A UNIFORM THEORY OF AUTOMATA

by
T.S.E. Maibaum

Research Report CS-74-15

Department of Applied Analysis and
Computer Science

University of Waterloo
Waterloo, Ontario, Canada

October 1974

A UNIFORM THEORY OF AUTOMATA

T.S.E. Maibaum

Dept. of Applied Analysis
and Computer Science
University of Waterloo

Waterloo, Ontario.

0. INTRODUCTION
In this paper we set out to generaliSe certain conventional
classes of automata (finite, pushdown, nested stack). We do this to

prove classical theorems equating:

i) the class of recognisable sets and the class of sets
generated by regular grammars;
ii) the class of sets recognised by pushdown automata and the
class of context free sets;
iii) the class of sets recognised by nested stack automata and the

class of indexed sets.

These theorems, moreover, are proved not only for classes of sets of

strings but also in the generalised setting of classes of sets of terms

over a many-sorted alphabet. At the same time, the apparent close relation-
ship between the different classes of automata is made evident. It turns
out that pushdown (and nested stack) automata are nothing but finite auto-

mata in disguise.

We can motivate our generalisation in the following way: Recall
that a conventional finite automaton M over some string alphabet I is de-
fined as a 4-tuple <Q,6,q0,QF> where Q is the set of states, §:Qxz=»Q is the
next state function, d9 is the initial state, and QFELQ is the set of final
states. & is extended to §:1*>Q by: 5(e)=q0 (e is the empty string) and
s(aw) = 8(3(w),a). The set U < I* recognised by M is {w ¢ Z*|5(w) € QF};

i.e. U is the inverse image under & of the set of final states QF.

Biichi showed that we could regard M as a unary (monadic) algebra

in the following way: The carrier of our algebra is Q,qo is a constant

2=
(initial) symbol and for each a ¢ %, a unary (monadic) function
Ga:Q+Q such that Ga(q) = §(qsa). Thus the operator domain of our
algebra has unary symbols I and a single nullary symbol (corresponding
to the initial state qo). We have only to specify what we choose our
final states to be. Thus the set recognised by such an automaton becomes
a function of the set of final states chosen. More precise1y, define
§:5%+Q by 5(e)=q0, é(aw) = Ga(g(w)) for all a « £. (Note that this
definition of 5 is essentially equivalent to that above). Then we write
th(QF) = {WeZ*lé(w) € QF} and say U < £* is recognisable if and only if
U=th(QF) for some choice of final states QF. Thatcher and Wright and
Doner used this point of view to obtain the so-called generalised finite
automaton by allowing non-unary symbols (and, so, transition functions)

in their automata.

Our formalisation of a generalised finite automaton, though
equivalent to those of Thatcher and Wright and Doner, paves the way to the
definition of generalised pushdown and nested stack automata. The whole
concept turns on the formalisation of the statement: "We feed our finite
automaton a set of strings Z* and it accepts only those strings which
leave the finite automaton in a final state." We view this "feeding" process
as running a certain "program" on our automaton ("machine"). This

program is the string-forming algebra. That is, it has as operations
functions which (left) concatenate a symbol to a string. Our program
then runs on our automaton by concatenating a symbol a ¢ X to a string w
while the automaton makes the corresponding fransition Ga(q) (with

§{w)=q). Thus, started out in the initial configuration pair of empty

string and initial state, our program/machine pair will produce a

-3-
sequence of ordered pairs (wo,qo), (wl,q]),...,(wn,qn) where Wi pp=ans
and 6a(q1)=qi+] for O<isn-1. Then our automaton accepts a string w if
and only if (w,q), {for q a final state) appears at the end of such a
sequence. The "choosing" of our final states can be done by a map which
picks out certain states in our automaton while the set accepted by an
automaton is specified (as a function of the final states) by a "pro-

jection" map which selects the words from the ordered pairs with final

states as the second element.

In Section 1, we proceed to introduce many-sorted alphabets
and some basic algebraic concepts. In Section 2, we define different
classes of grammars over many-sorted alphabets and state some results
concerning them. In Section 3, we present an algebraic theory of pro-
grams and machines. In Section 4, we apply the ideas of Section 3
to those of Section 2 to define a generalised theory of automata. In
Section 5, we summarise our results and suggest possible extensions

of our work.

1. Many-sorted Structures

Let I be any set, called the set of sorts. A many-sorted
}

is said to be

alphabet (sorted by I) is an indexed family of sets Q={Q

<W,i> <w,i>el*xI.

Q is the set of symbols of type <w,i> while f ¢ Q

<w,i> <W,i>

of type <w4i>, arity w, sort i, and rank 2(w).(2(w) is the length of the

string w). A symbol of type <\,i> (A the empty string) is called a constant

(or nullary) symbol of sort i.

An Q-structure AQ (or just A if the alphabet is obvious from

the context) is an indexed family of sets A={Ai}1 e I together with a

-4-

family of assignments a Q »-[AW > A1] from symbols in Q

<WwW,i>""<w,i> <w,i>

to relations from AW=Aw x...wa to Ai' ([AW+A1] is the set of relations
0 n-1

from AY to A). Ifa Q AW—>A1.) (where (AW—>A1.) is the set

.t R
<, 1> <w, 1>

. W .
of functions from A" to Ai) then we call AQ an -algebra. In either case,

(f) for f e Q

we denote a by f, (or by f itself if it is obvious

<wW,i> <W,i>

from the context which we mean). A 1is called the carrier of AQ.

Example 1: Let I={S,Q2,A}. S is the sort "states", & is the sort "input

symbols", and A is the sort "output symbols". Let A’={A1.}1.€I be a family

of non-void sets such that A, (the set of output symbols) is finite. We

={§} while all other I We assign

have Z<1552,5>={6} and I So.A>

to § the change of state operation Sp of M and to § the output function

aw,i> 9

§A of M, where, of course, M is a sequential machine with states AS’

input symbols AQ, and output symbols AA'

Analogously, we could describe a finite automaton as a
%!-algegra B (although this is not the approach we will take in the remainder
of this paper), with sorting set I'={S,Q}, where BS is a finite set of states
and BQ is a finite input alphabet. ' consists of ZI<SQ,S> = {8}, called the

next state function, and the set ZI<A S>={qo}, called the initial state of B.

Example 2: Let Qﬁ{Qn}neN be a ranked alphabet (i.e. an alphabet indexed by

the natural numbers N). —Let I={1}. To each f ¢ 2 (an operator symbol

of rank n) assign the type <1;;+141?. So ranked alphabets are special cases
of many-sorted alphabets: ngm:}yeihose sorted by an index set consisting of
a single element. Algebras over ranked alphabets will thus have carriers

consisting of an indexed family of sets containing exactly one set.

-5-
Fix the alphabet Q. Let A and B be Q-structures. A homomorphism

¢:A >~ B is an indexed set of functioné{¢1:Ai > B1.}1.€I which preserves

the structure of the algebra A. That is, for any f € Q and

<wW,i>
(ao,...,an_]) e AW (i.e., a; € ij for 0<js<n-1), ¢i(fA(a0,...,an_1)) =
fB(¢W0(aO),...,¢W (an_])). Homomorphisms which are injective, sur-

n-1
jective or bijective are called monomorphisms, epimorphisms, and

isomorphisms, respectively.

