts -2.10~-

block defines a new dyha-lc scope of a new set of
spacese Thusy, in a recursive succession of acti-

vations, suppression will occure.

c= the dynamic scope of a natural variable in SNOBOL4 is
initiated by the definition, or redefinition, of this
particular variable. It lasts until a further
definition or redefinition of this same variable, or,
theny, until program or local instance ende. Suppres—
sion may occur if a function for which this variable
is local is activated. Suppression may also occur if
the value of the variable is required after an
apparent deactivation of the variable. For instance,
if a user defined data type 1is redefined, the old
definition must be kept until there is no more data
using this old definitione.

We will call dynamic reach of a textual name A
relative to a name aj; the set of time intervals of the
dynamic scope of A relative to a;, during which aj is not
in a suppressed scopee. Notice that this definition of
dynamic reach is identical to the conventional definition

of dynamic scope mentioned earlier in this sectione.

With regard +to the relationship between text and
textual names, similar problems may occur. We say that
textual scope is the portion of text within which a given
textual name may be used. Furthermore, textual activation
and textual deactivation are text operations which,
respectively, delimit the starting and ending of the
textual scope. Observe that textual scope defines several
continuous portions of text, l.e. it does not imply that
there is only one instance of textual scope. Consider for

instance FORTRAN 1V implementations where declarative

Basic Concepts «w2ell~

statements must precede the executable statements of a
program unite The names of CONMON areas are then confined
to these portions of text, although a certain name may

occur in several of these text portions.

In some programming languages a same textual name may
have several different meanings at a same textual p@int.
For instance, we may redeclare a global variable in
ALGOL60; in FORTRAN IV the same variable may be used in
several program units, or may have different meanings
depending on context, e.ge. COMMON name and variable names
in FORTRAN 1IV; a textual name may represent a label, a
function and a value, all at the same time in SNOBOL4.
Again we need to provide parameters, explicit or implicit,
in order to uniquely specitfy which of the several possgsible
meanings we desire. We will say theny, that all other
meanings are ljngggllx Bupregged with respect to this set
of parameters. Observe that this is done frequently by
dualltying textual names by hidden parameters, such as:
Yhistoric block definition" in ALGOL60; "program unit® in
FORTRAN 1IV; ‘"uyger id" in Honeywell 6000 files. The
aoperations defining the start and the end of the textual
suppressed scope are textual suppression and textual
reactivation respectivelye.

Following the nomenclature of ALGOL68, we will call
textual 1repach the section of code within which a given
textual scope is textually active and not textually
suppressed. Obgerve that textual reach is not necessarily a

fixed portion of code. For example, a language could be

designed where portions of code are lnsorted’ and/or’

deletedes Thus, scope rules could be affected at run timee.

Notice that such a Llanguage could be built within the

-

Basic Concepts -2412~-

SﬁOBOL4 environment. This is due to the fact that SNOBOL4

allows run time compilation by means of the CODE functione.

Ve will deal at many points with the concept of
program module. VWe will thus anticipate its definition at
this point. A gprogram mpodulesy or simply moduley is a
contiguous portion of source texty, such that the textual
scope of the textual names used by this program module
completely containasy, or is completely contained by, the
text of this module. For example, ALGOL60 blocks are
modules; FORTRAN IV program units are modules. However,
only a complete SNOBOL4 program is a module. This does not
imply that we could not program in a modular way in
SNCBOL4, it only says that there is no natural definition
of module in SNOBOL4. Notice that using this definition,

macros could be viewed as modules.

2.3 Summary of definjticops.

Detn. 2.1 Spagce 1is a portion of storage on some medium,
starting at some address and occupying some extent
of storage spacee. It is characterized by the

triple <mediumsaddress,extent’>s

Defne 2.2 Name ie a value of the form <medium,adresssextent>?>

which refers to the space characterized by this

triplen

Defne 2.3 An accesgs nath is a computational processy i.ee.

functiony, which delivers name values for the

purpose of accessing the corresponding spaces

Defne 2.4 Binding is the operation which associates a name

2.5

2.6

2.8

2.9

Basic Concepts -2+13~-

value with a given access path and a given

parameter value, or set of parameter valuess

Textual name is a character string with which the
programmer refers to spaces 1In a symbolic

programming languagen

Name map |is a computational process, f1eee.
function, which maps a textual name onto an access

paths

Dynamic gcope of a textual name relative to a name
value, is the time interval during which this
textual name is capable of representing this name

values

Iextual scope of a textual name, is the portion of
text within which this textual name has a specific

meanings®

A prograp module is a portion of source text such
that the textual scope for all textual names used
by this program module is either completely
contained b»by +this program module, ory then,
completely contains the text of this program

modules

3.

Types -3 1~

In this chapter we will study the data objects as
suche. Usually the contents of a given space are not just a
sequence of bits, but it possesses a definite meaning. This

meaning, i.e. type, is our object of study here.

We have chosen the term type, rather than mode, as in
ALGOL68, or attributey, as in PL/1l, simply because it seems

to be known more widely.

Our concept of type is a generalized concepte. It
resembles more the concept of a data structure;, than that
of a simple space descriptor, as for instance, structures
in PL/1. That is, a type not onlykspecities the lay out,
but it also specifies the set of operations and the set of
valid values of this typee Thus it makes sense to talk
about types such as:! "gtack of user type", "gstring of user
type", "buffer of user type" etc., where these types are
characterized primarily by the operations which can be
performed on them. We will also be able to define types
such as:? “prime integers", Masquare upper triangular
matrices”" etc.y where these types are characterized bdy
being a proper subset of some well defined basic type, such

as the integers or square matrices respectively.

The first advantage of generalizing the conceﬁt of
typesy, is that we will be able to talk openly about the
properties of a given type. That 1is, we are no Llonger
obliged to hide these properties 1into code which |is
sometimes difficult to understand. It does contribute then

to:

a- understandability of programs, or, as sometimes

called, structuring of programs;

Types -3e2~-

b= interchangeability of implementations, this follows
from the fact that the implementations are greatly
transparente Thus we are able to chose the best
suited implementation of a given type without

affecting other portions of the programe.

c~ modularity, that is, programs can be broken into
several small programs, where the interaction between
these programs occurs through clear and well defined

interfaces.

Most of the concepts are based on, and extend,
concepts introduced by the SIMULA67 class mechanisms[Dah2,
Dah3,Dah4,Hoad4]. Several ideas were also taken <from work
done by Hoare[HoaS5], Wirth[Wir2,Wird] and Parnas[Par2,
Par3].

From the point of view of inter—module transmission,
this chapter is important mainly because we want to assure
that programs receive the data they expecte In this case it
becomes even more necessary that we do not Just pass
unqualified "integers" for instance, but that we are able
to pass a "prime integer". If we observe the techniques
used conventionally, what we are proposing is nothing more
than to mechanize part of what is done verbally or through
documentatione. Ve will study the advantages of doing so

andy mainly, the limitations imposed.

In section 3.1 we provide +the basic definiflons
regarding types. These definitions will be used throughout
the remainder of this dissertation. In section 3.2 we
discuss how types are associated with spaces. We also
introduce the concept of type conversion, or data transtfer,
in this sectione In section 3.3 we will study type

descriptors as if they were computational values. That is,

Types ~3.3~

we will study the basic operations which can be performed
on values of type 3222. In this section we study also the
prohle;s relative to the dissemination of type descriptors
among subsections of the programe In section 3.4 we will
study how to identify type descriptors, and how we could
define equality of +typese. Finally, in section 3.5 we will
study how type~wise correct accesses could be enforced,

both dynamically and staticallye.

The concepts studied in these sections are highly
interdependente This constitutes a major difficulty when
attempting to partition these concepts into a nice
succession of ideas. We based our partition choice on an
attempt to minimize the number of times where we require

concepts which have not yet been defined.

3.1 Iypes and Spaces-

When studying spaces in chapter 2, we mentioned that
the information carried by a spacey i.e. the values of the
bits in this space, is subject to some interpretation. This
interpretation may be due to the use of an operator, e«ge
the integer add instruction A on an IBM/360[IBM1]; the
reference operator "." in BLISS[Wull,Wul2]. The interpreta-
tion may also be provided by the space itself, e.g- a
Burroughs B6700[Purl1,0rg2,0rg3)] data word defines the type
of word [stack marker, indirect reference etce.]; the
contents of a SNOBOL4[Gri6] variable defines its own type.
Finally, the set of spaces may be partitioned into several
sets, each of which contains one only type of data, é.g.
ALGOL68[Winl1,Lin1] variables; PASCAL[Wir2,Wir4] variables.
Furthermore, we have only considered contiguous spaces in

chapter 2. However, depending on the interpretation used,

Types -3e4-

several spaces may contain interrelated information under

this interpretatione.

Defn. 3.1.1 A gpace get A={a;,ag,...,an}, is a collection of

Zero or more spacess

Detne 3+1.2 The type of a space set Ay, is the interpretation

given to the information carried by Am

The ordered couple <A,T>, where T is the type of the
space set A, will be called data gpacee. Observe that a data
space may be built up from =zZero spaces. In this case there
is no information in the data space. Such data spaces will
be called pull spacesy and their corresponding type will be
called a gull information tvpe, nit for short. Notice that

there may be several nits in a given program.

The most widely used data spaces are those where the
underlying space sets contalin exactly one element, leee
space. For example: integers, reals, vectors of integerse.
An example of data spaces where the underlying space set
contains more than one element is a list in LISPl.S[McC1l],

or a slice of an array in ALGOL6S8.

Data spaces may contain subspaces which in turn are
data spaces. For instancey, the elements of a "vector of
reals" are "reals". This shows that a given type may have
subtypes and that we may build types by logically
associating several types. In section 3.3 we will study

operations on types in greater detail.

Several types may be defined by a given machine. When
implementing compilersy; user defined or system defined
types must be nappgd somehow onto a set of types made

available by the host machine.

Types -3 e5~

Defn. 3+1.3 A primitive tvpe is a type for which there are

valid single instructions in the host machines

A primitive type is not necessarily defined over one
space onlye. For exampley in a segmented paged machine, the
type "virtual address" is defined over a set of spaces,
e.ge. segment taﬁle and page tables. A primitive type is
also not necessarily indivisible. For example, in an
IBN/360, there are four characters, i.e. 8 bit bytes, per
worde Finally, there may even be smaller spaces, in number
of bits, than the smallest addressable primitive type. For
example, a PL/1 BIT(1) string may be implemented in an
IBM/360, although the smallest addressable unit 1is a byte
of 8 bits.

Having in view that higher level languages represent
Just some virtual machine, we may also have language
primitive types. That is, such types for which there are
valid single operators defined within the language, even it
Just fetch and storey, and which are not structurede. E.ge.
BIT(1), CHAR(1), PASCAL scalar typesy, but not strings,
arrays or complex. We have then, that a gimple type is a
primitive type, a null information type or an unstructured

language primitive typee.

Defn. J.1.4 A componite tvype is a logical assocliation of zero
or more typesy, each of which is either a simple

type or a composite types

If we had not defined bits. as simple types, things
like BIT(1) in PL/1 would necessarily be composite types.
This would introduce an infinite recurrence in the above
definitiony, since BIT(1) does not terminate the recurrence
of the definition. Rewording the definition would also be

of no help, for then we would have to define composite

Types -3.6-

types in terms of composite types. Observe that, for n#l, a
bit string BIT(n) in PL/1 is necessarily a composite type
due to the definition ot simple types. This suggests then,
that a bit string 18 an array of type H&I- Similarly a

character string is an array of type char.

Consider now name typed spaces. Such spaces may con~
tain things like: pointers [references], labels, procedure
names, file names, remote format names [e<«ge FORTRAN 1V,
PL/1]y, etce. There are always two interpretations for such a

kind of data space:

a= the data space containing the name typed value is in

itself the space being considered.

b= +the space characterized by the name value contained

in this data space 18 the space in question. In this
casey, the type of the data space being considered, is
the one implied by the name and/or by the space
itselt.

Obgerve that the interpretation (b) occurs only when
the name typed data space is given to a locator function as
a parameter. This 1s so, since only locator functions use
name values to gain access to the space characterized by
that particular name valuees This Justifies following

convention:

Convention 3.1.5 Outside the scope of locator functions, name

typed spaces will always be interpreted as a value
of type namey, and not as the space characterized

by this wvalues

This convention implies that we may study composite
types containing names as subtypes, as simple entities

without regarding the spaces refered to by these subspaces.

Types -3.7-

It is worthwhile to noticey, that the process of construc-
ting a locator function lies outside the scope of this

retered locator function.

We must stress here the fact, that a locator function
is a mapping from a textual name onto a name, ie.ee data
space. Thus, the "dereferencing" operation [coercion] in
ALGOL68 1is in fact part of the 1locator function of a

textual name of type ref ref real, i.e. pointer to real.

Type definitions have a very strong influence on space
allocations This <follows <from the fact that several
language processors will create space allocation requests
based solely on type definitions. It follows then, that
there could be eome type definition which would not allow
such a creation to complete. For example, following

WALGOL68" construct?

type A=union(integer;

type B=struct(integer b; A c))s;

defines the types (mode) A and B. Type B is defined in
terms of type A, and type A in terms of type B. Suppose
this construct would be used not only to define a type, but
also to define the amount of space and the internal layout
of a data space bearing this type. Ve could then easily
verify that this type definition cannot possibly generate a
space allocation request. This follows from the fact that
we do not knowy, a priori;, how many recursion levels are to
be takene. On tﬁe other hand, it can be verified that a
sequence of creations of values defined in this way do not
imply any major difficulties, but for implementational
onese. The same is also pointed out by Lewis and

Rosen{ Lewl].

Types =3.8=

ri=1; #:=(24r); t:=(3,8);

generates following values:
r=1 8=2 (1) t= 3 (2 (1))

where (x) means: x occurs as a type A value.

Figure 3.1.1 A sequence of creations of data spaces of type A.

A z3
zi=t;
for Ji=1 until i-1 by 1 do

it z::B /% 12 z is of typ§ Bx/
ihep zi=c gf =z
else g9 39 error;

i odi
ég z::lnto“er
then z;

else b ot z;
£i3

i

Applied to the variable t in figure 3¢1¢1 it will yield:
for if1 33 for i=2 23 for i=3 1; for 1>3 error

Figure 3.1.2 Retrieving the ith value of a gsequence of type A.

Figure 3.1.1 shows an example where values are created
using type A as basis. This creation does not cause any
ambiguity, since every component data space is well known
when used +to compose a further instance of a type A data
space. Observe that, theoretically at least, this form is
used in GEDANKEN[Rey2] for the definition of vectors.

The information contained in the data spaces, created

as shown in figure J.1¢1y can also be retrieved. In figure

Types -3.9-

3.1.2 we show an "ALGOLé8"™ portion of coding exemplifying
how to gain access to the 1'th element of a segquence using

type A as descriptione.

Defn. 3.1.6 An acyclic commnosite type is a type that, for all

subtypes, none of these subtypes contains itself

as a subtypes

From what has been mentioned so far, it follows that
acyclic composite types play an important role whenever
spaces are allocated a priori, and when this allocation is
based on the type definition of this space. The union type
example above shows one case of cyclic composite types.
This union type can be implemented in such a way, that
there are no explicit name values. Thereforey; even when
using the convention 3.1.5, we are unable to break down the

cycle of type A. From this we may conclude:

Fact 3¢1+.7 The restriction of types to only acyclic composite
types implies a restriction of the power of

expressions

We will not discuss here the merits of allowing cyclic
composite types. Nor will we examine whether allowing such
types is required in practice, and/or whether it
substancially increases the probability to make subtle
mistakes. We will only mention that, if we allow types to
be functionally definedy, it is impossible, in the general
casey, to decide whether the type is cyclic or note.

Types -3 e10-

3.2 Ivpe Operations on Spaces.

Ve will call typipng the operation of associating a
type with a space. Typing can be performed statically or
dynamically. Static space allocation does not imply static
typinge. For instance, two different types may be associated
with one single space by means of an EQUIVALENCE in FORTRAN
IVe Furthermore, the ANSI standard[ANS1] requires that
previous to the use of any of such variables, this wvariable
must have been defined [i.e. assigned] with the appropriate
type. Thus, although the implementations seldomly perform
this checkingy, FORTRAN IV EQUIVALENCE establishes dynamic
typing for statically allocated spaces.

Up to now we have assumed the typing operation to be
instantaneous. However, this 18 not necessarily true. It is
not even necessary that typing is an indivisible operatione.
Thus,; there is a transgient state, during which a data space
being typed is neither of the old type, nor of the new
type. It is clear that any access to the data space during
this beipng typed interval is a valid access, as long as it
is performed by the +typing operation itself. However, if
some other program section tries to access this data space
during this interval, this other access must perfectly
understand the typing operation. This follows from +the
fact, that the information content of the data space in

question may be meaningless.

Ve will call Ti tvping interval of a data space a, the
time interval starting at the instant the type T4{ is

associated with «, and ending immediately preceding the
instant a new typing operation is performed on a9y or, then,
immediately preceding the deallocation of a+ It follows
immediately that any typing operation initiates a new

Types -3.11~-

typing interval,; regardless of whether the type of the data
space has effectively been modified. We will assume that
whenever a space is being allocated, it is automatically
typed with the type no_type, i.e. undefined type. This type
means that there is a storage spacey, but that its contents
have no meaninge. Observe the difference between a no tyge
data space, and an ypdefined value. The latter has a given
typey, but stands for a data space which contents have not
been initialized, l.e. defined after a new typing interval
has been establishede. For statically typed spaces we will
assume that the typing operation is instantaneous, ieee
timeless. Furthermore, we will assume that it occurs
immediately after the allocation of the space having been
completede The net effect is then the same as 1f the space
had been allocated with that particular type, 'lfhout
passing through the stage of being associated with no txge.

We may conclude from the preceding paragraph, that
dynamic space allocation implies dynamic +typing of this
space. It does not imply, howevery, that the types of the
spaces accessible through the same locator function are
necessarily differente. Thus dynamic space allocation does
not imply dynamic type checkinge Nor does it imply dynamic
type association with textual names, leee locator

functionse.

Defne 3¢2+.1 A data space may be:

a- geguentlally =multityped if, at each instant,
there is exactly one type associated with the

data spaceg;

b= parallel multityped if there are two or more

types associated with the data space at some

given instants

Types -3.12~

Explicit typing does not imply sequentially multityped
spaces. For example, it is possible to associate several
types with one space in FORTRAN IV by means of any of
COMMON, EQUIVALENCE or parameter associatione Implicit
typing through the use of operators, e.ge BLISS, B, BCPL,
does not imply effectively parallel multityped spaces. This
follows from the freedom the programmer has, to use a set
of operators, which congsistently attribute the same type to
the space being accessed. In both cases, the burden of

assuring meaningful use of data spaces is left to the user.

Consider now an ALGOL68 data space of type (mode)
unione Such a data space has only one type during 1its
dynamic scope. Its subspaces though, may have several
difterent types during execution. Similarly the variant
part of a type (record) in PASCAL is frozen when a given
value of this type has been created. However, this does not
mean that‘the data space containing this value is also

frozen with regard to the possible variants it could holde.

Vhenever a data space is accessedy; the contents of
this data space are implicitly typed by the access pathe
This occurs in any language and machinee. 0f course, in
languages such as SNOBOL4 or GEDANKEN, data spaces are
always of type "“"universal union®". Thus, for this kind of
languages, the following discussion becomes uninterestinge.
Now, it the machine performs some sort of type checking,
ee«ge the Burroughs B6700, the access paths implicitly type
the data spaces being accessed with a given, hardware

defined, union typee.

On the other hand, the data space itself contains data
of some typee That 18, the data contained within a data

space has a definite meaning wlfhin the programe. For

Types -3.13~

exampley, a "prime integer" typed data space, contains not
Just some integer value, but contains a prime number
encoded as an integer. Notice that the type of the space is
a property of the information contained within that space,
i.e. a property of the space itself.

There are then two types associated with each access.
One is the access path implied +type Tg+ The other is the
data space implied type rg. An access to a data space a is
salid to be type-wise corrscty it T, and T, are such that a
is sequentially multityped. In sections 3.4 and 3.5 we will
study the conditions which must be satisfied in order to

assure type—~wise correct accesses.

It should be clear thaty, whenever a program |is
written, we do want the data spaces to be sequentially
mul titypeds This follows from our desire to obtain
meaningful results. That is, at each instant we keep track
of what the contents of a given data space are. If the
language processor enforces +type—-wise correct access, we
will be assured mechanically that, at least from the point
of view of accesses, our program is correct. On the other
hand, as we shall see, thig implies a lot of writing effort
by the programmer. Many languages which enforce type-~wise
correct accesses may become obnoxious when one attempts to
do something which had not been forseen by the designerse.
For exampley, in PASCAL there are scalar types and variant
records. These types are extremely well suited for business
data processinge. However, it is a common problem in
business data processing that input data is incorrect.
Thus, in PASCAL we must read field by field and perform all
required checks before any record can be built, even if the
input record is correcty, as the majority tend to bes What

we observe here, is that a definite duplication of efforts

Types ~3.14~

exists. This duplication of efforts could have been avoided
by allowing to define error handling interrupts. That is,
we would allow the programmer to produce a detailed error
checking procedure and which is invoked only if an error

occurede.

Pefne Je2.2 Let T be a type. The type get T of T, is the set

of all values of type T. The tyge gspace TS ot T,
is the set of all bit configurations which could
be held by a data spacey, or encoding, of this

types

Let Tg be a FORTRAN 1V LOGICAL type. By definition,
the type set is {«TRUE.j;+FALSE.}. The type space is machine
dependent thoughe This follows <from the ANSI reqguirement
that a LOGICAL typed space occupies one space unit, ee.ge
worde Thus in an IBM/3J360, the type space TSg of Tg contains
2%%32 elements.

Let T3 be a (redyyellow,green) PASCAL scalar type. The
type set is clearly {red,yellowygreen}. The +type space is
again implementation dependente. In a compact implementa—
tion, TS; would usually contain 4 different elements, since

T3y can be encoded using 2 bits.

Let T2 be a linked binary tree type. The +type set is
theoretically infinite. Cbserve that values of type binary
tree do not take the implementation into account. Thus, the
existence of pointers is ignored from the point of view of
a "pinary +tree" value. The type space, however, will
consider pointer fields, if any, ag if they could hold any
value what so ever, regardless of any inconsistency which

might occur in doing soe.

Types =315~

Let T3 and T4 be two finite scalar types. The elements
in the cartesian product T3xT4 could bde encoded in some
forme. Thus we would have a new type, say Tge. The type set
Tgs is T3xTs4 by construction. A possible form to implement
such a type is by multiplication, addition and extraction
by means of modulos[Kknuly,HoaS5]. What can be noticed in such
an encoding is that the type space of either T; or T4y is
no longer an integer power of two. Thus, the subtypes of Ts
no longer possess clear cut bit boundaries. By definition
however, the type spaces TSy and TS, will be the set of
values which could be extracted <from a value of type Ts,
under the supposition of being of type ' Tz and T4

" respectively.

Defne J3¢2.3 Let T3 and T2 be two type sets. A conversion
C32:T1=>T2y 1is a (partial) function which takes

elements of T; into elements of Tze

With respect to conversions, we may classify type sets

as follows:

a~ T; is Cy2 coaonvertible 190 T2y if there exist two
elements, t; in Ty and t2 in Tas such that

C12(ty)=tz;

b- T, is alwayva Ci2 convertible 19 I2y if Ty is Cy»

convertible, and for any value t; iIn T3, Ci12(t;) 1is

in T2;

c- Ty Ci2 <completely converts 1o Iay if Ty is Cjy2
convertible to T and Cy2 is ontoy i.e. for each t;

in T2y there is a t; in Ty such that Cj2(t;)=tz

Observe that conversion does not necessarily maintain
the "meaning"™ of the converted valuee For instance,

converting real to integer corresponds also to some form of

Types . -3.16-

"rounding". Observe furthermore, that coerciony, as defined
in ALGOL68, is not the sgsame as conversion. Coercion 1in
ALGOL68 stands for several rules according to which a
conversion, or sequence of conversions, is chosen in order
to convert a given type (a priori mode) to the required
type (a posteriori mode)e. We will not study coercion rules

in this dissertation.

Conversions may be both language and wmachine depen-
dente. For example, the etfect of converting an integer into
a bit string may depend on the word size, as well as on the
language being used. For instance, when converting to bit
strings in PL/1, the conversion 1is based on the leftmost
portion of the bit string. That is, 1f the target string is
shorter, the object string will be truncated on the right,
and conversely, it it is longer, the object string will be
padded with zero bits on the right.

There may be qfveral conversion functions defined for
a group of +type sets. For example, a conversion from real
t0 integer could be any of: truncation; rounding; ceiling;
floor etce Finally, if users are allowed to define their
own types, they should also be enabled to define conversion

functions having these types as domains and/or rangese.

Defne 3.2.4 A conversion C342:T3~>T2 is8 said to be an jidepntity
copnversions if, for all t;y in T; and tz2 in T, such
that Cya(ty)=tp:

i- +the bit configuration of ¢ty is not affected by
Ci23 and

ii= the bit configurations of t; and t, are equal;
and

iii- T3 is completely C;, convertible to Tze

Types —3-17—

Ciz2 |is salid to be a partjal idepntity
conversiony, if all conditions, except complete C;

conversion, holds

Notice that not all pairs of type sets admit an
identity conversion. For instance, conversion from double
precision floating point to a single precision floating
point typey, cannot be achieved by means of an identity
conversion. Depending on the hardware, though, a two
element single precision floating point +type may be
identically converted to a double precision floating point
typee.

The PL/1 function or pseudo variable UNSPEC may be
regarded as a restricted form of an identity conversion. It
is restricted since +the domain must be a bit string, when
used as a pseudo variabley, or the range is a bit string,
when used as a functione This may cause additional
conversions to occur. These additional conversions are not
necessarily identity conversions. Therefore, the results of
using DNSPEC may cause unexpected errors to OoCCUre
Furthermorey, UNSPEC is a universally defined <functione. In
our case, identity conversions exist only within a limited
scope. Also, we must define explicitly the range and domain
data types to which a given identity conversion applies.
This is expected to decrease both the ability to misuse the

language, as well as the possibility of unexpected errorse

Let us consider now a hash index generating functione.
This function is a conversion <from character string to a
subset of the set of integers. In order to obtain the first
hashing index, +the recomended method[{Luml] is to consider

the string as an integer, and obtain the remainder of the

Types -3.18-

division of this integer by the size of the tablet. Now, if
the identity conversion from string to integer were avail-
able, this hash conversion could easily be iamplemented.
This motivates making some identity conversions available
to the user. Of course, the price paid is that some machine
or implementation dependency may be caused. On the other
 handy, it is impossible to foresee all passible conversion
functions, mainly if the user may define his own types. The

discussion in this paragraph may be summarized by:

Fact 3.2.5 The exclumsion of identity conversions from some
programming language, restricts the power of

expression of that languages

Lemma 3¢2.6 Parallel multityped spaces may be simulated Dy

means of an identity conversion, and vice versas

Proot. It suffices to notice that a parallel multityped
space necessarily contains exactly one bit
pattern, regardless of which type is actually
being implied. That is, a parallel multityped
space repregents a trivial identity conversion
among the types which could be associated with the
multityped data spacenm

From this we may conclude that restricting languages
to multitype spaces only sequentially, does not curtail the
power of expression of the language, as long as identity
conversions exist. From now on we will then assume, that
data spaces are always sequentially multityped, except when

explicitly said to the contrarye.

Ve will call itype checkins the operation of

determining the current type, or types, associated with a

4+ We are not interested in how to solve possible collisions

here.

Types =319~

data space. Observe that, for statically typed data spaces,
this operation plays a major role at compile time. Notice
that static typing does not imply static type checkinge. For
exampley in ALGOL60 the actual and formal parameter associ-
ation does not require the same type <for both parameters.
Thus, when accessing formal name parameters, type checking

must be performed®t.

One of the interesting aspects of sequentially
multityped data spaces, is that they usually ease type
checking. Furthermore, we only have to make sure at each
instanty, that the value contained in the data space is one
of the elements 1in the type set, without having to verifty
this for several typese Furthermore; due to the mutual
exclusive typing of sequentially multityped data spaces, we
may enforce space disjointness for intrinsically identical
types, by -eans’ot null information typese. Finally, several
operators allow values of several types as input parameters
[esge the operator %+%], Such operators may also behave
differently, depending on the 1input typese. Enforcing
sequential multityped spaces, automatically prevents any

such ambiguities.

Ve will call gcopversion predicate P;» of the

conversion Cji2y a predicate which returns true, ittt for a

given value t; in T3y there is a value tz in T2, such that

Ci12(tg)=tze Following are the reasons why such a predicate

may fail:

a=— Ci2 does not apply to T3 and/or Tzy leee incorrectly

chosen conversion functione.

b- t3 is not in the domain of Cj2. For example, when

4+ Note that a me implementations build multiple entry point
thunks Ingl in order to avoid an explicit type checking.

Types ~-3.20~

converting character strings to integers, a value

such as '1A2' cannot be convertede.

c= Cy2(t;) 1is not in Tze That isy C32 properly
"computes™ a t "value®, but this "value" does not
belong to T+ For example, when attempting to convert
the string '1234‘ to integer, the conversion will
fail if this "integer" type is implemented with less
than 11 bits.

With respect to types, we may classify access to data

spaces in the following way:

a- gconverted accesgs Iformy whenever a data space is
accessedy a type check is performed. If the type

found is different from the expected type, a conver—

sion will be attempted, or an error will be reportede.

b- unconverted access Iforms no type check is performed

when accessing the data space.

It is immediate that unconverted access form does not
cost any type checking overhead at run time. However, it
leaves to the programmer +the burden of certifying access
correctness. This form of access is common to most assembly
languages and also to languages such as By, BCPL and BLISS.
Observe that a typed language does not imply converted
access. This follows from our more general interpretation
of +the concept "type". Thus, a binary tree is a type,
regardless of how it has been implemented. However, if the
language does not allow to detfine a type "binary tree", the
programmer must certify that any access to a value of type
binary +tree (or a subvalue thereof) is a valid access.
Observe alsoy, that with respect to higher level structures,

the problems to be resolved when attempting to certify the

Types -3e.21-~

use of such a structure are much greater. Furthermore, the
probability of existence of subtle mistakes is considerably
highere.

Converted access does not necessarily have to be
expensive. This follows from the fact that it may be
performed at compile time. Observe that this checking may
not be possible right at the first compile step, but rather
at one subsequent stepe Thus, there may be a need for
creating library procedures which are "typeless" in the
sense that the complete type description be filled in at
some later compilation step: For example, the required
sizes of arrays may perhaps be unknown at the firat compile
stepy but they are known previous to the completion of all

compilationsy, e«ge at load time.

Parallel multityped spaces do not imply unconverted
access forms. Consider for example the following two
FORTRAN IV statements:

COMMON /A/ 1IX in SUB1

COMMON /A/ AX in SUB2
within SUB1, IX will be considered as an integer, and thus,
may cause conversions to be inserted into the code if used
in a context where a different typey e«.ge real, is
requirede A similar thing occurs also for AX in SUB2.
However, through the COMMON space association mechanism,
these two spaces are one and the same space, which is then

parallel multityped, and accessed in a converted forme.

In +the current literature, conversion functions are

frequently called data transfer functiopa[Stal,HoaS,Nau2].

We have chosen the term "conversion", for we feel that this
is intui tively closer to the concept it describese.

Furthermore, some special conversion functions are

Types =322~

frequently denoted by an individual name. The Ffunction
which converts several types into one structured type, is
called a gongtructar[Hoa5,Stal]. Conversely, the conversion

function which obtains a subtype value of some value, is

called a gelector.

When considering types in a more general form, any
procedure could be thought of as being a conversione. This
follows <from the fact that the input parameters may be
composed into one type, as also the output parameters may
be. The boundary of which constitutes a procedure, and of
which constitutes a conversgiony, is quite ill defined. For
example, the hash index generator above may be thought as
being either a function or a conversion, without stretching
to0 much either of the concepts. We will say +then, that a
procedure is a conversiony only if it has explicitly been

built for that purpose.

3.3 Iyne Descriptors as Yalues.

Type. descriptors are information, and as such, they
could be considered as being values of type type. This im~
plies then, that we could have also variables of type type.
Although not explicitly, Hoare describes some operations on
values of type 3x23[ﬁoa5], e.ge concatenation [6artesian
product] and union. These operations are usually performed
at compile time. Once the program has been complled, the
type descriptors become constante In some languages these
congstants are of no further intefest and, consequently, may
be discarded, Cefge FORTRAN' IV with respect to non—-dimen—
sloned types. In other Iﬁnguaaes, these 1122 constants are
required at run time and must be kept during execution. For

example, the type descriptors for all variables in the heap

Types -3.23~

must be kept in ALGOL68, otherwise the garbage collector
could fail.

In SNOBOL4 users may define their own data types at
run time. Thue there are "type variables" in SNOBOL4. In
facty, only nodes and their field names are defined, since
data spaces themselves define the type of the data they
containe Furthermore, in SNOBOL4 the operation of assigning
a type value to a variable is, a special purpose function
[DEFINE]. There is thus an explicit difference between

"normal" assignments and tzge value assignmente.
The classic operations on tzge values are:

a= concatenation, i.e¢ structuring data types. Examples
of type concatenation are: COBOL and PL/1 structures;
struct in ALGOL68; records in ALGOL-W and PASCAL;
classes in SINULA67; blocks in any block structured
languagee. In all these cases the types being concat-
enated may be heterogeneous. WVhen the types being
concatenated are homogeneous, the resulting type is
usually called an array. Notice that we do not expect
that concatenated data types be necessarily imple—
mented in a contiguous space. For example, a SNOBOL4
user defined data type is a concatenated data typee.
However, each field refers +to0 a gapace of its own,
which ie usually non-contiguous to the space of the

concatenated type.

b~ uniony, i.e. the efftective type is any of a, usually
small, set of type values. Examples are union in
ALGOL68 and variant records in PASCAL. In SNOBOL4 and
GEDANKEN, a data space defines the type of the value
it contains. Thus, in both SNOBOL4 and GEDANKEN, all

data spaces are of type union over the set of all
ARAPARASAN

Types -3.24~

possible types. Such union types will be called
univergal uniopn typese. In a sequentially msultityped
environment, whenever a union typed data space is
accessed, we must firat establish the effective type
of that space. This 1s usually accomplished by run
time checking. It could, howevery; be accomplished
directly by the programmer, esge when programming in

B or BLISS.

Although we have borrowed the nomenclature from
ALGOL68, we do not expect the set of effective +types of
some union type to be defined statically. Observe that
there are no restrictions with respect to dynamically
defined types and union types. Even under these conditions,
sequential multityping is mechanically enforceable by
keeping an actual efftective type descriptor field within
the union typed space. The value of this field describes
the type of the information currently carried by the union
typed space. In L‘[Kno2] node descriptors are defined at
run time. Nodes may be accessed at any given time using any
of the currently known node descriptors. Observe, though,
that L® does not enforce sequential multityping, since
nodes may overlapp and no control is made with respect to

the current meaning of the node being accessede.

Union types could be defined implicitly by the
language processore For Iinstance, in SNOBOL4 all data
spaces are of type "universal union". The existence of
union types could even be hidden from the user. For
instance, in ALTRAN[Hall,Bro3,Bro4] there are conversions
defined between the types "integer", “rational",
"algebraic and "real'. Promotign is a conversion operation
from a type T; to a type T, where Ty is a (logical) subset

of T,y eege "integer" to "rational®" conversion in ALTRAN.

Types -3.25~

Demotion is the inverse conversion of a promotione Observe
that promotions are always possible, whereas demotions are
. possible only in some casges, @.g. do-ofina,thg rational 1/2
to "integer" is not possible. If there i8 a definite gain
in storage economy and/or in execution time ecomnomy, the
implementation may opt to store values always in the "most
demoted" forme. The user still declares a unique type for a
given textual name and has the impression that thlé is also
the type with which the program will effectively operate,
in fact a union type is helnq used though.

In chapter 4 we will see that, in order to assure the
sequentially multityped environment, pointers must imply
the type of the data space they refer to. Thusy, borrowing
ALGOL68 notation, when defining a "£2£ to izgs" type, we
are not performing an operation on values of type type.
Rathery we are Jjust restricting the mset of types ihich a

name typed value may characterizes

Although union types are usually implemented as a
structure <<Ta13122>9<¢7Ta>> where T, is the actual
effective type of the subspace ay this is not always the
case. Consider, for instance, equivalenced vquables in
FORTERAN 1IV. If the rules stated by ANSI are obeyed, such a
space must be considered as a sequentially multityped
(union) space. The actual efftective type 1is provided
implicitly by the programmere. Observe that when we allow
union types where the actual effective type descriptor is
implied, we are in fact allowing the existence of parallel
multityped date spaces. This follows from the fact, that
the locator function accessing such & space has no means to
certity the type—wigse correctness of the access in this

cagsee.

Types ~3.26-

A data space a is said to be gb.lect tvned, if the data
space itself defines,y or refines the definition of the type
of the data it contains. A union typed data space where the
the actual effective +type is explicitly provided, is an

example of an object typed data space.

Object typed data apaces> are frequently called
selfdefining data spaces. Observe, though, that® an object
typed data space consists of at least two subspaces. One of
these subspaces containsf the type descriptor, or a
reference (encoding) to it. The other subspace contains the
actual data. Thus, usually, an obJject typed space
identifies the contents of one of its subspaces, but not of

itselt.

We say that a subspace f of a data space a 1is
poslitionally typed, if the relative position of g within «
implies the type of f. For exampley the parity bits of a
core position are positionally typede.

Suppose that a is object typed. There must then be an
actual effective type descriptor tield. Suppose that this
descriptor field is8 not positionally typede. There must then
be a way to identify what is the actual effective type
descriptor, since only then we are able to tell what the
actual data is. Now this is possible only if the encoding
of the type descriptor is such, that it could not possibly
be confused with any of the bit patterns of the actual data
spacee. This 1is so, since otherwise there would be no
mechanical way to identify the type descriptore Such a form
of identifying the actual effective type descriptor is
possible only if the descriptor's value (bit configuration)
is different from the bit contigurations of all possible

actual data values. Suppose now the type descriptor were

Types -3.27-

positionally typed instead. Ve observe immediately that
there would be no major difficulty in finding the actual
effective type. Notice that the "type descriptor bits" of a
Burroughs B6700 are positionally typed. We have to stress
the fact, that positional typing depends on the medium and
the address of the subspaces It does not depend, however,
on the extent of this subspace. That is, the fields do not
necessarily have to be of a fixed size, as long as the
starting (or ending) address of the field implies the type
of the field.

Formalizing we have then:

Iheorem 3.3.1 Object typing of a data space is possible iff:
a= the type descriptor or its encoding |is
positionally typed; or
b- the type descriptor, or its encoding, is
identifiable by restricting the type set

encoding of the actual data subspaces

In general object typing increases the run time cost,
since type checking has to be performed at run time. It has
several advantages though. A textual name may represent
several data spaces, each of a given type. The selection of
the actual data space to be accessed is then based on the
type expected. For exampley, in SNOBOL4 a textual name may
represent a label, a function and/or an actual data
elements The choice is based on the syntactical occurence
of this textual name, i.es function call, go to field, or
the "“applicative" part of the statement. Another advantage
of object typing is when some subtype admits several forms
of storage. For exampley; in ALTRAN, the actual value of a

potentially algebraic value could be Jjust numeric. Storing

it as

Types =328~

such, instead of as an algebraic valuey overwhelms

the cost of performing a run time type checke.

Lemma 3¢3.2 In a sequentially multityped environment, the type

" Proof.

of any contiguous data space o is obtained by the

tzge operations of concatenation and unions

That the operations of txae concatenation and tzge
union are capable of defining contiguous spaces is

a well known fact, cefe. Hoare[HoaS].

Suppose naow that there is some operation
which 1is neither concatenation nor union, and
which is required in order to describe a given
contiguous data space. This operation must
associate more than one type,y, since otherwise we
would have a degenerate cage of concatenation. Let
T4 and Tj be two of the type values used by this
operation. The corresponding subspaces are a{ and
aj. They cannot possibly be one and the same
apacey since then we would fall into the case of
type union. They can also not be totally disjoint,
sincey, by a being contiguous, we would have a
space aiakaj of type TiTijt which is a type
concatenatione Thus, a, and aj must be different
and also intercept, say in aij‘ Since we are
considering a sequentially multityped environment,
Ti and Tj each must posses a subtype Tjij and Tidi
such that Tij=Tji' and where Tij is the +type of
aije But then we can break aj and aj into three
subspaces ai'“ij“j' which are of type Ti'TijTj',

that is, a concatenation of types, contradictione

In accordance with Hoare[Hoa5], type descriptors are

not only

responsible to define possible satorage layouts,

Types -3¢29~-

but they also describe the operations which could be
performed on values of the given type. Notice +that this
also corresponds to the concept of data structures. This is
precisely what we are aiming at with our generalized view
of types. Usually the storage layout for values of a given
type is defined by the semantics and/or the implementation

of a language.

The basic operations which must be defined for each

type are fetch, store and access [i.e. fetch and/or store J.

Usually the programmer needs not to define these
operations, since they are implied by the language
semantics which apply to concatenation and union. Notice
though, that in ALGOL68 we have the power of defining the
existence or non oxistenée of 'thc store and access
operations. E.ge

real pi=3.1415;3
defines pi having Jjust the fetch operation defined.
Whereas:

real pi:=3.141§;

allows any operation to be performed on pie.

A further reason to allow the programmer to define his
own access requirements, is that we enable him to protect
information, or to disguise the existence of additional
information. For example, if we use the buddy system[Knol,
Enul], or the Fibonacci system[Hirl] for that matter, to
perform dynamic memory allocation, we must keep additional
information defining the companion data space. Of course, a
user making use of spaces provided by such a dynamic
storage allocation mechanism, should not be aware of the
existence of this additional informatione Similarly for
union typed spaces we must keep information describing the

effective type of the data in this space. This additional

Types -3.30~-

information may be accessedy, as in the case of conformity
relations in ALGOL68., It may even be changed in a
controlled environment, ag it 1is when retyping the
"gselfdescribing" subspace of a union typed data space in

ALGOL68.

The protection could also be, that certain access is
valid only within a given context, e.ge a specific set of
procedures or users. The advantage in doaing so lies not
only in the capability to restrict the dissemination of
information, but also 1in the capability to protect
information against the the contamination by incorrect
program sectionse. Finally, allowing only a selective access
will decrease module coupling as defined by Myers[MNyel],

increasing thus the "modularibility" of a programe.

Although intuitively quite similar, there is a
definite difference between access typed values and £3£
typed values. An accegg typed value is a name value in the
same way as a 535 typed value is. However, access typed
values are never values on their own right. That means, if
an access typed textual name occurs at the left hand side
of an assignment, it will always deliver a reference to the
data space it currently is bound to. In ALGOL68 terminolo-
&Yy an access typed value is, thus, always dereferenced.
Usually access typed values define an access .path rather
than a simple name typed value. Access typed values still
satisfy convention 3.1.5. However, the external appearance
is as if the data space they characterize would stand in

their place.

Besides the access operations described above, a user
may also define manipulative operations. Such operations

are particularly interesting when a certain type |is

Types -3.31~-

designed for a specific kind of information. For example,
when defining square arrays for the purpose of holding the
coefficients of a set of linear equations, it is worthwhile
to define also operations, such as matrix addition,

multiplication and inversione.

Notice though, that if the access operations are
available, we need not provide extra manipulative opera-
tions. This follows from the fact that we must know what we
are accessing, and, consequently, we could use a set of
standard operations to perform the required operation. For
example, using selection and 5233 addition, we are able to
define addition of arraysy, provided that the access opera-—

tion is defined for this array. Formalizing we have:

Lemma 3.3.3. Let T be a type.v If the access operations are
defined for T and for all its subtypes, then any
manipulative operation can be implemented for

values of type =

In some circumstances, we may want to protect data
spaces in snch_a ways, that only manipulative operations are
made available to the outer scope of the type definition.
In section 3.4 we will discuss how to define precisely the
scope of names with respect to modules, or program

sectionse.

Again we are faced with the problem that we cannot
foresee all possible operations that might be requirede.
There la'no ma jor difficulty if we satisfy the conditions
of lemma 3.3.3 though. However,; we may not wish to do so,
since we might want to protect information against
uncontrolled accesse To force a user to define a complete
new descriptor, seems not to be a good choice. This shows

that we should allow type descriptors to be extensible. The

[3

Types «3.32~-

problea is now how to solve the conflicts between extension
and protectione Again we resort to allowing speciftic
information to be accessed only within a specified scope.
Thus, we have now protection sets, not necessarily
dis jointy, describing which information may be accessed

under which special condition.

Besides protection mechaniams, we also must provide
operators which enable a type descriptor to be extended or
pruned. Furthermore, we must be able to 1link these exten-
sions into the text in the appropriate places. In figure
JeJde4 we show an example of a type descriptor extensione. In
order to understand 1it, the following discussion on

incomplete type descriptors should be read tirste.

By means of predicates 'defined by the type descrip-
tors, we may assure that values of a given type satisty
some given conditione. Thig is particularly interesting when
the type set maps onto non—-contiguous elements in the type
space. For instancey, a type 'prime number" could be
defined. Whenever a value of this type is assigned, a check
veriftying whether the number is really prime should be
performed. Observe that, by means of extensions, some type
definitions can be created <from other type detftinitions, by
defining or redefining the conditions which must hold for

values of these new typese

The last consideration is that of human engineering.
We must be able to measure the amount of "annoyance" a
programmer 1is willing to accept, in order to obtain
increased performance and a higher degree of mechanical
certification of his programse. The answers to these
questions are not at all clear. First, because they depend

on each individuals taste. Second, because it 1s not clear

Types ~3.33~

thaty, for a more involved program, a substancial amount of
mechanical verification is possible, apart from syntax
checking. We will not pursue further these questions, since

they fall out of the scope of this dissertatione.

From +the preceding paragraph we may conclude, that
there should be a set o0f system "defaults"™ which would
reduce the amount of effort spent by the programmer. For
example, if no operation is mentioned, then the usual

access methods apply.

When producing a major piece of software, it may be
worthwhile to individually certify each of the composing
modules. Since normally these modules will operate in a
well defined environment, we would like at least to be able
to simulate this environment when testing a given modulee.
This suggests thaf there be a set of interchangeable type‘
definitions, in order that the one closest to the needs at
the given moment could be chosen. We understand as '"being
interchangeable", a type descriptor which allows the same
set of operations on the same input parameters. The
individual behaviour is irrelevanty, as long as the results
produced are not affected by which of the definitions is

effectively been used for a given rune.

Similar problems may also occur, when a system is
defined for a large set of input values. For instance, the
operations defined for arrays may vary largely with respect

to properties such as sparseness, symnmetry etce.

In the case of extension of type descriptors, there is
again a conflict. This is usually a consequence of the fact
that extension is a type descriptor dependent operation. It
follows then, that a given set of type descriptors is only
apparently interchangeable. It is really interchangeable if

Types =334~

they are also interchangeable with respect to all
extensionse. This may be achieved either by assuring that
the extensions are independent of the particular descriptor
of the interchangeable set. Or it is possible, by creating
several extensions, one for each type descriptor, and
assuring that the current extension always applies to the
actual descriptor. This can be checked quite easily by
associating a unique identification, say gcreatiopn stamp.,
esge creation time or global counter value, to the type
descriptor being extendedes When an extension is8 being
defined, the underlying type descriptor must be known, thus
its creation stamp can be copiede On a later occasion, when
the type descriptor and the extension are combined, the
extension is valid iff its creation stamp matches that of

the extended type descriptore.

When defining certain types, we may not know, or do
not want to know, the exact type description of all
composing subtypes. For example, the access methods of an
array are usually the same, regardless of whether it is an
array of 1nte§er or gggl values. This suggests then to
allow the programmer to define types inm an incomplete
fashione The information may be completed at some later
textual pointy, or a later compile stepy ory, finally, at run
time. Using again arrays as example, the number of rows and
columns needed for a specific application is frequently not
known during the first compile stepe. However, when
producing the final assembly of the system, still within
compile time, these values could be filled ine A similar
argument holds also for constants. Some constants may be
known for a given application, but not when writing the
programy and could be filled at some later compile step.

Now, if we observe that type definitions could be viewed as

Types -3.35-

constants, there is no major reason, except for complexity,
which would prevent us from defining types in successive

stepse.

type stack of (1:22 user_type)=
heain stack;
lxgg node=struct(£2£ node next; user_type info);
ref node firsti=gull;
outside scope operations;

user_type access function top=first->info}

function push(user_type value)=

firsti=pew node(next::first, info::value);

logical Tunction pop=

if tirst#gull
then begin pop;
firsti=firat->next;
irues
end pop;
3}22 false;
i
end operations;

end stack;

Figure J.3.1 List inmplementation of the type "stack of

user_type".

We will call type macroy a macro which, upon
expansliony, delivers a completed type description, or
another type macroe The discussion in preceding paragraph

shows a possible use of type macrose.

In figure 3¢3¢1 we show the definition of an
incomplete type "stack of user_type". From the point of

view of the stack storage mechanism, it is completely

Types -3 .36~

lype stack of (type user_type) =
begin stack;
user_type space[50]; /* stack area %/
integer first:=0;
outeide scope operations;

user_type access function top=space[first];

Sunstien rush(user_type info) =
space[tirst:=firat+l]:=info;

loglcal function pop=
if firat>0

then begin;
firsti=tirst—-1;

true;’

end operations;

end stack;

Figure 3¢3¢2 Array implementation of the type "stack of

user_type™.

- type x=struct(integer a, real b);
stack gf(x) saverl;
stack gf(integer) integer_stack;
saverl.push(); /% if no parameter then send undefined X/
with sl=saverl.top do sl.a:=0; sl.b:=1.; od;
integer_stacke.push(1);
t=itinteger_stack.top;

Figure J.3.3 Example of the use of the type "stack of

user_type".

Types ~3.37-

irrelevant what the effective type of the data being stored
ise Baving this in mind, we may define all the operations
applying to a stack, using the type of the information to

be stacked as a parameters

In figure J«3.2 we show the array implementation of
the type "stack of user_type". Observe that both types in
figures 3¢3¢1 and 3Je¢Je2 are Midentical" from the user's
point of view. The major difference 1is that the array
implementaion defines an upper bound on the stack size. In

both examples we assume that access functions always return

null if their evaluation fails. Thus a null pointer, or an

index out of bounds, will return a null access typed value.

In figure 3.3.3 we show some statements which use
either of the type descriptors "stack of user_type" defined
in figures 3.3.1 and J3.3.2. When defining the type of the
variables saverl and integer_stack, we effectively complete
the information of the type M"stack of user_type". Observe
that "user_type" is a parameter of type typey and that this
parameter is filled at compile time.

There are several ways to implement such a set of
cognstructe. The simplest one would be to generate an
instance of each of the functions, for each of the ways the
type is completed. Observe also, that the type "gtack of
user_type" (f£ig 3.3.1) detines the local variables "“first"
and "user__type". Each textual name implying a space of type
"gtack of user_type", e.ge saverl and integer_stack, will
refer also to the data space containing these 1local
variables. Furthermore, for each of the textual names,
there is an instance of "first". However, this data space
is accessible only by +the functions defined by the type

"stack of user_type'. Observe also that, in the present

Types ~-3.38~-

case, the 1local value "user_type" can be discarded after

compilation.

Observe the similarity of this implementation and that
used for classes in SIMULA67. Observe also, that in
SIMULA67 all local variables are accessible, whereas in our

case this is not possibley, eo.ge the variable "first",

Another implementation would be to use only one set of
procedurese. In this case, each of the procedures would
receive also the type as a parameter. This parameter would
have té be included in an 1np11§it fashiony, since the user
should be unaware of the implementation. Observe that this
implemetation isg natural to SNOBOL4 and GEDANKEN, since in

these languages, data spaces define their own typee.

Which of the two implementations to chose is quite
difficult to be done mechanically. This follows <from the
fact thaty, in order to correctly decide, we must take into

consideration the cost implied by a given implementation.

In figure J.3.4 we show an example of a type
descriptor extensione. This extension is sensible to the
underlying type descriptor. It has been designed to extend
the list implementation of the type "stack of user_type"
(fig 3¢3.1)e Each identifier created by the extension must
be appropriately placed in the text of the descriptor being
extended. This is achieved by the in <place”> constructs,
where <place”> 1is any of the textual scope defining
constructs, eege begin, scope etce The reason for the
existence of a boolean function user_type.equal, is that we
are unable to tell how equality of values of type

user_type" is defined.

Types -3.39-

1123 symbol_stack =
extend stack with
begin extension;
ref node pos in local;

user__type access function search(user__type name) =

begin search; /* tind node bearing "equal" data */
pos:=first;
while pos#ggll do
if user_type.equal(name,pos~>info)
Xhen begin foundj
pos~>info;
exit search;
end found;
else pos:=pos—>next;
£is
H
113
end search; Ag outside _scope;

end extension;

: R

Figure J¢3.4 Example of an extension of a type descriptor.

In the same way as we defined "gstack of user_type", we
could also have defined "trees of user_type", "queues of
user__type', "arrays of user_type" etc. Observe the richness
of types we galn in doing so0, and also the adaptivity of
types to a given program’s needs. Observe furthermore, that
incompletely defining types allows us to certify once and
for all, all occurrences of such a type, regardless of its
actual parameters. That is, we are effectively increasing
the structuring of the program. Finally, the annoyance of
having to write more when defining such a type, is greatly
offset by the reduction of writing when such a type 1s used

Types -3440~-

frequently in a given program. It is offset even more, if
the language translator 1is capable of reading type
definitions from external files, sincey, in this case, such
a type descriptor could be defined once only for a set of

programse

To expect a language to provide a great richness of
types is, to say the least, unrealistice First, because the
language would become topheavy. Not only this, it is also
near to impossible to ftoresee all the types which could
possibly be used by all programmers programming in that
language. Secondy language implementations tend to freeze
the implementation of standard types. This standard
implementation is not necessarily the best one for all
casese. Finally, the cost of implementing the capability of

incompletely defining types seems to be reasonably small.

Another interesting point with respect to type macros,
is the ability to group data spaces on the mediume. That is,
by maintaining several free lists, we are able to keep data
spaces which will be accessed in a close succession in such
a way that the access cost is reduced. This is particularly
important when considering backing store, or programs which

execute in virtual memory machinese.

Let T be the type descriptor provided as an expansion
parameter to a type macroe If T is known to define spaces
of bounded length only, space may be allocated by the type
descriptor functions, even 1f the actual value is
undefineds A consequence of this, is that the data of type
1 may be processed and kept "Ylocally" to the type
descriptore. This reduces thus the amount of information
traffic due to copying information. An example of the use

of this property is shown by the comnstruct:

Types -3.41~-

saverl.push();
in figure 3¢.3.3y where the value to be pushed is undefined,

but its storage requirement is well knowne.

Suppose now that T defines data contained in data
spaces of unbounded length, e.ge. lists. If the information
of type T is to be made internal to the type macro, first
the bound has to be computed. Usually this is possible only
by generating the value of type T. This may increase
considerably the amount of information traffic due to
copying informatione. A pointer [reference] to a data space
of type T is obviously bounded in length. Thus if T is a
"pointer to type" type,; the problem reduces to the first of
the presented ones. However, the user is now responsible to

make sure that dynamic storage is being handled properly.
The preceding discussion can be formalized by:

Lemma 3.3.4 A type macro mey make internal spaces available
containing yet to be defined values, iff the type
parame ters define bounded spaces, or the speace
requirements of a particular value are computable

during executionns

As seen previously, a type macro may define its own
local variables. The collection of all local spaces can
obviously be considered as a concatenation of typese.
Furthermore, these local descriptors are uaualiy bounded in
lengthe. Observe then, that we could define a type "stack of
stack of user_type" as is shown in figure J3.3.5. Observe
that this does not contradict lemma 3.3.4, since the
variable length of +the parameter type, is kept in dynamic
storage, ieee not internal to the type macroe. Observe
furthermore, that stackl is a complete type descriptor,

ieee there is no further information needed for this type

Types -3.42~

descriptor. In figure 3¢3.6 we show an example, where the
recurrence is performed with sstill incomplete type

descriptorse.

type stackl = stack gﬁ(integer):

this defines Just a new type. No variable is being
defined, thus algo no space is reservede.

stack 2£(stack1) stack_of_stacks;

this defines a variable consisting of a stack of
stackse. Since "gtack of user_type" defines a 1local
variable, this definition causes space +to be
allocated. However, only space for "firgth in stack of
stacks is allocatede. Due to the static t?ping of
stackl's user_typey, the value of "user_type" is not
needed at run timee.

stack_of_stackse.push();

this is a valid operation It will create Jjust a new
stack frame of type stackl. There 1s no need for a
parame ter, since creation of values of type stackl
precinds any parameter. There is, howevery, space
allocation involved with this operatione This space
vll} contain the varlable "firgst" of the new stack
definede.

with ss=stack_of_stacks.top do ss.push(1); od;

this is also a valid operation. It will cause a new
stack frame of type integer to be allocated to the
topmost stack in the stack of stacks. There is no need
to prefix “push(1)" with a stack identifier, since
this is automatically done by means of the "with"
constructe We could have written also:

stack_of_stackse.tope.push(1l)
which would achieve the same result.

Figure 3.3.5 Example of the recursive use of an incomplete
definition, yielding a complete descriptor.

Theorem J¢3+.5 Let 7T be an incomplete type descriptor at some
. compilation step Si' Run time type checking for

statically typed data spaces based on type T is

required in the general casey 1if there is no

compilation step Sj during which the type

descriptor T is completeds

Types =3.43~

stack of(stack of(type user_type)) stack_of_stacks;

this definition 1is vwvalid, however it yields an
incomplete descriptor. There is no problemy, though, in
allocating space for the variable %"Lirgt® in
stack_of_satackse

stack_of_stacks.push()

this operation is not valid, since we do not know the
type of the new stack being created.

stack_of_stackse.push(integer);

this operation is validy, since it correctly completes
the type of the new stack being created. This shows
also thaty, at run time, there are now two local spaces

agsociated with eac atack, one for the type
ﬁe{lnixion of +the stack, the other for the variable
first

Figure 3J3.3.6 Example of recursive use of incomplete type

definitions yielding an incomplete type descriptore.

Proof. Suppose that T has not been completed when
starting executione. It is clear that there may be
no allocated variable of type T, since descriptive
information to handle this variable would be
missing. Therefore, previous +to any typing opera-
tion, a completed instance of T must be generated,
say 17 Since there could be several such
instances, each one different from the other, we
conclude that, in the general case, a type check

is needed in order to determine the appropriate

type of the data space being accesseds

A consequence of this theorem, is that incomplete type
descriptors may act as union types if left open during
execution. In principle this ypjion type is defined over the
set of all posasible typese. This may cause major
difficulties both for the code generating procedure, as
well as for the programmer using this feature. From this we

may conclude, that the set of possidble type parameters be

Types -3 .44~

restricted and explicitly provided;, e.ge. by means of the

union constructe.
APPSR,

Incomplete type descriptors usually define polimorphic
operatorse That 1is, operators acting on values of type
Yuger_type" are undefined until "user_type" is provided.
Further-org, for different “ubor_types“ also different
operations may effectively be performed, eecge e of
integers is different from "+ (concatenation) of
"gtringse. Since the operations on values of type
“"uger_type" must be defined within the "user_type" +type
descriptor, there ise no major difficulty regarding +the
definition of the operations. The problems arise, though,
when attempting to perform independent compilationy since
frequently there will be insufficient informatione. Ve will
come back to this problem in section 3.4.

3.4 1ype Identificatian.

In section J.2 we have seen that access paths always
imply the type of the data spaces bound to theme Thus, when
accessing a by means of a typed access path <b,Tp>' a is

implicitly typed T_+« On the other hand, the type T4 of the

P
data space ay is a property of a itself. Therefore, if a is
to be sequentially multityped, there must be an equality
relation between the type Tp implied by the access path,

and the effective type Tg of ae

Most of the following discussion 1is irrelevant for

languages where data spaces are always "universal union"
typed, eesge SNOBOL4 and GEDANKEN. This is so, since in
these languages data spaces always describe the type of

their contentse.

Types -3 45~

The usual definition of type equality, is based on the
equality of storage layout, cefe Ledgard[Led2],
Morris[Mor2], Scheidig[Schi], Lewis and Rosen[Lewl],
Harrison[Har2]e. This definition does not suit our concept
of type. For example, let Tp be the type “"prime integers"
and T4 be the set of "integers". The storage layout is
obviously the same. Using this definition of type equality,
we would have to conclude +then, that both types are equal.
It is obviousy, though, that the type sets are different

and, consequently, the types cannot possibly be equal.

Another difficulty with the conventional concept of
type equality, is that there is some meaning attached to a
data spacee. This meaning is not necessarily reflected by
its type descriptor. Thig may cause information of one type
to he non—~interchangeable with information of another type,
although both types apparently define the same type set.
For example, let a he a data space containing a students
name, and let g be a data space containing a professors
namee. Borrowing PL/1 notation, let @us suppose that both
have been declared CHAR(40), thus their type space |is
equal. It is easy to verify now, that each of these data
spaces may contain a value of a scalar sety, which happens
to be implemented as CHAR(40). For several reasons, this
scalar set is not explicitly declared, thus one is led to
assume that each element in the type space may represent a
value of the given type. Ve would have to conclude then,
again contradicting reality, that both types are equal. Ve
will call this kind of type inequality a gemantic tfype

ineguality.

Observe that 1in our first example, we could have
defined a predicate which would test for membership of a
given integer 1Iin the "prime integer"™ type sete. This

Types =3 e 46~

predicate could be used theny, as a functional encoding of
this type set. In the second example, we cannot produce
such a predicate, since such a predicate is not computable.
Ve would have then to resort to enumeration of all elements

in the type sets. It should be obvious that this is non

satisfactorye.

To determine whether two data spaces of the same type
represent semantically different types is undecidable. Thus
the user has to make the decisiony, but also the language
must provide a facility to differentiate types which are
apparently equal. Before showing how this could be
achieved, we will study problems relative to identification

and equality of types.

Defne 341 Let Ty and Tz be two types. We say that T and T,
are theoretically egual iff:

a= theilr type sets are equal; and
b= their sets of valid operations are equal; and
c= +their type spaces are equal; and

d= their subtypes are respectively theoretically equals

Observe that the type space equality and the subtype
type space equality imply Jimplementation equality. Ve must

take the implementation into consideration, since we are
ultimately interested in' information interchange, rather

than in set theorye.

In section J.1 we saw following recursive type
definition:
type A=union(integer;

type B=gtruct(integer b; A c));
In order to allow finite computation, we must regard a type

definition as a static entity, i.e¢ we do not follow

subtype definitions which are based on recursion. Thus, it

Types -3.47~

satisfies item (d) of the theoretical type equality, if two
types possess the same recurence graphs for all their

subtypese.

The first problem with regard to this definition of
type equality, is that type sets could be defined
functionally, e.ge. the "prime integers" set mentioned
before. Such types impose severe restrictions, since it is
undecidabley, in the general case, whether two different
functions compute the same results for the same input
values. We must thus find an alternate way to identify data
typese This identification should allow the definition of
an "equality" relation which is at least as restrictive as

the theoretical equality of types.

For each type descriptor there is a textual name. Some
of these names are system defined, e.ge. integer, ssgl.
Others are user defined, eege modes 1in ALGOL68. Not
necessarily, though, must these textual names be known at
compile time, e.ge SNOBOL4's DEFINE function defines type
descriptor textual names at run time. Textual names may
represent different things, depending of the textual reach
within which they existe. Thus, a textual name could stand,

among others, for several different type descriptorse.

Defn. 3.4.2 An agsignation ianterval of a space ay is a time

interval sgtarting at the 1instant a is write
accessed, and ending at an instant immediately
preceding deallocation of ay or the next write

access to as

In a deterministic environment, a textual name within
a given reach can rdpresent one only data space at each
instante This shows then, that following definition is

soundy 1.e¢ denotes at most one type.

Types =-3.48-

Defp. 3.4.3 A type identificatiop is a triple <N,R,T>, where N

is a textual name standing for a type descriptor
within the reach Ry, and T is an assignation

interval of the space represented by <N,R>m

Observe that the assignation interval may include
compile time intervals. For instance, when declaring a type
at compile time, this declaration initiates an assignation
intervale. Notice that some languages permit compile time
variables, e.ge PL/1's preprocessor. User defined compile
time values occur also in so called extensible languages.
For example, in ALGOL68 we are able to defime new types
[ices modes] and operators. These definitions are taken

into account at compile time.

The inclusion of the reach in the type identification
may be regarded as superfluous. In fact 1t 1is Just a
stressing that textual names may mean different things at
different textual places. That 1is, the name map requires
the reach as one of its parameters, cefe. section 22. In a
parallel processing environment, we expect that assigning a
value to a common space always occurs within a mutually
exclusive section. This automatically prevents a given type
identification standing for different types, since the

assignation intervals are necessarily disjointe.

Following will be our definition of type equality. In

the sequely, we will examine its impact on programming.

Defne 3.4.4 Two types T; and T are egual, iff their type

identiftications are equalns

Observe that a type identification stands for the
descriptor, and that there could be at most one descriptor

for any one type identifier. It follows immediately, that

Types -3.49-

for each type, there is one and only one type identifier,
ieee descriptor. That 1is, the problem of determining
equality of types does no longer existe. It is also
immediate that this definition of equality of types
satisfies the theoretical type equality. That is, if two
types are not theoretically equal they are also not equal

using our concepte.

The first difficulty to overcome is that of type—-wise
correct information transmission. That is, how can we
agsure that global, actual/formal and sender/receiver
parameter associatione do not induce parallel multitypinge.
If there is one and only one descriptor, this descriptor
must be known to each program sectlion, e.ge module, making
use of it. Of course a type descriptor could be made global
within a textual portion of the programe. Within this
textual portion no major problems with respect to type
identification will occur. This rule is not satisfactory,
however, since we are either causing modules to have access
to more information than they needy, or we are forced to
produce quite complicated scope rules. In the former case,
type descriptor dissemination increases module coupling as
defined by Myers{Myel]s In the 1latter case, syntactic
difficulties are imposed on the language.

Another form of disseminating type descriptors, is to
pass along with the information itself, also the type
descriptor applying to this information. Observe that this
is another instance of incomplete type descriptors. That
isy a formal parameter list may leave open the type of some
or all of its parameter elementse. Again, a textual section
using this kind of incomplete descriptors could be
considered a macro. This macro is then expanded for each of

the actual types transmitted. It could also be considered a

Types ~3.50-

function where type checking is performed whenever an
undefined type operand is used. The major problem here is
that "user type" is not as transparent as it was in section
3.3. This follows from the fact that here we are
effectively manipulating the data of type "user type",
whereas in section 3.3, we considered such data only as a

static entitye.

The manipulation of information is performed by means
of operatorse. We are faced now with the problem of defining
equality ot user defined operators. This time we must be
able to verify the equality of the operator transmitted and
the operator expected. Again, we do not go fary since this
decision cannot be made by means of an algorithm in the

general case. We must then transmit the operators.

Within the type descriptor being sent and the
receivlzg program section, each of the operator textual
names is well understoodes We could expect then, that the
receiving program section uses the same textual name as
that used to define the operation within the type
descriptor sent. It is easy now to associate the operators
bearing the same name in the type descriptor, as well as in
the receiving' programs section. However, we are faced now
with a naming problem. That is, the receiver could have
been written using a different name from that in the type
descriptor sente. This could occur, for example, due to the
existence of a program librarye. We can solve this problem
by the use of parameter names. Such names serve only for
the purpose of associating a formal parameter, i.e. a
receiver parameter, with an actual parameter, i.e. a sender
parameter. This name has to be equal to the receiver para-
meter. Furthermore, the scope of such a name is restricted

to the one parameter association being performede. This

Types ~3.51~

brief explanation of parameter names should be sufficient
for our purposes heree. In chapter 5 we will study parameter

transmission in greater detail.

Observe that we are using the term "parameter" in a
more general form than usuale. That is, the effective
"value" being sent (actual parameter) is the type
descriptor. However, the parameters we are refering to
here, are internal to this type descriptor and are sent as
a consequence of sending the type descriptor. Similarly the
receiving (formal) parameter is of type Ezag. However, the
expected operations are "received as a consequence of
receiving the type descriptor parameter. We will denote
this kind of parameters as jhidden parameters. In figure
3¢3¢4 we have shown such a hidden parameter. The operator
"equal® defined within Tugser_type" is transmitted

indirectly when transmitting “user_type".

In the same form as we are able to solve the naming
conflicts with respect to operators, we can solve other
naming conflicts wvhich may exist. For example, subfield
naming conflictse In figures Je4esly, 3¢4¢2 and 3.4.3 we
show, among other things, how to use parameter names to
overcome naming conflictse The construct contains(eess)
provides a -éans to make explicit the hidden parameters
sent by the type descriptor. Obgerve that the parameter
lists of type_1 and type_2 are mixed together into one
single parameters list. This is possible due to the use of

parameter names within this single list.

Now, the expected operator is supposed to perform a
given taske. We must then be able to assure that the
operator sent indeed performs this task. Again we are faced

with an undecidable problem. This time we must rely on the

Types -3 e52~

ability of the prograsmer to provide an appropriate
operators This implies also, that the receiving program
section must specify all operators it expects to receive in

sufficient detail.

Summing up, we have then, that in order to disseminate

type descriptors:

a= they could be made available through the use of an

appropriate choice of scope;

b- they could be sent together with the information they

describee.

In case (b) all operators expected on the receivers
side must be made available by the aender. If this fails to

occur, two possible actions could be taken?

i~ cause a nonexlstent'pperator error to occur at the

instant an operator, which has not been sent, is

attempted to be used;

ii- cause an incongléxe degcriptor error to occur, at the

instant the type descriptor is received.

Another interesting aspect of sending type
descriptors, is that we may restrict ourselves to send
those and only those operators which will effectively be
requirede. This has several advantages, in particular we are

able to provide a greater degree of protectione.

Notice that type descriptor transmission does satisfy
the requirement of one and only one type definitione.
Furthermorey, it allows virtually any program section to
process information of any of the currently existing typese.

We have then:

Types =3.53~

Lemma 3.4.5 With the use of either scope rules or type
descriptor transmission, the type equality defined
in 3.4.4 corresponds exactly to the theoretical

type equalitys

Type adaptive operators exist both in PL/1 [GENERIC]
and ALGOLG6S [22 definition]. Furthermore, in ALGOL60 it is
not necessary to define the type of the formal parameter.
In this case, the operators within the receiving procedure

must adapt to the type of the associated actual parameter.

Our form of type identification and equality, is
useful also with respect to independent compilationy ce.f.
Palme[Pall]. If +the language processor, l.e. during some
compile step or at run time, is able to read a type
descriptor from an external file, it enables the wuser to
create a library of type descriptors. Observe that PL/1's
%INCLUDE and SIMULAG67's external class provide such a

facility. The reach of such a type descriptor is now the
set of all programs which are compiled and/or executed
requiring this descriptore. The assignation interval of such
a descriptor starts at the instant this file was last
created or updated. In the case of type descriptors
obtained from external files, type incomnsistencies due to
incorrect assignation intervals, may be corrected by means
of the recompilation of the program sections using the
outdated type descriptor. Observe that such a facility lis
provided in the PDP10 time-sharing monitor[DEC1,DEC2], with

respect to source and object programse.

When receiving a type descriptor from an external
file, we are usually not interested in receiving the whole
text of this type descriptore. Rather, we are interested in

receiving only the textual names and macros which are

Types =3.54~

defined by such a type descriptor, i.ee the interface
‘information. The effective code of the type descriptor is
necessary only when assembling together several
independently compiled modules. This leads us to the
conclusion that a '"compilation" should produce at least

following results:

i= interface information, i.e. all information required
to interrelate with another independently compiled

program module;

ii- partly or completely compiled code.

Some additional information could also be producede.
For example, a storage layout description could be
provided, such that a symbolic dump could be performed

whenever required or atter aborting executione.

Let us examine now what the contents of the interface
information ise Interface information is refered to by some
textual name. If this textual name does not explicitly
define the triple <N,RyT>, i.e. the program module
identification, this identification, or its encoding, must
be present within the interface information. This follows
from the fact that <NyR,T> is necessary to determine the
equality of the program modules it identifies. Now if the
textual name does explicitly define <N,R,T>, equality could
be assured directly by inspection of the textual namee.
Usually though, interface information will be kept on saome
file, where +this <file name does not convey <N,R,T>.
Furthermore, the cost of inclusion of <NyR,T> into the
interface information is minimal. We will expect then, that

the identification be present.

Types =3 .55~

A valid encoding of the identification <Ny4R,T> will bde
called a creation stampy where such a creation stamp is a
value of some type,; e¢ge integery character string or even
<NyRyT>. Furthermore, at any given instant, no two equal
values are present within the whole system. Creation stamps
could be generated, for exampley, by reading a high
resolution (day time) clock[Fenl), or by reading the value
of a system defined counter which is increased by one for
every access and is negyer reset. We will assume then, that
all information related to some program module, oo
interface information, code, layout description, input
text, extensions etcey bears one and the same creation
stamp. By simple comparison it can dbe established then it

two different program modules refer to the same entitye.

Besides the creation stamp, interface information will
also contain descriptional informationy and gperational
information. Descriptional information describes the
characteristics of the information received or transmitted
by the program moduley, e.ge¢ parameter lists, returned value
types. Operational information defines the operations which
could be performed by this program module; e.ge access
function, internal types, antfy points. Notice that if the
operation is a macro, the text of this macro must also be

provided as interface informatione.

We have mentioned before, that, in some cases, not all
operations are to be made available to the exterior. This
can eaélly be accomplished by not including this operation
into the 1interface information. Similarly we need not, or
do not want to, make descriptional information available.
For instance; we may omit that a given <function returns a
value without establishing an error condition. In some

cases also formal parameters may be omitted if it is known

Types =3 .56~

that the program module will operate correctly in their
absence. This Justifies then the classification of
descriptional and operational information into gcsgential
and pon—eggential information; where essential information
is loosely defined as being the subset of the descriptional
and operational information which 1is necessary in order to
allow the program module to correctly perform the required
tasks. According to Myers[Myel], non-essetial lntormation

should be absent in order to reduce module couplinge.

Observe that operations made available within the
interface information may require themselves interface
information. Thus we have in fact a hierarchy of interface
information. Due to the existence of creation stamps, we
may copy the interface information of such operations. This
follows from the fact that we may verify equality at some
later point by comparing the creation stampse. This shows
also that the creation stamp must be kept at least until
the corresponding progream module M is assembled into some
completely containipng module, where this completely
containing module is such that its interface information

does not contain any of M's interface informatione.

So far we have seen that a complete type descriptor
may be transmitted. However, in many cases we are not
interested in the whole data spacey, but rather in a
subspace thereof. For example, when processing a list, we
may be interested bln a certain portion of a ' node, but not
in the whole list. Let us examine following solutions to

the problem of subspacing:

a=- data descriptors are unigue, and each program section
making use of them must be in the reach of the

definition;

Types -3.57~

b= subspaces may be accessed only through operators

defined on the whole type;

Case (a) has already been analyzed. We have also found
that the problems relative to this solution lie on the side
of proper scope definitionse. There are no naming problems
since 1t is the data descriptor which governs the naming,
ieee the data descriptor does not have to adapt to an

already given set of names.

Case (b) is not as restrictive as it 1looks. The
operators defined <for a given typey, could be the access
operators described in section 3.3. Thus access to subtypes
is possible, even it types are transmitted. However, access
functions deliver values of a given type. This implies that
the operator sent must produce a result of a type which is
known to the receiver. But since the type, and consequently
its subtypes, are transmitted, we must also transmit the
descriptors of all subtypes which might be required by the

receivere.

The last consideration to make, is that some program
'section may act as an information distributing sectione.
That isy, this kind ot section receives information and
passes it ony, without looking at it. It is clear that we do
not wish to force this information distributor to know the
details of +type descriptors being transmitted, in
particular with respect to subtypes. This could be solved
by allowing type descriptors to be grouped. In this case,
there will be Just one type descriptor sent, however,
wlthih this descriptor, several other descriptors exist. An
example of such a grouping is shown earlier in this
sectliony, where type A 1is defined and, in doing so, also

type B is defined. Observe that this grouping is natural if

Types =3 .58~

ref type_1 function concat(type type_1 contains(integer size;

ref type_1 function obtain(integer length);
type type_2; type_2 elem(*]); ref type_1 a,b);

begin concat;
integer length = a~Jsize + b=>gize;
concat:=obtain(length);
for i:=1 until a->size do
concat-Yelem[i]:=a-Yelem[i]; od;
for i:=a=>gizetl until length do
concat-Yelem[i]:=b~Velem[i~a~->size];

end concat;
B

Following hidden parameters have been made explicit:

ret type_1: obtain(length::)j;
integer /*fetch function¥*/ slze;

type_2[*] /*access function*/ elem;

Figure J.4.1 Example of a function accepting type parameterse.

the interface information allows for hierarchies of

informatione.

In figure 3Je.4.1 we show the function "“concat". This
function receives parameters as well as the type
descriptors of these parameters. We alsoc show the set of
operators which must be minimally provided in order to use
that functione. In figure 3¢4.2 we show a type definition
which will be transmitted to '"concat" of figure J3.4.1. How

that transmission is accomplished is shown in figure 3.4.3.

In figure 3.4.1 the contains(eee) construct turns
explicit the hidden parameters transmitted by wuse of
Ngtring". In figure J.4.3 the type "string" of figure 3.4.2

is transmitted +to "concat" of figure 3.4.1. The names

Types ~3.58~-

type string (integer string size) =

begin string;
outside sCcope scope;

integer fetch function string_length=sgstring_size;

bit(2) string elem[string size]l;
ref string function get(integer length)
get:=pnew string(length);
ref string function constructor(pit(2) vector[*])
begin constructor;
integer length=ypper bound(vector);
constructori=get(length);
for i:=1 until length do
constructor->string_elem[i]Js=vector[i];

-

ods
end constructor;

end scope;

end string;

Figure J3.4.2 Definition of the type "string of bit(2)%".

ref string asb,c;
=constructor(array(*01'B,'10'B));

a:d
bi:=constructor(array('11'B));
c:=concat(type_1::string(elem:istring elemysize::istring length,

obtain::get,type_2::bit(2)), aza, biib);

use of "concat" with type

Figure 3J3¢.4.3 Example of the

"gtring"e.

names expected by "concat' are

defined by "string" and the
means of the

different. This difficulty is overcome by

parameter'name association. The syntax used is:

<formal parameter name> :: <actual parameter>

Types -3.60~-

where <formal parameter name> is the textual name of the
formal parameter which will be associated with the value of
<actual parameter>. The construct arraz(...) in figure
3ed4¢3 bduilds a vector of as many elements as there are
actual parametqrs in the liste The elements of the array

are initialized to the actual values of the parameterse.

Barlier in this sectiony we mentioned that users
should be enabled to define different types, based on the
same definition. Recall that this 1is8 necessary to solve
problems relative to semantic type inequality. It should be
clear nowy that this could be achieved simply by defining
several textual names for the same base type. Due to the
type equality defined, these types are necessarily
differente. In the example shown, we would have then:

type student=char(40);

type professor=char(40);
Both definitions rely on the same base type. Since no
operations are provided explicitly, the standard base type
operations applye. However, due to the different textual
names, both types are different. Furthermore, there is no

conversion defined between them, thus these two types are

necegsarily dis joint.

Theorem J.4.6 Let §a,Ts> be a data space being accessed by an
access path <h,Tp>. The access 1s type—wise
correct, iff the type 1identification of Tg and Tp

is equalm

The proof of this theorem is an immediate consequence
of the preceding discussion. Observe also that it makes use
of our type equality definition. Thus, the only if portion
may fail, if another equality definition is usede.

Types -3.61-

Observe that across module boundaries different
textual names could refer to a same type. If we would take
our definition strictly we would have two different types
in fact, although we are defining only onee. This shows
theny, that we muast allow renamings of textual names to
occur across module boundaries, without that new type
descriptors are created. Notice that, by means of parameter
names, these renamings define an equivalence class of
textual names, where this equivalence class is defined with

respect to the possible renamings across module boundariese.

Let us examine now gome of the main differences and
similarities between our type descriptor system and

SINULA67'8 classes.
a= Both systems rely on uniqueness of definitions.

b= 1In our system data belonging to a type descriptor is
made available by means of a specific declaration. In
SINULA67 local data of classes is available to all
blocks to which this class is prefixed. Thus our
system offers more control over data, easing thus the

task of certifying a descriptorte.

c=~ The class hierarchies which can be built in SIMULA67
are strictly tree like hierarchies, where each class
appears exactly once as a node in this treees In our
data descriptor systemy, there 18 no restriction in
which way to combine different type definitions. Our
system 1is thus more general. Whether or not this
increased generality is definitely required, will not

be discussed hereo. .

¢+ In a recently proposed modification of SINULA67[Pa12} a
new attribute, i.e. hidden, is defined. Names possessing
this attribute are prevented from being accessed from the
exterior of the class definition.

Types -3.62~

d- Our type definitions mnay be extended at will,
provided that the scope and protection restrictions
are obeyed. Class extensions exist also in SINMULA67
in an embrionic way thoughe That 18, we must provide
all textual names which might be used to extend a
class definition, by declaring them virtual. Since
SIMULA67 does not protect local information, this

repregents no major restriction.

e~ We may transmit our type descriptors and their
extensionsy, in order to disseminate type definitions.
In SIMULA67 classes are made known exclusively by
means of ALGOL-Ilke scope rules. Ve gain again in a
more controlled environmente. Furthermore, we are
creating an environment where data and its
operational aspects may be disseminated among several
machinese. Whether there are major regtrictions to

this "network" problem, will not be discussed here.

3.5 Iyne Checking.

In the previous section we have seen that type-wise
correct access is guaranteed if both, access path and
accessed data space,‘imply the same type identification,
leee type. We will study now how we could enforce this rule
statically, and how we could enforce statically that data
spaces are sequentially multityped. First we have to obtain
several results which are valid both for the dynamic as

well as for the static casee.

Iheorem 3.5.1 Let <ay,Tg> be a data space. Let t be the instant
when a is typed Ty, where Tg#Ti. Let Tt be the Tt
typing interval starting at the instant t. a is

Proofe.

Types ~3.63~

sequentially multityped, iff all accesses to «
within T, imply Tyy and2
a~ the first accesse to a within Te is a write
access; or
b= there is a conversion C_ ; which is defined for
the value of type Ts in a at instant te.
Furthermore, this conversion is performed
during the typing of a with 1.4 and no other
access than those perfectly understanding this

typing and conversion are made to as

By theorem 3Je¢4.6 it is immediate that any access
to a within T, must imply Tt‘

If condition (a) holds, then the contents of
a are necessarily of type Te after the accesse.
Furthermore, they are irrelevant during the
interval starting at the instant +t and ending
immediately before the write access to a« That is,
the contents of a are undefined during this

intervale.

If condition (b) holds,y, it is immediate that,
after completion of the typing operation, any
access implying Tt causes a type—wise correct
access to occure Furthermore, accesses during the
typing operation are type~wigse correct, since the

typing is well understood.

Suppose now that both (a) and (b) do not
holde. Thus the value in a is not implicitly
undefined. Furthermore, Tg and T; are different
and the typing of a with Tt is not completed when
a Tt implying access occurs. But then a |1is

accessed implying Tt when the contents of a are

fypes -3.64~

not yet of type Tee Therefore a is not
sequentially multityped, contradictions

A consequence of this theoren, is that error
interrupts ocurring during typing as defined 1in condition
(b)y must well understand the +typing operation, or then
must be restricted in their access capabilities. Of course,
we could imagine an identity conversion and produce a dump
when such an error condition occurse. However, it is our
feeling that dumps of this sort should be the last resort.
Thus we would like to see why and how an error occurred in
a form which resembles the data being processed, leee &
symbolic dump. This suggests then, that the error handlers
for conversion and/or typing operations should belong to

the data descriptor involved in the conversion and/or

typinge.

Observe that if +the conversion Cst is an identity
conversion, there is no explicit conversion performed when
typing ae That is, there 18 no code which performs this
conversion within the program. This fact may be used, in
principley, whenever the type set TS is a subset of Tie
However, if T is a proper subset of Tgy a membership test
must be performed by Csf in the general case. That is, Cg¢t
is at most a partial identity conversion. Thus, the
conversion appears within the programe VWhether such a
membership test can be avoided is again an undecidable
question, since answering this question corresponds to
determining the equality of two functions, i.e. the type Ts

value generating funtion and the conversion predicate.

Suppose now that there is a subspace f of a, which is
typed T, by both T; and Tre Thus there is an didentity

conversion with respect to this subspace. Consequently

Types =3 465~

condition (b) of theorem J¢5.1 holds trivially with respect
to B« Thus, access to such a data space 1is always possible,
even if 1t is not valid for the whole space a typed by

either Ts or Té‘ Generalizing and formalizing, we have:

Lemma J«5.2 Let a be a data space. A subspace f of a being
sequentially multityped does not 1imply a being
sequentially multityped. Nor does a failure of the
conditions in theorem 3.5.1 imply that a subspace

A of a necessarily fails these conditions toos

Vhen typing a data space ay, a subspace f of «a may be
in either of +the following three states: "not yet typed",
"heing typed" and "already typed!. It should be clear that
the typing of a must be understood in order to access §.
However, accesses to B8 possess different properties than
those to ae. f could then be accessed, even if a has not
been completely typed, without incurring in type-wise
incorrect accesses. To solve these problems mechanically
may require a reasonable amount of run time checkinge.
Furthermore, these problems are common to the problems of

multiple access pathé.

Let b be an access path accessing <ajyTg”>e Suppose now
that b implies a type Tp, such that there are identity
conversions Igp and Ipg defined between Ts and Tpe As we
have already mentionedy an identity conversion could be an
implicit conversion. If this is the casey, b accesses a as

if a were of type T_. Apparently this violates lemma J.4.6

and theorem J.5.1. 13 fact 1t does noty due to the implied
conversion. That is, any access to a by b may be regarded
ag implying TS. Ve have also mentioned that the user has to
provide the conversion functions, and also that he has to

decide when to use such a conversione. Of course some of the

Types -3.66-

work could be reduced; by an appropriate choice of coercion

rules as in ALGOL68.

Both identity conversions Ig, and I ;g are not always
required. This stems from the fact, that, depending on the
access form of the accesgs path by, i.e. read only or write
onlyy, only one of the identity conversions must existe.
However, the conversion must always be impliable, i.e. the
domain type set must be a subset of the range type set.

Formalizing we have then:

Lemma 3.5.3 Let <a,Tg> be a data space. In a sequentially
multityped environment, a Tp implying access path
b may be h?und to ay iff:
a= there lé an identity conversion Igp defimed for
all values of type Tg? if all accesses via b
are read accesses; or
b= there is an identity conversion IpS defined for
all values of type Tpe if all accesses via b
are write accesses; or

c-= both I and existy, if accesses via b may

sp Ips
be either read or write accesses; or
d- any access via b satisfies the conditions of

theorem J.S5.1s

Observe that condition (d) means that a may only be
accessed via b, if a 1s currently of type Tp' It does not
mean that binding » 10 a is forbidden if a 1is8 not of type
p* Observe though, that the determination of whether b
will access a outside of a Tp typing interval, is
undecidable in the general case.

We want to stress again that this lemma does not
contradict theorem J+5.1, since any b access is implicitly

preceded by a conversione. Furthermore, we want to stress

Types =3.67-

the fact that it is undecidable whether a given identity
conversion Iab can be implied if the type set T, is a
proper subset of Tb‘ From this we have that such an
identity conversion should not be implied, if ‘"correct"

results are to dbe proved mechanicallye.

Ve did not mention union types 80 fare In the case of
"universal union" types, theorem 3¢4.6 always applies,
since the type of the data space is always the same.
Consider now the case of selective unions, eege ALGOLG6S8
union typese It should be clear that any single type could
represent a union type, where the effective type set is of

cardinality onee.

Let T, and Ty, be two union types. Let T, 11T 00013y
be the effective types of Tze Let Th19Th29eeesThm be the
effective types of Tpe Let T 19T J9e0e9Tcky k20, be the set
of types in the intersection of the effective type sets of
T, and Tpe Thusy, it <ayT,> is effectively typed T ;i for
some 15if<k, it 1ls immediate that there could be an identity
conversion between Ta and Tb' and vice—versa. These
identity conversions do not necessarily exist, since the
types Ta and Tb could have been inplemented in a different
waye. For example, the +type descriptor defining the current
effective type could be placed differently in store or have

a different encodinge.

We say that the implementations of two types are
equal, if their type spaces are equal, and the
implementations of all gsubtypes are equal. Notice that this
definition 1is basically the same as that of theoretical
type equaiity, only that here we are not interested in the
type sets and the operator sets. It follows from this

definition, that the relative positioning of each subtype,

Types -3 .68~

within a contiguous space must be equal. It follows also
that the encoding of the effective type descriptors of a
given union types must be equal. Now, if we ftix a given
effective type which 1s common +to two union types, as long
as the encoding of this effective type 1is equal and the
remaining fields of the union types are equally
implemented, the two data spaces are equally implemented.
It follows then, that some canonical form of type encoding
should exist, since otherwise the implementational equality
could not be verified. For example, types could be encoded
by aselgnlng ordinal integers to each descriptor as they
are defined. For practical purposes, such an encoding is
unlimited. Furthermore, this encoding is viable, since each

type is defined once and only once.
Formalizing we have then:

Lemma J.5.4 Let T, and T{ be union types having T 19T 29ecey
Tck as the intersection of their effective type
setse The identity conversions required by lemma
3e5.3 exist, itf, when fixing Téi, the
implementations of T, and %, are equalms

Observe that Ta and Tb are not necessarily equal,
gsince each may have a different effective +type set.
However, they trivially allow identity conversions for all
values of type Tei® Of coursey, it might be desirable to
prevent such conversions, in order to assure semantic type
inequalitye. This can still be accomplished, by defining the
corresponding effective types to be differente.

In ALGOL68 the "unite" coercion rule observes lemnma
3¢5¢4. However, the set of effective types of the receiving
data space, or access path, must contain the set of

eftfective types of the sending data space. The reascon for

Types -3 .69-

this, is that type checking 1is performed statically in
ALGOL68.

We will study now the conditions which must be
satisfied in order to perform static type checking. The
importance of static type checking arises from the fact
that the over all cost to producey, compile and execute a
program may be greatly reduced in some cases. It does not
necessarily have to be so, since some hardware, eegge the
Burroughs B6700, could perform part of the type checkinge.
Such machines offer a limited scope of type checking
though, since user defined types are usually not checked.
Thus,y, even in such machines, the problem of software type
checking arises, when types are considered in our

generalized form.

The execution cost is reducedy, since a given access
path is known to imply the correct type at run time. The
compile cost is increased, but usually by a smaller amount
than the reduction of run time cost. Thus usually there
will be a positive cost differential. This cost reduction
is usually due to the necessity of repeating redundant type
checkings at run time, whereas the type checking would be
performed exactly once if done at compile time. Finally
several persons argue that declaring all variables and
their types, increases the probability of a newly developed
program to be correcty cefe Kerningham and Plauger[Kerl],
Hansen[Han3], Hoare[Hoa7]. We will not study these cost
aspects thoughe.