A congruence on A is an indexed family of equivalence relations

q={qi}iel’ a5 defined on Ai,‘such that if feQ and aj’bj € ij for

<w,i>
O0<j<n-1, then the following substitution property holds: ajqw bj for

0<j<n-1 implies aq;b where (a;,...,a_ 1,3)s (bns...sb. 1,b) € F,.
i 0 n-1 0 n-1 A

The direct product AxB of A and B is the structure with carrier

}

{A., x B

j ; and relations defined componentwise.

iel

Let X = {Xi}isl be any indexed family of sets. Then WQ(X) =

{WQ(X)i}ieI’ the indexed family of sets of words (or terms, or expressions)

on the alphabet Q@ and generators X is the least family of sets satisfying:

(0) X v 9y 4y € NNy

(i) For each f ¢ Q and

<wW,i>

W
(to,...,tn_]) e WQ(X) > fto---tn_-l € WQ(X)_i.

If each X;=¢, we denote WQ({¢}ieI) by W,. We can make WQ(X) into an

Q-algebra (called the word algebra or algebra of expressions) by defining

the assignment of operations for f e Q as follows: wa(X) (tO""’tn-1) =

<w,i>

ftO"'tn—l' That is, WQ(X) is the "expression-forming algebra".

-6-

.0 L1 = {a,b}, Q<10’0> = {*},

= {+}. Let X] = {x} and XO=¢. Then we may describe the set

Example 3: Let I={0,1}, @ = {1}, @

and Q<]1’]>
WQ(X)O as terms of the form A,*aX, *bA, *+aal, *+ax), etc. (generally
terms of sort 0 are of the form *+()*()). Elements of WQ(X)1 are of
the form a,b,x,+aa, +bb, b, +ba, +ax, +xa, +bx, +xb, ++aataa, etc.

(generally terms of sort 1 are of the form ++()+()). O

Let X, = {x, } for some w=w,...w ;e I*.

!wos-..sxn_1’Wn;

We say XW is indexed by w € I*., As an I-sorted alphabet, we have
) by W (X.).
Similarly, we define X, = {lew e V} for some V c I*, WQ(XV) is then

(Xw)i = {x,

5, € X ld<n}. We shall denote Wo (L(X,) 53

iel

defined in the obvious way.

Example 4: Let @ be as in Example 3 and let w=10. Then XW'={x0 1°%7 0}.
wQ(Xw)O = {A,*a\, *b), *XO,1X1,O’ etc.}. WQ(XW)1 is the set of expressions

of the form ++()+() with only X091 appearing in the expressions. O

Theorem 1: Let A be any Q-algebra, X any family of generators, and
¥ = {p}; _; any indexed family of assignments'{wizxi +-A1}. Then
extends in a unique way to a homomorphism 7§ : WQ(X) ~ A. In particular,

there is a unique homomorphism from WQ to A. O

We now proceed to briefly explain how to obtain a number
of different algebras closely related to a given algebra AQ. First,

the raised algebra (or subset algebra or relational algebra) B(A)

of an Q-structure A: The carrier of B(A) is the indexed family of sets
. A,
{2 1}181. The operations of B(A) are defined as foliows: Given

(Sps...S.) e B(A)W, feq

0°°°*°*°n-1 define fB(A)(SO,...,Sn_1) = Sn £ B(A)_i

<W,1>

-7-

if and only if Sn = {an|‘3a0...3an_] such that (ao,...,an) € fA and aj € Sj

A

for 0 < j < n-1}.

Let e ¢ WQ(Xw)i' We say e is an expression of fype <w,i>.

e defines a function, called a derived operation, Vo On the carrier of an

. . . w ‘
Q-algebra A in the following way: For (ao,...,an_]) e A", ve(ao,...,an_1)
= y(e) where y is the (unique) homomorphism generated by the assignments

¥ (x;) =a, for0 < j<n-1. v_is called a derived operation because
Wj J’Wj e ‘
it is derived from the operations of the algebra by composition.

Consider the new I-sorted alphabet Q' where Q w,i> = WQ(Xw)i

= ¢ otherwise. We make the

(i.e. e e WQ(Xw)i)

for w the arity of some symbol in Q and Ql<w,1>

Q-algebra A into an Q'-algebra by having e e Q' .

name the operation ve:AW »-Ai as defined above. Denote this new algebra

by ¢(A). C(A) is called the (initial) completion of A.

Now Tet D(I) = {<w,i>|w is the arity of some f ¢ @ and i ¢ I}.
That is, the elements of D(I) are just those of the subset of I*xI with
the first argument an arity of a symbol in Q. That is, the elements

of D(I) are just the types of the operations in the algebra C (). We use D(I)

to sort an alphabet D(), called the derived alphabet of 2, which is defined in

the following way:

(i) If feQ then f € D(Q)

That is, f is a nullary of type <i,<w,i>> in D(Q);

<A, <W,i>> °

(i1) For each w an arity of an element in @, 2(w) = n>0,

J .
Tet & € D(Q)<A,<w,wj_]>> for 1 < j < n. These symbols are

called projection symbols;

(iii) For each <w,v,i> ¢ I« 1% x I, Tet

Cawyv,i> © D(Q)<<w,1><v,w0>...<v,wn_1>,<v,i>>.

-8-
These are called composition symbols.
We define an algebra D(A), called the derived algebra of A, as follows:

(i) The carrier of D(A) of sort <w,i> ¢ D(I) is the set of
operations of type <w,i> of the algebra C(A). Or,
equivalently, it is the set of derived operations of

type <w,i> of the algebra A;

(ii) The operator domain of D(A) is D(Q) and assignment
of operations to D(Q) is done by:

(a) assigning to ¢ an operation of composition with first

<W,V,i>
argument of sort <w,i>, n arguments of sort <v,wj> for

0 < j <n-1 and result of sort <v,i>. That is, Cew,v, 1> composes
a derived operation of type <w,i> with n derived operations of type

<v,wj> (0 < j < n-1) and the result is a derived operation of type <v,i>;

(b) Assigning to f ¢ D(Q)<A <.i>> » Where f e Q » the operation

<W,i>

defined by fA' That is, f is assigned the derived operation fA;

and

(c) Assigning to 6% e D(Q) the operation of projection.

<A, <W,W ._.|>>

and tk e D(A) for 0 < k < n-1,

That is, given c <Vw>

<W’Y’Wj-1>
J =
then ¢ S (dw,t .]) t.

<w,v,wj_1 0’ °°°>"n- j-1°
Thus the derived algebra D(A) of an algebra A has as carrier
the derived operations of the algebra A and has as operations composition
and projection functions. We will be mainly interested in the algebra

WQ, its derived algebra D(WQ) and the word algebra on the derived alphabet

D(R), namely WD(Q)' Note that if @ is finite, then so is D(Q). Similarly,

if A is finite, so is D(A). Let YIELD:WD(Q) - D(NQ) be the unique homomorphism.

Example 5: Consider the unary alphabet A where Aq = {2} and A = {a,b}.