Suppose now that we could perform static type checking
on dynamically declared textual names. Suppose furthermore,
thaty, when starting executiony, no partitioning of the set

of dynamic textual names is knowne Due to our assumption of

Types =370~

static type checking, we know that a dynamic textual name's
locator function implies type TP on the data space being
accessed. Suppose now that another dynamic textual names is
made knowne. The type implied by this new textual name must

also be T since otherwise we would have to know a typing

)
partltlonpat compile time. Thus total lack of information
about dynan1¢ textual names at compile time, implies that
all dynamic textual names stand for values of the same
typey if these dynamic textual names are to be statically

type checked.

Suppose now that; at compile time, we are able to
partition the set of all possible dynamic textual names
into sets. For each partition, all dynamic textual names in
such a set imply the same typees Such a partitioning could
be baséd on some syntactic rule, as for instance, the first
letter rule in FORTRAN,; 1e.ee. the IJELMN rule. However, the
operation of determining dynamic textual name nmembership is
now also a type checking operationy, since the <former

implies the latter. Formalizing we have then:

Lemma Je5.5 Static typing of dynamic textual names is
possible, iff the type implied by the 1locator
function of such a name is one and the same for

all such textual namess

Obsgerve that in some cases we could have run time
compilation of some program sections, eege the CODE and
EVAL functions of SNOBOL4. In such a casey, it should be
clear that "dynamic" type checking is pertormed for newly
introduced textual names. However, once the text has been
compiled the type checking could bhe performed statically.
This does not contradict lemma 3.5.5, since, after

compilation; the code behaves as if it had been compiled at

Types -3.71-~

the original compile time. Furthermore, during this
additional compile time, type checking is effectively

performed.

A consequence of lemma 3J.5.5 is that the +type of all
textual names has to be declared at compile time. This
declaration could be explicit, e.ge ALGOL68, or implicit,
as in some cases in FORTRAN and PL/1, There could alsoc be a
construct which associates a type with the set of all
possible dynamic textual names, or some subset thereof.
Thus in fact we are declaring the type of each of the
dynamic textual names at compile time. Of course, we do not
need to know exactly which are the textual names which are
going to be used,; nor do we impose any restriction on the
effectively used set of dynamic textual names. Formalizing

we have:

Corgollary 3.5.6 In order to achieve static type checking,
the type of all textual names, static or dynamic,

must be declared at compile timen

Let <a,Ty> be a data space, and Ty, a T, typing
interval of ae By theorem 3J.5.1 any access to a during Tp
must imply Tpe During a specific T, a given set of
instructions of the program is executed. This set is not
necessarily contiguous. Furthermorey, if some of the input
values were different when execution of T, starts, a
different set of instructions could have been traced. Not
only this, in fact T% could also have been modified, i.e.

shortened or lengthened in time.

Let T be some time interval, we will call a trace, the
set of all instructionsy i.ee¢ code words, which are
executed during 7T. Ve must make the concept of trace code

dependenty, since it 1is not guaranteed that a higher level

Types -3.72-

statement will Dbe completely executed during some

elaboratione.

Let <a,Ta> be a data space. We will call a T, code
tvping section the union of all traces TRa, such that there
is an elaboration E and a Tz typing interval T, during
which E traces TRa. That is a Ta code typing section of a,
is any code section during which a could be accessed by
means of an access path implying T, Observe that code
typing sections do not necessarily consist of a single
contiguous portion of code. Furthermore, several different
code +typing sections may have a nom null intersectione.
Finally, code typing sections could vary dynamically, ie.e.
the code comprising a code typing section is not

necessarily known at compile time.

Theorem J.5.7 Let Tl'ngooo'Tn be the types which could be
assoclated with the sequentially multityped data
space ae. a can be statically type checked iff:

a= all code typing sections TTi can be determined
statically; and

b= all code typing sections are mutually disjoint,
ieeo0 TTinTTj=ﬂ whenever 1#j; or the identity

conversions required by lemma 3.5.3 exists

Proote. If all code typing sections are mutually disjoint,
it is immediate, that only one type is associated
with a during the execution of such a code typing
sectione. Recall that the identity conversions are
implied, whenever the conditions (a) through (c)
of lemma 3.5.3 are satisfied. Furthermore, the
code typing section currently being executed

determines the type of a. Therefore, code typing

Types -3e73~

sections amust be determined statically, since

their determination implies the typing of a.

Suppose now that two different code typing
sections TT; and TTj meet in TTij. Suppose,
furthermorey, that the identity conversions between
Ty and Tj required by lemma 3.5¢3 do not exist.
Then, whenever TTij is executed, any access to a
implies either T; or Tj' But since a is +to be
sequentially multityped, Ti and Tj must be equal
by theorem Je«4.6, contradictionm

Observe that FCRTRAN as well as PL/1 violate this
theorem, Ccefe EQUIVALENCE, CONMON and EXTERNAL. This

accounts then for the facty, that type incorrect accesses

are possible in both these languages.

An immediate consequence of theorem J3.5.7, is that
whenever control passes from a code typing section TTi to
another TTj, the typing conditions of theorem 3.5.1 must be
satisfiedy; unless the required identity canversions exist.
We have thus code typing section originse These origins are
portibns of code which effectively generate a valid value
of the type implied by this code typing section. Hence,
such origins satisfy the conditions of theorem J.5.1.

Formalizing we have:

Corollary 3¢5.8 Let Ti and Tj be two types, such that the

identity conversions described by lemma 3.5.3 do
not existe Transfer of control from the code
typing section TTi to TTj of a data space a, is
poesible, only if this +transfer of control passes

through an origin of the code typing section Tle

Types -3 eT74~

Observe that all considerations with regard to
identity conversions are importanty, only if there are
coercion rules which may cause s8uch a conversion to be
impliede Furthermore, it s8should be clear that such a
coercion could only include mnatural conversions. For
example, an identity conversion between integers and reals

is usually not naturale.

With regard to static type checking, we conclude then
that a textual name posses algo a typipg reache That is,
the reach of the textual name is partitioned into one or
more sub—-reaches, where each of these sub—reaches implies
exactly one type. Such a sub—-reach is then transformed into
a code typing section. Usually the typing reach corresponds
to the reach itself. However, this is not necessarily so,
recall, for instance, the EQUIVALENCE example in section
3.2.

We have seen that if we desire to statically type
checky, the code has to be statically determined. Now, when
processing a dynamically type checked space, this |is
usually done by directing control +to the appropriate
procedure capable of processing the current effective type.
Within this procedure the type of the data space |is
statically type checked. For example, in ALGOL68 we have
the conformity relation, which establishes the current type
of the union typed data space, and may be used to direct
control flow. Similarly, Boare[HoaS] suggests a type
selector case statemente. This statement directs control to
substatements which assume the data space as being
statically type checked. Finally, in languages like SNOBOL4
and GEDANKEN[Gri6,Rey2], each effective processing of a

given data space, is preceded by a routing procedure, wich

Types =3+75~

directs control to the appropriate statically type checked

data’ handling proceduree.

Access Functions e TP O

4. Accesgs Functions.

In chapter 3 we have introduced typé descriptors. We
have mentioned also that internal spaces of some module M,
Cege type descriptor, may be accessed by means of some
access function defined by M or global to N. Such access
functions, or locator functions, could occur in a variety
of forms and degrees of complexity. For example, some
access functions could be made responsible for traversing a
tree in some predefined order. Others could be made
responsible simply for accessing dynamic storage spacese.
Finally, others could perform checking operations in order
to determine whether a given procedure may effectively
access the data space in question. We may say then, that

access functions serve at least for following two purposes:

i- to characterize the storage behaviour of a given

typey e.ge tree, stack, buffer etce.;

ii- to protect the data spaces internal to the modules

defining the acceass function.

Access functionsy or locator functions, could take the
degenerate form of Jjust loading an address into some regis—
ter. COther access functions could compute such addresses by
means of some user provided parameter. Finally, others
could receive or establish control information from which

these addresses could be abstracted.

When performing list processing, usually some pointer,
or reference,y, is used to refer to a particular element of
the list. It has been recognized though, that the generali-
ty of pointers may cause the certification of programs to

become quite difficult{Hoa7]. This suggests then, that an

Access Functions - o2~

alternative for pointers be found, where this alternative

should:

a= not restrict the power of expression of the program—
ming languagey, nor cause the textual dissociation of

related entities;

b= restrict as much as posssible the set of data spaces

able to be accessed;

¢~ hide as much as possible the implemetation of modules

which make internal spaces available to the exterior;
d= allow verification of access rights.

We will show in this chapter that these objectives can
be mete As a result we show that several language con-
structs become necessary. However, we will not study wheth-

er some of these constructs are necessarily inefficient.

In this chapter we will also examine how successive
elements of a given ordered set could be generated. it
should be noted that these sets or, better, sequences could
be defined in a computational manner, e.ge the sequence of
nodes visited when traversing a tree in some order. We.vlll
examine then the congtructs which are necessary in order to
implement generator functions. The concept of generator
functions has been defined for a long time already, e«ge.
IPL-V[Newl,Gell]; it has received little consideration in
present programming languages thoughs It will be shown that
by means of generator functions the implementational char-
acteristics of a module could be hidden, thus contributing
significantly to the interchangeability and flexibility of

modulese.

Access Functions -4 ,3-

~ Another problem which arises when information |is
interchanged between modules is that of privacy and access
path control, e.ge reference counte It will be shown that,
in order to overcome these problems, we must be able to
redefine or extend language processor defined operators, in
particular the store operator. Of course, these access con-
trols are weak in the sense that the language conventions
must be obeyed, sincey otherwise, the controls become

ineffectivee.

In +this chapter we will frequently use the term
"access function" to denote '"locator function" or even
"access path', This should not be thought as an abuse of
nomenclature,; since access functions are defined in terms
of locator functions whichy, in turn are defined in terms of

access pathse

This chapter is subdivided into 5 sections. In section
4.1 we study locetor functions, iees the set of language
processor defined access functionse. In this section we
determine how language primitive types and operations could
be implemented. VWe show also in this section some basic
results which will be used in later sectionse. 1In section
4.2 we study the implementation of dynamic data spaces. The
main objective of this section is to determine the con-
structs required for the implementation of storage manag-
erss A secondary objective is to determine the conditions
under which these constructs will maintain a sequentially
multityped environmente. In section 4.3 we show how pgainters
could be outlawed without violating the conditions stated
above. For +this purpose we introduce the concept of data
space identificationse In section 4.4 we study how to
control the dissemination of information externally to the

module generating the information. We study also the form

Access Functions -4 4=

in which language processor defined operations could be
replaced by user defined functions. Finally, in section 4.5
we study a class of functions which allow us to gain access
to data spaces without requiring data space identifications
to be provided as external parameters. By means of these
functions we are able to hide away the implementation of

modulese.

4.1 Locator Function Parameters.

In section 2.1 we have defined locator functions as
being a composite function corresponding to a name map and
the access path delivered by an elaboration of +this name
mape We have mentioned also that, in order to associate a
unique data space with a textual name, the evaluation of
the locator function may require parameters. Following are

the kinds of parameters used by locator functions:

i- actual/formal— parameters of this kind are external
to the locator function, and are provided by the
user's program. Examples are: subscripts of arrays;
qualifiers of structure elements; pointers to dynamic

storage spacese

ii- 1gptrinsic— parameters of this kind are part of the
dafa space being accessed. Examples are: bounds of
dynamic arrays; variables used by the REFER option in
based structures in PL/1; the effective type descrip-
tor field of union typed spaces in ALGOLG6S.

iii- local- parameters of this kind are part of the
locator function's space. Examples are! bounds of

fixed size arrayse.

Access Functions - 5=

iv—- global— parameters of this kind are part of the
environment within which the locator function exists.

For example, ALGOL60 display vectors.

In section 3.3 we have mentioned that access functions
must be defined for each of the existing typese. Since we
are unable to predict all the types which will be used, we
conclude that programmers must be able to define some of
the required access functions. An immediate consequence is
that there may be incorrect access functions. We will
assume, though, that user written access functions have

been certified by some meanse.

The term actual/formal parameter is actually a misno~
mere That is, the form with which such parameters are made
.knovn, does not always resemble the conventional form of a
parameter liste. For exampley, in the SIMULA67 construct:

OBJREF®OBJVAR ¢
OBJREF 1is an actual parameter required by the "“locator
function" of OBJVAR.

Actual/formal parameters may be provided in an
implicit way. For example, when accessing an element of a
PL/1 structure it is not necessary to provide always the

complete qualification list of this element.

Usually actual/tornal parameters do not cause side
effects. However, consumption of the actual parameter is an
example of such a side effecte. For example, when access is
based on some form of matching, frequently the matched
heading portion of the actual parameter value is consumed,
iees deleted. If the matching succeeds, the actual param—

eter value is set to empty. Otherwise, the actual parameter

+ We use the character WeWu to denote the remote
identification operator "." of SIMULA67.

Access Functions -4 .6~

value reflects the not matched portion of the original

value.

Vhen passing information to a locator function, this
information could be incorrect and, thus, cause the locator
function to fail or to deliver an unexpected name. This may
occur even if the locator function itself is correct. This
suggests then, that parameters should be tested for

validity when being received by the locator functione.

The next few paragraphs will apply to all kinds of
parameters. The results are more crucial with respect to
actual/formal parameters thoughe Ve will use the term
"actual parameter" to denote the information sent to the
locator function. The term "“formal parameter" will be used

to denote the information expected by the locator function.

Formal parameters are of some type, say Tre
Intuitively we would expect that every element in the type
set TS is a valid parameter value. This is not g0, though.
Consider for 1instance an ALGOL60 arraye. The locator
function which accesses elements iIn this array, accepts
formal parameters of type "integer" specifying which
element 1is to be accessed. However, not all "jinteger"

values are valid elements.

Defn. 4.1.1 The exact formal 1ype of a formal parameter of a

locator function F, ias a type Te such that every
element in the type set TS, is valid, and every
valid element is in TS, =

The first difficulty which shows up, is that exact
formal types may be dynamically defined. Furthermore, the
exact formal types may depend on the values of several

other formal parameters. For example, let A[N,N] be an

Access Functions -4,7~-

upper triangular arraye. It is now immediate that, for an
access A[I,J], the following relations must hold: 15<I<N and
1SJ<I. Figure 4.1.1 shows a possidble definition of such an
array. Observe that this is an example where a given exact
formal type, ie.e. that of index J, is dynamically defined

and depends on another parametery i.e. I

type upper_triangular .(integer N) =
hegin triangular;
real array matrix(N*(N+1)/2);

outside scope operations;

real access function .(1nte‘er I,J)=

begin access;
it (1SISN)ES(15J%1)
then matrix(I%(I-1)/2+J);

elage fail;

2is The monadic operator “." stands for
end access; "concatenate with identifier".
end operations; allows writing a declaration list,
matrix:=0.; as well as using empty (access)
fﬂg triangular; function namese.

Example:

upper__triangular A(20), B(20); /* declaration¥k/
A(3,1):=B(2,2)+10.;

Figure 4<.1.1 Type "“upper_triangular"™ with explicit checking of

locator function parameterse.

Defpn. 4.1.2 Parameter checking is the operation of determining

whether the value received by a formal parameter

is of the exact formal types

Access Functions -4 .8~

Of course, the type of the actual parameter sent will
be equal to the type of the corresponding formal parameter.
However, not always will the formal parameter type be equal
to the exact formal type. We will say that an actual/formal
parameter association is agual 1vpe checked whenever the
type of the formal parameter is also the exact formal typee.
In PASCAL the ranges of an array are defined by means of a
scalar types e.g+ a contiguous subset of the integers. Each
element of this subset is a valid index of the arraye. Thus,
the parameters to the locator function which accesses an

element of an array are equal type checked in PASCAL.

If the formal parameter type is not the exact formal
type expected by the locator function, explicit parameter
checking must be performed. Of course, this checking could
occur at a conceptual level. In the example shown in figure
4.1.1, the parameters +to the access functions known
externally, i.e« I and J, as well ags the parameters known
to the internal locator function accessing an element of
matrix", are explicitly checked. Explicit checking does
not always imply run time effort. For example, the internal
access to "matrix" in figure 4.1.1 is valid for all values
of I and Jy as can easily be proved. 'The access correctness
proof of this particular locator function is an example of
explicit parameter checking occuring at a conceptual level,
ieees externally to the language processor. This suggests
then, that programmers should be able +to inhlhlf the
automatic inclusion of explicit parameter checks. Ve may

conclude then:

Fact 4.1.3 Dynamic explicit parameter checking may be
redundant, even if the parameters are not equal

type checkeds

Access Functions -qd 9~

We will examine now whether there 1is a locator
function for which equal type checking of parameters is
insufficient to assure receiving values of the exact formal

typee

Let U be a tree with labelled edges, and O some
distinguished node in U. Let 8 be an ordered sequence of
labels separated by the symbol "D>", Access to a node F in U
is now defined as follows:

a- gtarting at node O follow a path in U, such that the
labels of the edges in this path are the same, and
occur in the same order, as those 1in s« If such a
path cannot be found, the access fails.

b= F is the node reached by the edge corresponding to
the last label of s.

‘ For following t:
%/rhT c
s=d>g’e

o > access to node F below

will occure.
AL

U ——=>

VAR

< F
P BN

Figure 4.1.2 Access to NULTICS files by means of absolute or
relative paths, a simplified approach.

Figure 4.1.2 shows a diagram of such an access
mechanisme. This access mechanisam is a simplified version of

the MULTICS file accege mechanism. We have simplified this

Access Functions ~-4.,10-

access mechanism by not including protection mechanisms
such as passwords and ring levels[Madl1,0rgl]. This same
file access mechanism is implemented also by the Honeywell

6000 GCOS operating system.

Notice that for file systems in particular, redundant
operations should be avoided, in order to decrease the
amount of information traffic between secondary storxrage and
main storagee Notice furthermore, that this example could
be an instance of the actual parameter consumption example

mentioned earlier in this sectione.

Let U be a subtype of the type W"ftile_system". It can
easily be shown that the accees mechanism above can be
defined as an operation within "“file_system". It can also
easily Se shown that U itself could be maintained lacal to
the type definition tile_system". Now, checking the
validity of a path s, corresponds to verifying if there is
a path in U, starting at O, which traces the labels of s.
Thus, checking the validity of 8 corresponds exactly to the
operation of gaining access to F. Thus, in this case,
performing parameter checking separately from the actual

locator function elaboration is redundant.

The type set Tsé of the exact formal type T, of s, is
the set of all valid sequences of labels for all valid
origins Oe. However, the information content of U is
internal to "file_system", thus, outside of the type
fitile_system", it is impossible to define the exact formal
type T, Thus, the actual parameter must be of a type, say

T such that the type set TS, of the exact formal type T,

a’
is a subset of the type set Tsa. Since the type of the
actual and formal parameters must be equal, and conversion

cannot take place outside of the type '"file_system'", the

Access Functions ~4,11-~

formal parameter must also be of type Té. Formalizing we

have then:

Theorem 4.1.4 There is an access mechanism for which equal type

checking cannot be performed»

Observe that 1if the type of the formal parameter is
equal to the exact formal +type, and if also the conditions
ot theorem 3.5.7 [static type checking conditions] are met
we are able to perform equal type checking at compile time.
Thus, equal type checking of parameters may allow some of
the checking to take place at compile time. However, it
does not imply that all checking takes place at compile
time; since now the type sets are more precisely defined
andy, consequently, checking will be performed within
conversion routines. It is argued, however; that execution
time cost would be decreased, since less actual checking
would be performed at run time when equal type checking is

enforced[Wir2,Han3,Hoa5].

Observe that in order to perform equal type checking,
we must be able to prove that.the operations performed on
values of a given type,y, preserve the characteristics, e.ge.
type set, of this typee. For example, we must be able to
prove that subscript expressions generate values within the
range of the corresponding array indexe. It follows
immediately that a compiler cannot perform this proaf in
the general case. Not only this, the number of cases where
the compiler is able to produce such a proof is relatively
smalle Furthermore, if the programmer is able to provide
the necessary proofs himselft, it seems to be a waste of
machine effort to perform explicit checkinge. We may
conclude then, that in practice there is no definite gain

when forcing all parameter checking to be egual type

Access Functions -4 .12~

checking([Hab2]. Consequently, there should be language
constructs which allow (privileged) programmers to suspend
explicit parameter checking in order to increase the
efficiency of a programe. As long as correctness proofs have
been produced externally, this offers no risk of incorrect

computations.

type index .(lnte‘er hound)=1nteﬂor5(1...hound);
type upper_triangular «(integer N) =
begin triangular;

real array matrix(N*(N+1)/2);

outside scope access;
real access function .(index I(N), J(I)) =
matrix(I*(I-1)/2+J);

end access;
ﬁatrix:=0.;

end triangular;
Examples:

integer constant N=10;

upper_triangular C(N);

index 1(N), x(1);

C(lyk)i=1.3 /7% 1eee C(I2:1lyJ32kyNIIN)Ix=1le X/

Figure 4.1.3 Definition of "upper_triangular? where parameter

checking can bhe performed by equal type checkinge

In figure 4,13 we show how the type Bupper__
triangular"” could have been implemented using equal type
parameter checkinge For this purpose a global type "index"
has been defineds The type set of "index" includes all
integers from 1 to some specified bound2l. Equal type
checking is possibley since the actual parameter 1 and its

corresponding formal parameter I are of the same type, i.e.

Access Functions -4 .13~

“"index(N)". Furthermore, the types of the actual parameter
k and the corresponding formal parameter J are also equal,
ieee index(l)e Thus, except for renaming, the actual and
formal parameter types are equal. This renaming could have
been made explicit by means of parameter names as8 shown
within the comment. The bounds of the +type "upper_
triangular" can be left open, since a global gamed copstant
is being used to declare the bound of "upper_triangular" as
well as that of +the +types "index" used externally +to

"upper_triangular®.

Observe that this is not a contradiction to our type
equality definition 1in section 3.4. "Index" has been
defined exactly once. Since the constant "N" ig global all
instances of "index" using this "N" can be wviewed as being
renamings of a globally defined instance of "index". Of
course we are assuming that the language processor 1ls able
to verify these renaming conditions. As has already been
mentioned, the Llanguage processor could be aided by means
of parameter names. Finally, observe that any assignment to
1 or k will be preceded by a test to determine whether the
value being assigned is indeed an element of the corres-
ponding type set. That isy we have traded the explicit

checking for a conversion predicate elaboration.

Locator function parameters can be divided 1intc two

major groups?

i- descriptiopnal parameters, which describe properties

about the data space at hande. For example, array
bounds; effective types of wunion typed spaces;

structure or record layoute.

ii- poglitional parameters, which provide names, or

Access Functions -4 .14~

parameters +to access paths to other spacese. For

example, list pointers; array base addresses.

Descriptional parameters can be determined statically
or dynamically. For instance, the layout parameters of a
PL/i structure not containing variadble array bounds can be
determined completely at compile time. Thus, the explicit
values of the layout parameters could be discarded after
code generation has been completede Now, if a PL/1 struc-—
ture contains dynamic earray bounds, the values of the
layout parameters cannot be computed at compile time. Thus,
at least partially, the layout information must be kept at

run time.

In the same way as descriptional parameters, posi~
tional parameters could also be determined statically or
dynamically. Linked list pointers are an example of dynamic
positional parameters. Addresses of FORTRAN IV COMMON areas
are an example of statically defined positional parameters.
Again, notice that it is not necessary to keep the explicit
values of static positional parameters, since they could be

included directly into the code.

Local parameters are part of each individual locator
functione. Thus, if the local parameter does not change
during execution, several copies of the value might be gen—
eratedes This allows then, that such values be incorporated
into macro expansions of locator functions. On the other
hand, intrinsic parameters are part of the data space being
accessed. Thus, in a sgense, intrinsic parameters are local
parameters, where a different instance of the parameter may

exist for each accessible data space.

A parameter being local, or intrinsic, should not mean

that it cannot be shared by several locator functions, i.e.

Access Functions -dq 415~

in a sense being global. That is, if some of the intrinsic,
or local parameters, of several locator functions are found
to be equal, these parameters could be shared by these
locator functions. Sharing could be "forced" by means of a
construct such as LIKE in PL/l1l. The sharing of Llocal, or
intrinsic, parameters could occur also due to "inheri-
tance". For example, when passing an array in ALGOL60, the
receiving formal parameter must leave open the
dimensionality and bounds of the array received. Similarly
in ALTRAN &a variable of type "algebraic" may inherit the
layout description (set of indeterminates and their admis—
sible powers) of some other varieble of type "algebraic" by

means of an assignment operatione.

Certain language implementations may opt to treat
local parameters as if they were intrinsic parameters. For
example, static array bounds could be treated as local
parameters, however, the language implementation may treat
such static bounds as intrinsic parameters for a matter of
ho;ogeneity of generated code. From this discussion we may
conc lude, that the boundaries between global, local and

intrinsic parameters are quite ill defined.

Ve will call gimple data sapace a data space which

space set contains exactly one element, iee@e spacee.

Examples are: "integers"; ALGOLW records; PL/1 structures.

Defn. 4.1.5 Let @« be a simple data space. Let f be a simple
data space which is a subspace of a. An access
refinement of a 1is an access path to 8, which
computes the name of 8 by means of a displacement

from the address of a=s

Ve will call a the JHage sgpacey and B the refiped

sppaces Examples of access refinements are! access paths to

Access Functions -4.16-

fields of PASCAL records; access paths to rows in ALGOLé68

arrays. However, slices of arrays in ALGOL68 are not
examples of access refinements, since a slice is usually
not a simple data space. Ve have defined access refinement
in terms of simple data spaces in order to emphasize that
several access path elaborations have to be performed for
non simple subspaces. Observe that access refinements imply

computationally generated name values.

It should be noted here that the operations of type
concatenation and union [see section 3.3] allow the auto-

matic creation of access refinements[HoaS5,Gril,Stal,Den2,

Enul,Tur2].

Let aa be a simple data space consisting of following
contiguous simple subspaces A=A A2 00 0 19 where n22 and each
of the subspaces aj possesses a non null extent. Suppose
now that the name of some subspace ai could be obtained
other than by elaborationy, or pre—elaboration, of some
access refinement. Thus the name a; of aj must be obtained
without taking into account the names of a and all a j such
that i#j. But then the contiguity of aj-1ajaj+1 cannot be
assureds Thus a is A simple space merely by accident.

Formalizing we have?

TIheorem 4.1.6 Access paths to proper subspaces of a simple data

space require the elaboration of an access refine-

ments

Observe that such an access refinement could be
elaborated a finite number of times yielding a list of
names. Thus, when accessing a subspace, this list could be
examined, and access to a particular subspace would be
gained directlyes That is, access to the subspace is gained

by using an already existing name typed value. An example

Access Functions -4.,17-

of such a pre—elaboration is the classical way to impnlement
ALGOL60. Here addresses are composed of two parts, one
allows to gain access to a base space by means of an ele-
ment in a display vector. The other part is a displacement
relatlve to the‘orialn of this base space and both are pre~-

elaborated at compile timee.

Suppose now, that we would allow users to construct
their own access refinements. It is well known that, in the
general casey, we cannot determine mechanically whether user
written functions are correcte. It follows then, that
incorrect user written access retfinements may exist, where
these access refinements compute incorrect name valuese.
This suggests then, that user defined access refinements
should be prevented. Let us examine now, whether this would

represent a restrictione.

We will use garbage collection procedures as a counter
example[Bael,Bral,Cohl,GoylsKknulyMarl,Thol,Pec2].

Defne. 4.1.7 An gccegs get is a set of n21 access paths {aj;,ap,

..-,an}I

Defne 4.1.8 A data space a i1s a garbage gpace with respect to

an acceses get Ay, if a cannot be accessed by any

combination of access paths in Ams

We are using the term "garbage space" in a slightly
different fashion than it is conventionally used. This is a
consequence fTrom the definition of garbage spaces being
dependent on an access set. Obgserve that procedures which
place garbage spaces on a free list, do access these

garbage spaces. That is:

Fact 4.1.9 Let A be an access met and G the set of garbage

spaces relative to A. For any space a in Gy, there

Access Functions -4 .18~

is an access path b not in A, such that b accesses

Marking is the operation of determining all such data
spaces which are ggt garbage spaces[GriS] relative to some
access set. Freelng is the operation which places all
garbage spaces, i.ee¢ not marked spaces, on some free list.
We will not enter into greater details with respect to how
marking and freeing is performed. Neither will we study the
conditions and data structures necessary to implement

garbage collection.

Eolnter current_space, next_space; area dynamic_area;
baged bit mark;
eee
current_space:=grigin(dynamic_area);
while current_space in dynamic_area do
GF1: next_space:=current_space+2$§3(current,space—));
if current_space->mark='0'B
then free(current_space);

else current_space-mark:='0'B;

£i;
current_space:=next_space;
ods

Figure 4.1.4 A simple freeing algorithm.

In figure 4.1.4 we show a simple <freeing algorithm.
Notice that the statement labelled GF1 performs address
computation, i.ee an access refinement within "dynamic_
area®, Notice that we are assuming g&gﬁ to be computable
and, also, that it delivers the extent of the space pointed
to by "current_space". The '"unary" operator -> is required

in order to compute the extent of the space pointed to by

Access Functions -4.19-

fcurrent_space" rather than the extent of "current_space"
itself. The field "mark" contains '0'B if the node has not
been marked, and '1'B otherwise. The type attribute based
used to declare "mark" indicates that "mark" is to be
accessed by means of some gointer. In this example we are

not concerned with enforcing type~wise correct accessese.

Defn. 4.1.10 The patural access gset NA, is an access set which

contains?

i- all 1language processor defined access func-
tions, including the language processor defined
access refinements; and

ii- all user defined access functions which do not

use a user defined access refinementns

Notice +that all spaces inaccessible to the natural
access set define the conventional set of garbage
spaces[Knul] Consider now tigure 4.1.4. Suppose that there
is no language processor defined freeing procedure for the
space "dynamic_area™., That is, if some space in “"dynamic_
area" is not marked after performing the marking procedure,
this space is not accessgible by means of access paths in
the natural access sete But then such a space cannot
possibly be freed. Observe that a situation like this may
occur in PL/1 with respect to based variahleé. That is, if
PL/1 pointer values are carelessly changed, unretrievable
gaihage spaces may build up (pollution, as called by
Wegner[Weg2)])e Formalizing we have then:

Theorem 4.1.11 There 1is a computational problem, which can be

solved only if the programmer is able to generate

names in a computational ways

We did not include into the natural access set all

those operating system defined access paths which are not

Access Functions -4 4,20~

known to the compliler or interpreter. That is, storage
manager access functions have not been included 1into the
. access set. This has to bhe soy since otherwise garbage
spaces would never occur with respect to the natural access

sete

The example used is not unrealistice. It corresponds
exactly to +the problem found when attempting to implement
languages which make wuse of garbage collectors, e«.ge.

ALGOL 68, PASCAL, LISP1.5, SNOBOL4.

Addresging environment is the set of rules which are

used to distinguish one among the several data spaces bound
to a same textual name. The addressing environment |is
usually esteblished by global parameters. If used for this
purpose, these parameters are usually hidden from the usere.
The user is aware of them, though, due to the language

description. Some examples of global parameters are:

a—- display vectors. These parameters are used in block
struc tured languages to choose one among several
activations of the same textual name. Usually the

name chosen will be the most recently activated one.

b= activation time. Such a parameter is used to distin-
guish references to specific instances, as opposed to
the most recent instance as in the case of display
vectors. For example, PL/1 label variables may be
global and, thus, when used may refer " to an already
terminated blocke. As suggested by Fenichel[Fent],
problems of this sort can be eliminated by
associating an activation time parameter with the
label valuee Thug, an actual transfer of control is
valid only if it transfers to a block bearing the
same activation time as that defined within the label

Access Functions -4.,21-

variable used. Furthermore;, due to the deallocation
rules, any block bearing a more recent activation

time can now be deallocated.

c~ textual reache This parameter discerns among several
different textual names which possess the same

identificationy, ie.ee stringe.

Global parameterg could also be user generated. For
example, we could use a static language such as FORTRAN IV
to implement a block structured environment. In doing this,
some form of display vector would be created, and all
accesses within this artificial block structured environ-

ment would use this display vector as a global parameter.

Parame ters are usually extremely sensitive to unres-
tricted changese. For example, a change to the effective
type field of a union typed data space, represents an error
if it occurs externally to the union type descriptore.
However, if the change occurs internally, or locally for
that matter, to this descriptory, it does not necessarily
constitute an error. A less evident example is that of the
gtack" type in figure J¢3.1¢. Externally to this +type
descriptor, any change to the +top pointer "eirgt" would
probably constitute an errore. Internally to this
descriptor, however, we must be free to change the value of
"first", since, otherwise, we would be unable to implement

the type "stack%m. We have then:

Fact 4.1.12 Formal parameters used by a type descriptor may be
accessed from the exterior only by means of an

explicitly defined access functions

Corollary 4¢1.13 Formal parameters required by a type

descriptor must be received by value,y, i.e. an

Access Functions -4 .22~

internal copy of the actual parameter's value must

be generateds

In many cases the parameters sent to a type descriptor
are needed only at compile time. For example, the "“user_
type" parameter of "gtack of user_type" in sectione3d.3 does
not have to be kept at run time. Forcing parameters to be
local should, again, not be thought as preventing sharinge.
Notice that the formal parameters we are refering to, are
those which correspond to parameters used to complete a

type descriptore.

The existence of internal values would suggest a
retention mechanism as defined by Johnston and Berry[Joh2,
Ber2]. However, opposed fo their concept of retention, our
model does not imply garbage collection for all spacese. For
instancey if rules similar to ALGOL60 apply to a textual
name N bound to a space characterized by the name n,
deallocation of this space may occur when n is deactivated

with respect to N.

With respect to global parameters, there is nothing to
adde This 18 due to the fact, that we can always build a
type descriptor to which a given "global" parameter is
locale Thus, we may restrict access to internal data in the

same way as described abovee.

Within the examples shown above, we have only
mentioned descriptional parameters. Observe though, that
the same applies to positional parameters. Furthermore,
incorrect assignments to name typed subspaces frequently

cause errors which are extremely difficult to trace[Hoa7].

Access Functions -4 ,23~

4.2 Dyvpomic Space Managemepnt.

In this section we will study how spaces are made
available to program modules. Although our emphasis is on
dynamic space allocation, the discussion can easily be

adapted to static space allocatione.

Modules or groups of modules, usually obtain spaces,
i.es areagy in large portions. These areas are then parti-
tioned into data spaces by these modules. Such a module, or

group of modulesy, will be called a progrop levele.

Let M be a module providing an area A to some program
level Ls M will be said to precede progrem level L with
respect to A. Suppose now that N would precede itself with
respect to A Thus M would make A available to itself,
where A 18 unknown to the program level containing M before

being made available, contradiction. Formalizing we have:

Lemma 4¢2.1 A module N cannot precede itself with respect to

sSome area As

Using the same symbolism as abovey, notice that within
M the area A is a data space within some, usually larger,
area A’ known to MNe. That isy, areas are made known to
program levels by partitioning areas known to some
preceding module. It follows from lemma 4.2.1 that for
every program level L using an area A, there is a module M
which precedes L with respect to A. Furthermore, the bare
hachine precedes qll program modules. We may conclude then,
that from the point of view of making areas available, it
suffices to study the partitioning of areas into data
spaces. For example, the module which implements the run
time stack of some block structured language, precedes the

user written procedures using stack frames of this stacke

Access Functions -4 .24~

Similarly the storage management module preceds these stack

implementation routinese.

Completing the discussion about areas, we must mention

that areas are typed. There are two cases to consider:

i- the structuring of the data spaces within the area is
known. In this case the area could receive its exact
type already when being requestede. For example, in
ALTRAN all areas (blocks) hold data spaces which are
homogeneously typede.

ii~- the structuring of the data spaces within the area is
not knowne. Thus, the type of the area cannot possibly
be known when the area 1is being requested. In this
casey, the area 1s supposed to be typed no type [see
section 3.2], thus any access to a subspace of this

area must be preceded by a typing operatione.

A consequence of theorem 4.1.6 [access to proper
subspaces of a simple data space requires access refine-
ments] is that the partitioning of an area into data spaces
is possible only by means of an access refinement. Ideally
this access refinement would be performed by a language
defined constructes This implies the existence of language

defined partitioning and compacting primitivese.

Ve will define now a construct which serves as a basis
for the lnplenentatloh of the aforementioned primitives. It
should be noted though, that, in some cases, this construct
must be provided by the user, thus implying the need for

user defined access refinementse.

Within each program level i there is a natural access
set NAj. The set of data spaces in an area Aj at this

program level i, can be partitioned into two disjoint sets

Access Functions -qd .25~

with respect to the natural access set NAj. These are the
. accemalible get of Ay and the inaccesaible set of A4y where
the inaccessible set contains all data spaces in Aj which

are garbage spaces relative to NAj.

Let us examine now whether the natural access set
could be defined in such a way that the inaccessible set of

a given area is always emptye.
Consider the following construct:
gkip <neme_value> in <area>

This construct delivers the name of the space adjacent to
the space characterized by <name_value’. We will not enter
into details with respect to how adjacency is defined. For
example, adjacency could he virtualy, ec.ge column elements
of a matrix stored by rowe The value returned by g&&g is
ggil whenever <name_value”> or the name which should have
been returned by 35&2 characterizes a space not completely
contained within the area <area>. Observe that the names
<name_value>, as well as <area”>, could have been delivered

by some expressione.

E&ia allows the scanning of an area, possibly starting
at some "random" origine. This does not seem to be a major
restriction, since spaces which are only accessible through
EE&B are garbage spaces in a sense. Thus gaining random
access to such spaces does not seem to be very meaningful.
There are several éxanples where constructs such asg E£$R
occur naturally. One such example 1is the processing of a

»*

sequential file.

With some minor modifications, skip could be trans-
formed into an area partitioning primitive, say obtain. For

example, <name_value”> could define the extent of the space

Access Functions -4 .26~

being required. Qbtaipn would then deliver a name sa tisfying
this requirement if possible. After computing the name to
be deliveredy, obtain positions itself at the beginning of
the next adjacent free space. Several different mechanisms
couldj be devised in order to implement obtain. Each of
theae‘nechnnisns would be particularly well suited for some
class of applicationse. This points into the direction that
primitives such as obtain are likely to be defined by the

usere.s

We will call gpace invasion any computation delivering
an incorrect name typed value. Notice that space invasion
may occur due to the incorrect computation of one or more
fields of &a name, i.e. medium, address and/or extent. It
should also be clear that the E&i& construct above may
cause space invasione. Furthermore, if we want to assure

mechanically the sequential multityping of spaces, all

language defined constructs must hbe such tha<t space
invasion cannot possibly occur, i.ee that they are
apace-wige gorrect.

Lemma 4.2.2 The skip construct assures sequential multityping,
iff following conditions hold:
i- the extent of the space a characterized by
<name_value> can be determined exactly; and
ii- +the extent of the space § characterized by the
name returned by g&ig can be determined
exactly; and
iii- accesses to f satisty the conditions of +theorem
3.5.3 [sequential amultityping conditions for
binding]e

Proof. The failure of con&itlons (i) and/or (ii1i) implies

that space invasion could occur due to the use of

Access Functions -d .27~

skle, thus, sequential multityping cannot be as—
sured. The failure of condition (i1ii) contradicts
the conditions of +theorem 3.5.3, consequently g

could not possidly be sequentially multityped.

Suppose now that all conditions hold. Due to
the existence of <area”> within the 8kip construct
and due to conditions (i) and (1ii), 1t tollows
immediately that a correct name characterizing g
can be computedes Furthermore, due to coaondition

(i1ii)y B i8s necessarily sequentially multitypeds

Suppose now that the conditions of lemma 4.2.2 hold
for all data spaces in <area>. Skip could then be used to
scan all data spaces in <area”> in a type—~wise correct
fashione On the other hand, it :or some data space a in
<area> the conditions ot lemma 4.2.2 do not hold, type-wise
correct accessing of a can no longer be assured when using
skipe. Consequently 8kip cannot be included into the natural
access set 1f this set is8 supposed to preserve type-wise

correctness of accesses. Formalizing we have:

Theorep 4¢.2.3 The type-wise correct accessing property of the

access paths in the natural access set enlarged
with skip relative to some <area”> is maintained
iff the conditions of lemma 4.2.2 hold for all
data spaces in <area> accessible through skipse

The conditions of theorem 4.2.3 depend on the
type~wise correct binding condition of theorem JeS5.3. In
many cases though, we do not know the exact type of a
subspace f which name has been delivered by E&iﬂ‘ However,
we are able to determine the exact extent of . For
example, storage management routines may incorporate extent

information into the data spaces delivered. Thus the data

Access Functions -4 .28~

spaces a{ in some area A can be scanned by simply

retrieving the value of the extent of a given aje.

exact

Let a be a data space. Let af be a subspace of a which

type T; 1is unknown, but which extent can be

determined exactlys let <b,Tb> be the name delivered by

sklg

éharacterlzina the spece ay and implying the type Tb’

where Tay#The If any of the following properties are met by

b’

1=

ii-

the conditions of theorem 3.5.3 will still hold:

except for the extent enquiry no other access (not
even typing accesses) are possible to data spaces of
type Tpe In this case T}, will be called no_access. It
should be clear that theorem 3.5.1, and consequently
theorem 3.5.3, is trivially satisfied by no_accesse.
Observe that no_access could be used within the

freeing procedure of figure 4¢.1.4, where the informa-—

tion carrying portion of the node being examined will

not be accessed;

when using a Ty implying access path, aj may only be

" copied to another data space ﬂj, where ﬁj is also of

type Tge Tp will be called filler. Thus, the copy
operation is achieved by preceding and succeeding the
actual data moving operation with identity conver—
sions 1in such a way that the original type T; is
preserved. Hence the conditions of theorem 3.5.3 are
mete Notice though, that all access paths bound to
the copy, iee@e ﬂj, must imply the type Tje. In some
cases this cannot be veriftied easily in a mechanical
waye. Thus we cannot always rely on the defineability
of a type such as filler. Observe that filler is used
when performing operations such as storage compacta-

tione.

Access Functions -l ¢ 29-

iii- ajy is effectively typed Tp duringy or immediately
after the processing of aklgo Notice that this is the

case when placing the space ajy on some free liste.

No other single case c¢an be devised which still

satisfies the conditions of theorem 3.5.3.

In section 4.1 we have mentioned the need for access
refinements. We may safely assume that access refinements
defined by the language processor always generate type—wise
correct name values, i.e. target type and object type
satisfy theorem J.5.3. On the other hand, we cannot assume
the same to happen with respect to user defined access
refinements. We have shown though, that there are cases
where user defined access refinements are required. We must
find then the conditions which make user defined access
refinements indispensable. Once these conditions have been
found, we are able to know how much power of expression is
lost when forbidding user defined access refinements

altogether.

Theorem 4+.2.4 Let <b,Tb> be the type Tb implying name delivered
by 55&2' Furthermore; let b characterize the data
space <ai{yT,”> of type Ty,. Let A be the area
containing ay. User defined access refinements are
necessary itf:

1= the g&&g construct is not provided by the
language; or

ii- skip relative to A fails the condition of
theorem 4.2.3m

Proof. If either of the above conditions is true,y, the
skip construct cannot be incorporated into the
natural access set. Suppose now that the two

conditions are false. Thus the language provides

Access Functions -4 ,30-

the skip construct and gkip relative to A can be
incorporated into the natural access set. Suppose,
furthermore, that <b,T;,> access paths could only
be determined by user defined access refinements.
Since we are assuming type—wise correct accesses,
Tb must satisfy the conditions of theorem 3.5.3
with respect to Ty« But the same also happens with
respect +to 5532. Furthermore, for any valid Tp
skip may deliver <h,Tb> by means of an appropriate
type declaratione

Type~wise correctness implies space—wise
correctness, thus b must be a space-wise correct
name. This implies then, that the structural defi-
nition of the area A must be taken into account
when computing be Now if this structural defini-
tion can be made available by means of possibly
dynamic declarations, there are then access paths
in the natural access set which emulate the com—
putation of b without necessarily degrading the
efficiency of accesses by any considerable amount.
Suppose then, that the structural definition of A
cannot be made available. But then it is also not
available when computing b by means of a user
defined access refinement. Thus the user defined
access refinement can compute b only by means of
parameters (e.ge. offsets) abstracted ‘from a
previous computation which delivered be
Furthermore, this computation must use access
paths defined within the natural access set, since
otherwisge space-wise correctness could not
possibly be assurede. But the same could be

achieved by skipping over an appropriately defined

Access Functions -4.31-

space of type pgo_gggess or Liller. Thus gkip could
be used with the same degree of efficiency than

user defined access refinements, contradicting

thus their necessitys

In proving this theorem, we have frequently made the
requirement that declarations be providede This might be
quite annoyant in some cases. On the other hand, preventing
the existence of user defined access refinements increases
the degree of confidence of the program, since several
possible pitfals have been eliminated. Conditions (i)
and/or (11i) are usually true when defining complicated
storage management modulese. That is, the required defini-
tion of adjacency has not been foreseen by the programming
language designer. We may conclude, however, that the cases
where user defined access refinements are necessary are

seemingly few.

Besides the cases where user defined acces refinements
become necessary, there are also cases where they may aid
in increasing the efficiency of a program by a considerable
amounte It should be obvious though, that these efficiency
considerations presuppose a deep understanding of the
program in question, in particular of its bottlenecks.
Consequently, requiring the progremmer to satiasfy some
protection pre~requisite before defining an access
refinement does not sgeem too much a burden and, possibly,

it prevents the misuse of such definition constructs.

We will assume then, that user defined access
refinements are normally forbidden. If it becomes necessary
to incorporate a user defined access refinemént, protection
requirements must first be satisfied. That is, certain

language contructs are available, but only within a

Access Functions -4,32~

protected environment and not for general use. This
protection prevents then the misuse of error prone
constructse. Under these circumstances, we may assume that,
in the normal case, ail accesses are type—-wise correct, and

that this correctness is established in a mechanical way.

This all points into the direction that modules which
partition an area into one or more data spaces are in fact
access functions defined within one and the same type

descriptor.e That is, "storage management" is in fact a

typee.

Let wus devote now sgsome attention to the type
preserving types. Let Tj(n) be a type having following

properties:

i=- n is an integer value and it defines the extent of

the data space of type tj(n);

ii- for any underlving tvpe T there is a value n such
that T can be identity converted to Ti(n);

iii- the only conversion with Tj(n) as domain is the
identity conversion back to the underlying type T;

iv= accesses to a data space of type Ti(n) are:
a~ forbidden— in this case T ;(n) is no _access(n);
b~ restricted to copy accessesy, i.e. direct transfer
from one data space to another~ in which case

T4(n) is filler(n);

v~ the extent n of a data space of type Ti(n) can be

retrievede.

The extent n must be provided since the underlying
type could define data spaces of any extente. Observe

though, that the value n could be abstracted, if the extent

Access Functions -4,33~-

regquired by the underlying type 1is knowne That is, n could
be implied in some cases. There are restrictions on the
possible expressions used to deliver the value n of such a
type preserving type thoughe Furthermore, the correctness
of these expressions must be establisheable in a mechanical
waye One simple way which also solves most of the cases, is
to define a structure where one of the <fields denotes the
extente Clearly this field must be constant once the data
space has been typede. For exampley consider following

construct:

type var_size_node(integer extent)=
atzuct(ipteger coamtant extent gopy;

filler(refer extent) info);

where copy denotes that the value of the formal parameter
with identical textual name is to be placed in this field.
Recall that parameters of type descriptors are passed by
value [corollary 4¢1.13]. refer denotes that the required
value is to be found in the field with identical textual
names Observe that, in this example, "extent" is an intrin-
sic parameter. Within a storage management type descriptor,
data spaces made availadble to the exterior could be typed
Yvar_size_node". In principle it would be possible then to
perform all scanning operations and still assure type—wise

correct accesses to data spacese.

Access Functions -4 .34~

4.3 Eptablishing a Controlled Envircopment for Name Ivped Yalues.

Even when target typed, name typed values, say point-
ersy, are too general. This follows from the fact that they
allow gaining access to any space of the target type. For
instancey in ALGOL68 a 323 3221 may access any variable of
type real. However, only few of such variables are really
supposed to be accessed by this means. In many cases we are
also able to determine the logical "life~time" of a data
space. Howevery, due to the general availability of point-
ers, we cannot force a space to be deallocated when its
logical life~time has expired. This follows from the fact
that an unexpected copy of a pointer could have been made,
thus deallocation could result in disaster. In practice it
has become evident, that the certlticatloh of programs mak-
ing use of pointers is quite difficult, by whatever means
one choosgses. This all suggests that the availability of

pointers should be restricted as much as possible[Hoa7].

The most drastic restrictiony, would be to forbid the
existence of pointers altogether. However, this restriction
may cause problems of a different nature when attempting to
circumvent the inexistence of pointers. Another restriction
which is not as drasticy, would be to forbid pointers to
internal data spaces to be transmitted to the exterior of a
program module, e.g. type descriptor. This would effective-—
ly shield a user of a given program module from knowing of
the existence of pointers. A step in this direction are the
access typed values (functions) which we have introduced in
section 3.3« Such a value 1is in fact a pointer, however,
the user sees it only as a variable of the corresponding

target type, ee«ge ALTRAN data values.

Access Functions -4 .35~

Access functions deliver access typed values, ieee
names. These values may then be assigned to an access typed
spacey ie.ee. an access variable; or may be used immediately
to access the required data space. Except for the
assignment of the result of an access function elaboration
and parameter association, there may not be any other
access typed value assignment. We cannot forbid the
existence of access variables altogether, since a given
access function could contain internal side effects and,
consequently, should be elaborated only once for a group of
one or more effective accesses. For exampley an access
function could deliver a new record of a sequential file

for each elaboration of this functione.

Ve must stress the fact that access values are not
values on their own. For instance, let A be an access
variable with target +type T. It A 1is used in some
expressiony, A stands for a value of type T rather than for
a ref T valuee. Moreover, If A occurs in an assignment, A
stands for the space which will receive a value of type T
rather than for a space of type 523 Te Thus, we may think
of A as being a "simple" variabie of type T. This suggests
then a construct which, begides assigning a value +to an
access variable, also defines a s8cope within which this
value is defined. For instance: |

with <id>=<access_function> do <statement_list> od;

where <access_function> will be elaborated and the value it
returns will be assigned to the access variable <id>.
Within <statement_list> any access to the data space in
question will be denoted by <id>. !&:& constrﬁcts may be
nested and possibly refer to the same {access_function’.
Observe that <id> is defined only within <statement_list>.

Furthermore, <id”> has not necessarily to be declared, since

Accesg Functions _ -4 .36~

its target type could be abstracted from the access
function used to generate its value. However, if <id> is
explicitly declared, the type must be <access_form>

<target_type>, where <accegs_form”> is any of access, fetch

or storee. In figure 4.3.1 we show a concrete example of the

use of the with construct.

Constructs like the :i:& construct have been defined
both in PASCALI (with) and in SINULA67 (inspect). The
SIMULA67 construct performs an object identification test,
as well as providing the :i:& construct. In both cases only
one access typed value of a given target type may be
presente This follows from the fact that PASCAL, as well as
SINULA67, do not explicitly provide <id> within +the with
constructe That is, within <statement_1list>, record field
names are used directly without prefixing it with <id>.
Consequently there would be an ambiguity if equal type
delivering !iﬁ& constructs would be nestede. Qualifying
accesses to fields of a structure with <id> may be annoying
in some cases; but such a qualification leads to a clearer
text within <statement_1list> and, also, it prevents the

aforementioned ambiguity to occure.

Suppose now that a given program module makes internal
data spaces available to the exteriore This could be
achieved, for instance, by transmitting a pointer, i.e. the
address of such an internal space. We have already
mentioned that +this would be undesirable. Let us examine
then if there is an alternate way to tramsmit references to

internal data spaces avoiding the generality of pointers.

Assume that within program modules some sort of
identification is associated with each internal data space,

such that each identification correspohds to at most one

L)
Access Functions -4.,37-

data space. Furthermore, assume that a mapping is defined,
which maps a given identification onto the corresponding
data space if anye. Thus, if this mapping is defined as an
access function, it follows immediately that it suffices to
transmit data space 1identifications rather than pointers
and gtill be able to access internal data spacese.

Formalizing we have:

Theorem 431 Any computation requiring pointers to internal

data spaces t0 be transmitted to the exterior of
program modplea, can effectively be transformed
into a computation requiring only access typed
values characterizing these internal data spaces

to be transmitteds

Examples of such identifications are: integers;
character strings etc. Examples of the corresponding access
functions are: indexing into an array of pointers; hashing
functions etcs In extreme cases the identification could
actually be a pointer and the corresponding access function

would be the identity function.

Notice that data space identifications are not access
typed values. That 1is, when effectively accessing an
internal data space, only access typed values are usede.
Externally however, this data space is identified by a
value which is not an access typed value. Furthermore, this
identification itselft does not stand for an access path,

even if it corresponds to a "disguised" pointere.

Defne 4.3.2 Let M be a program module making internal data

spaces available to the exterior. M is said to

exist in a conirolled environmepnt, if:

L 4

Access Functions

i= all external accesses
of M are gained by
function defined by M;

ii- +these access functions

and must successfully

requests

From (ii) we have

access validations such as?

-4 038-

to internal

of

data spaces

means some access
and
may be of any complexity

elaborate for any access

that access functions could perform

controlling identity of users;

assuring that accesses are "life—-time" correct. This
definition shows alsoy, that data spaces which are internal
to different modules are kept disjoint whenever program
modules exist within a controlled environment. That is, in
order to access some data space, the program module
instance contalining it must be knowne

We will expect that the access functions can be

elaborated in a deterministic waye.
access may not be deniede.

is to be gained,y, all information

access function must be avajilable.

It means,

This does not mean that
however, that if access
needed to elaborate the

It should be clear that

the information required could be obtained by:

into data space

containing the

requesting the

i- including additional information
identifications;
ii- request information from the module
access function, e.ge global parameters;
iii- request information from the module
service, e.ge module identification;
iv= request information from the

operationse.

exteriory, ie.ee. input

Access Functions -4 .39~

Suppose now that data space identifications could be
computed externally +to the program module. Due to the
nature of data space identifications we could conclude that
accessges will always be space~wise correct, iee« no space
invasion ever occurs. However, no longer are we able to
provide a controlled environment. This follows from the
fact that external changes to subspaces of a data space
identification may restrict the class of tests the corres-
ponding access function may performe. That is, allowing
external changes to data space 1dentifications, restricts
the complexity of the associated access function. For
example, the validation of accesses by means of passwords
contained within the data space identification cannot be
performed 1f these passwords are allowed +to be changed
externally. We may conclude theny, that, in order to estab-
lish a controlled environment, data space identifications
may not be obtained by computational means externally to
the corresponding program module. Ve may now formalize the

properties a data space identification must possessg:

Defne 4343 Let a be a data space which is internal +to some
program module M. A date space identification of «
is a value V of some type T3 such that:

i- a and only a 1s accessed when presenting V to
any of the aggoclated access fuanctlions;

ii- the associated access function fails for every
value of type T3 which does not properly
identify an internal space;

iii- externally to M, values of type Ty are indivis-
ible and cannot be obtained by computational
meanss;

iv—= externally to M, values of type Ty can access

Access Functions -4 40—

the data space they identify only by means of

some associated access function Fs

Theorem 434 A progrem module N exlsts within a controlled

Prooft.

environment and theorem 4.3.1 is satisfied, i1ff M
makes internal spaces available by means of data

space identifications only»s

From the previous discussion it follows +that the
condition (1ii) of data space identifications
[4.3.3] is necessary and sufficlent in order to
allow access functions to pe of any complexity.
Thus condition (iii) satisfies condition (1ii) of
the controlled environment definition [4.3.2].
Since condition (iv) of the data space identifica-
tion definition [4.3.3] 1is identical to condition
(i) of the controlled environment definition
[(4.3.2], 1t follows that conditions (1ii) and (iv)
are necessary and sufficient in order to establish

a controlled environment for the module N.

If conditions (1) and (ii) are met, theorem
4.3.1 holds, since there is an one to one
correspondence between pointers and data space
identificationse. If condition (1) fails, a data
space identification would identify more than one
data spaces, thus not being in an one to one
correspondence with the pointers. Similarly, ise
condition (1i) failse, access to a "non-existing"
space could be gained, thus there would be no one
to one corregspondence between data space

identifications and null pointerss

Notice that neither pointers nor integers satisty

definition 4¢3.3. This follows from their respective

Access Functions -ded41i-

violations of conditions (iv) and (iii)e Later in this
section we will show how values of such types could be
qualified in order to satisfy all of the properties
metioned above. Observe thaty, by theorem 4.3.4, if pointers
abide to the reatrlctions of definition 4.3.3, the
associated access function could be the identity function,
and s8till a controlled environment for these "pointers"
would be maintainede. We may conclude then, that the
following restriction could be enforced without degrading
efficiency or decreasing the language's power of

expressione.

Restriction 4.3.5 External accesses to some internal data
space of some module N, may be gained only by

means of access functions defined within Ms

There are several interesting properties with respect
to data space identifications. For example, property (ii)
shows that we could associate control information both with
the data space in gquestion, as well as with the
corresponding data space identificatione. This then allows
preventing accesses where the control information of both
data space and its identification do not agreee. For
exampley, we could define a type "forest". Within this
"forest" several different "trees" could be made available.
It data space identifications contain also some information
linked uniquely to each "tree", we can effectively prevent
accesses from Jjumping "trees"; even when "nodes" are moved

from one "“"tree' to anothere.

The control information could also be a function of
bthe number of copies of a given data space identification,
e.ge reference countse How such an information is kept up

10 date will be studied in section 4.4.

Access Functions -4 .42~

The preceding discussion shows that data space
identifications might be quite complex. It shows also, that
internal type definitions of some program module must be
made available to the exteriore This does not represent a
major notational problem, since the type definition could
be made available to the exterior in the same way as
functions are, ieee by 1including them into the interface
information of the program module. It constitutes a
compilation problem thoughe. For instance, let A be a type
descriptor requiring an externally defined +type B, and
making available an internal type C. If the type B 1is such
that it requires type C to completely compile, it follows
immediately that A and B can be compiled completely only
when the interface information of both A and B is present.
That is, restrictions are imposed on independent compila-
tions, i.e. there are casesg where independent compilation
cannot be completed at a given compile step. This points
into the direction that there might be several compilation

steps in order to completely compile some given program.

When defining data space Iidentifications, it was
mentioned that, externally to the program module defining
them, data space identifications should not be partially
changed nor obtained by means of some computatione Let us
examine now whether we could enforce this in a mechanical

way by means of type checkinge.

Defnes 43.6 Let T be some type. A itype gualificatiom is an
operation which transforms the underlyving tygpe T
into a type T’ having following properties:

i- there are no subtypes to T’;
ii=- the identity conversions I;[vT and It are

defined between T and T’'=m

Access Functions -4 .43~

Detne 4.3.7 Let T’ be some qualified type. A I’ gwning module

is a program module which knows both T’ and the

underlying type T of 1’e

In section 3.2 we have introduced the type no_type.

For any type T, a conversion from ng_type to T yields the

undefined value. This is particularly important when a data

space

a of type T is being allocated, since during the

allocation process of ay, a will be typed no type.

Theorem 4.3.8 Let 1’ be a qualification of some underlying type

Proof.

e Let M be a program module which uses 71’ but
which 18 not a 77 owning module, i.e« N ignores T.
The type—wise correctness of accesses is maintain-
ed by M in the general case, iff any conversion

with T’ as range has a qualification of T’ or
no_type as domaina

Suppose that C has no tzge as domain. Thus the
data sSpace a containing the result of C will
effectively contain the value undefined. Hence any
read access to a must be preceded by a vwrite
access as required by theorem J.5.1. Now if C has
a qualitication T” of T’ as domain, T’ underlies
#, consequently their type set is identical and
the set of valid operations of T is a subset of

that of T’.

Suppose now that the domain 7Y of C is some
type other than a qualification of T’ or no_typee.
Since 1* is not no _type, the conversion C delivers
a value which is read accessible. Now, due to the
existence of the identity conversion Iynptv,y C also
converts T" to T’. But then C must know T in order

to correétly converty, contradictione®

Access Functions -4 .44~

Theorem 4.3.8 shows that type qualifications cannot be
used directly in order to implement data space
identificationse. This follows from the necessity of knowing
the underlying type in order to assure type~wise

correctness of accesses.

DRetne 4.3.9 A proper typne gualification of an underlying type
Ty is an operation which transforms T into a type
T’ such that:
i- T’ is a qualification of T; and

Y and not being T’

ii~ within a module using T
owningy, any conversion with T’ as range has
no_type or a proper type qualification T* of T’

as domainms

The next theorem shows that préper type qualifications
satisfy the external requisitesy i.ee« condition (iii), of a

data space identification.

Theorem 4.3.10 Let T’ be a proper type gqualification of some type
Te Within a module N not being a T’ owning module,
values of type T’ are indivisible and cannot be

obtained by computational meanss®s

Proof. That values of type T’ are indlvislble‘ follows
from the inexistence of subtypes to a gqualified
type. Furthermorey, due to the conversion restric=-
tion of proper type qualifications, values of type
7’ cannot bYbe obtained by computational means

within M=

Now{ if the underlying type T is not known, it follows
that we cannot use T’ directly as a name typed value, even
it T 18 a pointer. Thus any data space identified by a

value V of type T’ can only be accessed by means of an

Access Functions -dq o 45~

access function accepting V as a parameter. Furthermore,
this acceas function must be defined within a T’ owning
module. From. this and from theorem 4.3.10, we may conclude
that restriction 4.3.5 1is indeed enforceable in a
mechanical waye. For this it suffices to prevent the
underlying type of a proper type qualification to be part
of the interface information. We are able them to transform
types such as integers, strings, pointers, structures, into

data space identitficationse.

Due to the permission of having 7T’ in the domain of a
conversion, it becomes possible then to define relations
with respect to values of a gqualified type T, without that
this relation has to be implemented by some T? owning
module. As has been pointed out by EKnuth{Xknu3], this allows
the design of more "efficient" programs in some cases. For
example, if it is known that +the relative position of
dynamic data spaces isg maintained during all storage
administration operations, some lists could be ordered
‘according to the binary value‘ of pointers, allowing thus a

faster searching opperatione.

Proper type qualifications will be denoted by the
keyword shield. There are some implementutional problens
with respect to shielded types. For instance, data spaces
of a shielded type could be of varying extente. Notice that
this could be overcome by means of an appropriate extent
enquiry. We will not enter into details with regard +to
these implementational difficulties thoughe.

In figure 4.3.1 we show an example of how the type
shield could be used. We show there how a linked 1list
implementation of a binary tree could be provided, so that

only data space identifications are transmitted. Observe

Access Functions -4 .46~

type tree .(tzge user__type) =

begip tree;
type node=gtrugct(user_type info;
integer node_id; ref node left, right);

type reierence?struct(ret node pointer; lnte‘er id);
outside scope tree_ops;
type node_ref=ghield reference;

user_type access function get(node_ref what) =

it whate.id=what.pointer->node_id
then whate.pointer=>info;
elge fall;
L N)

end tree;

Example of use:

tree a(integer);
type pointer=a.node_ref;

with node=a.get(pointer) do e¢e¢¢ node:=10; oce

8

Figure 4.3.1 Example of the use of type shield.

that "reference" is the underlying type and that it is able
to directly access the required node. "node_retf" is the
shield (qualification) of "reference". In order to be able
to communicate with the exterior, "node_ref" must be
available in the interface information, leee within

"outside_scope™.

By means of the fields “"node_id" and "id" we can
establish following protection mechanism. The value of
"node_id" could be modified every time the node is
transmitted to or obtained from a free liste Thus, by means

of the access validation check shown within the access

Access Functions - o 47~

function, we are able to verifty if a correct node is being
accessed. Since the user is wunabdle to modify the
identification, we are effectively entorcing accesses to be

"life—time" correcte.

Observe also that we are using the textual name "what"
ag 1f it implies the type "reference®. This is valid since,
within a T’ owning module, the types T’ and its underlying
type T are synonymous due to the existence of the identity
conversionse. Thus, if a textual name implies T/ it also

implies T witin a T’ owning module.

WVhen allowing values of any complexity to become data
space identifications, the egll data space identification
is no longer clearly defined in all cases. This shows then,
that a function must be defined which produces Eﬂll data
space identifications. Furthermore, this function will have
to be user defined in some cases. Since, the language
processor assumes a predefined operation which delivers
such ggil values whenever ggll is used within a program, we
conclude that we may have to replace language processor
operations by user defined functions. How this can be

achieved will be our object of study in the next sectione.

4.4 Access Monitoring-

In section 4.3 we have shown how to establish a con-
trolled environment for name typed values. For this purpose
we have introduced data space identifications. Still these
data space identifications are some sort of "pointer", re-—
gardless of how much information they actually carrye. This

follows from the fact that data space identifications could

Access Functions -4 .48~

be copled externally and, thus, we are unable to control

the dissemination of name typed informatione.

Vhen trangmitting data space identifications wve may
want to monitor the use of such values. For example, we may
degire to establish reference counts, or prevent copies
from being made. In this section we will study how this
monitoring could be establisheds We will not 1limit our-
selves to consider only data space identifications though.
That is, we will study how to eastablish monitoring as such,
regardless of the purpose of the underlying typee.

In order to reduce the writing effort, language
processors define. global types, e«.ge inte‘er, as well as
some global operations which, in a sense, are "type less",

eege store or deallocate. VWhen monitoring accesses, we may

want to substitute some or all of these operators by user
defined functions. Notice that some languages al low such
replacements for some of the defined operations, Cege

SNOBOL4 "QPSYN" functiony ALGOLG6S op declaration.

Defne 4.4.1 Let O be a language processor defined operation. A
type T 18 said to be Q-gepgitivey if the operation
O on values of type T can only be performed by an
O—emulating function F detined by T's type

degcriptor T»

Observe that such a "language processor" could have
been defined by the user by means of ancother language
processor. We have then in fact a hierarchy of languages.
For each of these languages we must define those operations
which could be replaced andy, alsoy, the restrictions
(protection requirements) which govern this replacement. It

follows from this discussgion that the operation to be

Access Functions - o 49~

replaced by an O-emulating function might well be user
definede.

According to section 3.4 the type of each parameter
must be present in the interface information. Furthermore,
when combining modules, the types of corresponding parame-
ters must sgatisfy lemma 3.5.3 [sequentially multityped
binding conditions] as we shall ghow in chapter Se. Since
the type descriptor defines also all O~emulating functions,
it follows that we can reduce the prodblem of replacing an
operator by the corresponding emulating function to a type

checking problem.

With respect to defining O—emulating functions, two
main difficulties arise immediately:

i- +the replacement may cause language processor assured
type~wise correctness to be 1lost. For example, the
definition of extent enquiry emulating functions may

cause space invagion;

ii- some operatione are such that the emulating funtion
must either report an error or eventually perform the
operation being emulated. For example, emulating the
deallocation operation must eventually perform this
deallocationy; otherwise disastrous accesses could

oCCuUre.

From (ii) it follows that an O—emulating function F
may have to refer to the operation O itself. On the other
handy, O and F are identified by the same textual name in
order to allow the replacement to be performed when
matching the interface informatione We must then adopt
following convention in order +to avoid improper replace-

ments:

Access Functions -4.50-

Copvention 4¢4.2 Let TX be the textual name of some operation

O and also of its O-emulating function Fe. Within
the body of F, any occurrence of TX refers to O

and is not replaced by Fu

An O—emulating function F will be said to be gxact
O—-emulating, if, when elaborating F, F either reports an
error or the operation O is performed with exactly the =same
parameters as those passed to Fe It should be clear, that
an exact O—emulating function maintains the the type~wise
correctness of the language processore. This tollows from
the fact that the original operation O is necessarily
type-wise correct whenever the language processor assures
sequential multitypinge Furthermore, this operation 1is
eventually performed whenever F completes elaboration

without reporting an errore.

It should be clear that many O-emulating functionse are
quite simple. Thus, it some textual discipline is enforced,
Coege "goto—-less" programming, these functions could be
shown to be exact in a mechanical way, without increasing
the compiling cost by muche Now, in order to avoid misuse
of the programming language, we will alsoc here require that
some protection convention be satisfied whenever defining
an O—emulating function which cannot be mechanically proven

of being exacte.

In section 4.3 we have mentioned that a dynamic
storage allocation module DSA is in fact a type. Further—
more, such a module makes internal spaces available to the
exterior. Suppose we could access such a space @y by means
other than data space identifications and still abide to
restriction 4.3.5 [internal access via access functions

only] We would have themn to define an access function A

Access Functions -4.51~-

which accesses aj. This access function A may not require
any external parameter which is necessarily in an one to
one correspondence with the data spaces @y it can access,
otherwise this parameter would be a data space 1dent;f1ca-
tion. Furthermore, within DSA there is no relationship
between the data spaces made available to the exterior,
consequently the function A could not be designed in such a
way as to provide access to successive data spaces, since
this succession is not knowne. That isy, A cannot be a
generator function as will be defined in section 4.5. It
follows then, that A cannot decide which a; is to be
accessed. There must then be an access function Aj for each
a{y where the name of A4{ is transmitted to the exterior.
But then this name is the data space identification of ai.

Formalizing we have:

Iheorem 4.4.3 There is a computational problem which requires
the transmission of data space identifications to

the exteriorm

A consequence of this theorem is that there might be
cases where access to data space identifications must be

moni torede.

It should be clear that operations such as "dealloca-
tion" of spaces are internal +to the Mdynamic storage" type
descriptor. Suppose now that the deallocation is governed
by reference counts, thug all operations which might modity
the contents of a data space containing a reference (data
space identification) must be monitorede. In particular the
gstore operation must be monitored. Since store is usually a
globally defined operation, it follows that a store

emulating function is required here.

Access Functions -4 .52~

type node = struct(lnteaer count; user_ type info);

type reference =
begln reference;
ref node pointer;

outside_gcogg ops;

emulate store(reference value) =

bgﬁin store;

reference save_pointer = pointer;
store(value); /* changes "pointer" %/

if pointer#pull

then pointer~>counti:=pointer-Jcounttl;

el o

save_pointer#null

then save_pointer—)count:=save_p61nter—>count—l;

.
9

el

save_pointer->count=0
then user_typeenullify pointers(save_pointer);
deallocate(save_pointer);
x2i;
end store;
snd ops;

end reference;

Figure 4.4.1 Definition of a name typed value establishing

reference countse

In figure 4.4.1 we show how reference counts could be
maintained by means of defining a store emulating functione.
Notice that the type descriptor of “"reference" is internal
to0 some type descriptor, say "dynamic storage". Notice,

furthermore, that "pointer" is the receiving data space

when store is performede.

Access Functions -4,53~

It follows from our type equality definition 3¢4.4 in
section 3.4, that all modules which interchange values of
type "reference" must refer to one and the same definition
of this type. Consequently all store operations can be
efiectlvely replaced by the corresponding store emulating
function, since this emulating function is part of the

“reference' type descriptore.

The example shown in figure 4.4.1 is not complete. For
instance, operations such as deallocation must also be
monitoreds We have omitted these functions since it would
not contribute to the understanding of the emulation
function definition shown theres. Notice that the store
emulating function shown in figure 4.4.1 is an exact

emulating function.

When using reference counts, a data space a is deallo—-
cated whenever its corresponding reference count I reaches
the value =zeroe. It followe immediately that the reference
count J of the data space 8 must be decreased if a contains
a reference to S+« Now, for reasons of transparenéy, we do
not want to know the Yuger_type" of the data space a being
deallocated. It follows then, that "user_type" must provide
the means to set the reterenceg (data space identifica-
tloné) contained within a to ggll. The easiest way 1is to
define within "user_type" a function "nullify_ pointers"
which stores agll in all name typed fields of the data
space being deallocated. These store operationg will then
be monitored again. Thus, by means of recursion, eventually
all data spaces to be deallocated will be effectively
deallocated. Observe that, 'hy means of Y"nullify_ pointers™,
a given data space could provoke the updating of several
"dynamic storages". It follows then, that O—-emulating

functions must be implemented in such a way that they allow

Accese Functions -l oS4~

recursiony i.e. multiple instances. This could be achieved,

for example, by means of "safe routines" as in IPL V[NewS].

The operation "nullifty_pointers" should be a language
processor defined operatione. Notice though, that the
underlying structure must be Xxnown in order to implement
this operatione Thus, it depends on the declaration of
fuser_type" and, consequently, ite definition is completed
within “user_type". Notice also that "user_type" may stand
for a hierarchy of types. Thus, "nullify_pointers"™ might be
partitioned into several sub-operations. This emphasizes
theny, that "nullify_pointers" be a language processor

defined operation.

We have mentioned in section 4.3 that null is in fact
a function wich is defined for name types, e.g. pointers,
and for data space identification types. It follows then,
that "nullify_pointers" needs only to modify those fields
of the data space a being deallocated which currently bear
a type defining the operation ggll. Thus fields containing
only computational values need not be changed, reducing

thus the deallocation run time coste.

4.5 Gepnerator Functiong.

In this section we will study e classe of access
functions which are capable otkaccessing internal spaces of
some module (usually a type descriptor), without requiring
datea spaée identifications as external parameiera.
Functions of this kind will be called geperataor functions.
We will not restrict generator functions to be Just access
functions though. That 18, a function which computes the

" values of successive e¢lements of some set will also be

Access Functions -4 455~

considered as being a generator function. For example, a

random number generator will be considered as being a
generator function, although it is usually not implemented

as suche

Generator functions are particularly interesting for
the fact that they allow to definey, once and for all, the
form in which consecutive elements of an (ordered) set are
to be generatedt. Thus the task of writing and certifying
programe may be reduced considerably, since this has to be
done only once for several effective uses of a given

algorithm, i.e. generator functione.

Usually generator functions are defined internally to
some module, e.ge type descriptor. This has the advantage
of keeping together in one module the set of valid opera-
tions on internal data spaces. Thus generator functions
increase the structuring of programs as well as the inter—
changeability of modules. Due to being internal +to other
modules, generator functions know both the "structure! of
the underlying set and also the order in which the elements
of this set are to be delivered. This allows then the
design of efficient generator functions without having to

destroy the transparency of module implementation.

Notice that the "sets"™ we are refering to are in fact
sequences, that is, they could contain repeated elements.
For example, a random number generator could deliver
several times the same value, possidbly even a contiguous
seqnencev of equal values. However, we assume that every
value delivered by this random number generator is a

different element of some sete.

+ Recall +that a tree traversal algorithm defines the
ordering of the (sub) set of nodes it traverses.

Access Functions -4 56—

Generator functions usually possess internal parame—
ters which must be kept from activation to activation. By
means of these parameters the current (or next) element to
be accessed 1is determinede. Furthermore, these internal
parame ters are normally updated for every activation of the
generator functione That 1is, generator functions wusually
produce internal side—effects and, consegquently, may deliwv-
er different values for successive activations. Finally, in
order to produce the current (or next) element of the set
to be processed, the generator function may have to resume
elaboration where it last went oft. We may conclude then,
that generator functions tend to be coroutinese. We will
study the problems relative to coroutines later in this

sectione.

Generator functions are further distinguished from
conventional functions in that they usually define follow—

ing three entry points:

i- initialization entry- which prepares the generator
function to deliver the first element of the set, or

actually delivers 1it;

ii- successor entry= which advances the element "cursor"
by one element. That is, by repeatedly activating the
generator function through the successor entry, we
are able to effectively scan the elements in the

ordered set;

11i- termination entry- this is a predicate which
de termines whether all elements have already been

examinede.

Notice that these three entry points do not neces—

sarily have to be provided. For example, a random number

Access Functions -4 57~

generator could be initialized whenever an instance of it
is created. Furthermore, termination predicates are usually
absent from random number generatorse. Thus, a random number
generator may he implemented as a conventional function,

although it is considered to be a generator function.
From what has been said so far we may conclude?

Fact 4.5.1 Generator functions are modules possessing their
own storage requirements and making one or more

manipulative operations available to the exteriors

Observe that type descriptors have the same proper—
ties. Thus the mechanisms developed for type descriptors
could also apply to generator functions. Since types and
generator functions exist for a different purpose, we will

distinguish between them by using respectively the keywords
tzge and generator.

set S(some_type);
generate A=S.elem_gen.first Ex‘S.elem_gen.successor
until S.elem_gen.last do;
generate B=S.elen_gen.tirst by S.elem_gemnesuccessor
until S.elem_gen.last do;
outeut As B;
od 3

i~

od 3

anan

Figure 4.5.1 Ordered pair generator. First versione.

Consider now following probleme. Given some set S,
produce a listing containing all ordered pairs of elements
in S. This could be achieved by a program similar to that
of figure 4.5.1. We are not concerned here with what these

sets represent; e.ge data base records bearing a given

Access Functions - .58~

property, nodes of a tree or a graphe What we want to point

out though, is that successive elements of such sets cannot

always be obtained by simple addition, e.g. indexinge.
The construct:

enerate <control_var>=<origin” by <successor>
M J
uptil <termination> dog <e«. od
uptil de ed

is similar to the ALGOL60 for statement. It is used with
respect to generator functions though. Thus, <origin>,
<successor”> and <termination> are, respectively, the
initialization, successor and termination entries of the
generator function. <control_var> is usually an access
typed variable and refers to the element of the set which

is currently being processede.

Within the program of figure 4.5.1, "set" is a type

which, besides storing elements of some set, set" also
makes the generator function "elem_gen" available to the
exterior. This generator function scans all elements in the

set "S". "elem_gen" provides following entry points:

i- "firat" which resets "elem_gen" and provides an
access typed value refering to the first element in

the set;

ii- M"guccessor" which advances access to the next element

in the set;

iii~ M"last" is a predicate which returns true iff all

elements of the set have been examined.

Suppose now that there is only one instance of the
generator function "elem_gen". When the internal loopy i.e.
“‘enerate B=eeoel, terminates, the generator function

instance is necessarily in a state where the the until test

Access Functions -4 .59~

yields true. Now, when terminating the internal loop, the
external loop is resumed, i.e. the next left hand element
of the ordered pair is generated. However, there is only
one Instance of the generator function, it follows then
immediately that the external loop is terminated since this
unique generator function instance reached the termination
conditione. It follows then, that the program shown would be
in error, since only those ordered pairs are listed for
which the left hand element is the first element of the set

being traversed. Formalizing we have:

Fact 4.5.2 There may be several instances of a generator
functiony each at a different stage of elaboration
and each possibly related to the same data space

or module instances

Observe that even when the generator function is a
simple addition operation the result above is true. In this
casey, the multiple instances are usually embedded into the
program'’s code, e.gs by multiple expansions of the lTLoo0p

"macro™.

We have already mentioned that generator functions and
type descriptors are similar from the implementation point
of viewe. Thus, instances of generator functions could be
created in the same way as data spaces of a given type are
created, le.e. by means of a declaration. We will assume
then, that all generator function instances are declarede.
Obviously,; we could define language constructs which would
provide such declarations in an implicit waye. Generator
function instances could also be created explicitly by
means of some operatory e.ge. the 32!(<class>) operator of
SIMULAG67. However, we will not study such constructs in

this dissertatione.

Access Functions -4.60-

set S(some_type);
Se.elem_gen outer, inner;

generate A=outer.first by outer.successor until outer.last doj
gepnerate Biinner.tirst by inner.successor until inner.last dg3
goutput A, Bj
od;

od 3

AN

Figure 4.5.2 Ordered pair generator. Second versione.

In figure 4.5.2 we show an example of generator func~-
tion instance declarations. Since "outer" and %Yinner" are
different instances of the generator function "“elem_gen",
it follows immediately that there is no interference
between the two generate statements in figure 4,542
Observe also that "outer” and "inner" are defined relative

to the same data space "S" of type "set".

In tigure 4.5.3 we show the type descriptor "set". As
mentioned earlier, the type "set" makes available the
generator function "elem_gen". The example shown should be
clear, since it reflecte exactly all what has been said

about generator functions so0 fare.

A generator function instance declaration causes the
creation of a generator function instance whenever control
passes through the program section containing, or elabora-

- ting, the declaration. Thus, the internal spaces of a
generator function, iees the activation record, are
allocated and remain allocated even 1if none of the
operatlons defined b»y the generator function are actually
being elaborated. It follows then, that generator functions
establish an environment within which coroutine instances

may be kept from activation to activation without that this

Access Functions -qd.61-

type set .(tzge user_type) = begin set;
type element=gtruct(ref element next; user_ type info);

ref elo-ent head:= H
33351&2—32#3& set__operations;
generator elem_gen = begin element_generator;
ref element current:i:=head;
boolean end_reached:=head=null;
outside scope entry_points;
user_type access function first =
if end_reached then null; else head->info;
user_type access function successor =
if end_reached then null;
else head:=head-next;
end_reachedi=head=gpull;
12 end_reached then null;
else head->info;

i3

e

L1
boolean function last=end_reached;
322 entry_points;
end element__generator;

end set;

Figure 4.5.3 Definition of the type "set".

has to be known externally. Furthermore, these internal
spaces may be dynamic in the sense that space allocation
may be delayed until the space is actually needed, and
deallocation may occur ag sgoon as the generator function

instance is no longer needede.

Observe that there are several creation steps associ-—

ated with generator functions. One step is the creation of

Access Functions -4 .62~

the code sections and occurs usually at compile (load)
times A second creation step occurs when a generator func—-
tion instance is createdes A third creation step occurs when
an internal function of the generator function is started
to be elaborated. Observe that the activation records of
the internal functions are linked to the "activation rec-
ord" of the generator function instance and, conseqguently,
may be kept as long as the generator function instance is

kepte

Let us consider now a generator function which
performs the infix traversal of a binary tree (post—-order
traversal in Enuth's terminology[Xnul]). Whenever a node to
be visited is found, the infix generator function must
relinquish control to the calling procedure. Furthermore,
there is a "past history", e.ge a stack, associated with
the traversal algorithme. This past history must be pre-—
served from activation to activation. Thus, the generator
function must be implemented as a coroutine. Nowy; the past
history could be maintained in an implicit way by means of
a recursive procedure. Ve may conclude then, that this
infix generator function could be inmplemented as a

recursive coroutine.

Notice that recursion could be avoided if coroutines
themselves keep track of the past history. This would be
the case in languages such as SLIP[VWei2,Smi2] which do not
provide the ability to explicitly define recursive

functionse.
Summing up we have?

a=— several instances of a generator function may exist

at the same timee. Each of these instances being

Access Functions -4 .63~

independent from the others in the sense that there

is no recursion relation between them;

b= generator function instances are created by means of
declarations. The internal function instances,
possibly coroutine instances, are linked +to +this

generator function instance;

c- the internal functions which actually perform the
computations of the generator function tend to be

coroutines, possibly even recursive coroutinese.

We will examine now the problems relative to
implementing coroutines. A module may receive control only
through well defined gptry pointgss There may be several
entry points to one module. Every entry point defines an
effective entrv value which determines where elaboration
has to begin (or resume) when control is transfered through
this particular entry pointe Effective entry values may be
variable. For example, & coroutine usually allows elabora—-
tion to resume at one of several predefined points within
the text. Whenever a coroutine deactivates,y, it sets the
corresponding effective .entry to refer to one of the
elaboration resumption points. We need thus a deactivation
construct which also sets the value of the effective entry

to refer to the resumption pointe.

In order to pass control back to the caller, we need
an effective return value. This value is also associated
with the entry point through which control has been passed
to the module. Thus, an entry point could be viewed as the
name of a composite data space containing following kind of
values <effective entry; effective return>. It should be
noted here that an effective return value could be a more

complicated structure than just a label, e.g. address. For

Access Functions -4 .64~

instance, an effective return value could determine the
actual return point, as well as the entry points of several
error recovery entries. In some cases the data space
containing the effective returns may be shared by several
entry pointse. This ie the case, for exampley; in subroutines
(or functionse) which posses multiple entry points, e.ge. the

sine/cosine function.

A module instance is an "elaborateable"™ copy of a

program module. Usually a module instance consists of a
(shared) portion of code and a (non—-shared) portion of
working storage, lee. an gactivation recorde. Module
instances are created when a greation sgsection associated
with the module is elaborated. Usually there is only one
creation section per module and this creation section is
provided in an implicit form by the language processore.
Observe that, when a module is a macro, the créatlon of a

module instance corresponds to a macro expansione.

A creation section which 1is implied by the language
processor 1s called a prglogue and its elaboration preceds
the elaboration of the first statement of the module. In
this case the textual name of the entry point is conven-
tionally also the textual name of the module containing
this entry point. Thus, the effective entry value can
easily be initialized to refer to the appropriate prologue.
Ve will allow then entry points and the corresponding

modules to possess the same textual name.

Entry points which effective entries refer to a
creation section will be called cgreation entries. Observe
that a creation entry is transformed into an ggtivation

eniry whenever the corresponding effective entry value is

Access Functions -4 .65~

set to refer to a program section which is not a creation

sectione.

In some casea there are several entry points all
refering to the same prologue. This occurs for instance,
when defining multiple entry point functions (modules) such
as the sine/cosine function. This shows that there may be
parameters by means of which the 2flow of control is
directed after the creation has been completed. These
parameters are usually provided in an implicit form by the

entry point effectively usedy, e.ge "sine" or “cosine".

Creation may occur all at oncey, e.ge as in FORTIRAN 1V,
or it could occur in several stepsy, e.ge in ALGOL60 the
shared portion 1is created at compile (load) time, whereas
activation records are created and destroyed during execu—
tione. Termination is the operation of destroying a module
instance. It should be clear that, if a retention mechanism
is implemented[Ber2,Ber4,Weg2,Joh2], actual termination
could be delayed with respect to the instant when +the

termination operation is performede.

Consider now recursive coroutines. With respect to
deactivations, a recursive coroutine may deactivate and
return control to the exterior, or it may deactivate
(terminate) and resume elaboration of another instance of
this coroutine. This implies then the existence of at least
two effective return values andy, alsoy, of two entry pointse.
It implies furthermore, the necessity of deciding which
effective return is to be used when deactivating. Since
this decision depends on the algorithm to be implemented,
it mugt be provided by the programmer. It follows then,
that deactivations must be able to name the entry point

containing the return point to be usede.

Access Functions —4.66-

Allowing a textual name to stand both for a module
name and an entry point name may cause some unusual control
flow interactions between modules. This follows from the
fact thaty, in some cases, the efftective return value to be
used is not the one associated with the entry point which
textual name 1s equal to the textual name of the module
within which +the deactivation operation occurse. That isy,
some deactivations could be relative to an entry point
associated with another module. Not only this, the
effective entry value of some entry point may be set to
refer to a statement in a module other than the module
bearing the same textual name. This occurs for example,
with respect to recursive coroutines. We will not examine
here whether the syntactical nesting of such interacting
modules 1isg feagible in the general casey, nor will we

examine whether it presents a more structured solutione.

A module instance may only be activated if it has
already been created and has not yet been terminated. Thus,
in order to activate a non existing module instance, first
some creation section of this module must be elaborated. In
order to prevent incorrect executiony the effective entry
values must be initialized to refer to either a creation
section or to abort. Observe that if control is passed to
aborty, an error condition is flagged and the program
execution may reach a premature ende. By a similar argument
we may conclude that all effective return values must be

initialized to aborte.

From what has been said above, it follows that a
coroutine instance can be created by the first transfer of
control to the coroutine. This can be achieved by means of
an appropriate initialization of the effective entry values

associated with the entry points of the coroutine. Fur-

Access Functions -l 467~

thermore, subsequent activations of this coroutine can be
prevented from creating new instances, simply by setting
the effective entry values to refer to some poaortion of the
code which is not a creation sectione It follows then, that
coroutine instances need not be created externally to the

module defining the coroutinee.

Observe though, that there might be cases where we
want coroutines to be created previous fo the first
activation. There are then at least two entriesy, a creation
entry and an activation entry. Sincey, as noted above, only
existing instances may be activated, it follows that the
activation entry nameeg must be qualified with the instahce
name whenever control 1s passed to ite It should be clear
that the creation and the activation entry names could pe
provided implicitly by the language processor by means of

some operators,; e.ge Create and activatee.

In figure 4.5.4 we show a partial definition of the
type '"binary_tree". Within "binary_tree" we define the
infix traversal generator function "intix". The purpose and
implementation of this generator thnction has been

described earlier in this section.

Within "infix" two procedures are defined. The recur-—
sive procedure (function) M"start_subtree" which performs

the actual traversal, and the coroutine (co_function)

Ynext" which serves as a communications link with the exte—
rior of "infix". That iey, control can be passed to "infix"
only through "next"., It follows then, that “gtart_subtree"
must deactivate through '"next" whenever a node to be
visited has been found. Obgerve that deactivation through
"next" requires also the passing of an access typed value

characterizing the node to be visited.

Access Functions -4 .68~

type binary_tree .(jzgg user__type) = healn binary__tree;
type node=gtruct(ref node left, right; user_type info);
ref node root:=gull;
outside scope operations;
generator infix = begin infix;

function start_subtree(value ref node pointer) =
begin subtree;
it pointer#pull

then call start_subtree(pointer->left);

Al deactivate next(pointer->info);
B: call start_subtree(pointer->right);
4

end subtree;

outside_scope only_Xxnown_entry;

user_type access co_function next = hegin next;

C: call start_subtree(root);
D: repeat deactivate next(null);

end next;
end only_known_entry;

end infix; eee

Figure 4.5.4 A recursive coroutine as generator function.

The effective entry value of "next" is initialized to
refer to the prologue of the procedure body of co_function
Tnext"®s, Thus, "next" is a creation entry for a newly
created instance of "infix". Traversal of the tree |is
initiated due +to the statement "Cc" which invokes
"gtart_subtree". The effective entry value of "next" is set
to refer to statement "E" whenever deactivation occurs due
1o elaborating statement HAN, thus avoiding the
reelaboration of +the prologue of the co_function "next",

Thusy, '"next" becomes an activation entry when control

Access Functions -4 469~

pesses through the statement "A" for the first time. Once
the traversal has been completed, "start_subtree" returns
to the original callery i.e. statement "C", Elaboration
proceeds then to statement "D" which will deliver a agll
value for this and all subsequent activations through
next". Thus, every instance of the "infix" traverses the

underlying tree once and only oncee.

Information Transmission -5.1-

S. Information Iransmission.

In this chapter we will study the problems relative to
information interchange between modules. In particular we
will examine how independently compiled modules may inter—

change information.

Information may be interchanged in several ways, e.ge
by means of global areas, actual/formal parameter lists as
well as by means of message transmissione. VWe will show
that, from the point of view of actually making information
available, we can study these three different forms of

information interchange in a unified manner.

The basic concept which we will use for 1nterchanging
information is the parameter liste. We will define parameter
list association in such a way that it becomes explicit
which parameters are to be associlatede A8 we shall see,
this allows us to perform piecemeal association of parame—
ter lists. It algo allows us to dissociate the textual
order of parameters from the order in which parameters
occur in parameter lists. That 18, we will depart from the
positional association rule of parameters which is common
to most of the present day languages. Finally, due to our
parameter list association ruley, it becomes possible to de-
fine one single parameter list which contains formal,

global as well as message (receiver) parameterse.

Besides parameter listsy, we will also study module
typed variables and the activation forms of mo&ules. Thus,
we will study control flow and data flow driven modules.
Furthermore,; we will relate interrupt handlers with data
flow driven modules. A deeper treatement ot interrupt

handlers will be left for chapter 6.