(That is, we are considering the string alphabet {a,b}). From Example 2,

we know that A is a many-sorted alphabet sorted by the set I = {i},
for example. That is, Ag = A<A,1> and Ay = A<1,1>. So D(I) =
{<A,i>,<i,i>}7 D(A) is given as follows: D(A)<>\’<>\’1.>> = {2}; D(A)<A,<i,1>>=
{a,b,a!};
i
D(A) = {+}; and D(a) = {*}, If we

<<i,i><i,i>,<i,i>> <<, i><A,i>,<A,i>>
represent <\,i> by 0 and <i,i> by 1, then D(I) = {0,1} and D(A)<A 05"
{7}, D(A)<A 1> = {a,b,s}}, etc. Note the close relationship of this

alphabet D(A) to the alphabet @ of Example 3.

Now let us start with D(A) and try to obtain D(D(A)). D(D(I)) =

{<2,05,<),15,<11,1> <10,1>,<11,0>,<10,0>}.

D(D(4)) = {A};

<A <A ,0>>

) 1),
DID(A)) 5 ey 155 = (2548703

= (] 2 .
DN 11,155 = oqps Syq0 *33
= (sl 7,

DD(8)) 4y 17,955 = 0

_ <2
D(D(2)) ¢y 10,055 = (870> *} and
C<w,v,1‘> € D(D(A))<<w,1'><v,w0>...<v,wn_]>,<v,1'>>

for each (w,v,i) € {10,11 x {X,10,11} x D(I). O

-10-

Remark: If we are given two I-sorted alphabets Q and I such that

c X

5 *
w,i> < for each <w,i> ¢ I* x I), then we

Qcr (that is, Q i
will adopt the following convention for the meaning of D(Q): We will
consider D(Q) to be a subset (in the extended sense above) of D(Z)
by identifying it with the following (extended) subset of D(I): each
f in Q is in D(Q), each Gi is in D(Q) for w an arity of some symbol

inQ and 1 < j < n, and each c is in D(Q) for w,v arities of

W,V,i>
symbols in Q. Thus if @ < £, then we are able to say D(2) < D(Z).
(Note that D(Q), as defined according to the rules for obtaining the
derived alphabet of @, is not in general a subset of D(Z), even if

Qcz).

2. Formal Languages

In this section we summarise some of the definitions and results
of Maibaum (2), (3). Let A = {Ai} and B = {Bi} be two families of
indexed sets. We extend all set theoretic operations from sets to indexed
families of sets componentwise. For example, A uB = ?Ai U}Bi} and AxB={A.xB.}.
A many-sorted alphabet is finite if the disjoint union of the sets of
different types in the alphabet is finite and I is finite. A many-sorted
structure (algebra) is finite if the alphabet is finite and the carrier of

each sort is a finite set.

Let @ be a finite alphabet. A finite Q-automaton is a finite
Q-structure A. If A is an algebra, we say A is a deterministic automaton;
otherwise A is said to be non-deterministic. An indexed family of sets
U < U, is said to be recognisable if there exists an Q-automaton A (deter-

ministic or non-deterministic) and a choice of an indexed family of final

-11-
states AT c A such that bhy(AT) = U. bhy (A7) = (¢t ¢ (). |n% (1) « AT}
= A - P € Walilly i'iel
is the behaviour of the automaton A with respect to the choice of the
family of final states AF and hA is the unique homomorphism from wQ
to A. We can prove a number of classical results: the equivalence of the
classes of deterministic and non-deterministic automata, the closure of

the class of sets accepted by finite automata under the boolean operations,

the decidability of the emptyness, finiteness, and equivalence problems, etc.

Let = be a many-sorted alphabet and Q c z. A semi-Thue relation

(or production) on terms (over &) is a pair p = (s,s') usually written
s ~s', where s,s' ¢ WZ(Xw)i’ some i € I, and no more elements of Xw

appear in s' than in s (although the variables that do appear in s can

be repeated or omitted in s').

We define the relation 5> on WZ as follows for t,t'e (Wz)j’ some
Jjel:
t E>t' if and only if there exists t ¢ Wy (Xi)j (here i is considered
to be the string of length one comnsisting of the symbol i) and
w L . -
(tO""’tn-1) € (WZ) such that\Subi (t; SubW (S’tO”"’tn—l))'t and

Sub; (t5 Sub, (s'; ty,...ot q))=t'.

Subv(-; tO,...,tn_]): WZ(XW) > Wy is the homomorphism generated by the

assignments O 5w, t for 0 < j < n-1. Intuitively, t 5> t
I

if t' can be obtained from t by replacing a subterm of t of the form

Sub, (s3tys...st 1) by a subterm of the form Sub, (s'3tgs...st 1)

A semi-Thue grammar is a 4-tuple G = <Q, I, P, Z> where:

(i) = is a finite, many-sorted alphabet sorted by I;

-12-
(i) @ < = is a distinguished subset called the terminal

alphabet. We call N = £ - @ the non-terminal (or

auxiliary) alphabet;
(iii) P is a finite set of semi-Thue productions;

(iv) Z is the axiom and Z « N for each i ¢ I.

<A,i>

Define the relation => on wZ as follows for t,t' ¢ (wz)i: t E> t!
G
if and only if there is some p ¢ P such that t S > t'. Let

> be the reflexive, transitive closure of E >, The relation

> is called derivation and we will drop the G if it is obvious

U ADN *

which grammar we mean. The indexed family of sets generated by

*
the grammar G = <@, =, P, Z> is L(G) = {te(wﬂ)1|z 5 > t}ieI'

In this paper, we will study two restrictions on the types of
productions allowed in a semi-Thue grammar. A grammar G = <Q, £, P, Z>

is called regular if:

(i) Z<w,i> = Q<w,1> for 2(w)>0. i.e., we have only nullary non-

terminal symbols;

and (i) p e P is of the form A - fB...B,_1 where A ¢ Ner,is®

feQ and Bj e N for 0 < j < n-T.

<W,i> <A,wj>

A grammar G = <Q, £, P, Z> is called context free if all productions

p ¢ P are of the form AA(XO’WO,.;.,xn_1’Wn_]) + t where A e N oo

and t e WZ(Xw)i' (See also Rounds (1) and (2)).

Theorem 1: The class of indexed families of sets recognised by finite

-13-
Q-automata is the same as the class generated by regular grammars over Q. [

Example 1: Let I = {0,1}; Q<X,O>= {21, Q<A’1> = {a,b}, Q<10,0> = {*},

Q<_|_I’_I> = {+}; Z<>\,0> -Q<)\,O> = {Z,E}, Z<>\,-I> -Q<>\,1> = {A,B,C,D,F,G}.

P={Z~\, Z~*FE,Z»*GE,C ~ +AD, C > +AB, D »~ +CB, E > A, F »+AB, G ~ +AD,

A -+ a, B~>b}.

Then G = <@, %, P, Z> 1is a regular grammar and L(G) =
{{\,* + ab),* +a++abbx, *+a++a++abbb), etcl},¢}. (Note L(G) is an indexed

family of sets; in this case, the second element is empty) .

If we change G to G' by allowing Z e Z<A,1> -Q<X,]> and add
Z ~ +AB, Z - +AD to P, then L(G') = {{A,*+ab), *+at+abbA,...},{+ab,+a++abb,
rat+attabbb,...}}. Note that YIELD (L(G)) = {{a"b"A|n=0},6} and YIELD
(L(6")) = {{a"b"A|n=0},{a"p"y [n>0}} for y e X;.0

Exanple 2: Let = {0,1}0,, o, = (A}, @ = {a}, 840 9, =),

<A, 1>
Q<]]’1> = {+};

Q = {Z}, % = {B}; P ={Z > *ax, Z ~ *B(a)r, B(x) = B(+xx),

Z<}\,0> e ,0>
B(x) - +xx}.