Information Transmission -5 a2~

Module typed variables pose several problems of their
owne We are particularly interested here in ‘detinlng
association of parameter liats in the presence of module
typed variables. As we shall seey; such module typed vari-
ables imply that association will act upon parameter list
typed variables. Furthermore, module typed variables imply
the need for template parameter lists in addition to actual
and formal parameter lists. Such a template parameter list
describes the parameter list related to the uses (calles) of

module typed variablese.

Module typed variables will be treated in the same way
as any other variable. It is thug valid to define arrays of

modules or functions which return module typed values.

This chapter is subdivided into 4 sections. In section
S5+1 we will study parameters as individual entities. In
particular we will study +the operations of association and
transmission in this section. Furthermore, we will define
what we understand as control flow and data <flow driven

modules in this sectione.

In section 5.2 we will study parameter lists. Ve will
define in this section a parameter Llist association
mechanism which we claim allows more <freedom and provides
more accuracy with regard to association. We will show also
in this section, that the same assoclation mechanism serves
for generating values of a composite typey eege structure

typed valuese.

In section 5.3 we will study module typed variables
and parameter 1list typed variables. We will show how
association can be pértor-ed using the same rule as defined
in section 5.2. Ve will study also how gradual association

of parameter lists could be achieved.

Information Transmission =53~

Finally, in section 5.4 we will study several
independent problems related to information interchange. In
particular we will gtudy IPL~V's information interchange
mechanism; the Jensen device; and composition of modules

into packages, l.e. groupse.

S.1 Associntion and Iransmission.

In this section we will study the basic operations
which are required to accomplish information interchange
between modules. VWe will study these operations in a
uniform manner. That is, we will not differentiate between
information interchange achieved by means of local/global,
actual/formal parameters and that obtained by means of mes—
sage transmission. Finally, we will study these operations

from the point of view of independently compiled modules.

Information interchange implies the existence of
storagey, i.e. a sending and at least one receiving data
spaces Notice that the sending "data space" could be a
function which produces the desired information vhenqver
this function is activated, e.ge "call by name"[Grll]; As
has been shown in chapter 2, data spaces are characterized
by namese Now, in order for the programmer to obtain such a
namey; a Llocator function of some textual name, say of a
parameter, must be elaborated. Parameters may be of any
typey eesge primitive typey, linked list type, procedure type
etce In many cases parameters will stand for access typed
variables, but even then the set of target types is not
restricted. Notice that from this point of view we could

have global parameters called "by name™.

Information Transmission -Sed4=-

Observe that parameters could have been generated by
the language processor and, consequently, are hidden from
the user. Consider for instance "call by result" in ALGOLVW.
Here a parameter 1s generated by the language processore.
This parameter is the one which will be ‘used for informa-
tion interchange with the "calling" module. Within the
"called" module a local data space is bound to the user de-
fined parameter. Finally, at the end of elaboration of the
“called" module, an epilogue 1is elaborated which transmits
the contents of this local data space to the language
processor generated parameter and, consequently, back to

the calling proceduree.

For each effective information transmission there must
be a sending and a receiving parameter. In many cases the
roles of these pdra-eters may be reversed from transmission
to transmissione For instance, some transmission lines
allow the transmission of messages in either directione.
Similarly a "call by reference"” may cause side effects,
ieese Ytransmissions" from the formal to the actual
parameter. It follows then, that the property of a
parameter being sending or receiving can be established in

the general case only when transmission actually occurs.

Ve will call parameter association the operation of

relating two or more parameters for the purpose of infor—
mation transmission. Notice that parameter association does
not imply actual tranemission. It does imply, however, that
the data spaces rgquirod for the transmission exist, that
they are bound tor their respective parameters and that
these parameters are known to the module which eventually
will performs the transmission. Thusy; once two or more
parameters have been assocliated, zZero or more effective

transmissions may occure.

Information Transmission =-5.5~-

Parameter association could be of either of following

two forms:

i- explicit— the parameters involved in the information
interchange are bound to different data sSpaces. An
information transmission implies thus an actual

information transfere.

1i- Amplicit— the parameters involved in the information

interchange are bound to one and the same data space.
There is then no actual information transfer between
parameters. Notice +though, that any access, be it a
. read or a write access, corresponds to a "transmis—

sion" in this casee.

Transmission simply copies the contents of a data
space to another without performing any conversione. It
follows then, that the parameters associated by means of an
explicit association must satisfy lemma 3.5.3 [sequentially
multityped binding conditione] in order +to maintain the
sequentially multityped environment. In the case of
implicit association, the associated parameters must also
satisfy lemma 3¢5.3y since such parameters are bound to the

same data space. Formalizing we have:

Lemma S.1.1 Parameter association maintains the sequentially

multityped environment, iff the associated parame-
ters satisfy lemma J3.5.3, where read access means
transmission from a sending parameter, and write
access means transmission to a receiving para-

me tere

In ALGOL60 formal parameters do not have +to be
explicitly typed in +the case of "call by name"[viz. S5.4.5
in Nau2]. This does not contradict lemma S5.1.1 since either

Information Transmission -5.6~-

the receiving module must be recompiled (substitution rule
taken to an extreme) or what is passed is a function, i.e.
thunk[lngl], which precedes or succeeds the transmission
with an appropriate conversion. Obhgerve that this is a case
where transmission is performed by providing an interfacing
procedure. That is, each transmission congsists of two steps

and necessarily passes through the interfacing procedure.

Let A and B be two textual names and let LFp, and LFgp
be the respective locator functions. Suppose that the name
n was first bound to LFA. Let P be the set of input values,
say the bilpding informations which, when given to LFp,
causes LFB to produce the name ne. For ;xample, P could be
the name typed value ny, and LFy an indirect access through
the data space containing P. It follows from lemma S5.1.1
that, in order to assure access correctness, the input
values P must be abstracted from LF, and the input values
used by LFA. Consequently the input values P must be
transmitted from the module containing LF, to the module
containing LFB’ Furthermore, the module which abstracts P
must perfectly understand LFA, LFB and the input values to
8) since, otherwise, P could not possibly be abstracted.
This knowledge could have been established by convention,
say by the Yhinding conventione. If not known by convention,
it follows +that this knowledge must have been gained by

means of some previous transmission. We have then:

Lemma S5+1.2 Implicit association is possible, iff the locator
functions of the parameters being associated are
known by binding convention, or if they have been

made known by means of a previous transmissions

Implicit association can be viewed then as a binding

operation which acts over the boundaries of two or more

Information Transmission -Se7-

modules. Furthermore, this binding is achieved by sending
binding information from one module to anothere. Formalizing

we have:

Lemmg S+1.3 Previous to any implicit associationy, an explicit

association must have occurred; such that the
binding information required by this implicit
association can be obtained by means of aone or

more transmission stepss

In order to perform an‘lntor-atlon transfer, the names
of the sending and the receiving data spaces must be known
and bound to the corresponding parameters. This knowledge
could be established by means of some convention, ecge a
standard "calling sequenceY. This convention will be called
exiatence conventigpne It differs from the binding
convention in that there ise no need to bind any parameters

in this case.

Names of data spaces are establighed within the module
possessing these data spaces. Thus, except for the case of
an - existence convention, these names, i.e« the binding
information corresponding t0 these names, must have been
sent to the module performing the association. Explicit
association can be viewed then as an information gathering

operatione From this discussion we may conclude:

Lemnma 5+1.4 Explicit association is possible iff the binding

information of the parameters involved in the as-
sociation is known by existence convention, or it

is made known by means of a previous transmissions

Let C and D be two parameters. Suppose that C and D
are implicitly associatedy, i.e. C and D are bound +to the

same data apace. It follows from lemma 5.1.3 that there

Information Transmission -S 8=~

must be two parameters N and R which interchange the
binding information necessary to associate C and D. Suppose
now that C and D are explicitly associated. Suppose,
furthermore, that there is no existence convention which
allows C and D to be associated immediately. It follows
from lemma S.1.4 that also here there must de two auxiliary
parame ters R and N which interchange the binding
information in order to accomplish the associliation of C and
D. Suppose, finally, that C and D are explicitly associated
and that there is an existence convention which establishes
this association. Now, the existence convention defines in
fact the value of the binding information which permits the
association of C and De It follows then, that the auxiliary
parameters N and R exist but can be omitted since the
information they interchange is known statically. Ve may

conclude then: v

Fact 5.1.5 Information interchange is accomplished by means
of following four parameters:
i- a root parameter R which containas the binding
information to be sent;

il- =a non-root paremeter N which is associated with
a root parameter and receives the binding
information;

1ii- a gcarriesr zaramster C related to a root
parameter B and which 1is used to perform the
actual information interchange;

iv- a duamy parameter D related to a non-root
parameter N and which is associated with a

carrier parameter Ceo

In figure S.1.1 we show an example where the four
aforementioned parameters are typified. Observe that the

occurrences of the dummy parameter "P" in the statement

Information Transmission -5.9~

call A(Z) ’ Z -carrier parameter
o z z .Z2’-root parameter
| 1 I~1 P, ~dummy parameter
: : P =non-~root parameter
[r—-—);v P’~indirect access word
: - T —— direct access
subroutine A(P) | s e indirect access
P . PY | — —.- reference typed value
,.ii ' ~— - ~- explicit association
JETREES e 1_-7 - = implicit association
o -}
~ A ”
SN e e Pt
Figure Se<1.1 FORTRAN IV parameter association wusing indirect
accesse
Wp=p+1" are implicitly associated to the carrier parameter

"Z" s S
space

tion o
associ
value

enable
parame
the e

genera

T
ly occ
"call
pluggi
formal
parame
module
sion.
is exp
known

that

ince the locator function of "P" is bound to the data
characterized by "Z", Notice that the locator func-
£ "PH jg an indirect access via "P*Y", thus different
ations can be accomplished by simply changing the
of "P”", The non-root parameter "P’'" exists solely to

the copy of the value contained by the root
ter "Z’" to the indirect reference word "P”%". Thus
xistence of "P'" pmay well be hidden 1in the code

ted by the FORTRAN 1V compilere.

he explicit assgociation operation does not necessari-
ur within the sending module. Consider for example
by reference" implemented by means of "address
ng"e In this case all instructions which refer to the
parameter must be initialized to refer to the actual
ter's data space previous to the elaboration of the
e« Thus there is effectively an information transmis-—
Furthermore, the corresponding parameter association
licite Now, the instructions to be initialized are
only to the module containing them. It follows then,

the association operation and, consequently, the

Information Transmission -5.10~

transnission operation must be performed within this

particular receiving module.

It should be clear now that association is possibly a
compound operation involving several information transmis—
sions in order to be accomplished. Furthermore, association
depends on the binding and existence conventions. Thus, a
bad choice for these conventions may entail a decrease of
efficiency of the running programe. Observe that carrier and
dusmy pearameter association implies that the corresponding
root and non-root parame ters have previously been
associated and that some information transfer bdetween these
parameters has been accomplished. /

Notice that there could be several call conventions,
esge "by reference" and "by name%" conventions. Now, if the
parameter type also indicates +the convention, it tollows
thaty, by means of type checking, we could agsure
association to be convention-wige correct. Notice that this
is nothing more than to establish a higher level comnvention
by means of which specific lower level conventions, such as
"hy reference! or "by name", could be abstracted. Thus, if
the language provides for constructs by means of which we
could specify lower 1level conventions, the problem of
choice could become adaptive to the class of programs to be

producede.

We have frequently refered to actual/formal and local/
global parameter associations. These terms only define what
we will call aggociation clasgsese Each of these classes
characterizes whether association is implicit or explicit
and whether it occurs statically or dynamically. Thus,
local/global and actual/formal parameter associations imply

implicit association, whereas message transmission, leee

Information Transmission -5.11-

sender/receiver association, implies explicit associatione.

Now 1local/global association differs from actual/formal
association in that association 1is performed statically in
the former case and dynamically in the latter case. Notice
that this is the case 1in block structured languages, since
there the association operation 1is in fact a locator
function copying operation. In the case of sender/receiver
association, there is no need for a partitioning relative
to association time, since static agsociation implies that
the binding information is transmitted statically, thus it

could be known by existence convention.

A pﬁrameter is said to be filled whenever it is bound
and the data space it characterizes contains valid, i.e.
defined, information. Observe that a filled parameter does

not necessarily stand for up to date informatione.

Information transmission requires time in order to be
accomplisheds During this time interval the data space
which will eventually carry the information transmitted, is
not completely known in some cases, although the textual
name referring to this partially known data space may be
bound and the data space may contain defined information,
ee.ge WwWhen copying a 1list. It follows then, that fill
checking may succeed even when the information has not been
completely received. Since we are also unable, in the
general casey, to determine when a transmission has been
completed, it follows that there must be a data presence
switch associated with each recéivina parameter. This
switch will be gff as long as the information has not been
transmitted completely. It is set +to gon after the informa-
tion has been transmitted completely. Observe that setting
the data presence switch +to on must be performed by the

transmission operation iteself, since only it knows when the

Information Transmission -5e12~

transmission has been completed. This shows also that there
should be a language constructs which allows declaring a

sub~module to be a transmission -o&ule.

Data presence switches may be set implicitly. This is
the case whenever it can be assured by means of some con-
vention, that any information transmission has necessarily
completed when the receiving module is activated. Copying a
by value" parameter is an example of +this case. In the
case that no data presence switch is explicitly present and
there 1is no implicit setting of data presence switches,
parameters mugt be £i1l1l checked, since otherwise
uncontrollable accesses might occure From the preceding
discussion it follows though, that £ill checking does not
assure that the information contained in the parameter's
data space is up to date. Not only this, the information
contained by this data space may be misleading and
eventually cause severe errorsy, e.ge WwWhen containing
incorrect data space 1identitications. This shows then a
need for a data pregence convention by means of which such

errors could not possibly occur.

In order to reduce overhead, data presence checking or
£ill checking should be performed as few times as possible,
preferably statically, or, even better, implicitly. The
most adequate points to perform such tests are algorithm
dependent and, consequently, must be established by the
programmer. This suggests then the existence of a canstruct
which allows +to make the data presence checking explicit
for a set of statements, e.g. a compound statement. Thus,
if this compound statement can be activated only when the
data presence check succeeds, any access to the checked
textual name is necessarily correcty, as long as the data

presence status cannot be changed by some other module

Information Transmission ~5413~

executing in a parallel or quasi-parallel forme. Ve will

come back to this later in this section.

A module is said to be dgata flow driven[Rodl,Stul,
Kosl,Kos2,Davl], if its activation is triggered whenever

the data presence switches of all receiving (dummy)
parameters are oOne. Conversely, a module is said to be
contxrol ZfLlgogw driven it activation and data presence
checking are independent operations for all receiving
rarameters used by this module. Notice that there could be
modules which are partly control flow driven and partly
data flow driven. For example, the PL/1 CON ERROR interrupt
handler is activated whenever an error condition is flagged
during elaboratione. Thus the presence of an error
information is sufficient to +trigger the activation of the
corresponding interrupt handler, regardless of whether it
has been bound +to &a user defined on—~unite. Notice +that
defining an on=-unit corresponds to an implicit parameter
assoclation, iees the interrupt handler is bound +to the
user defined on-unite. Recall that parameters may stand for
values of any type, in particular they may stand for

procedures.

It should be clear thaty within control flow driven
modules, activation may occur when some of the dummy
parameters have not been associated or their data presence
switch 1s 2;3. This i8 not necessarily an error condition,
since it may be known beforehand that, for a givén set of
input values, the module will never trace a code section

requiring the misgsing information. It follows then:

Fact S.1.6 Forcing all information to be present when acti-
vating a module resgtricts the power of expression

of the language®

Information Transmission ~5.14~

There are two ways of maintaining access correctness

in the case of missing information:

i- precede all effective uses of a dummy parameter by a
presence checking operation which deteraines whether
the information is present or absent, leee whether

the access can be performede.

ii- define a default parametier value to which a dusmy

parameter P is initialized whenever P has not been
associated or the corresponding data presence switch

is off.

There are some languages which allow the definition of
default parameter values. For example, keyword macros in
the IBM/360 Assembler F[IBM4] allow the definition of such
valueses As mentioned ©before, PL/1 on=-units must not
necessarily be user defined, i.e. system defined on—units
are another example of default parameter values. Observe
that presence checking implies binding checking in the

implicit association case.

Notice that default parameter values could be variable
and thus be made dependent on previous activations. This
seemg to be a better approach to ALGOL60 own variables
sincey in this case, they might contain defined values even
for the very <first activation, thus eliminating the re-—
quirement for an external driving data space which contents
determine whether +the own variable contains an undefined
value or note In section 5.2 we will show that there is no
necessity for a bijection between the actual and formal
parameter lists, thus the existence of gwn variables could
even be hidden from +the the user of the module detining

such own variablese.

Information Transmission =5415~

There are two cases of data flow drivem modules to

consider?

i- asynchronous— in +this case activation ot the module
occurs whenever all data presence switches are one.
Notice that this case implies parallel or quasi-

parallel (multi-programmed) elaboration of modulese.

ii~- synchronous~ in this case also all data presence
switches must be on, however, the program must also
be in a state; say activation state, which allows the

activation of the module.

Notice that we are considering synchronization rela-~
tive to the sequence of states a program passes through,

and not relative to a program independent clock pulse.

Let SD be a synchronous data flow driven module. There
is then a set of activation states S={s;,sz,-..,sn} such
that SD could be activated at seome state 83y in S.
Furthermore, SD can be activated only if all data presence
switches are one. Thus, either the data presemnce check is
conducted at state s8{y or sSji is enabled to trigger the
activation of SD after all the data for SD has been found
to be presente Now, enabling 84 to trigger the activation
of SDy, is nothing more than to increase the data dependency
of the module SD to include a "currently at state s4"
dependency. Hence the data presence check is completed only
at state =;. But then SD can be simulated by means of a
control flow driven module which activation at state 8y is

preceded by an adequate data presence check. We have then:

Fact 5.1.7 Synchronous data <flow driven modules can be im-

plemented by means of control flow driven moduless

Information Transmission -5e.16~

In order to decrease the amount of interface informa-
tion andy consequently, decrease the possibility of incor—
rect module interactions, we would like the data presence
checking to occur only within the simulating control flow
driven module. That is, at state sy the simulating module M
is activated regardless ot' the data presence switch
settings. However, the activation will succeed only if all

switches are one.

Defne S<1.8 A module N is said to be gdata pregence transpar—
enty, 1f the data presence checkings performed by M

are unknown externally to M=

If M is to be a data presence transparent module, it

follows that N must receive at least two effective return

values which are:?

i= success return~ this is the elaboration resumption
point in the case that the data presence check
succeeds. Thus a return via this effective return
implies that the data flow driven module has been

elaborated successfullye.

ii- failure return- this is the elaboration resumption
point in the case the data presence test fails. It is
usually different from the success return, since
successful and unsuccessful elaboration of a module

normally determine different subsequent actionse.

Notice that these effective returns do not necessarily
have to be return labels in the usual sense. That is, such
an effective return could be the activation point of some
other module, e.ge coroutine. We have mentioned in section
4.5 that multiple effective returns could be implemented by

means of a return point structure. Furthermore, the deci-

Information Transmission -5.17-

sion of which effective return is to be used relies with
the returning module. Finally, the necessity of transmit—
ting a return point structure can be tested when combining
two modules by means of a simple interface information
teste Thus this problem can be effectively converted into a

type checking problem.

Instead of returning via different effective return
points, the module could deliver a value of some types e«ge
a boolean. This value would determine then whether the
elaboration was successful or not. Observe though, that
this represents a duplication of testing effort, since
success or failure is tested within N itself in order to
determine the value to be returned, and, externally to M,
the returned value is examined in order to determine wheth~
er M succeeded or failede. This shows then, that providing
the ability of defining return point structures possibly
reduces the error proneness of the language and increases

both the structuring and the efficiency of the programse.

Let CN be a data presence transparent control flow
driven module instance which simulates a synchronous data
flow driven module instance DM Since CM is control flow
driveny, CM 1is activated from a module instance AM, where
AM#CM. Since CM is data presence transparenty, CM possesses
at least two sub-modules T and E, where T performs the data
presence checking, and E actually simulates the data flow
driven module DM. Since CM is wused in place of DM, any
instance of T or E must be bound to CM. Thusy in order to
activate a submodule T, first the module instance CM within
which the instance 0of T is to exist must have been created.
It should be clear that this could be implemented using the
same constructs és those needed to implement the generator

functions introduced in section 4.5. That isy, the module

Information Transmission =518~

instance CM is obtained by a (possibly dynamic) module
instance declarationy, whereas creations of instances of T
and E are qgqualified with the module instance CM within
which they exist. We have then:

Fact S<«1.9 The constructs necessary to implement generator
functions are sufficient to implement data
presence transparent control flow driven modules

which simulate data flow driven moduless

It should he clear that, in many cases the set of
program states which may activate a data flow driven module
is gquite large. Simulating date flow driven modules by
means of control flow driven modules may thus entail a high
degree of inefficiency due to repeated unsuccessful
elaboration of the data presence checking sub—module.
Consequently it would be worthwile to develop language
constructs from which those program states which imply
successful data presence checking could easily be
abstracted. Such congtructs have been developed for several
data flow driven programming languages[Xosl,Davli,Kos82]. We
will not enter into further details with respect to these

languages thoughe.

Consider now the case of external interrupts. Such an
interrupt could be regarded as a piece of information. It
has furthermore the property of occurring at unpredictable
times. If interrupts could be disabled, or if they have a
priority of service associated with them, there is clearly
a state dependency with respect +to servicing these
interrupts. Even in these caseg the interrupt handlers are
usually considered as being asynchronous data flow driven
modules, since the set of activation states is almost as

large as the complete set of program states. It follows

Information Transmission -5.19~

theny, that simulating interrupt handlers by means of

control flow driven modules may become quite costlye.

Data flow driven modules could be simulated by means
of interrupt handlers, where the interrupt condition is the
presence of all information necessary to activate the data
flow driven modules It follows from this that interrupt
handlers may depend on several parameters, rather than just
on one as PL/1's on—-units. In order to reduce overhead, the
interrupt condition should be tested as few times as
possiblee Thusy, 1t should be tested only whemn any of the
interrupt handler parameters is changed. This implies then,
that we must emulate all store operations which store into
data spaces which are also interrupt handler parameters. We
will study interrupt handlers in greater detail in chapter
6.

Once two parameters have been associated, the sending
and receiving data spaces are known to the module which
will perform the information transmissione This does not
imply though, that the transmission is permitted. There are

two cases 'hich forbid intormation to be transmitted:

i- the information contained in the sending data space
is not yet up to date. This is the case when a data
space is shared by several concurrently elaborating
modulesg, eege critical regions[Hoa8,Han3]. Recall
that any access to an implicitly associated parameter

corresponds to a data "transmission".

ii- the information contained in the receiving data space
is still meaningfull, i.e. may not be overwritten.
This 1is the case when transmitting information by
means of a buffer[Han3]. As long as the information

in the buffer has not been consumed, no buffer

Information Transmission -5.20~-

£illing should occury since this could cause the loss

of valuable informatione.

It follows from this that following switches are

required:

i~ sending statug- this switch is set to ready iff the
information contained within the sending data space

is up to datee.

ii- receiving statug— this switch 18 set to consumed iff
the information contained within the receiving data
space may be overwritten without causing loss of

valuable information.

Furthermore, any transmission must be preceded by a
ready tesfit which verifies whether the sending status is
ready and all receiving stati are consumed. Clearly this
check could be performed once for several actual transmis-
sionsy, as it is the case in critical regicons. It could also
be performed implicitly, i.e. by convention, as it is the
case in single-programmed languages such as ALGOL60,

SNOBOL4 etce.

In fact there are at least two tests, one for the
sending status and the others for the receiving statie.
Since testing and transmission takes time, it follows that,
during this time interval, other modules should be pre-—

vented from changing the sending and the receiving stati.

Defpne 5¢1.10 A transmission module N is said to be gxterpnally
indivigible if, whenever N is being elaborated, no

other module Q may change the sending status of
the sending data space and/or access the receiving

data spaces affected by Ms

Information Transmission -5.21~-

Observe that critical regions are examples of such
externally indivisible modules. It should be clear that the
sending status could be implemented by means of
semaphores[Di j2,Dij3,Hoa8,Han3]. Semaphores and the data
spaces they control are disjoint thoughe. This leads easily
fo incorrect elaborations due to inadequate settings and/or
resettings of the sending statusy i.e. semaphore. Observe
though, that by means of the shared variables proposed by
Hansen[Hand], this problem can be reducéd to a type
checking problem. This follows from the fact that a shared
variable can only be accessed from withinm a critical
region. Furthermore, the critical region depends on the
sending status associated with this particular shared
variables That isy access can be effectively prevented

whenever the sending status is not readye.

In order‘ to allow transmission, the receiving status
must be consumed. Furthermore, it should be set to not‘con—
sumed once the transmission has been completed. It follows
then, that the receiving status is equivalent to the data
presence switch mentioned earlier. It follows also that the
data presence switch abould be set 3££ once the information
has been consumed. Clearly this must be performed by the

consuming module, esges a user's program.

Suppose now that the receiving status 1is implemented
as a semaphore. From the definition of ready check it
follows that transmission may occur only when all modules
which could access the receiving data space are prevented
tion doing so. Thus in a sense, we are dealing here with an
"inverse" semaphore. That is, access is granted to the
transmission module only when access in general is denied.
Thusy it is not the transmission module which denies other

modules to accessy; but the fact that other modules are

Information Transmission -S5e22~

prevented from accessing is what allowas activation of the

transmission module. This stresses the fact that transmis—

sion modulesg should be identified as such.

The preceding discussion shows the need for a
sonsumption section comstruct, which allows activation only
when the required information is present. Furthermore,
after completing elaboration it sets the receiving status
to congumede. In the case of several consuming modules to a
given receiving data space, the receiving status must be
individualized per module. If it were not done g0y a same
consuming module could be acfivated several times for the

same piece of informatione.

Data flow driven modules and parallel elaboration of
modules are closely related[Xos1,Kos2,Davl]. With respect
to parallel elaboration there are further difficulties to
overcome, such as deadlocks|[Holl,Hol2,Hol3,Habl] and
infinite delays[Dij7,Hoe8]. We will not deal with these
difficulties though, since this is beyond the scope of this

dissertatione.

5.2 Parameter Lists.

In the previous section we have discussed the case of
simple parameter association. In many cases though, we want
to associate several parameters by means of only one
textual association, e.ge¢ when associlating actual/formal
parameter lista. In this section we will study how this

multiple association could be achieved so that:

a- the possibilities of association errors are reduced;

Information Transmission -5¢23~

b= there is no necessary one to one relation between the

parameter lists;

c= the concept of data transmission can be extended to

the generation of values of composite types.

A parameter ligt 18 a set of parameters. This set is
not necessarily ordered. Usually language processors store
sets as if they were ordered thoughe There is then a
parameter list implementation which is an ordered set and
every element of this ordered set stands in an one to one
correspondence with an element of the corresponding

parameter list.

Parameter 1lists are types and they are Lkept within
some data space. Furthermore, there is a textual name which
identifies this data spaces. Usually this textual name is
the name of the module, i.ee procedure, to which the para-
meters are passed. VWe will allowy, however, that parameter
lists be identified by textual names which do not have to
identify modules 100y ee¢ge entry names of multiple entry
modules; the name of a named COMMON list in FORTIRAN IV etc.

Carrier parameters may be represented textually as
expressions or sequences of statementse. Thus, befaore
transmitting information, these expressions must have been
elaborated. We will call this eladoration garrier parameter
elaboratione Observe that the result of the carrier parame-
ter elaboration may be the binding information which is to
be transmitted to the non-root parameter. This occurs, for
instance, when the result of the carrier parameter
elaboration is an access typed value; eege call by

reference®,

Information Transmission =Se24~

It follows from fact S5¢1.5 that for each carrier para—
meter there is at least one root parameter. Furthermore,
for each dummy parameter there is at least one non—-root
parameters In order +to associate a carrier and a dumsmy
parameter list, the corresponding root and mnon-root
parameter lists must be associated first. Not only this,
the association of the root and non=root parameter lists
determines +the association of the carrier and the dummy
parameter lists. It suffices tﬁen to study in detail the

root and non-—root parameter list associatione.

Parameter lists are represented textually as carrier
or dummy parameter lists. Since the parameters in the root
(non-root) parameter lists do not necessarily stand in an
one to one correspondence to parameters in the carrier
(dummy) parameter lists, it follows that we must be able to
specity the root (non-root) parameter 1lists and their
relation to the corresponding carrier (dummy) parameter

lists in some cases.

Vhen assocliating parameter Llists, elements of these
~lists must be associated. Thus there must be an asggociation
rule which associates one element of the root parameter
list with zero or more elements in the non-rcot parameter
liste. It follows from this definition, that there could be
root parameters as well ag non~root parameters which will

remain unassociated. Thig occurs for example in SNOBOL4.

Observe thaty, in order to start association, the mod-—
ule performing this assoclatloh operation, e.g. procedure
prologue, must know the parameter lists to be associated.
This implies then an information interchange by means of
which the parameter lists to be associated are made known

to thie particular module. Notice that this information

Information Transmission =525~
interchange takes a parameter list as if it were a single
values Furthermorey, in order to appropriately associate
elements, the organization, i.e. type descriptor, of each
of these parameter list types must be knowne Usually the
organization of a parameter 1liet is kXnown by convention,

e.ge standard calling sequence.

The association rule is frequently based on the notion
of ordered sets. That ig, the parameter 1lists are assumed
to be ordered sets and elements in the same ordinal
position are to be associated. Observe that the association
could occur statically in this case and, consequently, the
run time cost of the program is reduced. Furthermore,
carrier and root parameter 1lists as well as dummy and
non-~root parameter lists stand in an one to one
relationship in this case, consequently, the root and
non-root parameter lists may be impliede This positional

association rule has several drawbacks:

a= it is relatively error proney; mainly when the parame=-
ter 1lists are large (25)y, since a single omission
error may result in multiple association errors, and,
alsoy permutations of parameters are not mechanically
noticeable in most cases, e.ge when the permutation

occurs with respect to equally typed parameters;

b= the order of the parameter 1lists is usually ab-
stracted from the texte. In procedural languages this
imposes a carrier parameter elaboration order which

i8s not necessarily the desired one.

This suggests then an alternate association rule,
where the parameters to be associated are explicitly speci-

fieds Observe that this explicit specification is possible

Information Transmission «S5.26~

since the parameter lists must be known in order to achieve

a meaningful information interchange between modules.

In section 3.4 we have brlotlf introduced the concept
of parameter pamege. Since it 1s the programmer?'s ultimate
responsibility to determine which parameters are to be
associated, it follows immediately that parameter names are
some sort of textual names which identify individual
parameterse. Furthermore, their textual scope is restricted
to parameter lists, thus they may be declared by means of
contexty, eege "“A::", Finally, each parameter name related
to a carrier (dummy) parameter defines a root (non-root)
parameter bearing this partlzular. parameter name and which
sends (receives) the binding information relative +to this

carrier (dumny) parameter.

Notice that such parsmeter names occur in some
programming languages. For example, they occur in keyword
mackos in the IBM/360 Assembler language[IBN4]s It is the
author's understanding that the ICL ATLAS FOTRAN V "PUBLIC"
spacegs also provides such names and that association takes

these names into consideration[Sch2].

Defn. 5.2.1 The named aggociastion rule is an association rule

which associates those and only those parameters

bearing the same parameter namens

Since transmission and binding can occur with respect

to one carrier parameter only, we have:

Lemma S5¢2.2 A1l parameter nameg within a carrier parameter

liset must be mutually unequalwe

Notice that lemma S¢2.2 implies that aleo all
parameter names occurring within root parameter lists are

mutually unequal. 7This inequality requirement does not

Information Transmission =5.27~

necessarily apply to dummy parameter 1lists, since it is
valid to associate several dummy parameters with one
carrier parameter. Dummy parameters are themselves some
usei defined textual name. Thus; in order +to diminish the

writing effort, it follows that this textual name could
also function ag the non-root parameter parameter name.
Nowy, in order to allow several non~root parameters +to be
asgociated with only one root parameter, we must be able to
define alias names for non-root parameters. Observe that we
are not concerned here with the prodblems induced by the

existence of multiple access paths to a same data space.

It followas from the named association rule that the
root and non-root parameters to be associated must bear the
same parameter name. Thus, the parameter name of the root
parameter must be equal to the name of the corresponding
non=root parameter, or one of its aliases. Now, the root
parameter name is abstracted from the carrier parameter
liste To constrain the textual names of the carrier
parameters to be equal to the para-efer names of the
non-rodt parameters is too strong a restriction, for it
restricts the freedom of naming in such a way that it may
become impossible to combine modules without completely
rewriting them. It <follows then, that parameter names
should be proilded explicitly within the carrier parameter
liste.

In figure S5.2.1 we show pictorially how our named
association rule works. There are three root parameters,
VAW, URY and "C"., The root parameter "A" jig related to the
carrier parameter expression "x+y". The root parameters "B"
and "C" are both related to the carrier parameter %z",
There are also three non-root parameters, "A", "B" and "CWY.

The non-root parameter "A" jig related to both the dummy

Information Transmission =528~

root parameter list (A::xty, B::C2::z)

non-root parameter list (real A; As:real P; integer ByC)
The arrows show the parameters which are to be associated.

Figure 5.2.1 Pictorial description of the named association

rulee

parameters "“A"™ and "pP", The latter is due to the alias
definition “A::gsgl P", Fineally, the non—root parameters
"HEY and "C" are related respectively to the dummy para-
meters "B"‘ and "C", Obgerve that the non—-root parameters
are defined implicitly, whereas the root parameters are

defined explicitly.

In this section we are considering only direct
agssociations. That is, we are not considering the case of
parameter list typed "variables". Parameter list variables
will be studied in section 5.3 Any association which
associates more +than one root parameter with one mnon—-root
parameter is clearly in error. Since both parameter lists
must be known and the root parameter list can adapt to the
non~root parameter list, it follows that there 1is no loss
of generality in the direct association case when enforcing
that at most one parameter name exists per non-root parame—
ter. Now if this is the case and also lemma 5.2.2 holds, it
follows immediately that there could not possibly be any of
the aforementioned association errora. Using the syntax of
tigure S¢.2.1 we will assume then, that the leftmomst alias
name is the parameter name of the non-root parameter. For
exampley in figure S.2.1 the dummy para-dter up" js known

externally, i.e. as non-root parameter, only by means of

Information Transmission -5.29~

the alias parameter name "“A", Thus, even if a root
parameter with parameter name "P" would have been defined,
there would be no association error, since there is
effectively no parameter name "P" within this non—-root

parameter liste.

To implement the named association rule offers no
major difficulties. It might be costly though, since some
processing may be required in order to determine which of
the non-root parameters are to be asscociated with a given
root parameter. Nowy, if we can assure that the association
rule is necessarily a bijection between the parameter lists
being associated, we could devise an ordering rule and,
thus, effectively transform the named agsociation rule into
a positional association rule. For example, the language
processor could order the parameter 1list implementations
according to the parameter namese. If the association is
bijectivey, it followse that such an order exists, that it is
unique and that both lists are equally ordered. Observe
that in many programming languages the association is in
fact bijective, eege ALGOL60 and ALGOL68. Notice also that
we could partition parameter lista into several sections,

one of which allows a bijective associatione.

It follows from above discussion that evenm in the case
of the named association rule, the association could be
performed statically whenever the association is b1l jective
and is known statically. Now, in case the association is
nelither bijective nor statically known, processing is
required anyhow when performing the association, since we
must determine all those parameters which are not to be
agssociated or which are to be multiple associated. We have

then:

Information Transmission -5¢30~

Fact 5¢2.3 The named association rule does not necessarily
cause a cost increase over the positional associa-

tion rules

- Carrier parameter elaboration may cause side effectse.
For example, there are functions which change their
internal state whenever they are activated, e.ge generator
functionse. Now if such a function is activated when
elaborating & carrier parametery, a side effect occurs. It
follows then, that the order in which carrier parameters
are to be elaborated must be specified in some cases.
Furthermore, this order 1is not necessarily the order in
which the corresponding parameters occur within the carrier

 parameter 1list implementation. Of course, the order of
elaboration could be artificially established by preceding
the association operation by several statements which
elaborate the carrier parameters in the desired order and
assign the result to some temporary data sgpace. Thus when
agsociatingy, the names of these temporary data spaces could
act as the carrier parameters, thus not requiring any
eldboration at all. However, we consider this solution as
being ‘1nelegant due to the artificial intioductlon of
temporaries. Not only +thisg, it is usually no longer clear
from the text of the carrier parameter list what values are
effectively being passeds VWe may claim then, that this
solution represents a decrease of program structuring. Now,
by means of the parameter names, the language processor
could place the elaborated carrier parameter into the
appropriate order within the carrier parameter list imple~-
mentation. It follows then, that the toitual order in which
modules (statements) which elaborate the carrier paianotors

occuf in the program is independent from the order in which

Information Transmission -5.31-

parameters occur within the carrier parameter 1list imple—

mentation when parameter names are usede.

'By means of parameter names 1t is possible to group
paiauéters and to produce parameter hierarchies. Ihls has

several advantages:

a= logically interdependent parameters can be grouped
and this can be made explicit within the program's

text;

b= it is possidble to build parameter lists by combining
several parameter lists together, e.ge in the case of
procedure typed variables as we shall see in section
533

c- structured carrier parameter lists allow the genera-

tion of values of composite typese.

DCL 1 A,
2

- -

D,

moaw

-

2
2
A = (Biixy C3:(D::y), Es:z);

Figure 5.2.2 Example of an assignment to a PL/1 structured

variable.

In figure 5+.2.2 we show how a PL/1 structured variable
value could be generated by means of a hierarchical carrier
parameter liste Observe that this form puts into evidence
which values are to be transmitted to which dummy

parameter, i.e. element variabdble.

Observe that it is syntactically quite easy to deter-

mine the type of the composite value to generate if some

Information Transmission -5¢32~

rules of operand type dominance are provideds In the case
of figure §5.2.2 the type of the variable at the left hand
of the assignment operator defines the type of the value to

bhe generated gt the right hand side.

Ve may desire that the order of elaboration of the
carrier parameters be different from the implementation
order of the parameter list hierarchys. It follows then,
that we must be able to provide the parameter name by means

of a qualiftication list,.

DCL 1 A,
2

N
[ATAL FATAL,)
- -
mHa o
-

A 2= (BeC2:xy FeGilyy, BeDi3zy FeH:lW);

‘Figure S¢2¢3 Example of an assignment to a PL/1 structured

variable using qualified parameter names.

In figure 5.2.3 we show a case where the order of
elaboration of +the carrier parameters, first "x" then "y"
then "z" then "w", cannot be mapped onto any hierarchy pre—
serving permutation of the underlying structured variable.
Thus this is a case where we require the parameter names in

the carrier parameter list to be explicitly qualified.

Concluding this section we want to point out that the
dummy parameter liste contain formel, global ag well as
receiver parameters. Notice also that returning of function
values can be considered as an actual/formal association,
Cofge "c§11 by return®. Finally, the non—root parameter list
description is part of the Linterface information of the
module containing this list. This description defines the

Information Transmission -5e33~

non-~root parameter names and also the types of the dummy
parameters related -to each individual non-root parameter.
Cbhbserve that there is 1in fact a description hierarchy,
since the parameter lists itself is a value of a given type
andy hence, must be described within the interface

informatione.

5.3 Parameter List Ivped Yarisbles.

In the preceding section we have studied the associa-
tion of constant parameter lists. In this section we will
study the association of parameter lists contalned within
parameter list typed variables. We will show that module
typed/varlables imply parameter 1list typed variables. We
will introduce also the concept of template parameter lists
which are required in order to allow the transmission of

module typed values across module boundariese.

It should be noted here, that root and carrier
parameter lists are treated as a single entity. Similarly
non-root and dummy parameter 1lists are single entities. In
section S¢2 we have already mentioned that it suffices to
study root and non-root parameter lists association, since
this association implies the association of the corre-
‘sponding carrier and dummy parameter lists. Furthermore,
agsociation of carrier and dummy parameter ligts implies
that the associated carrier and dummy parameters are bound,
possibly to the same data space. In order to avoid ambigu—
ities, we will specity which parameters are being

associated when using the term "agsociation".

Consider the case of associating a constant root

parameter list with a variable non~root parameter 1list.

Information Transmission =5.34-

This case occurs with respect to procedure (module) typed
variables (paremeters). This follows from the fact that
each -odﬁle typed value which a given module typed variable
could contain defines a different dummy parameter list and,
consequently, a different non-root parameter list. Thus the
non—root parameter list related +to a module typed variable

changes as the contents of this variable change.

In section 3.4 we have shown that type descriptors
must be transmitted between modules. As a consequence also
the operators defined by these type descriptors must be
transmitted. Now, these operators are in fact procedure

(module) typed variables (parameters). We have then:

Fact S¢3.1 Preventing the existence of module typed variables

restricts the power of expression of the languages

We will consider module typed values in the same way
as any other value. That is, we allow the existence of
module typed assignment [e.ge ALGOL6S prec variables];
functions which return module +typed values [e.ge LISP1.5
and GEDANKEN]; module typed expressions; arrays or
structures containing module typed values; references which

target type is "module" [ref proc type] etce

We will proceed now to define some symbols which,
hopefully, will aid in reducing ambiguities within the
subsequent discussion. Let P be a module which contains a
module typed variable V. This varisble V may hold any of
the module ' typed values in the (possibly infinite) module
Bet Q={019°g,ooo,Qm}o BEach of these module typed values Qi
defines a non-root parameter list Ni. Let S be a statement
in P which assoclates a root parameter 1list R with the
non=root parameter list Ni of the module Q contained in V.

Observe that 8§ does not imply that elaboration of Q will

Information Transmission -5435~

be started whenever 8§ is being eladborated. Furthermore, the
association and filling of parameters in the non-root para-
meter list Ny could occur piecemeal at several different
instantse Recall that textually Ni is represented as a
dummy parameter list Di and that R is represented textually

as a carrier parameter list C.

From the description of Ni above it may appear that we
are allowing only one dummy parameter list per module.
Although this is the usual case, there could in fact be
more than one dummy para-etef list per module. In this case
some dummy parameter list identification must be present in
statement & in order to asgsure correct association of

parameters, e.ge entry point name; named COMNON etc.

begin module_P;
declare progedure Vi

ece
Vi=Qy3 /* assign a module typed value to V */
LN] .
S: associate VIC;
coe

end module_P;

Figure 53.1 Code pattern of the module P described in the

textes

In figure 5.3.1 we show a code pattern which the

module P mentioned earlier could possess. The construct:

agsoclate vVicCs

means that the carrier parameter list C (a variable here)
is to be associated with the dummy parameter list D; of the
module Qi contained in Ve It follows then, that by means of

Information Transmission -5 .36~

this construct also the root parameter 1list R which
corresponds to C is associated to the non~root parameter

1ist N, which corresponds to Di‘

i

In section 5.2 we have shown that, in order to asso—
ciate root parameters with non-root parameters, parameter
names are required [named association rule, definition
Se2¢1]¢ Furthermore, only those parameters bearing the same
parameter name are associated. Now, the root parame ter list
R is defined without knowledge of the module Qi contained
in V when R is associated with Nj. There are then two

alternatives:

i- parameters which serve for the same purpose have
equal parameter names in all non-root (dummy)
parameter lists Ni. This solution is not satlstactdry
since it restricts the parameter naming freedom and,
possibly, forblds a module M from being a member of
the module sets Q and Q’ of +two different module
typed variables V and V’.

ii- define a mapping which maps the parameter name of the
root parameter 1list R onto a parameter name in the
non~root parameter 1list Ni' It should be clear that
this mapping must be programmer defined, since it has

to be purpose~wise correcte.

Defne S5.3.2 Name eaulvalencipng is an operation which maps the

parameter names of the root parameter list related
t0 a module typed variadble V to parameter names of
the non-root parameter list Ni of the module Qi

contained in V when association occurss

Name equivalencing could map one root parameter name

onto zero or more non=-root parameter names. However, at

Information Transmission -5 37~

most one root parameter name may be mapped onto a given

non-~root parameter name, since, otherwise, the association

would be ambiguous in the general case.

carrier list (int Aij:;i:,/f/jji)
dummy list (int By A)

Figure S.3.2 Associlation with name equivalence.

In figure 5.3¢.2 we show an example of how parameters
could be associated by means of equivalenced parameter
names. The carrier parameter list defines the root parame-
ters "X" and "Y". These parameter names are equivalenced
respectively to "A" and "B", This allows then to associate
the root parameter "X" with the non-root parameter "A"™ and,
similarly "Y" with “B", Due to this root and non-root
parameter list association, the carrier parameter "1" is
associated with the dummy parameter "A" and, similarly, "m"
with "B", Recall that dummy and non~root parameters usually

bear the same textual name.

We have now that, whenever a root parameter list R is

; to be associated with a non-root parameter list variable
Njy & name equivalence must be established first. Let us
 examine now whether +this could be accomplished when

agssigning a module typed value to the variable V.

In order to associate a carrier parameter list C with
a dumay parameter list Djy the list C is llnked to the
identifier of Dy in the agsociate constructe. Usually the
identifier of D; is the module name Qi of the module
defining Djy. In the case of module typed variables,
however, this identifier is the (textual) name of V. That

isy, for the purpose of parameter association, C 1e linked

Information Transmission -5.38-

to V regardless of the cantents of V. Recall thaty, in order
to assgociate C and Di. it suffices to examine how the
association between the corresponding root parameter list R

and non-root parameter list Ni is accomplished.

Defne 5¢3.3 Let V be a module typed variable. A template para-
meter list T is a parameter list which is defined

together with V and allows the name equivalencing
between a root parameter list R and the mon-root
parameter list Ni of module Qi contained in VvV to
be broken into two name equivalencings, one be—

tween R and T and the other one between T and Nym=

In the usual case the name equivalence between R and T
is the identity equivalence. Thus, in this case, the name

equivalence between R and T may be implied.