<1,1>

Then G = <Q, Z, P, Z> 1is a context free grammar and L(G) =

{*a),*+aa\, *++aataa), etcl,o}.

If we change G to G' by allowing Z ¢ Z<A,1> - Q<A,1> and

adding Z - B(a) and Z ~ a to P , then L(G') = {{*a\, *+aax, *++aa+taar,...},
n

{a,+aa,t+aataa,...}}. Then YIELD (L(G)) = {{a2 Aln=0},0} and YIELD

(L(8") = {{a® 2"
= {{a" A[n=0},{a" y|n=0}} for y « X;.0

Remark: If, as for L(G) above and in the previous example, one of the

elements of the indexed family of sets L(G) is empty, we will omit any

-15-
Theorem 3: Given a context free grammar G, we can effectively find
another grammar G' in Chomsky normal form such that L(G) = L(G'). O
Example 3:

Let G be the context free grammar of Example 2. Consider the

alphabet £' > Q such that ' = {Z,L}, &' -Q =

<X,0> 'Q<x,o> <A,1> <A, 1>

{A,C}, 2! = {B,D}, &' = {S} and P'= {Z - S(A,L),

<1,1> <10,0> ~ Q<10,0>
Z ~5S(C,L), C~B(A), S(x,y) > *xy, B(x) ~ B(D(X)), B(x) - +xx, i@
D(x) ~ +xx, A+ a, L ~A}. Then G' = <@, &', P', Z> is a context free
grammar in Chomsky normal form and L(G') = L(G) (and YIELD (L(G)) =

YIELD(L(G'))).O

The following is a generalisation of the concepts of yield,

leaf profile, frontier, etc. (See Rounds (1), (2); Brainerd; Thatcher).

Theorem 4: Given a context free grammar G over the alphabet Q ¢ I,
one can effectively find a regular grammar G' over D(Q) such that

YIELD (L(G')) = L(G) and conversely. [

Let R(T) be the unary ranked alphabet corresponding to the string

alphabet T (see Thatcher and Wright, for example).

Theorem 5: Given an indexed language U over a string alphabet T, one
can effectively find a context free grammar G over D(R(T)) such that

U=YIELD(L(G)) and conversely.

Corollary: Given an indexed language U over a string alphabet T,

-16-

one can effectively find a regular grammar G over D(D(R(T))) such that

U = YIELD (YIELD (L(G))) and conversely. O

(Note that the use of "indexed" here is not the same as that in "an
indexed family of...". The former refers to a class of languages defined

by Aho).

Motivated by the above theorems, we define an indexed family
of indexed languages over the many-sorted alphabet © to be any indexed
family of sets U = YIELD (YIELD(U')) for a recognizable set U' over
D(D(R)).

3. Machine/Program Structures

In this section we review the concept of a computation viewed
as the generation of a subalgebra in a direct product of algebraic structures.
The definitions, results, and examples given are versions of those of Landin
(1970) and the reader is referred to that work for the details and clarifi-

cation.

We begin with an informal view of what the following definitions
will formalise. Suppose we are given a set of "labels" and we have two
directed graphs with edges labelled by this set. One directed graph is

drawn on a plane and the other on a sphere. Let us roll, swivel, and slip

the sphere on the plane in such a way that the point of contact follows

a path through both graphs, synchronising the vertices and matching iabels.

If we start rolling the sphere on the plane at a particular
vertex-pairing, the device might be unable to move, or it might be able to

make exactly one move, or it might have a choice. The latter two possibilities

-17-

lead to another vertex-pairing where we again have the same set of three
possibilities. If no choice arises, the "path" traced out by our device
is given by a string of vertex-pairs. This might cycle on the plane or
on the sphere or on both. In the last case, the cycles need not synchronize.

Cycling is avoided only because of a halt or because the graph is infinite.

Example 1: The "label" set has a single member, the plane is a 3-cycle
and the sphere is a 2-cycle. At whatever vertex-pair the device is started,

the "path" will be a 6-cycle going through all possible vertex-pairings.

Sphere Plane

&__./\’

— o
J

Example 2: The "label" set is {f,g}.

Sphere P
Y
7

| N
S

/f
N

Here, any vertex-pair leads to a unique path, some halting and some

cycling, but none going through all ten possible pairs.

We introduce some terminology:

~-18-

(i) Graphs: By a graph we always mean a directed graph with labelled

edges. Each edge has a label, a source vertex, and a target vertex;

(ii) Plane/Machine: The plane vertices are the states;

(iii) Sphere/Program: The sphere vertices are instructions;

(Thus we view a program as having an operation between (not at) instructions.
In terms of an ALGOL 60 program, the occurrences of semi-colons (roughly
the contexts which admit Tabels) are our instructions, the statements them-
selves are the labels. The plane must then have the transition diagram of
the states of some "ALGOL 60 machine").

Executing different programs on the same machine corresponds to
rolling different balls on the same plane. In each such execution of a
program, the path is an (ordered) set of instruction-state pairs. The set
of pairs that touch is a subset of the direct product of the two graphs.
It is also a relation that associates with each instruction zero or more states.
But the asymmetry suggested by sphere and plane is, of course, spurious.
The situation is quite symmetrical. The above set of pairs could just as
easily be viewed as a relation which associates with each machine vertex

zero or more program vertices.

The intuitive description we have so far given for the running

of a program on a machine is inadequate in four ways:

(i) Non-finiteness: We allow the possibility of an infinite set of

instructions or states. We "need" this for pregrams to allow for indefinitely
many substitutions to "eliminate" a self-referential definition. The

reason we need non-finiteness in this paper is because we want to consider

as a program the set of all programs of a certain kind, e.g. the set of

strings on terms in a given alphabet (the label set);

-19-

(ii) Non-determinateness: We are interested in all possible executions

for our program/machine structures. The possibility of more than one
path can correspond to a parallel computation (as in the evaluation of
a term), or look-ahead (back-up) (as when two computations must be pursued

to see which is eventually fruitless), or giving more than one answer;

(i11) Start and Finish: We can mark begin vertices and end vertices

on the program (or symmetrically on the machine) and say the programme
"computes" a certain relation over the set of vertices on the machine
(or symmetrically on the program[;

(iv) Polyadicity: A Tabel in a directed graph determines a partial
(non-deterministic) function (relation) over the set of vertices. This
partial (non-deterministic) function is necessarily unary in the directed
graphs we have used so far. We want to relax this condition and allow
polyadic (including nullary or constant) operations. To restore the desired
symmetry, we allow an operation to have several results (and so to

non-deterministically produce several sets of results).

In spite of these inadequacies, the intuitive description of the unary
case above will illustrate in an illuminating way the properties discussed
below. (The concept of polygraphs described in Landin (4) can be used
to encompass the above four points but its value as an expository device

in this paper is much less direct than the unary case).