It should be clear that, with the aid of template
parameter lists, we are able to associate the carrier
parameter list C with the dummy parameter 1list Di without
having to know the contents of Vo This follows <from the
fact that the template parameter list defines a "standard"
carrier parameter list CT which is associated with Dy.
Furthermore, it defines also a “"standard" dummy parameter
list DT which is to be associated with C. Suppose now that
V does not define the témplate parameter list T. It follows
then, that we mnust know the contents o0of V in order to
assocliate C with Di, since not necessarily is the name
equivalence between C and Di the same for all Di in the

module set Q. Formalizing we have:

Lemme S5.3¢4 Let Di be the current dummy parameter list
identitied by +the module typed variable v, where
Di is to be associated with the carrier parameter

list C linked to V. The named association rule can

Information Transmission -5 439~

be implemented in the general case, iff V defines
a template parameter list T such that C associates

with T which, in turn, associates with D=

The textual occurrence of a carrier parameter list
defines in fact a carrier and a root parameter list typed
valuey i.e. constante. Within a given module there could be
several such constants all linked to the same module typed
variable V. Let C11C29¢00¢9C,, be the collection of tﬁese
parameter 1list typed constants. If the name equivalence
between all Cj and the template parameter list T defined
together with V is the identity equivalence relation, it
follows that the parameter names of the parameters which
serve for the same purpose in all Cj has to be equal. Since
all Cj are defined within the same module this is not dif-
ficult to enforce. Suppose now that the carrier parameter
1list € 1linked to V is in fact the contents of a carrier
parameter list typed variable. We must now define a name
equivalence from the contents Cj of C to T in such a way
that the association from Cj to Di is purpose—wise correct.

Since C ignores the contents of V it follows:

Lemma S¢3.5 Let T be the template para-etef list relative to
the module typed variable V. The association of a
carrier parameter list typed value Cj with the
dusmy parameter list Dy of the current contents Qi
of V 1is purpose—~wise correct and independs from
the contenté of Vo, iff the purpose of each tems-

plate parameter t within T is well understoods

Since T is defined together with V (poseibly
dynamically), T is %known when Qi is assigned to V. It
follows then, that we can establish a name equivalence

between the parameter lists T and Ni when Qi is assigned to

Information Transmission -5.40~

V. It should be clear that T could contain less parameters

than Ni and, consequently, aome of the parameters in Ni
would remain non—~associated if the name equivalencing from
R to N is necessarily via T. We will deal with this case

i
later in this sectione.

Let W be a module typed variable distinct from V. Let
U be the template parameter 1list related to We. Suppose now
that we asaign V to W, e.ge Wi=V, If in doing so a name
equivalence between T and U is established, we have that
there is a name equivalence between U and Ni’ where Ni is
the non-root parameter liat of the module Qi contained in V

when the assignment is performed. We have then?

Lemma S¢3.6 Let V be a module typed varlahlé and T the tem—

plate parameter list related to Ve A partial name
equivalence between T and the non;root parameter
list of the module Qi contained in V can always be
established when assiging a module typed wvalue to
Ve

In order to wmaintain the sequentially multityped
environment, the conditionsg of lemma 5.1.1 must be
satisfiede It follows then, that we must perform type
checking when associating parameterse. In order to decrease
run time efforty, this checking should be performed
statically[Hab2]. Suppose now that the template parameters
are not typed. Thus, when associating the template
parameter list T with the dummy parameter list Di' type
checking will have to be performed, sincey, in the general
casey, it is not known whether the actual carrier parameter
types in T agree with the corresponding dumamy parameter

types in Di'

Information Transmission - -5.41-

Lepma 5.3.7 Static type checking of parameters in the presence
of module typed variables is possible only if
template parameters are explicitly typeds

Suppose now that a template parameter t is of a union
type T,y where Tt={Tt1'Tﬁ2""’Ttm} is the set of effective
types of Tee Let d be the corresponding dummy par#neter.
Furthermore, let T4={T311Tg2reeesTyy} be the set of effec-
tive types of the type Ta of parameter de. Now if td does
not contain Ty it follows immediately that a run time type
checking 1s required in the general case when associating t

and de We have then:

Lepme 538 Even when template parameters are explicitly
typed, static type checking is not necessarily

possible in all casesm

module A
1 associate B(proc V::C(jint s=x; real t=y));
| ’,I //,
Ve -~
module B Pd e
7’ rd
2 Broc B(prog V(int s real t));
3 asgoclate V(s3:1; t::3,14);
/'/" .~
rm——— - /=
=C 'g=x rt=
module C 4 K4 y
/
4 RrEQS Cliax xi peal v)i

direct association
————————— establighing the name equivalence
— —— —— - template association

Figure 5.3.3 Example 61 parameter assoclation in the presence
of a module typed variable.

In figure ©S¢3.3 we show an example of how the para-

meter association mechanlgms defined in this section worke

Information Transmission =S5.42~

The module typed variadle V and its corresponding template
parameter list are defined in statement 2. Statement 1 cor-
responds to an assignment to V and also establishes the
name equivalence between the dummy parameter list D ot C

and the template parameter list T of V. Consequently, the
name equivalence between the non-root parameter list N of C

and the template parameter list T of V is established.

module A

declare proc K(int s,t);
L1: E:=C(jigt sy, t=z);
L2: K:=C(int s=x, t=z)};

associate K(s::1, t::2);

eaw an anes o»

module C

association after statement L1
------ --== agsociation after statement L2

Figure 5.3.4 Distrlbutlvlty‘ot parameter associations due to
different name equivalence definitions.

In figure §5.3.4 we show how different associations can
be achieved by means of different definitions of the name
equivalence. Observe that this distributivity could not be
accomplished by means of the positional association rule.
Observe also that the dummy parameters "x" and "y" define
default parameter values, i.e¢ "x:=0" and %Wy:=0". It
follows theny, that the elaboration of the module C will
never fail due to undefined parameter values, even if some

of these dummy parameters remain non~associated.

Information Transaission -5 .43~

module A

declare proc V(int y.z);
V:=B(int ¥y=bl, 2z=b2);
Vi=C(int y=cl, zZc2);

associate V(ys::l, z2:2);

o o o e o ~
iodule B

Bros B(igt b1l,b2)3)]
/

——— e 7’ /

’ ’
/’ 4

module C e py
/7
proc C(int cl, c2);

association when V=B
————————— association when V=C

Figure 5¢3¢5 Example of associations relative to different

non-root parameter lists.

In figure 5S5¢3.5 we shov an example where the module
typed variable V could effectively contein one of several
module typed values. Obgerve that the name equivalence is

defined whenever a module typed value is assigned to V.

Ve have assumed so0o far that the template parameter
list T defines sufficient parameters in order to allow the
partitioning of the name equivalence as stated in defini-
tion 5¢3¢3:. Not always is thie the case though. Consider,
for instance, following prodlem: there is a complicated
procedure P [e«.ges a plotting procedure] which accepts as
parameter another procedure V [e.g. the functlon to ke
plotted], where this procedure typed variable V is defined

with only one template parameter.

If the actual funtion F to be plotted requires at most
one parameter, the proce&ure P is pertectly adequate. Sup~-

pose now that F requires more than one parameter, however,

Information Transmission -S.44~

except <for one of these parameters, all others remain
invariant for a given plote It tollows then, that P could
still be used to plot F. For exampley F could be a function
which determines the viscosity of an oil at some temper—
ature t. The plot to be drawn would then be a viscosity

‘chart of several oils with respect to the temperature.

The tfirst solution we will examine 1is frequently
adopted in languages such as FORTRAN IV and ALGOL6O.
Basically this solution consits in pretixing the procedure
F by a single parameter gprocedure F’, where F’ receives the
parameter computed by P and combines this parameter with
the other (invariant) parameters required by F. Usually the
invariant parameters incorporated by F’ are obtalned by
means of local/global parameter associations. This solution
is not satisfactory, since it may create naming problems
with reaspect to tho 8lobal parameter names and, also, it

increases the complexity of the program.

The second solution we will examine is based on the
1;ct‘that asgociation of dummy and carrier parameters can
be performed piecemeal. It should be clear that, by means
of the operation an!oclation, piecemeal associating dummy
and carrier parameters could be achieved. For example, the
dummy paraméter list implementation could define a table
where the values transmitted, e.g. references, are placed.
Thus whenever association is performed this table is
updated. Finally, due to the use of the named association
rule [definition 5e2.1)], association of dummy and carrier

parameters can occur in any ordere.

In tigure 5:3.6 we show an example of how piecemeal
associating dummy and carrier parameters could be achieved.

The verd ig denoteg that the dummy parameter "QIL" of

Information Transmission -5 e 45~

module A

1 call P(proc V::F(greal X=A; jpt OIL:: 45/1))

- - — ’

/7
module P - s
proc P(proc V(zeal X)); X
, /7
2 call V(X3::x); Ve
/
— , /
/
module F / ./
/ 7/
proc F(real A3 int OIL);
name equivalence
- ————— - +«—--=- template association
— e — — — -- P=independent association

S5¢3.6 Example of piecemeal associating carrier and duamy
parameterse.

procedure "F% jg to be associated immediately with the
carrier parameter "I", Thus after elabdoration of statement
1y the dummy parameter "OIL" of procedure "F" is associated
to the carrier parameter I, whereass the dummy parameter "A"
still remains to be associatede This parameter "A" will

eventually be associated when control reaches statement 2.

5.4 Miscellaneous Iopics Regarding Information Interchange.

In this section we will study several independent as-~
pects of information interchange. We have chosen to collect
these information interchange aspects into one separate
sectiony since none justifies a section of its own, nor

does any of them fit easily into some previous sectione.

Congider the information interchange mechanism of IPL
Ve IPL V defines several global data spaces, i.e. cells. A

cell is a pushdown stack and it is used +to preserve, l.e.

Information Transmission -S5.46~

push, and to restore, i.e. popy the information contained
in the top of this stacke. The information in the top of a

cell is the information available for processing.

Observe that a storage mechaniss such as cell can be
implemented by means of a type descriptor similar to the
type descriptor "stack" introduyced in section 3.3 [figure
3.3.1})¢ Since we impose no restrictions on types of
parameters, it follows that the language constructs which
we have introduced soc far are perfectly suited to implement

the IPL V cell.

One of the interesting properties of inforsation
lntethunge via cells is that the information in a cell is
kept until it is eventually "consumed". Thus, two modules N
and N may interchange information even when neither knows
the other and/or the flow of control route which leads from
one to the othere. That isy, M (or N) "gervices" date as it
becomes available in a rather flexible way. Observe that
this allows a module N to post information about some
exceptional" conditione. This information may then be used
by another module N, or may be left unchanged altogether.
For example, two modules M1 and N2 could have been designed
to solve‘the same problem. Another module N could have been
designed to decide which of these two modules M1l and M2 is
the fastest. Thus both modules post their execution time,
however, once the decision has been made, the module N may
be digsabled without that any change to either M1l or M2 has
fo be made. It should be clear that problems with regard to
timing may occury, we will not examine these probie-s

thoughe

Observe that we could define calls to possess a

behaviour which is different <from the stack behaviour. For

Information Transmission ~-5.47-

example we could define ggllg to be queues. This allows us

then. to establish a "pipe~lined" processing environmente.

Consider now the Jensen device[Ruti]. We have here a
procedure typed parameter, i.es a call by name thunke.
Furthermore, there are other parameters, posslﬁly global,
which are changed by the called procedure and are also
parameters to the thunk. Thus, if such parameters are
changed (by side effect), the thunk may produce different

values for successive activations.

We will establish now a notation aimed at reducing
ambiguities in the subsequent féxt. Let P be a procedure
which defines a cerrier paranetegk list C, where C contains
a module (thunk) typed parameter te Let T be the actual
value, i.e. moduley bound to t when association occurs.
Observe that T is usually defined within C itself. Let F be
the module containing the dummy parameter list D which is
to be associated with Co Thus D contains a module typed
parameter t’. Let S={81,ag,...,an} be the set of parameters
in C which are associated with both D and the dusmy
parameter list DT of the module T. That isy if F changes by
side effect any of the parameters s4 in Sy T will possibly
produce a value which is different from the value produced

before this change took place.

Ugsually the dummy pdraiefcr t’ has the aspect of a
variable, iees it appears as if it were a parameterless
prbcedure.‘ In section 5.3 we have introduced the is
constructe By means of this constfuct'wé could associate
the parameters of DT and D at the same time. Observe that T
will still be sensible to changes of these parameters if
the association is iwmplicit, or ltkgjlllgg is performed

whenever the elaboration of T is begune.

Information Transmission -5.48~

module P
call F(proge T::(jnt L:: jg I) <procedure body
using L>; int S::I);

module F

proc F(proc T; int S);

S s o o 0

Figure 5.4.1 Using the ds construct to implement Jensen's
deviceo

In figure S.4.1 we show how Jensen's device could be
implemented using the ig construct defined in section 5.3.
Observe that this implementation follows exactly the
ALGOL60 implementation except for the fact that here we are
using the named association rule rather than the positional
assoclation rule of ALGOI60. A major drawback of this solu-
tion is that the parameters in the set S must be mentioned
twicey, first in order to associate DT (i& part) and then in
order to associate with D. Besides being annoying, this may
cause errors to go by unnoticed and, also, makes it more

difficult to understand the program.

module P
call F(preog T:: depending.enlipt LSS::I)
<{procedure body using 1L>);

module F

groc F(proc T; int S);

Figure 5.4.2 Making Jensen's device explicit.

This suggests then an alternate approcach to this

problem. In fact what we want 1s to turn explicit that a

Information Transmission -5.49~

given carrier parameter is to be associated simultaneously
with two (or more) dummy parameters each of which |is
defined in a different dummy parameter liste. That is, we
want to put the set S into evidence. In figure S.4.2 we
show how this could be achieved. The verb depending on
ﬁe#ns that the parameters occuring in the depending on list
are to be associated with both the dummy parameter lists DT
of the thunk T (defined within C), and the dummy parameter
list D of module F.

The depending on construct could be extended in order
to allow more than two dummy parameter 1lists to be
associated at once. For example, the name equivalence
defined within deeendin‘ on could define the qualification
<module.dummy list.parameter name>. It is possible then to
assoclate the parameters in S to several modules, as well
as to modules which are not defined within the carrier

parameter list C.

WVhen developing a software package, e.g. a plotting
packagey frequently such a package is a collection of
modules which are logically interdependent. That is, these
modules possess their own information interchange proper—
ties which, usually, are to be hidden from the exterior.
Such collections of modules could be viewed as a type which

we will call group.

In many cases we do not know when designing a module
whether it will be a member of some group or note Thus any
module, in particular Llibrary modules, must be able to be
included into a group. Furthermore;, some of the modules

included into some group may well be a group themselves.

Modules in a group frequently establish intercommuni-

cation areas which are global to all the modules in the

Information Transmission -5.50-

group. These areas are to be hidden from the exterior
thoughe. Cbserve that exactly the same occurs with respect
to type descriptore and generator functionse. Thus the
mechanisms introduced to implement type descriptors and
generator functions will also bde used to implement groupse.
Group instances will then be created by means of a possibly
dynamic declaration. As has already been shown, by means of
such a declaration the internal global areas can be
allocated and initialized according to some externally
provided parameter. Furthermore, there are no restrictions
of whether a module within a group is a coroutine and/or is
recursive. Finally specific parameters can be passed to
individual modules within a group without anykrestrlction

whatevere.

It remains now to define how modules are grouped. For
each module the required interface information is defined.
In particular the non-root parameter lists are defined. It
is possible then to perform carrier and dummy parameter
associations when grouping modules, thus forcing certain
parameters to be bound to group information interfacing
areass. We may conclude then, that the implementation of a
grouping construct could be achieved quite easily by means

of the constructs developed so far.

Exception Handling —6el~

6. Exception Handling.

In this chapter we will study the handling of

exceptions. There are several reasons why such a study is

important:

programs might be interrupt drivene. For example,
interactive systems, e«.ge. time~sharing systenms,
usually allow executing programs to be preempted and

later to be resumed by means of user interaction.

some operations may fail and this failure may direct
further actiony, where such a failure is not to be
regarded as an errore. For exampley when reading
records from a sequential file, e.ge tape file, a
read request may fail due to the file having been
exausted. In this case a summary submodule |is

frequently started.

a given module N could define several submodules,
each of which attempts to scolve the same problem in a
different way, e.8+ using different algorithms and/or
starting values. By means of successive trials of
these submodulee and/or starting values, the module N

could eventually produce the desired resulte.

machine failureeg could cause program elaboration
failures. Such failures are non—avoidable since every
machine possesgses a (usually very slim) probability
‘of malfunctione. Notice +that such failures occur
frequently in input/output handling modules and
appropriate safeguards are incorporated into these

modules.

the program itself may contain errors and thus reach

abnormal states. Ideally programs should be proved

Exception Handling -6 02~

correct[Di j4,FlolsBoa2]. Pragmatically, though, this
ideal cannot ke achieved when using the tools
currently aviilghle[ﬂorllq Thus even when prograns
have been "“proved" cofrect; they may still bde
1ncorrect[8ch4] possibly due to incorrect proofs,
nlaunderstanding of the progras environment, unfore-—

seen conditions etce

From items (a) through (c) 1t followg thaf we may
desire to use exceptions as a tool for solving a given
problem. From items (d) and (e) 1t follows that we must be
able to cope with unexpected exceptions in order to prevent
serious damages to the program (or system) and to produce

information whichy, hopefully, aids diagnose the fault.

We will study in this chapter how exception conditions
can be defined so as to allow user defined conditions and
parameters to exception handlers, Since exception handlers
can be equivalenced to data flow driven modules, as has
been shown in chapter §, we are in fact etudying here the

tools necessary to implement data flow driven modules.

The point where an exception is detected 1is not
necessarily within the module instance which defines the
corresponding exception handler. Ve must examine then how a
detected exception may be passed from module instance to
module instance in order to be serviced eventually. Ve will
examine also the ways in which control can be given back to

the module instance where the exception was detected.

Due to the perallel or quasi-parallel nature of excep-
tion handlers, there are geveral timing problems which must
be examined. Our study will concentrate in determining the

different timing problems and how they could be overcome.

Exception Handling ~6.3~

However, we will not study how deadlocks could be detected

and/or preventede.

This chapter is subdivided into 4 sections. In section
6.1 we present a survey of the exception handling facili-
ties available in present day programming languages. Ve
expect to be able to abstract a set of primitive constructs

required for exception handling from this survey.

In section 6.2 we study how exception handlers could
be defined so as to allow both user defined conditions and
dynamically associated parameters to be transmitted to the
user defined exception handler. In this section we study
also the flow of information between the handler and the

other modulesg, possibly handlerse.

In section 6. we examine the forms in which the
exception handler may interact with the module where the
exception was detected and, algo, with other modules which
aid in the handling of the exception. That is, we study the
flow of control between the handler and other modules,

possibly handlerse.

Finally, in section 6.4 we will examine the problems
which arise due to the existence of non-null time intervals

between detection and handling.

6.1 Exception Handling in Exieting Programming Lepnguages-

In this section we will survey the exception handling
capabilities of several existing programming languages. The
object of this survey is +to discuss the various mechanisms

which have been developed so far, with the goal of deter—

Exception Handling -6 ¢4~

mining whether a common basis for all of these mechanisms

could be definede.

Ve will study following languages: PL/1[1BM2,IBN3],
SPITBOL[Deill, SNOBOL4[Gri6], IPL V[Newl], ALTRAN[Bro4]),
APLA\360[Pakl]. It should be noted that we are not attempt—-
ing to survey all programming languages which provide some

sort of exception handlinge.

We will define now the terminology which we will use
henceforthe An exception is a detected instance of an

exception conditiope For example, overflow is an exception

conditiony, whereas the occurrence of overflow is an
exceptione. It should be clear then, that exception

conditions describe exceptions in the sense that these
conditions define how an exception is to be detected. A

module which has been designed to handle exceptions will be
called exception bandlers or handler for short.

The key points of interest in this survey are:

a=- the different classes 0of exception coenditions defined
by the language processore. For example, we will ex-
amine whether the language processor allows external
interrupts, run time error detection, eege. division

by zero etce.

b~ whether the language allows ugers to define their own
exception conditions and then, whether the language
processor performs automatic detection of these user

defined conditionse.

c— the system actions which are performed when excep—

tions are detected, and whether these actions could

be redefined by the user.

Exception Handling -6 o S=

d= the information made available to user defined excep—

tion handlerse.

e= the ways in which control may be passed from the
module instance where the exception has been detected

to the corresponding exception handler and backe.

f- whether a given exception could be passed from
handler to handler in order to be serviced, and/or
whether detection of exceptions has to be followed

immediately by the elaboration of a handler.

PL/1 defines several exception conditions which are
identified by language defined textual names, eeg+ ERROR,
ENDFILE etce Language defined conditions may be induced
explicitly by program request [SIGNAL]. For each of these
language defined exception conditions a standard language
processor action is detined. These actions vary
considerably from condition to condition. PL/1 allows users
also to define their own exception conditions [CONDITION
condition]. However there are no provisions for automatic

detection of user defined exceptions in PL/1.

Exception handlers are identified by the same textual
name as that which identifies the condition. These textual
names are always globally defined for the entire program
[EXTERNAL]s There may be several exception handlers all
identified by the same textual name. Handlers are.dynauic-
ally defined within module instances [ON statement]. This
definition may refer to a user defined module [on—unlt] or
it could refer to a system defined module [SYSTEN]. Observe
that a handler corresponds to a program module which is to

be elaborated when the exception is detected. Creation and

Exception Handling -6 o6~

activation of an elaboratable module instance of the han-
dlgr occurs when and only when the corresponding exception
is detected. It follows from this activation criterion,
that exception handlers could cause infinite recursion

loope if they themselves detect the exception they handle.

A new handler 1is bound to the exception condition
identifying textual name only if no handler instance is
already assoclated with the module instance defining this
handler. Otherwise, the binding associated with the module
instance is changed Zfrom the old handler to the new
handler. We may conclude then, that the textual names which

identify exception handlers are of type "stack of module".

The module chogen to be elaborated when an exception
is detected is the one which is defined at the top of this
stacke This stack is never empty and the bottom element is
the system action module corresponding to this exception
condition. The top element of the stack 1is automatically
deleted if the module instance within which it had been
defined is terminatede. It may also be deleted under program
control [REVERT]. Notice that this may cause interference

with other modulese.

The textual scope of textual names occuring within a
given exception handler obeys the usual block structured
scope rules. The textual names occuring within handlers are
bound to the environment within which the module instance
defining the handler exists. That is, the handler's global
parameters are bound to the local parameter instances which
are dynamically active at the moment of handler definition.
It follows then, that the run time manager of PL/1 must be
able to reconstruct temporarily some previous environment

when the exception is detected 1in order to allow the

Exception Handling -6.7~

handler to elaborate. Furthermore, the environment at the
moment of detection must be reestablished when the handler

finishes elaboration.

Exception handlers communicate with other modules by
means of local/global parameters. There are clio several
built in functions which allow obtaining more precise
information regarding a given exception [ONCHAR, ONCODE].
There is no provision for actual/formal parameters though.
In many caseg this makes it quite difficult +to obtain the
precise information with regard to a given exception. For
example, when overflow occurs it is difficult to determine
the statement, the operation and the values which caused

the overtlowe.

Once the user defined handler ceases elaboration, some
further language processor action takes place. This action
determines whether elaboration should be terminated [ERROR,
FINISH], whether the operation which detected the exception
should be retried [CONVERSION] ory, <finally, whether the
elaboration of the preempted module instance should resume
at the next following operation [ENDFILE, CONDITION]. It is
also possible to terminate the elaboration of the exception
handler by forcing elaboration +to resume at some user

defined point in the program [.oto out of handler].

SEXTBOL

The only exception condition which exists in SPITBOL
is the run time errore. SPITBOL does not provide means which
allow users to define their own exception conditions.
Errors are detected automatically and cannot be induced

directly by means of an explicit command. Errors are con—

Exception Handling -6.8~

sumable objects and the programmer can determine dynamical-
ly how many non fatal errors will be allowed [SEERRLINIT].

Statements in SPITBOIL (i.e. SNOBOL4) may either suc~

ceed or faile. Failure may be due to several reasons such as
failure to match a string, false as the result of a rela-
tiony, run time error etc. Each statement defines explicitly
the statement where control is to be sent to in the case of
success or failure. An undefined success and/or failure
goto field means that the next statement in succession is
?o be elaborated if, respectively, the statement succeeds

6r failse.

The usual system action for non-fatal run time
detected errors is to branch through the statement failure
goto fieldes Thisgs system action may dbe overridden by a user
detined action [SETEXIT function]e. This is accomplished by
defining a label to which control is to be directed in the
case an error is detected. Notice that SPITBOL does not
differentiate between the several detectable non fatal run
tlme:errors. It is +then the progranmer's responsibility to
determine the error csuse vwhen designing the error handler

{ BERRTYPE],

All information defined within the environment at the
moment of error detection is available to the handler.
Furthermore, the user may change this information freely.
After elaboration of the handler body, the user defined
error handler may choose to terminate the program [5232
ABORT], to remain within the error handler or to resume the
elaboration of the program at the statement defined by the
failure goto field of the offending statement [5352
CONTINUE J.

Exception Handling -6e9=

Error handler entries (labels) are "consumable®
objects. That is, once an error has occured and control has
been given to a user defined error handler, any tﬁrther
error will be handled according to system defined actions,
unless the user defines a new error handler entry. Notice
that in the case of multiple errors, this may lead to
elaborations which are difficult to understand, since all
errors following the firast detected error may pass
unnoticed, due to the system action for detected non fatal
run~-time errors being to branch through the ‘failure goto
field of the offending statement.

SNOBOL4

In SNOBOL4 we are able to define exception conditions
by means of the program trace feature. This follows from
the fact fhat the user may define a function which is to be
elaborated whenever the data space bound to a given textual
name is‘ changed. For example, error handlers could be
defined ae functions which are elaborated whenever the
contents of the system defined error counter [EERRLINIT] is
changede.

Obgerve that within our type definition and checking
framevork we could enforce +tracing by defining O-emulating
functions within a given type descriptor [see section 4.4].
Thus, by means of type descriptor transmission, the exis-
tence of these tracing function can be propagated to all

modules which use this particular type.

Concluding the survey of SNOBOL4's exception handling
capabilities, observe that we could associate a same user
defined trace function to several different variables. Now,

if we precede the body of this function by an "information

Exception Handling -6 .10~

presence" predicate such as defined in section 5.1, the
activation of this module could effectively be dependent on
quite complex conditions. Furthermore, the testing of the
condition could be considered as being automatically
provided by the language processor, since every change to
one of the assoclated variables will cause an automatic
reelaboration of the "information presence" predicate. User
defined trace functions are called with two actual/formal
parameters. One of these parameters identifies the variable
being traced,y, it ls then quite easy to determine the origin

of the trace fumnction calle.

IPL=Y

IPL-V distinguishes two basic exception conditions:
the external interrupt and the run time error [error trap].
External interrupts are detected and serviced at program
defined monitor points [@=3]s The external interrupt
service module must te detined by the usere. If it has not
been defined when an external interrupt is sensed, the

corresponding action is a no~operation [JO].

Errors are detected by the language processor and/or
induced by program action [J170]. Assoclated with each
error there is an error code which could be user defined.
Whenever an error is detected or induced, a language de-
fined associative list [W26] is gearched for the error code
provided. If the error code ia found, the associated eantry
names the error handler to be elaboratede If the wriginal
error code is not found in +this list, the list is searched
againy, this time for a standard language defined error code
[internal zero]. If found, the assoclated entry names the
error handler to be elaborateds. If not found, the error

condition is simply ignored.

Exception Handling -6.11~

Observe that the above mentioned associative list can
be modified by the user. Thus, error codes and their
associated module names could be included and/or deleted
from this list. Furthermore, the module names associated
with a given error code could be changed by program actione.
It should be clear from this discussion that IPL~V provides
explicit names (codes) for the exception conditions and

their corresponding handlerse.

Since all modules communicate through globally defined
cells (stacks)y all information available at the moment of
error detection is alsgso available to the error handler.
Furthermore, the statement counter and the error code are
made available as additional information [W27,¥28]. Once
the error handler tersminates, or if it has not been

defined, this additional information is discardede.

Ve have already mentioned in section 4.4 that excep—
tions may be user detected and the corresponding descrip-
tive information placed into some cells defined for that
. purpose by program convention. The appropriate action could
then be triggered at some later instant, e.ge. due to an
external interrupt, or due to the elaboration of a clean-up
procedures., Notice that this allows a given exception to be
left pending, possibly to never be serviced. Thus in IPL~V
exception detection does not have to be followed immedi-

ately by the elaboration of the corresponding handlere.

ALIRAN

. The only kind of exception condition available in
ALTRAN is the run time errore Run time errors may be

induced by program request IFRETURN]. Furthermore, the

Exception Handling -6.12~

error code associated with a user requested error return

may be user definede.

The normal system actloh when an error is &otoeted is
to place the offending module into the error state. After
thisy, this module is searched for a user defined errar
handler [label SYSERR not empty]e If the handler is
defined, elaboration resumes with this handler being
elaborated. Otherwigse an error return to the calling module
is performed and this calling module is also placed in the
error state. After this the aforementioned process is
repeateds Thus, if there are no user defined error
handlers, eventually the main procedure is terminated by
means of an error return and, consequently, the elaboration

of the program is terminated.

When handling an error, module instances may be
created by conventional module calls. It would be possible
theny, that a given module ingstance performs an error return
to a module instance which is already in +the error state.
However, double errors are fatal errors in ALTIRAN, thus
such a return would cause an immediate termination of the
programe. Similarly if an error is detected when elaborating
a module instance which is already in the error state,

elaboration of the program ceases immediatelye.

The error handler H may decide that the program has
recovered from the error [{OK()] ory, by means of an error
return, may'pass the error to the module instadce M which
invoked the module instance M’, where M’ contains the
exception handler He Thusy, ALTRAN allows exception to be
passed <from one exception handler to another exception

handler.

Exception Handling -6413-

Several parameters are made available to the error
handler by means of library procedures [HERRNO, LERRNO].
The internal data of module instances which are terminated
due to a non serviced error is placed in a special language
detined 1list [dumping Iist]o This information 1is not
directly available to the error handler +though, and is
usually transmitted to some filey e.ge print file [SNAP].

APLAJ60

There are several exception conditions in APL\360,

eege run time detected errors, programmer defined break-
points [stop control], attention key pressed at the user's

terminal etce.

Exception bhandlers are not invoked automatically by
the language processor. Rather the elaboration of the
program ceases and the terminal 1s placed in the execution
modees The user is then free to display and/or change all
data spaces defined within the environment of the preempted
module instance. It should be clear that this examination
and display of data spaces could be carried out by a user
defined fprogram", i.e. function. However, this function

can only be activated by explicit user interaction.

After the above described investigation, the user may
choose to resume elaboration of the preempted module in-
stance [5232 existing statement number], to terminate the
preempted module instance [‘glg non existing statement
nuuher]_ér to terminate this particular program [5233 null

statement number].

Resumption of module instances is accomplished by

means of a so called sastate indicator. This state indicator

Exception Handling -6.14-

keeps the dynamic history of the running programe. It is

thus the run time environment stack and it contains:

i- the module instances and the corresponding statement
numbers of the statements which were being elaborated
(or about to be elaborated) when the exception was

detected.

ii- +the 1internal environment of each of the module
instances, l.e. the bindings of the local variables

of the module instancese.

Notice that a resumption operation 18 nothing more
than a traversal of the set of handler instances in the re-
verse order in which they were activated. Observe that this

traversal occurs beyond the program's control in APL\360.

Sunmary

From the preceding survey we may conclude that a
generalized exception handling facility should be designed

in such a way that:

a~ exception handlers should be +treated as module typed
variables (PL/1y IPL~V, SNOBCL4).

b= the textual neame of a given exception handler could
identify a family of handlers &nd also a decision
procedure which chooses one of these modules when the

corresponding exception occurs (PL/1).

c~ changing the relevant exception handler should be an
excecutable operation, rather than being textually

determined (SNOBOL4, SPITBOL, APL, IPL-V, PL/1l).

d=- users should be able to define their own exception

conditions and/or handlers. Furthermore, the language

Exception Handling -6.15~-

processor should provide for the sutomatic detection
of user defined exceptions (SNOBOL4 and generalizing
PL/1y IPL-V).

e~ exception handlers should be consumable objects in
the sense that only a limited number of module in-
stances of the handler could exist simultaneously

(generalizing ALTRAN, SPITBOL).

£~ exception handlers should have the ability to examine
an exception and either handle it or pass it to some

other exception handler (ALTRAN, IPL-V).

8= exception handlers should allow information to be
interchanged by means of dynamically associated

parameters (generalizing SNOBOL4).

h- exception handlers should have access to the data at
the time of the exception (APL, ALTRAN, IPL-V).

i=- the detection of exceptions should not necessarily be
followved immediately by an exception handler elabora-
tion (IPL-V).

It should be noted here that we are not examining the

merits of above proposals in this sectione.

6.2 Bxception Descriptors.

In this section we will study how exception conditions
are detihod. It will be shown that excoptlbn descriptors
include the definition of the detection operation and the
intormation to be interchanged with the handler.

We will concentrate on the prodblems relative to

exception detectiony, and on linguistic and information flow

Exception Handling ~6416~

aspectse. We will not consider timing problems in this sec—

tione These problems will be dealt with in section 6.4.

An exception E is information and, thus, is a value ot
some type Tp, esge boolean. The type set Ty must
distinguish at least one value vgq |in TE and attach to it
the meaning that E has not been detected, since, otherwise,
it would be impossible to determine whether E should be
serviced or not by some exception handler He. In the general
case only the user is capable of determining whether a
given exception E has been serviced. It tollows then, that
the user must have the power of placing vg into the data
space of E. For example, when exceptions are detected by
hardware interrupts, the user must be able to reset such an

interrupt signal.

Exceptions are detected when a given information, say
the detection information, satisfies a given condition, say
the detection conditiopn. For example:

a~ tape end of file is usually detected when a "“tape
mark" (detection condition) is read <from the +tape

(detection information).

b- in some machines, gverflow is detected by testing
whether the "overflow toggle" (detection information)

is "on" (detection condition).

In some cases the detection is performed by hardware,
eege (a) above:. This hardware detection of exceptions may
caugse the elaboration of the current module to be suspended
and another module; e.ge the interrupt handler prologue, to
be activated. Observe that this 1is similar +to a module
actlvation‘(procedure call), however, neither is there an

explicit activation operationy, nor is this activation

Bxcept;on Handling -6aelT7~

restricted to occur only at one o0f several predeiino¢

pointe within the preempted programe.

The code point where the exception is detected will be
called ggjggjigh ﬁginj- A8 noted above, the detection point
and the code being eladborated do not nocon.#rlly possess
any logical connection whatever. Observe thdt the detection
point is time dependent and thus is always dynamically de-
finede Of coursey, it could be statically known that, when-

ever the elaboration traces a certain code point, detection
will occur. This is the casey, for exampley, with respect to
PL/1 SIGNAL statements and O=-emulating functions [see
section 4.4]. In this case the handler could be activated
by means of an implicitly included procedure call or macro
expansione Even when the detection point is explicitly
related to the code, e.ge. a division which causes an gver-
;lgz interrupty, this detection point does not necessarily
correspond to a well defined textual point in the users
programe. It follows then, that a language construct must bhe
provided to make the detection point explicit whenever

necessary.

The detection information is kept within one or more
data spaces. It follows then, that, if we want to perform
detection as early as possible, all changes to these data
spaceg must be followed immediately by an evaluation of the

detection conditione. We have then:

Lemme 6.2.1 Immediate detection of exceptions is poa.ihle only
if all operations which change a data space carry-
ing part or all of the detection information also

verify whether the detection condition is mets

Lemma 6+.2.1 showg that, in order to allow user defined

detection conditions to be veritied i-medlately, we must be

Exception Handling -6¢18~

able to extend, i.e¢. emulate, all data space changing
operations, 80 that these operations perform the required
detection condition evaluation. This implies that we must
know these operations and that we are allowed to extend
theme We will call these extensions datection extensionsge.
Notice that detection conditions could be simulated by
procedure calls, thus making lemma 6.2.1 trivially true,

since the "call" stands for the condition becoming true.

A data space a could be changed due to the existence
of operations on a which invoke user defined procedures. It
follows then, that, in the general casey, it is undecidable
to know whether a given data space is possibly changed by a
g&iven operation. Thus every operation making use of a user
defined procedure must be assumed as changing the data
space. This may result in an execution cost igcrease due to
the repeated and unnecessary evaluation of the detection
extensione It follows then, that, for practical purposes, a
construct should be provided which allows to define an
operation as ‘being ot data aspace changinge. It should be
clear though, that it is the programmer's responsibility to

enforce that the operation is de facto not changinge.

when (overflow): <e..

inte“er I, J;s
when (I’J) beﬁln I1<J &nd: ese

Figure 6.2.1 Examples of detection information and conditions.

In figure 6¢2.1 we show two examples of detection
information and detection conditions. We will wuse the
keyword when to denote the definition of an exception

descriptor. In the first example, detection is performed by

Exception Handling -6e18—

an overtflow signal and should be self-evident. Notice that
in this example the exception name is explicit, 1i.e.

overflow.

In the second example we show a user defined detection
condition. In this case we must monitor all‘changea to I
and J. Whenever I ‘heco-es less than J, the éxcebtion is
effectively detected. Observe that in fact we are déailnd
with several exceptions in this example. This follows from
the fact that the detection condition %"IKJ" is tested
within the exception handler og the "change completed"
exception signalled whenever I or J are changed. Notice

that in this example the exception name is implicit.

type test_integer(condition handler)=

sxisad Joteaer with
 emulate store=slgna1(hﬁndler);

test_integer(condition handler:: I_J) I, J;
when(I_J): test=it I<J then signal(I_1t _J); £i;

when(I_1t_J): «e«

Figure 6.2.2 Manual creation of detection extensions.

In figure 6.2.2 we show how the second example of
figure 6+2.1 could have been extended manually, so as to
include the required detection extension. Obgserve that
‘exceﬁtion extensions, such as shown in figure 6.2.2 and
implied in tigure 6.2.1, are implementations of conditional
critical sections as defined by Han;en[nana]. Notice also
that the exception names are all explicit in this example,

ieee "I_J“ and "I_It_J"o

Exception Handling -6.20~

Notice that we are assuming that the system is able to
generate automatically the detection extensions. It should
be clear that automatic generation of detection extensions
is not necessary since programmers themselves could piovlde
them as shown in tlgure 6e2¢2¢ Manual extension has several
drawbacks thoughe It leads to a hard to understand program,
it 1ncréasos the probability of 1ncorreét code andy, final-
lyy it makes it more difficult for the language processor

to perform the change monitoring in an efficient way.

It should be clear that a detection extension of a
type T usually defines a new type T’ such that identity
conversions are defined between T and T‘. Thus, data spaces
of type T could, in principle, be retyped freely to T’ and
vice—-versa. This is the case if thé operation extensions
define exact O—-emulating functions. 8Since we require the
detection to be immediatey, values of type T/ must always be
moni torede. This implies then, that modules which define a
dummy parameter D of type T and which is to be associated
to a carrier parameter of type T’ effectively redefine D to
be of type 17, despite of the fact that this association is

type~wise correct [theorem Se.1.1)]. We have then:

Lemma 6.2.2 Let T’ be an extension of type T guch that T’
defines at least one detection extension not con-—
tained in Ty, all moduleg defining dummy parameters
of type f to be associated to carrier paraneters
of type T’ must effectively retype the dummy

parameters to T’s

Observe that if 7T’ is not kmown statically, this wmay
cause dynamic recompilation of the “receiving"™ module. Lem—

ma 6.2.2 implies also that exception detection submodules

Exception Handling -6.21~

be explicitly defined as such, since, otherwise, the dummy

parameter is not necessarily retypede.

Recall that change monitoring is 1n‘tact a "chanaé
conmpleted" exception handling, where the "“"change completed"
exception handler evaluates the detection condition and
signals exception if the condition is Izggo Observe though,
that the gsignal operation may yield control to another
handler. This does not mean, however, that the signalling
handler completed elaboration. That isg, the handler
activated due to the silnal operation is in fact a
Ysub-handler" of the signalling handler. We have then:

Fact 6.2.3 Preventing exception handlers from generating ex-
ceptions restricts the power of expression of the

languagenw

Now, if we allow an exception handler H to detect and
signal exceptions of the same exception condition as that
handled by H, infinite recursion loops may occure. Let us
examine then whether such conditions could be forbidden at

compile time.

Consider the case of the overflowv exception condition.
Several different operations in, again several different
situations, may cause overflow +to be detected. The actions
to be performed when an gverflow has been d.tocted do not
necessarily have to be equal for all operations and eitua-
tionse. For example, within a given expression it could be
valid to use the largest real value, e.g. max real, as the
result of a real addition which caused gverflow. In another
expressiony, or point within the same expression, a real
addition overflow may be an error condition. Now, it the
decision of which handler to chose is to be made without

dynamically redefining handlers, it follows that the selec—

Exception Handling —6e22~

tion must be based on environment information. For example,
by means of an associative table relating code points and
handlers, the handler could be selected by simply searching
for the entry which code point is equal to the detection
pointe. Notice, though, that such a selection procedure is
part of the exception handler even when implied by the
language processors Furthermore, all effective handling

sub-modules are also part of this exception handler.

Defne. 6.2.4 An exception family F of an exception condition E,
is a set of exception conditions F={F3yF2yeecsFy},

where Fi is detected when and only when E is
detected and the detection condition of Fi is metnm

From the discussion above it follows:

Fact 6.2.5 Preventing the detinition of exception families

regtricts the power of expression of the languages

The detection condition of a member Fi of an exception
family F could be defined by the user and be textually
placed within the family exception handler H of exception
E+. For example, H could determine what action is +to be
taken when a run—time error is detected by consulting an
error codey €.ge« ONCODE in PL/1, W28 in IPL V etce It fol-
lows then, that it is undecidable to know, in the general
casey which member Fi of the family has effectively been
detectedy since this decision may be elaboration dependente.
Now, detection of a member Fj when a member Fi is being
handled by a handler instance Hl of H does not necessarily
induce an infinite loop, since when F is finite and alvays
PitFj, eventually the recursive detection must end.
Finally, if +the handler instance Hy which handles the
recursively detected exception Fj allows Bl to recover from

this exception, Hk may be invoked,; since the elaboration of

Exception Handling -6e23~

Hy will still be meaningful. It follows from this discus~

sion:

Fact 6.2.6 Preventing an instance Hk of an exception handler
H from detecting an exception E which will be
bhandled by another instance Bi of Hy restricts the

power of expression of the languages

It follows from fact 6.2.6 that the programmer must be
made reabonalble for the avoidance of recursive exception
handllhg. Thus, in order to avoid unexpected recursion,
exception handlers should be explicitly declared as being
recuraive, allowing then the language processor to provide

automatic testing of an illegal recursion attempt.

Detection of an exception 18 not necessarily linked to
the detection of the cause of the exception. That is, there
may be an undefined time interval between the instant when
an action which eventually leads to the detection of an ex-
ception is performed, and the instant where this exception
is actually detected, These cases are particularly comson

to run=time error conditionse.

The determination of the cause which lead to a given
exception depends on the particular program being elabor-
atede It follows then, that users themselves must determine
the causes of exceptions, i1.e. provide gxception diagnoge-
Several methods have been designed to provide early detec—
tion and possible diagnose of errors. Among these are:
performing several redundant operations and comparing thg
results{ Elm1l]; mechanically testing whether certain condi-

tions (assertions) are true at given points[Flol,Hoa2].

Errors are frequently diagnosed by means of postmortem

information, e.ge dumps[Bayl]. This information fails to

Exception Handling -6.24-

show, however, the dynamic evolution of program sectionse.
Among the tools which aid in describing the dynamic evolu-
tion of program sections we will find the "most recent
history of changes" of a given textual name. This history
keeps track of a usﬁally bounded collection of values which
the data spaces bound to a given textual name possessed.
Notice that some syastems implement the most recent history
of changes. For example, the Honeywell 6050 automatically
keeps the 16 latest values the instruction counter posses—
sed[Honl]. Audits[{Conl] and traces also show the dynamic
behaviour of a program. However, they have the side effect
of generating quite large amounts of usually unnecessary

informatione.

When programming in a high level language we do not
want to diagnose errors at the machine level. Furthermore,
the histories to be kept and the amount of detail with
which they are to be kept may vary from program to programe.
It follows then, that history keeping should be program—

mablee.

In tigure 6.2.3 we show how the most recent history
keeping type "history" could have been defined. Observe
that in fact this type defines a specialized trace
function,; which performs history keeping actions whenever a
store operation 1s performed. The history keeping storage
device ''save_area" is a circular buffer. Such a storage
device defines a bounded set of storage cells, where the
contents of the cell containing the oldest information is
replaced whenever a store into the circular buffer |is
performed,y, when no empty cell is available. Values oaf type

textual name are strings of characters and correspond to

user defined textual names where the access function

parameters are replaced by their elaborated values. For

Exception Handling -6.25~

txge history(inte!er size; txge monitor_type, save_type)=

extepd monitor_type wiih
boaln extension;

circular_tutfer(size) gf save_type msave_area;

emulate store(monitor_type textual name target)=
save_area.to_buffer(gcopnvert(yvalue::target));

outside scope reader;
save_type fetch function read=

save_area.from_buffer;
end reader;

end extension;

Figure 6¢2.3 Definition of the most recent history keeping
type "history".

example, if J=2, the toxtual'pame typed value of J is 'J°

and of A[J,J*4] is "A[2,8]'. It should be clear that, given
a .textual name typed value T, the coaontents of the data
space bound to T are retrievables The function convert
stands for a system defined function which selects and
elaborates a system or user defined conversion function
with exactly the same range and domain types as those
abgtracted from the text. It should be clear that convert
succeeds i1iff exactly one conversion function can be

selectede.