We now proceed to formalise our discussion with the following
definitions:
For x ¢ A and f ¢ [A > B], Tlet Img (x) = {y e B|(x,y) ¢ f}. If

A= (A = (8.} Ix;}; [with x; € Ajnand f = (.} |

. B .t X =
iel? i‘iel’ i“ie

with £, ¢ [A; > B.1, then Img(x) = {Img(x);}; 1 = {yeBi|(x;u¥)efids 1

-20-

That is, we can extend our definition from sets to indexed families
of sets by defining things componentwise. From now on, all our
definitions will be for indexed families of sets (usually indexed by

some fixed set I).

The dot product g.f of two relations is defined by (x,2)egef iff Jy.(x,y)ef
and (y,z : i iff qy =

¥,Z)e g (i.e. iff 3y {yi}'(xi’yi)efi and (yi,zi) € 95
for each iel). If f and g are functions this reduces to the usual composition

of functions.

The sum f+g of two functions producing (indexed families of) sets
is defined by (f+g)x = f(x)ug(x) = {fi(x)“gi(x)}iel' (Note that f+g = fug
if and only if f and g have disjoint domains or agree on the overlap;
otherwise both are defined but f+g is a function while fug is not).

The Qégggr_f+ of a function on (indexed families of) sets is defined

by f+(x) =y f1(x). A function T on (indexed families of) sets is

n=0

increasing if x < f (x) for all x. IS is the identity relation on

the (indexed family of) set(s) S.

A function f on (indexed families of) sets is additive if

f(x uy) = f(x) uf (y). An (indexed family of) set(s) x is f-reduced

if £(x) < x.

-21-

An indexed family of sets of subsets is a closure system

if it is closed under arbitrary intersections, f is monotonic if x c y

implies f(x) < f(y). f is a closure operation if it is increasing,

monotonic, and f2(x) < f(x) for all x. If f is monotonic, the indexed
family of sets of f-reduced subsets is a closure system. So, for
monotonic f, let Jf be the closure operation associated with the closure

system consisting of the indexed family of sets of f-reduced subsets.

f is continuous if for any ascending chain x0 g_x1 T ey
flu x") = v £(xM).
n=0 n=0

. +
Theorem 1: For an increasing, monotonic, and continuous function f, f =J..

Theorem 2: If f and g are monotonic and continuous, Jf+g = (f+'9+)+ .

Corollary: (f+g)+ = (f+-g+)+ .

We shall now use these definitions and results to study many-sorted

Z-structures, for some fixed I sorted by I.

The immediate accessability function ImmacA of a Z-structure

A is defined by:

Immac, (x), = {an € Ailaf'e z and

i <W,i>

W
<@gs--+58, 1> € X and

Qgseesdy 753> € fa} for each iel.

(Recall that x¥ = -). Intuitively, Immacp(x) just gives us
XWO ...Xxw A
n-1

-22-

the indexed family of sets accessible from'{xi} by just one application
of some relation of A operating on elements of x. ImmacA is not

necessarily an increasing function but In + ImmacA is.

An indexed family of sets X (together with the relations
assigned to I) is a substructure of A if it is ImmacA-reduced. This
is equivalent to the usual definition of substructure. Define
AcA = JImmacA' This definition is valid as the intersection of any
set of substructures is a substructure. In particular, AcA(¢)
is the minimal substructure of A (in the lattice of substructures of A).

It will be particularly important in our Tater discussion.

The concept of "minimal substructure" is good enough in another
sense. This is because it is possible to consider AcA(x)as the minimal
substructure of a structure obtained from A by addina nullaries. In
actual fact, we are changing the alphabet I and not the underlying sets
of our structures, but we prefer to ambiguously present this change
as an operation on the structure A. Thus let ¢ = {<I>1.}1-€I be a relation
from B = {Bi} to A (Bn2Z=2¢). Then Nulls, (A) is the structure

obtained from A by adding nullary relations, one for each b ¢ Bi’ each i,

and having as results (i.e. denoting the elements of Ai) @i(b). Thus

Ac,(x) = Ac {(9)3.
A Nu11SIX A

The minimal substructure AcA(¢) is not merely ImmacA-reduced but
is also a fixed point of ImmacA. If ImmacA is increasing, then every
subalgebra is a fixed point, but not in general otherwise. Since all
relations of A are finitary, ImmacA is continuous. If ImmacA is additive,

then ImmacA = AcA . This is the case, for instance, if A is unary or

-23-
if ImmacA is increasing. However, the main result we will need is

that, for any structure A, Immac;¢ = ACA¢.

In general, we have the important
+
)

Theorem 3: For any A, (IA+ImmacA = Acy.

Now, let A and B be I-structures. The computation Compx(A,B)
of A on B generated by x ¢ [A -~ B] (and we ambiguously use x c AxB)
is the substructure Acy n (x) of AxB generated by x. If (a,b) e Comp¢
(A’B)i’ we say that the instruction attains the state b; we also say

that the state b accepts the instruction a. The set generated at the

instruction a ¢ Ai is the set of states attained at a, i.e. Im{ACAXB(¢)}i({a}).
The set recognised at the state b ¢ 81 is the set of instructions accepted

by b, i.e. . -1 N
(™! p8h:(TB3).

We generalise these concepts to allow for unions of ' recognisable

sets or sets generated as follows: The result Gen(R,C) generated

at the "exit map" R ¢ [r -~ A] by a computation C = AxB is CsR; i.e. a
set of union-sets of states indexed by Ri for each iel. If rs is a
singleton, this corresponds to a set of terminal instructions. If Ri

is a singleton, it reduces to the "set generated by" (as above). The
argument Recog (R,C) recoanised the output may R ¢ [r -~ B] by a

1.

computation C < AxB is C” :R; i.e. a set of union sets of instructions

indexed by rys for each iel.

Example 3: Let % be some finite (string) alphahet and 1at
M =< Q,‘ﬁ%é}aez 95> be a finite automaton over % with initial state ap
and (unary) transition functions S, for each a ¢ I (see the introduction).

Let WZ be the algebra which forms the strings over . That is, it has

as a constant (initial) symbol A, the empty string, and for each a ¢ Z,
and operation of left concatenation by a.

-24-

Now consider Comp¢(WZ,M) = Acy . y(¢)
)

+
= ImmachxM(¢)

u Immac (9).
i>0 W xM

Now Immaé0 (¢) = {(r,94)}. That is, the only ordered pair
WZXM 0

immediately accessible from the empty set ¢ g_waM is the ordered

pair of constant (initial) symbols (X,q,). Then Immac1 (¢)=
0 WZXM

{(A,qo)} u {@,q)|a ¢ = and Ga(qo) = q}. That is, Immac’ gives us
ra11 the strings of length one and pairs these strings with the
states of M which are specified by the corresponding transition function.
Then Immacw M(¢)'- Immacw M(¢) u {(w,q)|2(w)=2 and w=aw' for some
V ael, (w ,q ') € Iunac x"(¢) and § (q) = q}. By this iteration

process we obtaln ImmacW‘ M(¢) for any n ¢ N and so obtain Immac.. XM(qb)

as the union of all these sets.

So Comp¢(HZ.M) gives us a set of ordered pairs (w,q) such that
w is a string over I and q is the state reached by the automaton after
processing w. Then if we specify an output map R for some set of final
states QF_E Q by the inclusion map, Recog (R, Comp¢(wZ,M)) =

Comp$] (WZ,M)-R O.

4. Generalised Automata Theory

In this section we provide a generalisation of some conventional
classes of automata. In the case of finite automata, this generalisation

is equivalent to those of Biichi, Thatcher and Wright, and Doner. On

-25-

the other hand, our formulation lends itself to simple generalisations
of pushdown and nested stack automata. Also, the relation between these

classes of automata becomes transparent.
Let @ be a (finite) many-sorted alphabet.

Theorem 1: U E.WQ is recognisable (by a finite automaton) if and only if
U = Recog(R, Comp¢ (NQ,A)) for some finite Q-automaton A and output

map R.

Proof: Since U is recognisable, there exists a finite Q-automaton A (in

the sense of Section 2) and a choice of final states AF < A such that

bhy (A7) = U. Let R:A” > A be the injection map. It is then easy
to check that bhA(AF) = Recog(R, Comp¢ (W,,A)) by a simple induction

argument. The converse is also obvious.O

Theorem 2: U E_WQ is context free if and only if U = Recog (R, Comp¢

(D(W,),B)) for some finite D(Q)-automaton B and output map R.

Q
Proof: We give a sketch of the proof. lLet G = <Q, £, P, Z> be a

Chomsky normal form grammar for U. We construct the finite D(Q)-~-automaton
B as follows. (Note that we are here uéing the convention of Section 1

in assuming D(Q) < D (2)):

(i) Our D (Q)-automaton B will have as carrier of sort <w,i>

the set B = {A'|A ¢ D (%) Q 3.

<w,i> <h,<W,1>>ew,i>

That is, a symbol corresponding to each nonterminal of
type <w,i> in I and a symbol corresponding to each

. i | .
projection operator 6W,1n D(Z)<k,<w,wj_]>>’

(i) For each production of the form A(XO;WO"”Xn—l,Wn_1) >
G(Hy (Xg e e esXqa DoosH (Xg peesX .))
0'\'0 ,WO n-1 v,wn__l m-1"0 ’WO n-'l swfhg_‘_]

-26-

Gel for 0 £ j < n-1, let

with A e & andeeZ

<w,i> ?° <v,i> <W,V.>

J

<GS Hys el e (e i)gs

) >

and

(ii1) For each production of the form A(XO’WO""’XH-1’th]

fx103w1 oo Xy 1;Wi with A e Z<w,i> » T e Q<v,1>
0 m- m-1 i +1

0 < ij < n-1 (for 0 < j < m¥1), we let <fB,(cSW0) FA
i+

Tt ij+] - J
-8,) At > (e, gn)pand (85) e (87)

for each' 0 < j < m<ly

(iv) (This is really included in (iii)). For each production of the

form A -~ a with A e T and a ¢ Q<A,1>’ we let A' ¢ ag.

<A,i1>
Let R:Z » B be defined by Z'e= Z' for each <\,i> ¢ D(I). Then we prove
U = Recog(R, Comp¢ (D(NQ),B)) by showing that Comp¢ "provides a parse"

for any term in D(W.) while R "picks out" the ones which have Z as the

)
"root of the parse tree". This is an easy induction proof and is left

as an exercise for the interested reader.

Conversely, let U=Recog (R, Comp¢ (D(NQ),B)) for some R and

B. Define the context free grammar G = <Q, &, P Z> where:

i 5 R - R = . 1 * .
(1) wyi> ey, i> B<w,1> for each <w,i> ¢ I* x I;

(ii) P is given as follows:

(a) If A e B<x ._and a € Q is such that A ¢ a,, then let

,1> <,i> B?

A - a be in P;

(b) IfAeB, . (> some 1< 3 < n and 80 € D(E) &y, <w,w > is
’J— ST ”j'

-27-

J
such that A e ()5, then Tet A(XO,WO""’XH-],Wn_]) >
X be in P;
3-Tow i
. J
(c) If A € By,i> and there exist f ¢ Oy, > and &7 < Z<x,<w,wi >
i i i
_ i) 0 m-1
for 0 < j <m-1 (2(v)=m) such that (fg, (8 Jps--es (8, gsA)
¢ (C<v,w,i>)B’ then Tet A(Xo,w ser Xy 1w) ~
0 n-1
fx. ’o-q’X' ,] .
1O’Wio T M-y D& AN P3
(d) If <G,HO ""'Hm-'l s‘A> € (C<V,W,1>)B then let A(XO,WO"..,Xn"] ,Wn_-l) +

G(H.(x seeoX)seousH (X seeesX)) be in P; and
0°70,w, n-T,w__ m-1 0,w, n-T.w_ 4
(iii) For R:r -~ B the output map, designate the image, under Ri’ of rs
to be axioms. If Ri(ri) is a singleton, then denote it by Z, for
each i ¢ I. Otherwise we have a grammar which has more than one

axiom of each sort. This can easily be converted to a grammar with

a single axiom of each sort, denoted by Z, by well known methods.

It is simple matter to check by induction that the language

generated by G is exactly U. O

The above proof could have been done more indirectly by invoking
Theorem 4 of Section 2. According to this theorem, to an indexed family of
context free sets U E_WQ, there corresponds a regular language U' over
D(2) such that YIELD(U')=U. Then there exists some finite D(Q)-automaton
B and a choice of final states R:BF'E B such that th(BF)=U'. Then,
clearly, U=Recog(R,Comp¢ (D(WQ),B)). Conversely, we can obtain a context
free grammar G over Q from some finite D(Q)-automaton B and output map R
by considering a regular grammar obtainable from B and R for the set of

derivation trees of U.

-28-

Theorem 3: U E_WQ is indexed if and only if U = Recog(R, Comp¢(D(D(Q)),C))

for some finite D(D(R))-automaton C and output map R.

Proof: The simplest (indirect) proof is motivated by Theorem 5 and
its corollary of Section 2. The proof is similar to the informal one

given above and is left as an exercise for the interested reader. [J

Example 1: Consider the alphabet @ c &' of Example 3, Section 2. D(Q)
is then described as follows:

D(I) = {<x,0>,<x,1>,<1,0>,<1,1>,<10,1>,<10,0>, <11,1>,<11,0>}.

D(Q)<A A0 {}};
D(Q)<A,<A,1>>= {al};
D(Q)<}\,<],0>> =b.

D(2) = (g1
<A,<1,1>> 1
D(%) = {82 %}

<A,<10,0>> 10°
D(Q) = 8] 3.

<A,<10,1>> 10

D(Q)<A,<11,O>> =9

el 2
D)y 11,155 = 10 S715 +
D(Q)<<w,1'><v,w0>,,..<\.!,w s<v,i>s T Cany,is!

n-12
for each (w,v,i) ¢ {1,10,11} x {2,1,10,11} x I.

Let M = {Mi}i e D(1) be a D(Q)-automaton such that:

(1) M<>\,O> = {L,Z}.

M {A,C}.

<A, 1>

-29-

M<1,0> = ¢.
M<]’]> = {H,B,D}.
M<1O,0> - {E’FZ’S}'

Mao,1> = THh
M<H,0> = 9.
M<11,1> = {F};

(ii) The relations of M are:

L€>\M.

AeaM.