In figure 6¢.2.4 we show two examples of how the type
"history" of figure 6¢2.3 could have been used. The first
example should be self-evidente. In the second example we
keep track of the changes to elements of an array, keeping
only one stack thoughe The type Ydetall" describes the
information which should be kept by "history". Since we
want to know which particular element of the array has been

changed, "detail" must define the pair <"name","value">,

Exception Handling -6 .26~

history(size::32; -onitor.type::save_type::lnteger) I3
type detail(type detail_type)=
begin detail;

ARArIBRARAT AN,

outside _scope conversion;
conversion(from::textual name detail_type;
toi:idetail; yalue:: val)=
begin conv;

element.name=val;

struct(textual name name; detail_type value) element;

element.value=value(val);
end conv;
end conversion;

end detail;

history(size;:lOO; monitor_type::i:real;

save_type::idetail(real)) A[5,5];

Figure 6.2.4 Examples of the use of the type "history".

where "name" is the textual name of the changed array
elementy, and "value" is the value assigned to this array
elemente.

Exception handlers may require information, say gxcep—
xion informationy which is defined at the instant an excep-
tion is detected. For example, a given overflow handler may
require the statement number and the textual names of the
opeiatlon and corresponding arguments defined at the
detection pointe It should be clear that each exception
(ie.ce detécted instance of an exception condition) defines
1tsbovn exception information. Furthermore, the exception
information may be yolatile in the aénse that, if not

consumed within a given time interval, the exception infor-

Exception Handling -6.27-

mation may change and, consequently, cause the exception
handler elaboration to be meaningless. We will astudy these

agpects in section 6.4.

It should be noted here that some of the required
exception information may be gquite unusual from the point
of view of conventional programming languages. For example,
the first overflow handler we have mentioned requires
statement nuibers and textual names of the operations and
their arguments. We will not enter into further details
with regard to the set of primitive types and language

defined values which should be made available to the usere.

The exception information requirements may change froms
handler to handler, even if each of these handlers handles
exceptions of the same exception condition. Since different
exception information requirements may require different
compilation (elaboration) strategies, it follows +that all
exception handlers which might be invoked within a given
program section must be known when this program section is
being comﬁlled. This implies then, that program sections
which may cause an exception handler to be invoked be
qualified with the exception information requirements of
that handler. The same is8 true also for the detection

information. We have then:

Fact 6.2.7 ﬁxceptlon descriptors must detine both the
detection and the exception information required
to invoke the corresponding handlere. Furthermore,
the program sections which are to be serviced by a
handler H, must be qualified by an exception de—-
scriptor which describes the information required

by Hs=s

Exception Handling -6 e28~

Since both detection and exception information are
defined within exception descriptors, it is natural then to
define also the textual name of the exception handler which
services the exception defined by the descriptore. Now,
these textual names could define module typed variables,
eege "stack of module", In doing so, we are able to assign
an exception handler H, loe, a module typed value, to this
variable, where H is the most adequate handler relative to
the program context where the corresponding exception could
be detecteds Notice that such a module typed variable could
have been initialized when the descriptor instance is

createde.

It should be clear that the exception information is
received by the exception handler by means of a dummy para-—
meter ligste Now, if for each dummy parameter there is a de—
fault parameter value, the corresponding carrier parameter
list could be empty. Notice that this corresponds in fact
to the implicit definition of the carrier parameter liste
The default parameter values could be generated by user
defined functions and thus impose virtually no restriction
on the kind of values which could be part of the exception
information. Finally, the exception information can be
abstracted from the default parameter values, since they
could be defined in terms of information available at the

detection pointe.

Exception information is not always readily available,
ieee some computation may be required in order to produce
thia information. This may be the case also when the excep—
tion information is system defined. For example, textual
names may have t0 be read from secondary storage in order
to reduce the amount of usually unnecessary information in

main storage. Notice that a sgimilar approach has been

Exception Handling -6 028~

defined for the symbolic dump of the ALCOR compiler{ Bayil].
The difficulties caused by the existence of these time

intervals will be discussed in section 6.4,

when (real overflow):

real ovflw(integer stat#=gstatement number;

textual name op=ogerat§on,
names[degree(operation) Jmarguments)=

begin overtlow;
output ' ! Overflow ', stat#, op, names;

return(fail deactivate real overflow(stat#,opyname));

end overflow;

Figure 6.2.5 Example of an exception descriptor.

In figure 6.2.5 we show an example of an exception
descriptor. The textual name "ovilw" defines a module typed
variable which is initialized to the module typed value
contained within the be.ln end bracket pair. Observe that
the handler "ovflw" is defined in the same way as a
conventional procedure. However, the !ggg prefix denotes
that it 1is not to be activated by means of conventional
procedure calls, but, rather, that it is to be activated

when the respective exception is detected or signalled.

In section 6.3 we will discuss how exceptions are
transmitted between modules. In particular we will examine
the need and meaning of the constructs such as return and

fail deactivate when used within exception handlers. Ve

will anticipate the description of these constructs in
order to be able to examine the information flow aspects
when an exception handler passes an exception on to another

handier, or when an exception is explicitly signalled.

Exception Handling -6.30-

The fail deactivate construct deactivates the excep-
tion handler containing this construct. Furthermore, the

fail deactivate itself signals an exception, as it is the

case of figure 6.2.5. Although not necessarily, there is
then an exception handler H (possibly the same as the one
which signalled the exception - see fact 6.2.6) which
acceﬁts and services this signalled exception. This
exception handler H could generate a value which should be
used instead of the value generated by the operation
preceding the detection point. For example, in figure 6.2.5
this value could be the max _real value. Thus, it |is
possible that a si“nal operation returns a value. In figure
625 this value 1is then returned to the preempted module

by means of the return constructe.

It should be clear that the exception handler H which
services the signalled exception not necessarily returas
caontrol to the module signalling this exceptiony e.g. the
"ovilw" handler in figure 6¢2.5. It follows then, that the
preempted module and the deactivated handler will
eventually have to be terminated by means of a garbage
collectiony, since the elaboration of the program may reach
a point where reactivation of these deactivated modules is
impossible. We may conclude +then, that the module instance
retention mechanism as detined by Johnston[Joh2] and
Berry|[Ber2,Ber3,Berd] is the natural module instance
termination mechanism, instead of the stack mechanism used

in most of the current laguage implementations[Dijl1].

Observe that, when explicitly signalling an exception,
the exception information is usually not to be abstracted
from the detection point, i.e. the slﬂnal operation. It
tollovs then, that the gignal operation must be capable of

transmitting information by means of a carrier parameter

Exception Handling -6+31~

list. Notice that the existence of carrier parameters
overrides the default parameter value initialization of the
corresponding dummy parameterse. Thus, the information
provided by the slinal operation can be effectively .
transmitted to another handler. Since the sinnal operation
itself does not know the handler which will be activated,
it follows that the dummy parameter names of the handler
servicing the signalled exception must adapt to the carrier
parameter names of the uiﬁnal operation. In section 4.3 we
will show that there 1is a mechanism linking exception
descriptors to handlersy ie.es module typed values. Since
this mechanism must know both the exception descriptor and
also the corresponding handler, this mechanism is capable
of defining a name equivalence [see section 5.3] which
relates the parameter names of the carrier, Y- Y al.nal
parameter list, and the dummy parameter lists, le@e

exception handler parameter list.

Exception descriptors are information and are kept in
data spaces of type exception. It follows theﬁ, that excep—
tion descriptors are ldentified by exception typed textual
names. It 1is possible then to qualify an operation or a
program section by such a textual name E and, thus, state
the exception information requirements of this exception

descriptor E. Such a qualified operation or program gsection

will said to be E=gualified.

Different operations or section of a same module could
be qualified b»by different exception descriptors based on
the same exception. For example, a given expression could
contain several different operators all of which detect
underflov,‘tor some of these operators the replacement of

the result by 0.0 could be valid, whereas <for other

Exception Handling : . -6.32~

operators such a replacement could induce numerical

inconsistencies, e.ge division by zero.

It should be clear that exception descriptors which
are not operation dependent, Gege an eoxternal interrupt,
should qualify entire modules rather than operations. On
the other hand, exception descriptors which are operation
dependent, e.ge overflow, actually qualify only +those
operations in a program section which could detect the
corresponding exception, regardless of the qualification

scopee.

. exception ovi=when(overflow) ee.
exception ov2=when(gverflow) ee.

Examples of use?
ov2:(E+F) ovl:/ (H ov2:+2)

Figure 6.2.6 Examples of E-qualified sections and operations.

In figure 6.2.6 we show some examples of E-qualified
qections and operationss The exception descriptor "ov2"
qualifies both +the balanced expression U"EH+F" and the
operator "+9% in the subexpression WH+ZY., Finally, the
exception descriptor "ovl" qualifies just the division

operatore

Not always do exception conditions apply to global
operators such as the W"W/%" gperator in figure 6+2+.6. For
example, a type descriptor might define several operators
which are non~standard and which are not known to the
exterior of this type descriptor. It follows then, that the
exception descriptor as well as the handler should be part

of such a type descriptore.

Exception Handling -6.33~

extend array with begin extension;

queue(struct(intaﬁer wrong_index, wrong_val)) wrong_ list;

boolean access_ta11:=£3&l;
exception sr = when(gubgcript range):
integer function wrong_found(
integer wi=gsubscript index,
wv=argument)=
begln wrong found;

wrong_list.to_gueues=huild(wi,wv);
access_faili:=true;

return lower boua&fvi];

end wrong_ found;

emulate test subscript = sri eertorm test _subscript;
emulate access = hegln access;

if eccess_fail
ARAR
then /% output messages, "wrong list" etc. */
wrong_list.empty;
access_fail:=falge;
fail deactivate access_error;
elgse perform agcemss
£i

.

end access;

" end extension;

Figure 6.2.7 Example of an exception descriptor embedded in a
type descriptore.

In figure 6.2.7 we show how an exception descriptor,
1eee Marh, could be defined internally to a type
descriptory, i.e. extension of “arraz". The subscript range
checking of the subscripts of an array could be performed
as the individual subscript expressions are evaluated. In

many cases though, eesge when side effects exist, all

Exception Handling -6e34~

subscript expressions must be e¢laborated previous to the
preemption of the module containing the offending access to

the arraye It follows then, that the subsrcipt_ganlg

exception handler amust allow a recovery,; however, it must
also effectively prevent the array from being accessed. In
figure 6.2+7 this is achieved hy returning a valid wvalue of
the saubscript and by setting the "access_fail" flag to
1223, consequently preventing the access to the array from
being pertormed. The queue "wrong_list" is empty and the
flag "access _fail" is false whenever control is ocutside the
extended "arraz" type descriptor. Thusy, two different

accesses do not interfere with each other.

Sincey in principle,y, all operations are. defined within
some type descriptor, exception handling facllities can be
hand taylored for each individual case by means of some
type descriptor extension as shown in figure 6.2.7, as long
ag such an extension is permitted. For example; run—time
detected type mismatch could be dealt with by extending all
type descriptors which define operations binding access
functions to data spacesy Cafe the parameter list
association operation. It follows from this discussion that
the language should describe all data spaces and operators
which could be replaced and/or accessed by the user in
order to get more precise information about a given
exceptions For exampley in figure 6.2.7 we assume the

existence of the "suhactlpt'jndox" counter which defines

the index of the subscript expression being evaluated when

the subscript range exception is detected. As said before,
we will not enter into details with respect to the set of
laguage defined values which should be made available.

Exception Handling -6 ¢35~

6.3 Excention Handler and Pragrem Interaction.

In this section we will examine how exception handlers
interact with the program being elaborated. There are two

cases to be considered: .

a= how do the exception handlers interact with the
detection point containing module, say the preempted

medule;

b~ how do the exception handlers interact with other

modules in order to service the detected exceptione.

Let us examine first the interaction of the exception
handler H with the preempted program section S. There are

three cases of interaction to consider:

i=- >H deactivates and elaboration of the preempted module
‘ resumes at the detection point, Cogoe immediately
after the operation which signalled the exception. Ve
say in this case that the preempted module has
recovered from the detected exception, and that H is

a recovery handler.

ii- H deactivates and transfers control to some prede—

. fined point within the preempted module.

iii- H deactivates or terminates passing control to

anothér module which is not the preempted module.

It should be clear that case (1) corresponds to a
disguised subroutine call. In some cases a return value may
be expected from the exception handler. For example, when
haﬁdling underflow, it is Zfrequently satisfactory to
replace the result of the underflow signalling operation by
0.0. The notation introduced in section 6.2 treatse excep-

tion handlers as it they were conventional modules, e«ge

Exception Handling -6 636~

subroutines, coroutines or functions. VWe will use then the
same constructs as those developed for conventional modules
in order to return control +to the detection point when the

handler finishes elaboratione.

It should be noted that the dotéction point may have
to be defined explicitly in some cases, c.f. section 6.2.
For example, the "operation" which causes the detﬁction
could be a macro expansion and, thus, the actual detection
point could 1lie within this expansion. However, when
returning to the detection point, the elaboration shoﬁld
resume at the code point following the macro expansion.
This <cage is 1in fact a subcase of the "transfer to a

predefined point" case discussed in the sequel.

eicegtlon uf=
when (underflow):

real uflw(ipteger stat¥=giatement pusbex)=
begin underflow;

output ' ! underflow at ', stat#;
return(0.0);

end underflow;
Example of use!?
ese at u:t:((x"’y)/z) *q see

Figure 6.3.1 Example of a value returning exception handler.

in figure 6.3.1 we show an example of a value
returning exception handlere. This handler produces a
message and returns the value 0.0 whenever an underflow is

detected within the "ufW Qﬁalitidd section "(xty)/z".

Conesider now +the casé ot elahoratlon' resuiptlon at a

predefined point (case (11i)- The exception handler H is

Exception Handling -6.37~-

deactivated (or terminated) when it transfers control to a
predefined point, where such a predetfined point should not
be viewed as a subroutine or coroutine entrye. That is, a
transfer of control to a predefined point does not record

the origin of the transfer of control in the general case.

Defn. 6.3.1 A retriasl point is &a code point to which an

exception handler H may transfer control when
deactivating, where this retrial point 1is not

necessarily equal to the detection pointa

Although the transfer of control to a retrial point
does not mean that sgsome program sections are necessarily
reelaborated, it has the power to do so. This justifies

then our nomenclature.

It should be noted that the transfer of control to a
retrial point corresponds to a goto. Such a goto is partic-
ularly bad since it is completely hidden within the text.
Let us examine +then how we could make the flow of control

paths more explicite.

We will say that an exception handler H induces a
retrial loopy if H transfers control to a retrial point r,
such that the elaboration starting at r may trace the same

detection point which caused the activation of H.

It is a common practice that input operations which
cause input error exceptions are retried, a definite error
being reported only when more than a predefined number of

retrials have been performed. It follows then:

Fact 6.3.2 Preventing the existence of retrial loops re-

stricts the power of expression of the languages

Exception Handling -6 ¢3J8~

Notice that retrial loops could be induced indirectly
by means of a while 1loop driving boolean variable set by
the handler. It follows then, that it is undecidable in the
general case whether a given exception handler is part of a
retrlial loop, even if this exception handler is a recovery

handlere.

Suppose now that we would restrict each detection
point to detect at most one exception within the time
interval during which the corresponding module instance
existse This solution is non satisfactory, since retrial
loops could iterate for several times until the exception
is eventually "cured". For exampley, in the input error
handling loop mentioned above, we 1terate a bounded number
of times until either no input error is detected or the
preassigned maximum number of iterations is exausted.
Furthermore, the number of iterations of a retrial loop may
be program dependente. For example, in order to achieve a
highly available and reliable system, Elmendorf suggests
that intermittently faulty program sections be reelaborated
a given number of times,; where reliability is a function of

this number[Elml]. We may conclude then:

Fact 6.3.3 Imposing a system defined restriction on the num-—
ber of detections of an exception ¢ at a detection
point py restricts the power of expression of the

languagen

This points then into the direction that the exception
handler itself should be made responsible for the termi-
nation of any eventual retrisl loop. The loop termination
could be assured implicitly if it is known that the excep—~
tion source has either been removed, e.ge corrected, or the

preempted program section will not be reelaborated, e.ge.

Exception Handling -6« 39~

assured termination of the module instance. The retrial
lpop termination may also be assured explicitly by means of
a retrial loop control generator functiony, where the body
ot this generator function is the exception handler. Such a
generator function is necessarily a coroutine, since
deactivation of the handler implies also a deactivation of
the loop control generator funtion, however the internal
state of the generator function must be kept intact until
the next activation of the handler, since, otherwise, the

retrial loop cannot effectively be controlled.

The retrial 1loop controlling generator function must
be initialized when, or before, the first exception is de-
tected. Thig initialization could be dynamically requested.
For example, we must reinitialize the input error counter
whenever a new input record 1is requested. Nowy, a given
retrial loop controlling generator function could cantrol
several different detection points, since these detection
points could occur in several different E—qgualified
sections, all of which are qualified by the same exception
descriptor E« It follows that we must provide a construct
which allows to explicitly initialize a given retrial loop

controlling generator function, 1eee initialize. Such an

initialization request is not necessarily expensive,; since
the generator function could define an "initialization
flag" which forces the generator function to be initialized
iff this flag is 2££ when an exception is effectively

detected.

In tigure 6.3.2 we define the retrial 1loop inducing
exception handler "reread". The retrial loop may bde
performed at most 20 times, after which a "read_error" is
signalled for the file parameter "file" of the exception
descriptor "read_again". Notice that the "tile.lngut error'

Exception Handling -6e40-

exception read_again(file file)=bogin read_again;
retry for I:=1 until 20 do:;
when (file.input _error):

reread=hegin reread;
/% pértorm recovery actions on “"tile"xk/

retrx;
end reread;
ods;

anan

fail deactivate(file.read_error);
rexurns

end read_again;

Example of use:

initialize rd_ag=read_again(some_tile);

retry(rd_ag): read(some_tile) into area;

6.3.2 Example of an explicitly controlled retrial loope.

exception handler 1is the hddy of the generator function,
iees for loopy and that it defines the condition of the
exception descriptor. It should be clear that the when con-
struct defines a (coroutine) activation entry rather than a
creation entrye. Syntactically this can be abstracted from
the existence of the retry verb at the head of the handler.
Finally, the only replaceable portion of the exception
handler is the procedure "reread". That is, "reread" is the
textual name of the exception handler defined by the

descriptor "read_again™. Observe that the verb initialize

dynamically declares a coroutine instance as reguired by

section 4.5.

Due to the parameter "file" the exception descriptor
"read_again®™ is bound to a given file. It follows then,

that the exception descriptor Y“rd_ag" implicitly declared

Exception Handling ~6.41~

in the jpltialize statement handles only jpput erxorg which

" are detected when reading records (blocks) from the file

"some_file". Now if the initialize statement is provided

for every read statement relative to "gome_file" there will
effectively be 20 record reading retrials before a "read_
error" igs signalled by the handler relative to the file

"some_file".

Due to the disjointness of the initialize construct
and of the retry qualifications, & single initialization
for several different operations is possible. For example,
when handling underflow it may bde valid to replace the re—
sult of the underflow signalling operation by 0.0. However,
when doing so, numerical precision may be lost and, thus,
there is a bound on the number of such replacements when a

certain precision must be assurede.

exception ufb=begin bounded_underflow;

when(undertlow):

real co function utlv(lnte‘er staté=gtatement nugher)=

begin underflow;
igteger I Jinitiel O;
=hile I<10 go;
I:=1I+1;
output ' 1 'y Iy ' underflow at ', stat#;
deactivate(0.0);

R
L 1]

fail return underflow(stat#);

L Y

end underflow;

end bounded_underflow;

Figure 6.3.3 Example of a record keeping exception handler.

Exception Handling -6.42~

In figure 6.3.3 we uhovlhow the upderflow handler
mentioned before could have been defined. In this example
the exception handler itself keeps the record rather than
the exception descriptor as in figure 6.3.2. Thia example
shows alsgso how exception handlers could be declared as

coroutines. Recall that the statement "deactivate(0.0);" is

a coroutine deactivation [see section 4.5]« Observe also
that the exception handler "uflw" initializes itself when
being created, thus not requiring an explicit instance

declaratione.

It should be clear that a retrial point is in fact the

value contained in a retrial point typed data space. Fur-

thermore, these values are closely related to label typed
values. It follows then, that retrial point defining con~

structe asgsign values to retrial point typed data spaces,

where such a value 1s the latel of the program point where
RARARARNATS

the retrial point definition occurs.

Let a be a geirial point typed data space. The
contents of a could be defined dynamically as it is usually
the case when retrial loops are established. They could
elso be defined statically as it is usually the case when
exceptions terminate sub—-modules. It should be clear that
the positioning of retrial points is program dependent,
since this positioning must be such that a meaningful
elaboration results. It follows then; that there must be a

construct by means of which a retrial point typed value is

defined. Furthermore, the property of being statically or
dynamically defined is alsc program dependent, consequently
the construct mentioned before must distinguish between
static (retry) and dynamic (dyn retry) retrial point
definitionse.

Exception Handling -6 .43~

A given exception descriptor could make use of several
retrial points. It follows then, that retrial points should
be named. This name could bhe the empty string as in figure
63:2« Suppose now that we restrict handlers to use only

retrial point typed names defined within the exception

descriptor of the activated exception handlere. This does
not restrict the power of expression of the programming
language, since the computation which follows a transfer of
control to a retrial point must be well understood by the
exception handler in order to Dbe meaningfule. It follows
from this restriction that we are able to determine exactly
the program conditions which are satisfied at a retrial
point definition point as required by some program proving

methods[Hoa2].

excegtion reshape=heg1n reshape;
retrial point r;

retry when(subscript range):
rebuild(e+«)=begin rebuild;

/% reorganize the faulty array %/
retry r;

end rebuild;

end reshape;

Example of use:

integer A[1,1], B[1,1,1];
reshape: A[£(x) dyn_retry r(reshape),
dyn_retry r(reshape) g(y)];

B[dxn retry r{reshape) 1 reshape: ; Jy k reshape:];

6¢3.4 Example of retrial point definitionse.

Excesp-ion Handling -6 e44-

In figure 6.3.4 we show an example of a dynamically
defined retrial pointe The purpose of the exception handler
"rebuild" is to redefine arrays whenever subscripts are out
of boundse. Thus these arrays become adaptive to a given
elaboration's needsy, e<.ge ALGOLGS8 £l2§ array bounds. The
exception descriptor "reshape" defines a retrial point "r".

The construct "dyn retry r(reshape)" causes the value con-

tained in the data space a bound to "r" to be set to refer
to the point in code where this construct occurse. Notice
that the subscript range test is an implicit operation and,

thus, is textually non-existente.

In the example using the array "A", each dimension is
retried individually. Notice that "£(x)" will not be
reelaborated, however "g(y)" will be reelaborated whenever
an exception 1is detected in the corresponding program

sectione

In the example using the array "B" the subscript range
exceptions will be handled by "rebuild" only if the first
or the last dimensions are out of bounds. In both cases
though, the whole subscript list will be reelaborated. It
should be noticed that the "reshape" exception descriptor
does not have to be initialized, since there is no loop
control generator function. Although syntactically +these
examples could be termed "ugly", we will not attempt to

define a more elegant syntax in this dissertation.

The last case of interaction between the exception
‘handler H and the preempted module M, is when the handler H
deactivates without returning control to the preempted
module M (case(iii)). Observe that such a deactivation
could be generated artificially by defining a program
section S within M, where S contains a retrial point defi-

Exception Handling -6 o 45~

nition and an N deactivating statement. However, such an
artifice makes the reading of a program more difficult
since a given action is now spread over the program's text.
Ve define then the fajlure deactivatiop constructs fail
deactivate and ;g;& zeturn, which have the power of de—~
activating the exception handler without returning control
t0o the preempted module N, in the rest being similar to the
Buccess desactivation constructs deactivate and return. It
should be clear that the preempted module N is deactivated

when passing control to the exception handler H.

Usually a failure deactivation 1is in itself an excep—
tion and, thus, signals another exception. In some caées
though, a failure return may stand for a "normal"
termination of the module M. For example, the detection of
"end of file" could represent the termination of a compiler
coroutine which scans successive syntactic wunits in the
input stream[Con2]. We will adopt then the convention that
a failure deactivation corresponds also to a sgignal
operation, but only 1if a condition name is present in the
failure deactivation construct. Recall that the condition
name could be followed by a carrier parameter list as

described in section 6.2.

In the case a failure return corresponds to a normal
termination of the preempted module M, the deactivation
must occur through an entry point of N as described in
section 4.5. Of course, this implies that the exception
handler (descriptor) must know this entry point, or then
transfer control to a retrial point which eventually causes
M to be deactivatede Thus, eventual naming conflicts could
be resolved by means of a name equivalence (see section
5.3) when assigning a« module typed value to the handler
typed variable.

Exception Handling -6 46—

In figure 6.3.2 we show an example of an exception
aignalling failure deactivatione. If the "read_error" han-
dler performs a recovery, elaboration resumes following the
deactivation point within the handler "reread" and, thus,

resumes at the detection point of the preempted module.

Even when the preempted module M is a subroutine, it
does not have to be terminated when a fail deactivation of
M occurse This follows from the fact that N could define
several access functions by means of which a more detailed
information about the exception could be obtained. It fol-
lows theny, that subroutine instances should not necessarily

be terminated when a failure deactivation occurse.

Let U={u1,ug,...,un} be & set of exceptions which
could be detected within a module N but for which M does
not define exception descriptors. This set of exceptions
establishes an exception family, say the unknown exception
family. It follows then, that N could define an upnknown
exception handler HY. Notice that the unknown exception
handler must be defined within the dispatcher module of the
operating systemy; in order to catch all non serviceable
user defined exceptions, since, otherwigse disastrous termi-~-

nation of the operating system could occur.

Defne. 6.3.4 An exception u is yYpkngwn to a module N, if u can
be detected within M and signalled to the exterior

of M=

Observe that an exception u can be unknown even if M
-detlpes a handler H for this exception. This follows from
the fact that the exception u may be signalled to the
exterior of M, despite of the fact that N defines the

+ Notice +that uggngwg is the name of the exception
(handler), thus € unknown exception (handler) is in

fact known!

Exception Handling -6.47~

handler He. Thus we may regard this handler H as being a
default handler. As we shall see later in this section, it
may be necessary to override local or, better, default

exception handler definitionse.

It should be clear that an external handler H ser-
vicing a signalled exception u must have been created, at
least partially, when the exception u is signalled by the
module M. Of course, there could be a generalized exception
handler f which purpose it is to receive all exception
signals and direct control +to the appropriate handler H,

where H could be a subroutine of 8.

Let u be an exception which is unknown to the set of
modulesg M={n;,uz,..,nk}o Let H={hyyhzyeeesh]} be the set of
exception handlers capable of servicing the exception u. Ve
must decide now which (one or more) of these exception

handlers hj should be activated when a module my signals ue.

The exception u could represent a non-recoveradble er-
ror. Thus, continuing with the elaboration of the preempted
module m; would be meaningless. Now there could be an ex-
ception handler hj which attempts recovery, since not
necessarily is u non recoverable for all modules in the set
M. For example,; overflow could be recovered in some cases,
eesge by replacing the result of the operation by max_real,
whereas in other cases the result may become meaningless if
this recovery is attempteds, It follows then, that not all
members of the set H are eligible to be activated when a

module my detects ue.

Defne. 6.3.6 An exception handler H which allows a module M to
recover from an unknown exception u is lggically
correct, iff the actions performed by H maintain

the correctness of the elaboration of Ms

Exception Handling -6 +48~-

It should be clear that any recovery must be logically
correcte Notice though, that logically correct recoveries
may decrease the qdality (precigion) of the results
produced by M. For example, when substituting the result of
an overflow detecting operation by max real, the numerical
accuracy may be decreased but not necessarily so that the
numerical result be incorrect. Thus we mugt view the term
ficorrectness" in a broader scope as meaning "satisfying the

admissible tolerance%.

In order to decide whether a given recovery handler H
is logically correct with respect to a given module M, H
must perfectly understand M, since the correctness (preci-
sion) of M must be preserved by He Since the correctness of

N is undecidable in the general case, it follows:

Lemma 6.3.6 It is undecidable in the general case whether a

recovery handler H 18 logically correct with

respect to a module Me

In section 6.2 we have introduced the concept of
E-qualified sections or operations, where E is an exception
descriptor defining the detection information and condi-
tion, the exception information, and the textual name of
the exception handler, where this name is possibly ini-
tialized to a default parameter valuey, i.e. module. We have
mentioned also in section 6.2 that there could be several
different exception descriptors, all of which are defined
within the same module M and describe basically the same
condition. However, each of these exception descriptors Ei
implicitly conveys more precise information with regard to
a given condition detected within an Ei-qualitied section
of My - than that conveyed solely by the exception signal.

For example, we could define two overflow descriptors ov,

Exception Handling -6e49~

and ovz, where ovy qualifies all those operations where a
recovery would be valid in principle, and ovy qualifies all
those program sections where such a recovery is meaning-

lesse Formalizing we have:

Fact 6.3.7 The exception signal g must define bDboth the
exception condition and the exception descriptor E
which qualifies the program section within which s

has been detectedn

It follows then, that the interface information of a
module N must define all those exception descriptors for
which M allows an explicit external handlery, ie.ee« a non
unknown handler, to be defined. Since exception descriptors
could be variables of type exception, where these variables
are initialized by means of default parameter values, it
follows that we have also a mechanism by means of which an
exception descriptor .could be sudbstituted and, thus, ex~-
ception information requirements could be changed whenever

necessarys

It should be clear that, when substituting an excep-
tion descriptor Ejy by another descriptor Ez, the exception
condition ¢ of E; must bde kept invariant. It follows then,
that the type exception is in fact a composite type defin—
ing <exception descriptor, gondition value>. In section 3.4
we have discussed the problem of type equality, thus we
need no further explanation with respect to assuring the
invariance of the exception condition, when replacing

exception descriptors.

Theorem 638 A recovery handler H of a module M detecting an

unknown exception uy, may be activated in the
general case only if H is explicitly related to an
exception descriptor E defined by Ms

Exception Handling -6.50~-

Proof. By lemma 6¢3.6, if H 1is not explicitly related to
My we are unable to deciqe, in the general case,
whether H could be 1logically correct with respect
to M. By fact 6+.3.7 the 1logical correctness
depends on the exception descriptor E which
qualifies the program section or operation where

the exception has been detecteds

We cannot assure that H is logically correct with
respect to E whenever H and E are explicitly related, since
either or both the handler H and the relation of H to E
could be in errore. Apart from these programming errors
though, we could assure the logical correctness of H with
respect to E. It follows then, that, under the assumption
of correct programs, theorem 6.3.8 could state a necessary

and sufficient condition.

Defne. 6.3.9 Let R#{rigrz,...,rn} be a set of exception han-
dlers which allow a module M detecting an unknown
exception u to recover from u in a logically
correct fashione. An elaboration of M is said to be
maximael iff, whenever M detects uy one or more of
the handlers ry in R is activateds

As mentioned above, the set R.is not necessarily equal
to the set H of exception handlers capable of servicing u.
Maximizing the elaborations of modules 1is a desirable
feature, since meaningful elaborations will terminate

successfully.

It follows from theorem 6.3.8 that an exception u
signalled by a module M must define a pair <uy,E> where u
identifies the exception and E +the exception descriptor
qualitying the detection point. However, if there is no

handler capable of servicing <u,E>, an unknown exception

Exception Handling -6.51~-

handler must be defined for <u,E>. This follows from the
fact that we want to maximize the elaboration of the
program, consequently we do not wish that an exception, for
which there is no specific handler defined, is able to halt

the elaboration of the program. Formalizing we have:

Iheorem 6.3.10 Let M be a module containing an exception descrip-
tor E describing an exception condition u. The
elaboration of a program containing M is maximized
when M signals u detected within an E-qualified
section only if:

i= +there is a <u,E> exception handler H capable of
servicing <uy,E>; or if such a handlér B does
not exisgt:

ii- there is an unknown exception handler U which
handles either the <u,upknown”> exception or the
unknown exceptions

Theorem 6.3.10 defines the address of +the "receiver"
exception handler when exceptions are signalled. Theorem
6+3.10 states also that modules could always define an
unknown exception handler, e.g-. system defined handler,
since this handler will only be activated if no handler
servicing the exception u has been defined. Observe that
the program sections labelled SYSERR in ALTRAN are in fact

such unknown exception handlers.

In order to be able to establish an information
interchange linkage between the preempted module and the
servicing handler, the exception descriptor identification
may péove to be insufficient information, since there could
be several instances of a same module, some of which may
simul taneously be in the preempted state Thus, in order to

access specific information, eege by means of special

Exception Handling -6+52-

access functions, the specific module instance must be

known. We have then:?

Fact 6.3.11 In order to establish an information interchange

linkage between the handler and the preempted mod-—
ule instance, it must be possible to abstract the
identification of the preempted module instance

from the exception signale

Notice that such an information interchange linkage
may be required also in order to produce error diagnostics,
or to decide about further action in the case of an
exception which signals a successful conclusion of the

elaboration of a module.

We have now +to examine the case when two or more ex-
ception handlers are eligible to service a given exception
uy ieee <uyE>. Let Py Q and R be three modules such that P
activates Q and Q activates R. Suppose now that both P and
Q define eligible exception handlers Hp and HQ for the ex—
ception u signalled by R Furthermore, we may safely assume
that any recovery of R from u induced by either Hp or HQ is
logically correcte Now, if H is a recovery handler and H

P Q

is a failure handler, we must chose BP in order to maximize

the elaboration of P, Q and R. Formalizing and by induction

we have then:

Lemma 6.3.12 Let H={h1,h2,...,hn} be a set of exception

handlers capable of sgervicing an exception u
signalled by a module M. Imposing a system defined
order of preference for the choice of a handler hi
in H when u is signalled by M, may prevent the

elaboration of M from being maximalms

Exception Handling ~6¢53~-

Lemma 6¢3¢12 tells us that the dynamic scope of excep-
tion handlers should not be suppressed by system actione.
Thus, there may be more than one eligible handlers at given
time instants. Some of these handlers may be unsatisfactory
though, since the quality degradation could be excessive
for a given application. Since only the programmer can

decide the admissible quality degradation, it follows:

TIheorem 6.3.13 Let M be a module containing an exception descrip-
tor E describing the exception condition u. The
elaboration of M can bhe maximized, in the general
casey, only if E can be explicitly linked to ome or
more exception handlers all of which will be
activated when u is detected within an E~qualified

section of MN»

Let H={h1'hg’oooghm} be the set of exception handlers
which are capable of servicing an gxceptlon uy, and Llet
E={e1,ez,...,en} be a set of exception descriptors which
qualify program sections signalling the exception ue. The
linkage definition linking handlers to descriptors,; defines
a bipartite graph G, where the vertex sets are the sets H
and Ey, and the edge set is the set of all linkages which
could be established between fny two hi and ej for all
possible elaborations of the programe. The pair <H’,E’>,
where H’ is the handler set and E’ is the descriptor set of
a maximal connected component G’ of G, will be called
linkage gete Such a linkage set <H,E> defines a subprogram
containing H and E, and is itself defined by a given
linkage definition L. Suppose now that the linkage
definition is not global to a given linkage set <H,E>.
There are then subprograms P’ and P* of the program P,
which define linkage sets <H’,E’> and <H”,E”> respectively.

These linkage sets are not necessarily disjoint, and may

Exception Handling -6 ¢e54~

correspond to the independent linkage definitions LY and
1”. Thus a descriptor ej could be linked to a recovery

handler h; by L’ and to a failure handler hi by L, both of

i
which must be activated and which actions contradict each

other. Formalizing we have:

Iheorem 6.3.14 A linkage definition L linking a handler h; to a
descriptor ey must be global to the linkage set
<H,E”> defined within the whole program and where
hy is 1in H and ey is in Ees

Theorem 6.3.14 tells us that there could be several
independent linkage definitions, however each one being
global to a given linkage sety, where such a linkage set is
maximal within the program. Since the linkage definition is
confined to a linkage set, incorrect linkings of exception
descriptors and handlers are local to a linkage set, thus
preventing inconsistencies due to the existence of unﬁno'n
or unforeseen exception handlers. Notice that theorem
6¢3¢14 is not satistied bdby PL/1l, since declarations of
handlers (on-units) are local to modules and never global

to a group of modules.

Observe that the linkage set does not necessarily
restrain itself to the dynamic hierarchy of modules. That
isy if a module R is a subroutine of Q which in turn is a
subroutine of P, it is perfectly valid to have P and R in
one linkage set and Q in another with respecf to the same
exception ue. Furthermore, due to the direct binding of
handler and exception descriptor instance, we are safe from
difficulties arising from parallel or quasi-parallel
elaboration with respect to handler definitione.

Observe that the linkage definition performs in fact a

module typed assignment, where the handler, ie©e a module

Exception Handling -6e55-

typed value, is assigned to the handler's textual name
defined within the exception descriptore. Since handlers are
values, it follows that quite complicated storage
mechanisms, e«.ge "stack of module", could be defined in
order to store such values. These mechanisms have been

studied in previous chapters.

6.4 Time Dependent Aspscis of Exception Handling.

In this section we will study the problems which orig-—
inate from the existence of time constraints on excgption
handlinge In section S.1 we have shown the basic principles
which govern shared data space access synchronization. Thus
we need not study in thie section the timing aspects
relative to the sharing of exception information. We will
study then the timing problems which arise due to the oc—-
currence of consecutive signals and due to the existence of
a non-null time interval between detection and exception

servicinge.

Let H be an exception handler servicing an exception
cy at the instant t. Suppose now that at this same instant
ty the exception c; is detected and control is to be passed
to H againe Nowy if H is not reentrant, the two activations
of H may interfere and, thus, produce meaningless results.

Ve have then:

Fact 6.4.1 A module H may be activated due to an exception

signal only it B is inactive or H is reentrants

In sections 6.2 and 6.3 we have shown that programmers
have the freedom to chose whether an exception handler is a
coroutine or a subroutine, and whether the number of simul-

taneously existing instances of a handler is restricted. It

Exception Handling -6 o556~

is thus the programmer's responsibility to decide whether
the recurring detection of exceptions also causes a recur—

ring creation of handler instances.

In most cases reentrancy 1is achieved by means of a
module prologue which creates and initializes the necessary
data spaces. This module prologue 1is non reentrant in most
cases, consequently, by fact 6.4.1, the recurring
activation of H msust be postponed. Thus, once a handler H
has been activated, recurring activation of H must be
prevented, say pagkedy until an instant t’ where recurring
activations will not interfere with other activations of H
still in progress. It followa then,; that the language must
provide a construct, e.ge. unmask(<handler>), by means of
which the handler is placed in a "reactivatable" state. If
this construct were not available, each handler would be
capable ot handling at most one exception signal, since the

activation of a handler also masks this handler.

The time interval during which an exception handler H
is masked will be called gagked intervale Each exception
signal in a recurring sequence of exception signals could
be 1linked to a different exception handler. It follows
then, that not necessarily will an exception signal c, have
to be delayed due to another sgsignal c, of the same
exception condition ¢ currently being serviced by a masked
exception handler. Notice tough, that linking an exception
handler to a descriptor takes time. Furthermore, during
this time the exception cannot be handled, since the
linkagey, ieece. the assignment, may be incomplete and, thus
the handler activation may be misleading. It follows then,
that it is8 not the module instance which 1s masked, but,
insteady, it is the textual name within the descriptor which

stands for this instance which is masked.

Exception Handling -6e57~

Suppose now that an exception ¢ is detected and would
require a masked exception handler H to be activated. Since
H is masked, the transfer of control may not occur. Fur—-
thermore, the exception signal may not be dropped, since,
otherwise, valuable information may be 1lost. It follows
then, that the exception signal ¢ must be stored until H is
unmasked. Since the detection could recur and/or several
different exceptions could be serviced by a same exception

handler H, it follows:

Lemma 6¢4.2 Let H be the textual name of a handler defined by
an exception descriptor E. H must provide a
storage mechanism which stores all exception sig-
nals which are to be serviced by a module bound to
H and which have been detected during a masked

interval of Hes .

Since the storing of exception signals takes time, we
are faced again with the same problem as the one we are
attempting to solve. That is, for each exception signal a
receiving data space must be immediately available, or the
storage mechanism must be masked during the process of
storing this exception signal. Even when hardware perform—

edy, the storing of exception signals will take time. Thus

there is a critical freguency which defines the minimum
time interval, say gcritical ipterval, between recurring

detections of a same exception. It should be clear that the
storing of each exception signal mugt take less time than
the critical interval, otherwise uncontrollable interfer—
ence between two different exception signals may occur. Ve
will not enter into further details with respect +to the

critical frequency though.

Exception Handling -6458~

Let N be a module which builds the image of an object
on a display terminal. This module N could be activated by
a generator function Gy which object it is to change the
position parameters of the object being displayed. The user
has then the impression of a continuous object movement on
the screens. Now, the generator function could be such that
it can only be terminated by means of an external
interrupt[Elsl,Zell]s. This generator function termination
condition has then the effect, that the user is enabled to
decide which position of the object is best suited for his
needs, as 1t is being generated on the screen. Now, the
external interrupt could occur when N is being elaborated.
If M were to be terminated immediately, an incomplete image
may be placed on the screen. Thus M must always run to

completion before the signal can be handled. We have then:

Fact 6.4.3 Enforcing exceptions to be serviced immediately
when they are detected restricts the power of

expression of the languagems

Of coursey, the interrupt must be acknowledged and the
exception signal must be buffered (stored) until the
program elaboration reaches a synchronization point where
the exception signal can be servicede It follows from fact
643 that the language must provide a construct, eo.ge.
ggg&((handler)), by means of which a handler can be masked

even if no exception has been detected.

It should be noted that the mask and unmask constructs
are closely related to the data presence switch operations
introduced 1in section S.1. Thus mask and unmask can be
viewed as operators which determine whether an information

(module) 1s present (unmasked) or absent (masked).

Exception Handling -6 .59~

Let ¢ be an exception which is signalled whenever a
module M consumes more resources than some predefined
amount of these resources. For example, for the purpose of
error diagnose we may wish to signal the exception c¢
whenever the module N requires more than 90% of the total
available dynamic storage. It should be clear that the
elaboration of M is not affected by whether or not the
exception ¢ 1is actually serviced. Thus, even when the
handler which would be activated in order to service c is
currently unknown, the elaboration of M could proceed. It

follows then?

Fact 6.4.4 Enforcing that a module M detecting an exception c
may only proceed with its elaboration after c has
been serviced, restricts the power of expression

of the language®

Usually though, exceptions are serviced immediately.
Furthermore, the decision of whether an exception must be
serviced previous to the elaboration resumption of the pre~
empted module is program dependente. For example, the result
of an underflow signalling operation could automatically be
replaced by 0.0 and, thus, it would be irrelevant in many
cagses whether underflow exceptions are effectively ser—
viced. It followe then, that the language should provide a
constructy; e.ge. fork lignal(<exception>), by means of which
the non—-necessity of immediate exception servicing could be
explicitly statede It should be clear that forked exception
signals start a quasi-parallel or parallel elaboration.
Thus, there must be a mechanism by means of which the
exception information <can be saved whenever an attempt to
change or destroy this information is made. This mechanism

can be based on the data presence and data consumed

Exception Handling -6.60~

switches described in section 5.1, and, thus, needs no

further examination here.

Since leaving a forked exception in a non serviced
state, say pending, does not affect the elaboration of the
preempted moduley, it follows that the nonexistence of a
handler capable of servicing a forked exception at the
detection instant is not necessarily an error condition. We
may conclude then, that the assignment of a handler to the
handler typed textual name of the descriptor of a forked
exception might occur well after the exception has been
signalled. Thus, forked exceptions must be buffered, even
when no exception handler has been linked to such an
exception. It follows from +this discussion that whenever a
handler is linked to an exception descriptor, it must be
verified whether there are pending signals of the exception

condition defined by this descriptore.

Let M be a module which detects an exception ¢ which
is left pendinge. 8Since the elaboration of M proceeds
regardless of whether ¢ is serviced or not, the handler H
servicing ¢ may not cause M to resume elaboration, since,
otherwise, a terminated module instance could be activated.
It follows from this, that we must be able to abstract from

the exception signal whether it is a forked signal or note.

Let ¢ be an exception detected by an excéption handler
H at an instant t where H is masked. If c may not be left
pending and must be serviced by H, we have a deadlock
situation. Not always are such deadlock situations as clear
as in this example though. For example, the attempt to
activate H could occur indirectly from within another

module, eege exception handler. We will not study these

Exception Handling -6.61-

deadlock situations in this dissertation though[Holl,Hol2,
HolS,Hahl]o

The exception information may be yolatile. That is, if
the information is not consumed within a given amount ofi
time, the information may be changed or destroyed. For in-
stance, when reading information from a synchronous devicejy
eesge card, disk, tape etc., the information may be lost if
the service time is too large, e.ge overrun exception on
the IBM/360[IBMl]e We will say that an information I is
real—time devendenty it there is a constraint on the length
of the time interval T=[t3,t2]y starting at the instant t;
where the information I has been producedy, and ending at

the instant +t2 when the information I has been consumed.

The time interval T will be called real—time interval, and
the interval T’ which defines the maximum tolerable length
of the real—time interval will be called real—~time limit.

If the real=time interval exceeds the real—time limit, we
will say that the information, i.0¢ data space, has been
overrune Finally the instant t2 will be called cgnsumption
dinstant.

The consumption inastant is program dependent since it
is not necessarily true that the first read access to a
volatile information also consumes this informatione. It
follows then, that volatile information must be explicitly

flagged consumed as described in section S5.1.

Volatile information is the result of the inability to
delay operations which change data spaces containing non—
consumed information. It should be clear that this is bard-
ly ever the case when no physical real-time constraints,
esge process control constraints, are imposed on the elab-

oratione. It should also be clear that the real-time limit

Exception Handling -6e62~

is not necessarily well detined. For example, when a chan-—
nel can be attached +to input/output units with different
transmission rates, for each of these units the real time
limit may change, although these units look alike to the
channel. Furthermore, the real-time interval is not always
well defined, since delays may occur due to unforseen

interrupts. Ve have then?

lemma 6.4.5 It is undecidable in the general case whether the

real—-time interval is smaller than the real-time
limit for all possible interpretations of the

program®

It follows from lemma 6.4.5 that there may be cases
where the real-=time interval exceeds the real—-time limite.
When this is the casey computations based on the
corresponding volatile information are usually meaninglesse.
It follows then, that a module making use of such a
volatile informationy, e.ge an exception handler, must be

preempted by an overrun signal.

It is &a common practice to assign priorities +to
exception signals, where usually the priority is higher the
smaller the expected real—time limit is. In doing so,
éxception handlers which are more critical with respect to
time will not be preempted due to other less critical
exceptions having been detected during the elaboration of

these handlers.

In our generalized view of programs, it is perfectly
valid for an exception handler to request part or all of
the service to be done by other modules which may be
elaborated in a parallel or quasi-parallel fashion. We will
say that a module M is gverrun dependent on a data space «

containing volatile information, if the correctness

Exception Handling =663~

criteria of M may he affected by a being overruny e.ge when
N accesses a. It follows then, that the decision of whether
a module is overrun dependent on a data space a is program
dependent, since only the programmer is able to decide
whether the correctness of a module may be affected by a
data space being overrun. It follows from this discussion
that modules must explicitly defined as being overrun

iodependente.

A module which is not overrum dependent on a data
space a cannot possibly be affected by an overrun on a,
andy, thus, may continue being elaborated. Furthermore, the
elaboration of a module which is overrun dependent on «
must be halted since the results will be meaningless in the
general case. This follows from the fact that, usually, the
correctness criteria of overrun dependent modules do no
longer hold when a 1is overrumn, since a may have been

changed or destroyed when being overrun. We have then:

Iheorem 6.4.6 Let « be a data space containing volatile
information. If @ is overrun, those and only those

modules which are overrun dependent on a must be

preemptedns

It follows from theorem 6.4.6 that the overrun signal
must have a higher priority then all overrun dependent
modules which could potentially be active. Suppose it were
not so. Then the overrun dependent module M could activate
a module M’ which has a higher priority thanm the coverrun
signal and which performs essentially the same computations
as M. Thus, M’ would continue being elaborated despite of
the fact that M’ is producing meaningless results when an

overrun has been detected. We have then:

Exception Handling —6e64~

Lemma 6447 Let a be a data space containing volatile

information. The priority of the a—-overrun handler
must be higher than the priorities of all a
overrun dependent modules which could potentially

be actlye when an overrun on a is detecteds

Since overrun handlers wmay have a rather high
priority, they must be elaborated in a very small real-time
interval, otherwlise the detection of an overrun may cascade
into the detection of several different overruns. Let us
examine then the actions which must be performed by an

overrun handler.

It should be noted that overruns not necessarily
require a major decision effort in order to be serviced.
For example, when an external interrupt is generated at a
terminal, all further external interrupts may be disre—
garded until the first of these external interrupts is com—
pletély serviced. It should be clear that this "dropping"
of exceptions can be accomplished by means of a Llinkage
definition 1linking a. "dummy" handler to the qualifying
exception descriptor. This dumny handler is still
elaborated with a higher priority, however its existence is

almost non noticeable.

The occurrence of an g¢gverrun could also gsignal that
the exception handler servicing the previous exception is
to be simply restarted. For example, an airplane tracking
radar system could have been designed in such a way that
the successive positions of the airplanes are constantly
being predicted. At given points in time these predictions
are corrected according to data obtained from the radar.
Now, these corrections could be activated by means of some

exception, e.ge at a constant time interval. Since failing

Exception Handling -6 .65~

to perform the corrections for a few consecutive cycles
does not endanger the performance of the system as a whole,
an overrun could safely be allowed to restart the
correction algorithm with the new data, possibly with an

increased prioritye.

The overrun handling can be viewed as consisting of
two actions, one of which preempts all necessary modules
[theorem 6.4.6)], and the other which effectively services
the overrun signal. This follows from the fact that, once a
module instance has been preempted due to an exception
signal, the elaboration of this module instance can only be
resumed by means of handler actione Thus, if the preempt
exception handler does not provide for the resumption of
the module instance elaboration, this resumption can only

be achieved by the gverrun service exception handler. Ve

have then:

Fact 6.4.8 Lit a be a data space containing volatile informa-
tion. An overrun signal on a can be broken into
two signals:

i- a preempt signal which corresponding handler
must preempt all necessary modules currently
being elaborated;

ii- an overrqg_gervlco signal which handler effec—

tively services the overrun exceptions

Now, if the Eree.gt exception handler is not hardware
implemented, it may take some time until all necessary
modules are effectively preempted. It follows then, that in
some modules meaningless elaboration has already been
performed when these modules are actually preempted. Now,

if these modules are able to produce side effects, ecge

Exception Handling -6.66-

gutput operations, the degree of damage due to a data space

overrun may be unknowne We have then:

Fact 6.4.9 let « be a data space containing volatile

information. let M be +the set of module instances
which are being elaborated when an overrun, i.ee.
preempt, on « is detected. In order to keep the
overrun damage local, all side effect generating
operations within the nbdule instances of the set
M must be delayed until the greemgt exception

handler unmaskss

Fact 6.4.9 tells us that all store and output
operations must be delayed within all processors which
could possidbly be elaborating a module which is overrun
dependent on the data space overrun. Thus, a Ereemgt signal
is a signal which must be transmitted immediately to all of
a selected group of processors in a multiprocessor machine.
This could be implemented by having a "store inhibit"
linked to all storage devices. This store inhibit is active
whenever one of the several processors is in the preempt
atate. Thus any write access requested by any of the
processors, except for the processor in the greemgt state,
will delay these processors until the store inhibit is

resete.

Although the cost of overrun damage may be quite small
in many cases, in some cases the results could be
disastrous. Consider for instance a process controller
which steers a missile to a target detected by a radar. If
the radar position generator function causes an overrun,
and the incorrect position is fed to the missile steering
module, the target could be missed and elaboration could

terminate in real disaster.

Epilogue -7 el=

7. Epilogue.

Having read through this rather lengthy dissertation,

one is faced with the question: was it worthwhile? Let us

provide then a summary of what we consider being the most

important points treated:

ie=

il=-

iii-

the author has been unable to find a text in the
current literature which studies the language design
problems relative to modularity and intra—-module

communication in a unified forme.

with few exceptions, eege clusters as defined by
Liskov and Zilles[Lisl], none of the existing or
proposed programming languages treats type descrip—
tors as values, being then unable to berform type
descriptor transmission. As bhas been shown in section
3«3y the adbility of transmitting type descriptors
considerably increases the flexibility of modules.
The type descriptors we have introduced here are more
general than the clusters of Liskov and Zilles, since
our type descriptors can be any kind of module,
possibly even a coroutine as required for generator

functionse

none of the existing or proposed programming lan—
guages provides means to define explicitly a control-
led environment for reference typed values, i.e. data
space identifications. As has been shown in section
4.3, data space identifications enable us to link a
reference typed value both to a target type and to a
restricted set of access functions. This implies that

the access paths are well defined and supervised.

iv=-

Y-

vii-

Epilogue -7 2=

with few exceptions, ee.ge SNOBOL4, none of the
existing or proposed languages allows us to interfere
with language provided operations. As has been shown
in section 4.4 the ability of defining O—emulating
functions allows us to establish a tight control on
how data space identifications can be disseminated
and on what modules could access a given piliece of

informatione.

with few exceptionsy e.ge IPL-V, none of the proposed
or existing programming languages provides means to
explicitly define generator functions. A8 should be
evident from the discussion of section 4.5, generator
functions aid considerably in hiding the isplementa-
tional information of modules. They allow also the
"modularization® of operations which require a co-
routine environment in order to be implemented, e«.ge.

tree traversal operationse.

few of the existing or proposed programming languages
address themselves to unordered parameter lists. As
has been shown in section S22, the named association
rule aids in making parameter list assocliation clear-
er and provides means to control the meaningfulness

of parameter associatione.

module typed variables have received little attention
80 fare It is usually forbidden to consider arrays of
modules or even of modules which return module typed
values, although not in LISP 1.5 or GEDANKEN. In
section 5.3 we have shown that there 18 no major
reason fTor such restrictions. Furthermore, we have
shown thaty, by means of piecemeal associating para-

meters, the flexibility of modules 1is increased.

viii-

Epilogue =7 « 3=

Finally, due to the named association rule; there are
no more restrictions on the lengths of parameter
lists +to be associated. Thus, when using default
parameter values, modules can be used without having
their standard environment requirements defined over

and over again.

exception handling is not present or is not satisfac—
torily dealt with in existing or proposed programming
languages. Except for few isolated studies addressing
themselves to particular problems{Elml,Horl,Conl,
Zil2], no thorough study of the necessary tools has

yet been presented.

Bibliography —Bel~-

B.1 Ahbreviations.
ACM Association for Computing Machinery
Acta Inft Acta Informatica

AFIPS American Federartion of Information Processing
Societies
«-SJCC - Spring Joint Computer Conference
~FJCC = Fall Joint Computer Conference

ANSI American National Standard Institute

BIT Nordisk Tidskrift for Informationsbehandling
CACN Communications of the ACN

CcJ The Computer Journal

CS~ACM Computing Surveys of the ACM

IAGJ 'IAG Journal

IBN—-SJ IPM Systems Journal
- IEEE Institute of Electric and Electronic Engineers
IJCIS International Journal of Computer and

Information Sciences

IPL Information Processing Letters

JACN Journal of the ACN

JCSS » Journal of Computer and Systems Sciences

Num MNath Numerische Mathematic

SIGPLAN Special Interest Group on Programming Languages,

ACM

Bibliography =Be2-

~ SPE Software Practice and Experience

Bibliography -B .3~

B.2 Bibilography Listipng.

[And1]

¢

[ANS1]

[Ashl]

[(Ayr1]

[Bael]

[Bae2]

[Bak1]

(Bal1l]

[Barl]

[Rar2]

Andersony JePe.
'Program Structures for Parallel Processing';
CACM vol 83 no 125 Dec 1965; pp 786-788

ANSI
ANSI Stondard EQRTRAN; ANSI; Oct 1969

Ashcroft, E.A.
fProgram Correctness Methods and Language
Definition'; SIGPLAN vol 7; no 13 Jan 1972; pp
§51-57

Ayresy ReB.; berrenhacher, Re.Le.
'*Partial Recompilation?®; AFIPS~-SJCC vol 38;
1971; pp 487-502

Baeckers, H.De.
'Garbage Collection for Virtual Memory Computer
Systems's CACM vol 15; no 11; Nov 18725 pp
981~-985

Baeckery HeDe.
‘Implementing the Algol 68 Heap'; BII vol 10;
1970; pp 405-414

Bakersy JeLo
*An Unintentional Omission from Algol 68'; IPL
vol 13 no 65 Dec 1872; pp 244-245

Balzers ReMe. , ,
*PORTS ~ a Method for Dynamic Interprogram
Communication and Job Control?; AFIPS-SJCC vol
38; 1971; pp 485-480 '

Harrony DeWo,

Assemblers and Loaderg; MacDonald, American
Elsevier Inc.; 1969

Barrony DeW.; Buxtony JeNe.; Hartleyy D.Fe; Nixony, E.;
Stracheyy Ceo
'The Main Features of CPL'; (CJ vol 6; no 2; Jul
19633 pp 134-143

[Bar3]

[Baul]

[Bau2]

[Bau3]

[Bau4d]

[Bayl]

[Bay2]

{ Benl]

[Ben2]

[Ber1]

Binliography ~Bed~-

Barrony DeWe; Jacksony lI<Re.
*The Evolution of Job Control Languages®; SPE
vol 23 no 23 Apr 1872; pp 143-164

Bauery, A«.M.; Saal, HeJ.
'Does APL Really Need Runm Time Checking?'; SPE
vol 45 no 2; 1874; pp 129-138

Bauery, F.L. ede.

Advance Course on Software Engineering: Lecture
Notee in Economics and NMathematics 81; 1873

Bauery HeRe.
Introduction 1o ALGOLY Programming; Computer
Science Department, Stanford University; Jul
1969

Baumanny Re; Felicianoy M.; Bauer, F.L.; Samelson, K.

Introduction 1o Algel 60; Englewood Clifts,
Prentice Hallj; 1964

Bayery Re3; Griesy De; Paul, MN.; VWiehle, H.R.
*The ALCOR ILLINOIS 7080/7094 Post Mortem Dump';
CACH vol10; no 12; Dec 1967; pp 804—-808

Bayery R.3; Nurphreey, E.; Griesy, D.
User's Manual Zfor the ALCOR ILLINOIS 7080

ALGOL60 Irapngslator. secon e€ditiogn: University of
Illinois; Sep 1964

Bennety ReKe; Neumann, H.D.
'Extension ot Existing Compilers by
Sophisticated use of Macros'; CACM vol 75 no 8;
Sep 1964; pp 541-542

Bensoussany Ae.j; Clingeny CeTe; Daleys ReCe.
*The MULTICS Virtual Memory: Concepts and
Design'; CACM vol 15; no 5; May 1972; pp 308-318

Berrys; DeMo
'*"The Importance of Implementation Modules in
Algol 68'; SIGPLAN vol 55 no 9; Sep 18705 pp
14-24

[Ber2]

[Ber3]

[Berd]

[Bobl]

[Bob2]

[Bob3]

[Brail]

[Bra2]

[Bro1]

Bibliography —B.5-

Berrys DeMe
*Introduction to Oregano'; in Tous: ¥Wegner eds.;
Feb 1871; pp 171-1890

Berrys, DeM.

Qn the Deslign and Specifijcation of 1he
Prograomming lLapguase QREGANQ; University of

California Los Angeles, Computer Science
Department, UCLA-ENG-7388; Jan 1974

Berryy DeMe; Chirica, L.; Johnstony JeBe; Martin,
DQFO; Sorkln, Ae
Qn the 1Iime Reguired for Retentign; University
of California Los Angeles, Computer Science
Department, Modelling and Measurement Note no
20; Oct 1873

Bobrowy D.Ge. ede

Symbol Manipulation Languages and Technigues:
North Holland; 1968

Bobrowy DeGe 3 Buchfield, JeDes Murphy, DeLes
Tomlinson, ReSe.
"Tenex, a Paged Time-Sharing System for the
PDP-10"'; CACM vol 153 no 3; Mar 1972; pp 135-143

Bobrowy DeGe; Wegbreit, Be.
A Nodel and Stack Implementation of Nultiple
Environments?®; CACN vol 16; no 10; Oct 1873; pp
§81-603

Branquarty Pe; Lewi, Jo.
*A Scheme of Storage Allocation and Garbage
. Collection for Algol 68'; in Peck ed.; 1970; pp
199-238

Branquarty, Pe.; Lewi, J.; Sintzoff; NM.; Wodon, P.L.
*The Composition of Semantics in Algol 68°%; CACM
vol 143 no 113 Nov 1971; pp 697~708

Browny PeJe
'lLevels of Language for Portable Software'; CACM
vol 153 no 123 Dec 1972; pp 1059-1062

[Bro2]

[Brod]

[Bro4]

[Burl]

f{clal]

[clil]

[cri2]

[Cocl]

[Cozl]

[Cot2]

Bibliography ~Bes6~-

Browd, WeSe
'An Operating Environment for Dynamic Recursive

Computer Programming Systems'; CACM vol 835 no 6;
Jun 196S; pp 371-377

Browny, WeSe

A ITutorial Guide 1o ALIRAN; Bell Telephone
Laboratories, Murray Hill, N.J.; 1870

Browny, WeSe.
ALTIRAN Uger's Monusl. Ihird [Edition
Telephone Laboratories, Murray Hill, N.Je.

Bell
1973

Burroughs

Burroughs B6500 Reference Manual; Burroughs
‘Corporation} Detroit, Michigan; 1869

Clarky Bele.; Horningy, JeJe.
‘The System Language for Project SUE'; SIGPLAN
vol 63 no 83 Oct 1971; pp 79-85

Clint, Me
'Program Proving: Coroutines?; Acta Inf vol 2;
fasc 13 18733 pp 50-63

Clinty Me.; Hoarey, CoA+R.
'Program Proving: Jumps and Functions'; Agta Iaf
vol 13 fasc 33 1972; pp 214-224

Cocke,y Je; Schwartzy J.T.
Programming Lapguages and Iheir Compilers;
Courant Institute of Mathematical Sciences, New
York University, Second Revised Edition:; Apr
1970

Coffmany E«Ge: Denningy PeJe.
Qperating Systems Theory;: Prentice Hall; 1973

Cotftfmany E«Ges Blphlck, MeJe; Shoshani, A.
tSystem Deadlocks'; CS—ACM vol 35 no 2; Jun
1971; pp 67-78

[Cohl]

[Conl]

{Con2]

(pan1]

[pan2]

[Dan3]

[Pah4]

[pall]

[Dpavl]

[pEC1]

Bibliography =Be7=-

Coheny Je; Trilling, L.
'Remarks on Garbage Collection using a Two Level
Storage'; BIT vol 7; 1967; pp 22-~30

Connety JeRe; Pasternack, E.J.; VWagnery; Be.De.
*Software Defenses in Real—-time Control
Systems';]IEEE Internsatiopal Syamposium 9n Fault
Iolerant Computing; 1872; pp 94-99

Conwayys MeEe.

'Design of a Separable Transition Diagram
Compiler'; CACM vaol 63 no 735 Jul 1963; PP
396-408

Dahly Oe¢Je; Dijkstray, E.We.; Hoarey C.A«Re. edse.

Structured Programming; Academic Press, London,
New York; 1972

Dahly QOe¢Je«; Hoarey CeA«Re
'Hierarchical Program Structures®; in Dahl,

Diikstra and Hoare eds.; 19735 pp 175-220

Dahl, OedJe; Myhrhaug, B.; Nygaard, K.

Simnula 67 Conmon HBase Language: Norwegian
Computing Centre, Publication $-22; Oct 1872

Dahl. Qedes Nygaard, Ke
*Simula = amn Algol Based Simulation Language';
CACM vol 93 no 93 Oct 19665 pp 671-678

Daleyy ReGe; Dennisy JeBe.

*Virtual Memory, Processes and Sharing in
MULTICS'; CACM vol 113 no 5; May 1868; pp
306-312

Davisy A.L.
SPL = A Structured Programming Lansguage; Dept.
of Electrical Engineering, University of Utah;
Sep 1972

DEC

Prosram Logic Manual for the PDP—-10 Iime Sharing
Monitor; Digital Equipment Corporation; Jan 19689

{pEC2]

Bibliography ~Be8~

DEC

PDP-10 Reference Handhook; Digital Equipment
Corporation; 1969 ’

[Denl] Denningy PeJe.

(pen2]

[Den3]

[Des1]
[new11
[pi141]
[Dig2]
[piyg3]

{pija]

*Virtual Memory'; CS=ACM vol 25 no 3; Sep 1970;
pp 153-189

Dennis, Je.B.
'On the Design and Specification of a Common
Base Language'; Symposium o0 Somputers and
Automata. Polvtechnic Jnstitute of Braegklvpn; Apr
1971

Dennla, JeBe
"Modularity'; in Bauer ed.; 1973; pp 128-182

Des jardins, Pe.
'Dynamig Data Structure Mapping'; SPE vol 45 no
2; 18743 ppl155~-162

Dewar, R.B.x;
Il1linois Institute of Technology; Feb

1871

Dlestra, EeWo
'Recursive Programming'; Num Math vol 23 1960;
pp J12~-318

Dijkstra, E.V.
*Solution of a Problem in Concurrent Programming
Control'; CACM vol 8; no 9; Sep 1965; pg 569

Dijkstra, E.V.
"Cooperating Sequential Processes'; in Genuyvs
ed.; 1968; pp 43-112

Dijkstray E.VW.
'A Constructive Approach to the Problem of
Program Correctness'; BIT vol 8; 1968; pp
174-186

[piys]

[pigeé]

[Dpig7]

[D1g48]

[pij9]
{ Ear1].

[Ear2]

{Eard]

[Eard]

Bibliography -B.9=

Dijkstray, E.V.
A Short Introduction ta 1the Art of Computer
Programming;:; 7Technische Hogeschooly, Eindhoven,
Report EWD 316; 1871

Dijkstra, E.V.
'Hierarchical Ordering of Sequential Processes';

Acta Int vol 1; fasc 2; 1871; pp 115-138

Dlestra, EeVWo
A Class of Allocation Strategies Inducing
Bounded Delays only'; AFIPS~SJCC vol 40; 1972;
pp 933-936

DiJksfra, EeV.
A Siople Axiomatic Basis Zfor Programming

Language Congtructa; Technische Hogeschool,
Eindhoven, Report EWD 372-~0; 1973

DiJkStl‘&’ E«We '
'Notes om Structured Programming®; in Dahl;

Dilikstra. Hoare eds.; 1973; pp 1-82

Earley, Je.
*Towards an Understanding of Data Structures?;
CACM vol 145 no 10; Oct 1971; pp 617-627

Earleyy Jo
'*Relational Level Data Structures for
Programming Languages'; Acta Inf vol 2; fasc 4;
1973; pp 293-310

Earleyy Jeo

"High Level Operations in Automatic
Programming'; SIGPLAN vol 93 no 43 Apr 1974; pp
34~-42

Earleyy Je; Caizergues, P.
*A Method for Incrementally Compiling Languages
with Nested Statement Structure'; CACM vol 15;
no 125 Dec 1972; pp 1040-1044

[Elml]
[Elm2]

[Elel]

- [Els2]

[Emdl]

[Ersl]

[Evel]
[Fell]
"[Fen1]

[Fis1]

Bibliography -B.10-

El-endorf, WeRe
*Fault Tolerant Programming"'; IEEE Fault
Toleront Computing Symposium; Jun 1872; pp 79-83

Elmendorf, WeRe
*Disciplined Software Testing'; in Rustin ed.;
1970; pp 137-138

Elshoffy, Je¢le; Beckermeyery R«; D111§ Je3 Marcotty,
Me3; Murrayy Je

‘Handling Assynchronous Interrupts in a
PL/1-like Language'; SPE vol 45 no 25 1974; pp
117-124

Elspasy Be3 Levitty, K.N.; Waldinger, ReJ.; Waksman, A.
"An Assessment of Techniques for Proving Program
Correctneses'; CS—=ACN vol 43 no 23 Jun 19725 pp
97-147

van Emdeny, M.H.
'*Hierarchical Decomposition of Complexity';

Machine Intelligence vol §; 1970; pp 361-380

Ershovy A+P.
*A Multilanguage Programming System oriented to
Language Description and Universal Optimization
Algorithms?'; in Peck ed.; 18970; pp 143-162

Evershedy De«Ge; Rippon, G.E.
'High Level Languages for Low Level Users'; CJ
vol 143 no 1; Feb 1871; pp 87-80

Feldman, JeAe; Rovner, PeDe
"An Algol Based Associative Language'i CACM vol
12; no 8; Aug 1969; pp 439-449

Fenlchel. ReRo
'On Implementation of Label Variables'; CACN vol
14; no 53 Nay 1971; pp 3I48-350

Fischery A«E+.; Fischer, MN.J.
tMode Modules as Representation of Domains'; ACM
Sympegiua o0 Principles of Programming
Languages; Oct 1873; pp 139-143

Bibliography ~Besl1ll~

[Fis2] Fisher, D.

Control Structures for Programmins Languages;
Carnegie Mellon Unmiversity; 1870

[Flel] Fleck, A.
' Towards a Theory of Data Structures'; ,JCSS vol
S no 5; Oct 1971; pp 475-488

[Flol] FlOYd' ReWoe
'Assigning Meanings to Programs'; Proceedings of
a Svmposium in Applied Mathematica vol 19;

Mathematical Aspects of Computer Science;
American Mathematical Society; 1967; pp 19-32

[Fral] Frasersy A.G.

*On the Meaning of Names in Proaran.ind
Systems'; CACM vol 14; no 6; Jun 18715 pp
409-416

.
[Gell] Gelernter; H.; Hanseny JeRe.; Gerberich, C.L.
*A FORTRAN Compiled List Procesaing Language';
JACM vol7; no 1; Apr 1960; pp 87-101

(Genl] Gentlemany WeMe.
tA Portable Coroutine System'; JIFIP Computer
Software Booklet IA-3; Aug 1971; pp 94-98

[Gen2] Genuysy Fe. ed.
Programming Languages; Academic Press; 1868

[Giml1l] Gimpely JeFe.
A Degign for SNOBOL4 for ihe PDP 10. Part I =
the General; Bell Telephone Laboratories Ince,
Holmdel, New Jersey, S4D28b; May 1973

[Gim2] Gimpely J.F.

SITBOL Version 3:0; Bell Telephone Laboratories
Incey Holmdel, New Jersey, S4D30b; Jun 1973

[6nal] Gnatz, R.
Sets and Predicates in Programming Loapguases;

International Summer School on Structured
Programming and Programmed Structures, MNunich,
Germany; Aug 1973

Bibliography ~Bel1l2-

[Goll] Goldberg, P.C.; Goldbergs R.

Some Remarks 9n Proscamming Languase Design; IBM
Research Report, RC 3458; Jul 1971

[Gol2] Goldemith, CeW.

*The Design of a Procedureless Programming
Language'; SIGPLAN vol 85 no 4; Apr 19745 pp
13-24

[Goyl] Goyer, P.
‘A Garbage collector to be Inmplemented on a CDC
3100'; in Pegk ed.; 1870; pp 303-320

[Gral] Grahamy ReM.; Schroeder, M.D. eds.

Programming Lapnguages = Operating Systems;
SIGPLAN vol 8; no 9; Sep 1873

{Gril] Gries, D.

Compiler Construction for Digital Computers;
John Wiley, Sons; 1871

[Gri2] Griesy; De; Paul, M.; Wiehle, H.R.
1Some Techniques Used in the ALCOR ILLINOIS
7090'; CACM vol 8; no 8; Aug 1965; pp 496-500

[6ri3] Griesy De; Paul,y M.; Wiehle, H.R.
ALCOR ILLINOIS 7090- An ALGOL Commiler <for the
1090; Rechenzentrum der Technischen Hochschule
Minchen, Report no 6415; 1964

[Gri4] Griswold, R.E.
tSuggested Revisions and Additions to the Syntax
and Caontrol MNMechanisms of SNOBOL4'; SIGPLAN vol
93 no 2; Feb 1974; pp 7-23

[GriS] Griswoldy ReE.
Ihe Macrg Implemeptation of SNOBQL4; W.H.

Freeman and Co.; 1972

[Gri6é] Griswoldy R.E.; Poagey JeF.; Polonsky, I.P.

Ihe SNOBOL4 Programming Lapnguage; Prentice Hall
Incey Second Edition; 1971

[Gurl]

[Babl]

[Hab2]

[Hail]

[Hall]

[Hanl]

[Han2]

[Han3]

[Harl]

{Har2]

Bibliography ~Be13-

Gurski, A

tJob Control Languages as Machine Oriented
Languages'; SIGPLAN vol 8; no 3; Mar 19735 pp
18-23

Habermanny AN
"Prevention of System Deadlocks'; CACM vol 12;
no 7; Jul 1969; pp 373-377, I8S

Habermanny Ae.Ne.
ICritical Comments on the Programming Language
PASCAL'; Acta Inft vol 3; fasc 13 1873; pp 47-57

Haines,y; E«Ce.
TAL: A Structured Assembly Language?';
SIGPLAN vol 8y no 13 Jan 19735 pp 15-20
SIGPLAN vol 8, no 4; Apr 1973; pp 16-21

H&ll, AeDe
*The ALTRAN System for Rational Function
Manipulation = A Survey'; CACM vol 14; no 8; Aug
1971; pp 517-521

Haneyy FoMeo
‘*Module Connection Analysis - A Tool for
Scheduling Software Debugging Activitiesg!®;

AFIPS~FJICC vol 41-1; 19725 pp 173-179

Hanseny PeBe.

Concurrent Prosramming Conceptia; International

Summer School on Structured Programming and
Programmed Structures, Munich, Germany; Aug 1973

Bansen, PeBe.

Qpverating Syvatem Principles; Prentice Hall; 1873

Harrisony M.C.

Rata Structures:s Prosramming;: Courant Institute

of Mathematical Sciencesy New York University;
1971

Harrison, We.
Ibe Production of Cenonical Forms for Data Ivpe

Representations; IBM Research Reporty, RC 4420;
Jul 1873

(Hatl]

[Baul]

[Benl1]

[Hirl]

[Hoal]

[Hoa2]

{Hoa3d]

{ Hoad]

[(HoaS]

[Hoa6]

{ Hoa?7]

Bibliography =Be.l4-

Hatfieldy DeJe.; Gerald, Je.
" "Program Restructuring for Virtual Memory';
IBM-~-SJ vol 103 no 33 1971; pp 168-182

Haucky EeAe; Denty Be.Ae.
*Bouroughs B6500/B6700 Stack Mechanism';
AFIPS=-SJCC vol 325 1968; pp 245-251

Henhapl, We.; Jones, Co.Be.
YA Fun Time Mechanisnm for Reterencing

Variablea®; IPL vol 15 no 1; 1871; pp 14-16

Hirschbergy D.Se.

TA Claas ot Dynamic Memory Allocation
Algorithms'; CACM vol 16; no 10; Oct 1973; pp
615-618

HO&PQ' CeAaRe
*Record Handling'; in Genuygs ed.; 1968; pp
291-348

Hoarey CeAeRe
'An Axiomatic Basis for Computer Programming';
CACM vol 125 no 10; Oct 1969; pp 576-580, 583

Hoarey CeAeRe
*Procedures and Parameters: an Axjiomatic
Approach'; in Engeler ed.; Oct 1870; pp 102-115

Hoarey, CsAeRe
"Proof of Correctness of Data Representations';
Acta Int vol 15 1972; pp 271-281

Hoare, CeAsRe

*Notes on Data Structuring'; in Dabls Di.iksatra
and Haopre eds.; 1973; pp 83-174

Hoare, CeAeRe
'A Note on the FOR Statement'; BIT vol 12; 1972;
pp 347-365 :

Hoarey, C.A«Re.
*Hints on Programming Language Design®'; Invited
Address at SIGACT/SIGPLAN Symposius on
Principles of Programming Languages; Oct 1973

Bibliography ~Bel5~-

(Hoa8] Hoarey; CesAcRe.
*Towards a Theory of Parallel Programming'; in

Hoare; Perrot eds.; Sep 1871 pp 61-71

[Hoa9] Hoarey CeA«R.; Perrot, R.N. eds.

Qperating Syatems ITechnigues; Academic Press;
1972

[Hoal0] Hoarey CeAeRe; Wirth, N
*An Axiomatic Detinition of the Programming

Language PASCAL'; Acta Inf vol 2; fasc 43 1973;
pp 335-356

[Hol1] Holty R<Ce .
‘Comments on Prevention of Systems Deadlocks';
CACM vol 145 no 1; Jan 1971; pp 36-38

[3012] Bolt, ReCo

Qn Deadlock in Computer Syatems; Cornell
University; Jan 1971

[Hol3] Holt, ReC.
' *Some Deadlock Properties of Computer Systems';

CS=ACM vol 45 no 3; Sep 1972; pp 178-196

[Honl] Honeywell

Series 6000 Summary Description: Honeywell
Information Systems, DA48; 1972

[Hon2] Honeywell
Series 600/6000 Macro Assembler Program (GMAP);
Honeywell Information Systems, BN86; 1873

[Horl] Horningy JeJde; Lauer, H.Ce; Melliar—Smithy PeMe;
Randell, B.
A Program Siructure Ifor Error Detection and
Recoverv: University of New Castle Upon Tyne,
Technical Report Series, no 59; Apr 1974

[1BM1] 1IBM
IBM System /360 Principles 49f Queration; IEM
Corpe.ys GA22-6821; Sep 1968

[IByz]

[1BN3]

[1BM4]

[Ing1]

[Ivel]

[(Jonhl]

{Jonh2]

[Rail]

[Katl]

Bibliography -B.16-

IBM
PL/1l lLansungse Specificationg: IBM GY33-6003-2;
Jun 1970

IBNM
IBM System /360 Qperating Svatems PL/1 (F),
Leanguage RBeference Magual; IBM GC28-8201-3,
Fourth Edition; Jun 1970

IBM

IBM Svatem/360 Operating Syaten Assembler
Language;: IBN GC28-6514 sixth edition; Jun 1868

Ingermany PeZe.
*THUNKS A VWay of Compiling Procedure Statements
with some Commenteg on Procedure Declarations';
CACM vol 43 no 1; Jan 19613 pp 55-58

Iversony K.E.

A Progranming Language: John Wiley and Sons;
1962

Johnsony S«Cs; Kerningham, Be.We.
Ihe Programming Languoge B Bell Telephone
Laboratories, Murray Hilly, N.J. Computing
Science Technical Report #8; Jan 19873

Johnstony JeBe.
'*The Contour Model of Block Structured
Processes'; in Jgu;: ¥Yegner eds.; Feb 1871; pp
§5-82

Kaln, ReYe
*Block Structuresy Indirect Addressing and
Garbage Collection®'; CACM vol 123 no 7; Jul
1869; pp J95-388

Katzan,y He.
An APL Approach to the Representation and
Manipulation of Data Structures'; JJCIS vol 1;
no 23 Jun 1872; pp 93-113

[Kerl]

{ Enol]
[Eno2]

[Knul]

tKnu2]

[Knud]

[Enu4d]

[KnusS]

[Kos1]

Bibvliography ~Bel7-

Kerninghamy BeWe; Plauger, PeJe.
Progromming Styvle for Programmers and Language
Deslianers; Bell Laboratories, Murray Hill, New
Jersey; 1973

Enowltony, K.Ce.
'A Fast Storage Allocator'; CACM vol 8; no 10;
Oct 1865; pp 623=-625

Knovlton, KeCo.
'A Programmers Description of L®'; CACM vol 9;
no 83 Aug 1966; pp 616~625

Knuth, DeEe
Ihe Axt of Computer Programming
Vol 1 Fundamental Algorithms; 1968
Vol 2 Seminumerical Algorithms; 1970
Vol 3 Sorting and Searching; 1872
Addison VWesley

Knuth, De.Ee.
*An Empirical Study of FORTRAN Programs®'; SPE
vol 15 no 23 Apr 197135 pp 105-133

Enuthy D.E.
A Review 9of "Siructured Prosrammipg": Stanford

University, Computer Science Department,
STAN~-CS=73-371; Jun 1873

Enuthy DeEe; Bumgarnery L.Le.; Ingermany P.Ze; Merner,
JeNe; Hamiltony DeEe; Lietzkey MePe; Rossy DeTe.
A Proposal for Input OCutput Conventions in
Algol 60'; CACM vol 73 no 5; May 1964; PP
273-283

EKnuthy DeE+.; Mernery JeNe.
*Algol 60 Confidential?; CACM vol 1; no 63 Jun
1961; pp 268-272

KOBiDSki, PeRe
A Data Flow Laoguoge Ifar 9QOperating Systens
Programming:; IBM Research Report RC 4166; Dec
1972

[Kos2]

[Lael]

[Lanll
[Lanl]

[Ledl]
[Led2]
[Leel]
[Lewl]

[Lini]

{Lipl]

Bivliography =B.18-

Kosinski, Pe.R.

A Data Flow Prosrammipns Language: IBM Research
Report RC 4264; MNar 1873

Laevenworths; BeNe. ede.
Special Issue on Contrel Sixuctures dn
Prograpming Lapsuages; SIGPLAN vol 7; no 115 Nov
19872 : .

Lampsony BeWe : .
'*A Note on the Confinement Problem'; CACM vol
16; no 10; Oct 1873; pp 613-61S5

Langmaack, He.
'On Procedures as Open Subroutines I'; Acta JIof
vol 2; fasc 43 1873; pp 311-334 '

Ledgardy, H.Fo
" 9Ten Mini Languages: A Study of Toplical Issues
in Programming Languaaea'; CS—=ACN vol 3. no 33
Sep 1971; pp 115-146

Ledgard, HeFe.
*A Model for Type Checking'; CACM vol 15; no 113
Nov 19872; pp 9856-966

Lee ,' JQA.‘N.
*The Formal Definition of the BASIC Language';
€J vol 15; no 1; Feb 18725 pp 37-41

Lewigsy CeHe; Roseny B.Ke.

‘Recursively Defined Data Types'; ACM Symposium

on Principles of PErograpming Languages; Oct
1973; pp 125-138

Lindseyy CeHe; van der Meulen, S.G.

Informal Introduction to Algol 68; North Holland
Publishing Co.; 1871 :

Llpovskl. Gede
'0n Data Structures in Associative Memories'; in

Tousi ¥Yegpner edse.; Feb 19715 pp 346~-365

fLiel]

[Luml]

[Mad1]

[Marl]

[Mcc1]

[McC2]

[Mck1]

[Mill]

[Morl]

[Mor2]

Bivliography «Be19-

Liskovy Be; Zilles, SeNe.
‘Programming with Abstract Data Types'; SIGPLAN

Symposium 9n Yery High Level Languageg; Mar
1874; pp 50-59

Lumy, Ve.Yo.
ftGeneral Performance Analysis of Key—-to—Address
Transformation Methods Using an Abstract File
Concept'; CACM vol 16; no 10; Oct 19735 pp
603~-612

lladnlck, SeE.
A Modular Approach to File System Design'; JAGJ
vol 23 no 3; 1969; pp 7-34

Marshall, Se.
"An Algol 68 Garbage Collector'; in Peck ede.:
1970; pp 239-244

NcCarthyy Je3 Abrahams, PeWe; Edwards, DeldJes Hart,
TePe; Levin, Mele.
LISP 1+5 Progrommer's Manual; MIT Press; 1962

McCarthy, Je; Corbatd, FeJe; Daggett, MM
*The Linking Segment Subprogram Language and
Linking Loader®; CACM vol 6; no 7; Jul 1863; pp
391-395

McKeemany WeM.3; Horningy JeJeo; Wortman, De.B.

A Compiler Geperator; Prentice Hall Inc.; 1870

Nillery JeSe; Vandever, WeHe.
'On Software Quality'; IEEE Fawlt Igolerant
Computing Symposium; Jun 18725 pp 84-88

Morrisy JeHe.
'Protection in Programming Languages'; CACMN vol
16; no 135 Jen 1973; pp 15-21

Morrls, JeHe
'Types are not Sets'; ACM Sympozsium on

Principles of Erosramming Languagess: Oct 1873;
pp 120-124

[shol]

(sib1]

[sim1]

[sit1]

[slul]

[smil]

[Smlﬁ]

[sol1]

[(sol2]

Bivliography ~Be24~

Shoomany, M.L.
*Probabilistic Methods for Software Reliability
Prediction'; JEEE Fault IJIglerant Computing
Symposium; Jun 1872; pp 211-215

Sibleyy Ee¢Be; Taylory ReV.
4 Data Delinition and Mapping Language; Michigan
University Ann Arbor, Department of Industrial
and Operations Engineeringy, AFOSR~TR-73-1521;
Jan 1872

Simony JeCe; Guihoy G
'On Algorithms Preserving Neighborhood +to File
and Retrieve Information in a Memory'; IJCIS vol
1 no 1; Mar 1972; pp 3-15

Sltea, ReLo.

ALGOLY Reference Mapual; Stanford University;
Feb 1972

SIUtZ’ DeRe
Ihe Flow Graph Schemats Model of Parallel
Computation:; MIT Project MAC, NAC-TR-S53; Sep
1968

Smithy DeCe; Eneny HeJdoe
NLISP2; Stanford University, Computer Science
Department, STAN-CS=73-356; May 1973

Smith,y, D.K.
*An Introduction to the List Processing Language
SLIP'; in Rogen ede.; 1967; pp 393-418

Solutseff, N.
A Clagsification of Extensible Programming
Languages'; JIPL vol 15 no 3; 1972; pp 81-96

Solutseff, N.
*On a Notational Device for the Description of
Pointer Free Operations on Structured Data'; IPL
vol 2; no 6; Apr 1974; pp 158-159

[stal]

[Thol]

[Toul]

[Turl]

[Tur2]

[Wan1]

[watl]

[wegl]

[Wweg2]

Bibliography ~Be25~

Standiah, TeAo
A DRatas Definition Facility for PErogramming
Lepngungea; Carnegie Institute of Technology; May
1967

Thorelli, L.Ee.
*Marking Alaorithns" BIT vol 12; 1972; pp
555~568

T;u, J;T.§ WGaﬁer, Pe edse.
Proceedings of a Symposium 9n Data Structurea in

Programming Lansuages; SIGPLAN vol 65 no 25 Feb
1971

Tursky, WeMo .
'*Data Structures and Their Ordering'; l1AGJ vol
3; no 2; 19703 pp 141-150

Turskys WeMe.
TA Model tfor Data Structures and its
Applications';
Acta Int vol 1; fasc 13 1971; pp 26-34
Acta Inf vol 1; fasc 4; 1872; pp 282-288

Wangsy Ae«; Dahl, G.Je.
'Coroutine Sequencing 1in a Block Structured
Environment®; BIT vol 115 1971; pp 425-449

Watson, Re.V.

Iime~sharing System Design Concepts; McGraw Hill
Book Co.j 1970

Vegner, P.
Progrenming Languases.s Information Siructures

and Machine Qrganization; McGraw Hill, New York;
1968

Wegnery P ,
'Data Structure Models for Programming
Languages'; in Tou; ¥Yegner eds.; Feb 19715 pp
1-54

[Weil]
;wgiz]
[we11]
[Wha;]

[will]

[wil2)]

(wirld]
[Win1)
[w1r1]

(wir2]

Bibliography ~B«26~-

Weissman,y, Ce.

LISP 1:5 Primer; Dickenson Publishing Coe. Inc.;
1967

Weizenbaum, J.
Symmetric List Processor'; CACM vol 6; no 9;
Sep 1963; pp 524-544

Vellgy MeBej Morrises JeB.
'The Unified Data Structure Capability in MADCAP
VIi'; IJCIS vol 13 no 33 Sep 19725 pp 193-208

WVhaleys; A<D
A Failure Tolerant Filing System'; SPE vol 2;
no 33 Jul 1972; pp 287-291

Wlle, DeSe Geschkey Ceo
‘An Implementation Base for Efficient Data
Structuring®; JJCIS vol 1; no 3; Sep 1972; pp
209-224

VWilkesy M«Ve
'Associative Tabular Data Structures'; JJCIS vol
1; no 3; Sep 1972; pp 225~233

Williamse, Re.

fA Survey of Data Structures for Computer
' Graphics Systems'} CS=ACH vol 33 no 1; Mar 1971;
pp 1-21 .

van Winjgaarden, Ae.; Mailloux, BeJej; Pecky JeEJL.;
Koster, CeHoAo
*Report on the Algorithmic Language Algol 68';
Num Math vol 14; 1869; pp 79-218

erth, Ne.
'*PL360y, a Programming Language of the 360
Computera'; JACM vol 153 no 13 Jan 1968; pp
37-74

'irth, Ne.

‘The Programming Language PASCAL'; Acta Ingt vol
1; 18713 pp 35~63 :

[wir3d]
[wird]
[wirS5]
[(wire]

[wir7]

[Wodl]
[Wod2]
[Woo1l]
[wull]

['ulé]

Bibliography ~Be27=~

Wirth, N.
'Program Development by Stepwise Refinement';
CACM vol 143 no 4; Apr 19715 pp 221-227
Wirth, N.
Ihe Progrommipns Lansuase PASCAL (Revised
Report):; Eidgenossische Hochschule, Zurich, CSTR
S§; Nov 1972
erth, Ne
Svstematic Progranming: Prentice Hall; 1873
VWirth, Ne.; Hoarey, CesA«R.

*A Contribution to the Development of Algol?;
CACM vol 93 no 63 Jun 1866; pp 413-431

Wirthy, N.; Weber, He.
*RULER: A Generalization of Algol and its Formal
Definition®
CACH vol 8; no 1; Jan 1966; pp 13-23, 25
CACM vol 93 no 23 Feb 1866; pp 89-99

Vodony PeLe.
'"Data Structures and Storage Allocation'; RIT
vol 8; 1968; pp 270-282

Wodony PeLe
fMethods of Garbage Collection for Algol 68'; in
Peck ed.; 1870; pp 245-264

Woodwardy P.M.
*Practical Experience with Algol 68'; SPE vol 23
no 13 1872; pp 7-19

Wulf, We.A.; Russell, D.B.; Habermann, A.N.
'BLISS: A Language for Systems Programming?';
CACM vol 143 no 12; Dec 1871; pp 780-780

'ulf, WedAe s Russell, DeBe; Habermanny AeNe; Geschke,
Ce; Appersony Je; Wile, D.S.

BLISS Reference Manual; Carnegie Mellon
University, Computer Science Dept.; Jan 1870

F!ula]
;goul]
[Zel1]

[zit1]

[ziv12]

Bibliography =Be28~

'\111’ 'o; Shaw, Me
"Global Variable Considered Harsful'; SIGPLAN
vol 8; no 2; Feb 1973; pp 28-34

Youngsy Ee¢Ae

Error Proneness in Programming; University of
North Carolina; 1970

Zelkovitz,"ﬁo
'Interrupt Driven Programming®; CACM vol 14; no
6; Jun 1971; pp 417-418

Zillesy SeNe
*Procedural Encapsulation: A Linguistic

Protection Technique'; in Graham:s Schroeder
eds.; Sep 1973; pp 142-146

211168, SeNo

Yorking Notes 9pn Errar Handling: MIT Project
MAC,; CLU Design Note 6; Jan 1974

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