1

He(G-I)M.
F 6(6])

1 10/M*

2
Fooe (87g)y -

(S,A,L,Z), (S,C,L,Z) ¢ €10,2,05 in M.

(BLA,C) ¢ c M.

<1,,1> N

(B.D,B) € ¢y q 15 in M.

(EsF]stsS) € C<]O;]O,O> in M.

(FJH,H,B), (FJH,HD) € € qq 1 q5 i M.

-30-
Let r = {ri}ieD(I) be defined by *ex,05 = O and r.=¢ for i # <1,0>,
Define the output relation R:r - M by (0,Z) € R<A 0>° (Ri is empty for
i # <A,0>). Then U = Recog (R, Comp¢ (WD(Q)’ M)) =

1 2
{c10,1,0> <10,10,0>"%10 10

1 62 + &)
10 °10 Ce1,0,1> C<11,1,1> 7 9

ax,

6 1
€<10,1,0> ©<10,10,0> 61 ar, etcl.

On the other hand, Recog(R, Comp¢ (D(WQ),M)) = {*a), *+aa)\, *++aataa), etc.}=U'.
Note that YIELD (U) = U'.
We note that we can consider the alphabet @ to be the derived alphabet

of some unary alphabet A c T' with By = {1} and Ay = {a}. Thus Q = D(A)

and D(Q) = DZ(A); wQ = WD(A) and D(WQ) = D(WD(A))' Thus we can run

DZ(WA) on M and U" = Recog (R, Comp¢ (DZ(WA), M)) = {a\, aa), aaaal, aaaaaaaal,

n
etc.} = {a2 X|n > 0}. If we interpret A to be the empty string, then we get
n

U" = {a® |n = 0}. Note also that YIELD?(U) = YIELD(U') = U". Thus we have
used the same automaton M to recognise an indexed set (in Aho's sense)

U" over some alphabet A; its set of derivation trees, a context free set U’
over D(A); and its set of "derivation2 trees", a recognisable set U over

%

D°(A) . That is, we have used the same automaton M in the nested stack,

pushdown, and finite automata modes by running different programs on ijt.

It is left as an exercise for the reader to provide a deterministic

automaton M' which recogni$es the same sets as M. [J

The above example illustrates the remark made in the introduction
about getting different sets as results of running different programs on
a given machine (automaton). If we run the program wD(D(Q)) on a finite
D(D(R))- automaton we get a recognisable set over D(D(Q)); if we run the

program D(D(WQ)) on it we get an indexed set over Q. Motivated by this

-31-

and the above theorems, we make the following definitions: A pushdown
automaton over Q is a finite D(Q)-automaton (with program D(WQ)). A

nested stack automaton over @ is a finite D(D(Q))-automaton (with program

D(D(H))).

It is a remarkable result of this theory that we do not "need"
nondeterminism in the conventional sense of non-determinism: producing
more than one answer). Our automata can be restricted to finite algebras
(that is, have operations which are totally defined on all possible
arguments and which produce eXact]y one result for a given list of arguments)

and still recognise the same class of sets.

Theorem 4: The class of sets recognised by non-deterministic automaté

(with a fixed program W) is the same as the class recognised by deterministic
automata (with the same fixed program W). (Note that this result is independent
of the program in the sense that the theorem is true for‘égx_program W
compatible with the class of automata being considered. Thus the theorem

states that the class of sets recognised by finite (pushdown, nested stack)
automata is independent of the determinism or non-determinism of the

automata. This result is well known for finite automata; for pushdown

automata in the conventional formulation; we know this result is not

true; and for nested stack automata in the conventional sense, the result

js still an open question).

Proof: Since we have defined different classes of automata over some
alphabet @ in terms of finite automata over related alphabets, it is not
surprising that we can use the conventional notion of "subset" automaton
to prove our result. Thus, let U = Recog (R, Comp¢ (W,A)) for some

program W and automaton A and assume A is non-deterministic. Consider

-32-
the finite automaton B(A) and the output map R' given by
R%:ri + S, where S, = {s ¢ Ail(ri,s) € Ri} for each i ¢ I. It is a
simple matter to check that Recog (R, Comp¢ (W,A)) = Recog (R', Comp¢
(W,B(A)) = U. Thus the class of sets recognised by non-deterministic

automata is a subclass of the class recognised by deterministic automata.

The converse 1is trivially true and our result follows. O

Conventional classes of automata work essentially by trying to
parse a given string and can thus be non-deterministic for two reasons:
Firstly because the particular parse the automaton is trying to construct
may not be a valid parse for the given string and, secondly, because
a given string may have more than one distinct parse. By the very construction
of our automata, they are constrained to try only valid parses and if a given
term has more than one distinct parse, our automaton"identifies" them. (That
is, it considers the class of parse trees for a given term to be a single
entity). This identification reflects the associativity of composition in
our derived algebras. In the sphere-plane terminology, we identify all

valid paths from one vertex pair to another vertex pair.

At this point we can perhaps mention some comparisons with other
tree manipulation systems (Thatcher, Rounds (3), Baker (2)). In traditional
systems there is no obvious reason to consider top-down manipulation
(i.e. from root to leaves) as being somehow more natural or more illuminating
than bottom-up (i.e. from leaves to root) manipulation or vice versa. In the
systems just defined, we are generating subalgebras and thus, in effect, working
in a bottom-up mode. Our programme forms expressions (constricted by our

machine) by starting at a constant and forming an expression, then using

-33-
these to form other expressions, etc. This is the only natural way
of looking at this system. There is no immedijately obvious way of

defining any top-down manipulation.

Let DV (W.3,.0= D(...(D(W
e (DJ(Q) iEtimés(%Ei%ﬁéz(g)"°)))

for 0 < i,j < w

Lemma 1: There is a unique homomorphism from Dn'1(wDi(Q)) to

n-j

D (WDj(Q)) forany 0 <j < i <n.

Proof: (0) If j=i, the required homomorphism is the identity.

(i) If i-j=1, the homomorphism is given by interpreting the non-
nullaries of D1(Q) as composition and the projection symbols of D1(Q)
as projection operations. Thus YIELD:WD(Q) > D(WQ) is a particular

example of the above with n=i=1 and j=0.

(ii) If i-j>1, then we get our homomorphism in the obvious way

by composing i-j homomorphisms of the type used in step (i).

The uniqueness of the homomorphisms in cases (0) and (i) is obvious
while that in (ii) is easy to check because of the constructive nature

of the homomorphism. [

Motivated by this lemma, let YIELD be the unique homomorphism
n-i . n-j . . .o .
from D (WD1(Q)) to D (WDJ(Q)) for i-j=1. (Thus the previous
definition of YIELD is the special case where n=i=1 and j=0). Then
. s i-3.an=1,y s n=-J, s
for any 0 < j < i <n let YIELD "V:D (wD1(Q))+ D (WDJ(Q))be the
unique homomorphism. YIELDO is then the identity in all cases. (Note
that we have purposely defined YIELD'™ ambiguously in the sense that

it is unique only in a given context).

-34-

We can now state the following easily proved result:

Theorem 5: Suppose we are given a finite alphabet @, a finite Dn(Q)-auto-

maton A and an output map R. Then

viewpi-d (Recog(R, Comp¢(Dn'i(wD1(Q)),A)))

Recog (R, Comp, (YIELDi'j(Dn'i(WDi(Q))),A))

n-Jj .
Recog(R, Comp¢ (D (NDJ(Q)),A))
for0<j<iz<n. O

Suppose U is context free over Q. That is U = Recog(R, Comp¢(D(WQ),A))
for some D(Q)-automaton A and output map R. Then the fact that there may be more
than one path from the initial vertex pair (the empty set in this case) to
a final vertex pair (with one of its components a final state in A)
corresponds to the fact that context free grammars (or languages) may be
ambiguous. That is, the associativity of composition gives us the ambiguity
of context free grammars. Can we state this intuitive result in more precise
terms? We know that a context free language generated by a given grammar
is unambiguous if and only if there is a one to one relationship between
terms in a context free set and its set of derivation trees. That is, the

homomorphism
w:Comp¢(WD(Q),A) -> Comp¢ (D(WQ),A)

is one-one, onto (i.e. an isomorphism). (Recall that Comp¢ (A,B) is the
least subalgebra of AxB generated by ¢). We can extend this idea to define

unambiguous indexed languages to be those for which

Yo Y Comp¢ (WDZ(Q),A) > Comp¢(Dz(wQ),A) is an isomorphism (with ¥

-35-

as above and y': Comp¢(wD2(Q),AZ+ Comp¢(D(wD(Q)),A)). Thus there
are two levels of ambiguity depending on whether one or more of y
and y' are isomorphisms. This double ambiguity needs to be explored

further.

Finally, we make the observation that decision problems for classes
of Tanguages recognized by certain classes of automata depend solely
on the corresponding decision problems for finite automata and the properties
of the unique homomorphism YIELD. For example, the emptiness and finiteness
problems for context free (and indexed) sets are solvable because of the
solvability of the corresponding problems for finite automata and because
of the fact that YIELD preserves unions (i.e. YIELD (uivi) = UiYIELD(Vi)).
This has been noted in a number of places in different contexts from ours
(see, for example, Thatcher 4). On the other hand, the equivalence problem
for context free (indexed) sets 1is not solvable because YIELD does not
preserve intersections (i.e. YIELD (n*vi) is not in general the same

as niXIELD(Vi)).

Using the above fact about intersections and the fact that
context free and indexed sets can be defined as homomorphic images of
unions of classes of a finite congruence (i.e. recognisable sets), we
can give an algebraic proof (i.e. one not depending on the generation
of particular counterexamples) of the fact that the class of context
free (indexed) sets is not closed under intersection. Using the same
techniques we can easily show that the class of indexed sets is not

closed under intersection with context free sets.

-36-

5. Conclusion
At the end of Maibaum (3), we expressed the need for providing

a uniform theory of automata to accompany our generalisation of formal language
theory. We believe the ideas expounded in this paper fit the bill. There are
a number of surprising but pleasant results provided by the theory: the
equivalence of classes of deterministic and non-deterministic automata, the
nice algebraic characterisation of ambiguous Tanguages in terms of isomor-
phisms, the trade-off between the compiexity/simplicity of our programs
and the simplicity/complexity of our YIELD operations, and the close

relationship between different classes of automata.

But this study is only a beginning. We must study the ambiguity
problem and parsing methods in Tight of the above algebraic characterisations.
Also, we have only used program/machine struectures with no input (i.e.

Compq> (A,B)). We must study these structures with input. This, we believe,
will Tead to generalisations of finite state transducers, pushdown trans-

ducers, etc.

This study was also confined to running only certain special types
of programs on our machines: specifically word algebras and derived
word algebras. This restriction was natural if we wanted to study classical
automata and formal language theory. On the other hand, there is no
mathematical reason for such a restriction and so we propose definitions
of recognisable, context free, and indexed sets in the carriers of arbitrary
structures (oralgebras) as follows (for an Q-structure A):

(a) U c A is recognisable if and only if U=Recog (R, Comp¢ (A,B))

for some finite Q-automaton B and output map R;

-37-

(b) U < A is context free if and only if U = Recog(R, Comp¢(D(A),B))
for some finite D(Q)-automaton B and output map R;

(c) U c A is indexed if and only if U = Recog (R, Comp¢ (DZ(A),B))

for some finite DZ(Q)—automaton B and output map R.

Further, there is no reason to assume that one could not continue the
obvious iteration in definitions (a), (b), (c) for any finite number of
steps. This could be done for any Q-structure A, including WQ. This
suggests the existence of an infinite hierarchy of classes of sets beginning
with recognisable, context free and indexed. In the case of wﬂ, this
hierarchy would correspond to the one given at the end of Maibaum (3)

and in Turner. We suggest that because of this, it is a proper (infinite)

hierarchy.

-38-
BIBLIOGRAPHY

Aho, A.V., Indexed Grammars - an Extension of Context Free Grammars,
"Journal of the ACM", Vol. 15, No. 4.

Baker, B.S., Tree Transductions and Families of Tree Languages,
Technical Report TR9-73, Harvard University.

Birkhoff, G., and Lipson, J.D., Heterogeneous Algebras, "Journal
of Combinatorial Theory", 8 (1970), 115-133.

Brainerd, W.S., Tree Generating Regular Systems, "Information and
Control", 14 (1969), 217-231.

Blichi, J.R., Weak Second-order Arithmetic and Finite Automata, "Z.
Math. Logik Grundlagen Math.", Vol. 6, pp. 66-92.

Cohn, P.M., Universal Algebra", Harper & Row, 1965.

Doner, J., Tree Acceptors and some of their applications, "J. Comput.
Syst. Sci.", 4 (1969), 406-451.

Eilenberg, S. and Wright, J.B., Automata in General Algebras, "Infor-
mation and Control", 11 (1967), 452-470.

Higgins, P.J., Algebras with a scheme of operators, Math. Nachrichten,
27 (1963), 115-132.

Landin, P.J., A Program Machine Symmetric Automata Theory, "Machine
Intelligence 5", Edinburgh University Press, 1970.

Maibaum, T.S.E. (1) The Characterisation of the Derivation Trees of
Context Free Sets of Terms as Regular Sets, "Proceedings
of the 13th IEEE Symposium on Switching and Automata
Theory", 1972.

Maibaum, T.S.E. (2) A Generalised Approach to Formal Languages,"J.
Comput. Syst. Sci.", Vol. 8, No. 3, pp. 409-439.

Maibaum, T.S.E. (3) Generalised Grammars and Homomorphic Images of
Recognisable Sets, Doctoral Dissertation, University of
London, 1973.

Mezei, J. and Wright, J.B., Algebraic Automata and Context-Free
Sets, "Information and Control", Edinburgh University
Press, 1970.

Rounds, W.C., (1) Mappings and grammars on trees, "Math. Systems
Theory", 4 (1970) 257-287.

Rounds, W.C., (2) Tree-oriented proofs of some theorems on context
free and indexed Tanguages, "Proc. ACM Symp. on Theory
of Computing", 1970.

-39-

Thatcher, J.W., Characterizing derivation trees of context-free grammars
through a generalisation of finite automata theory. "J. Comput.
Syst. Sci.", 1 (1967), 317-322.

Thatcher, J.W. and Wright, J.B., Generalised finite automata theory with
an application to a decision problem of second order logic,
"Math Systems Theory", 2 (1968), 57-81.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

