THE EFFECTS OF PAGING ON SORTING ALGORITHMS
by
J. G. Peters
Research Report CS-74-14

Department of Applied Analysis and
Computer Science

University of Waterloo
Waterloo, Ontario, Canada

August, 1974

THE EFFECTS OF PAGIMG ON SORTING ALGORITHMS

J. G. Peters
Department of Aprlied Analvsis and Computer Science
University of Waterloo

August 1974

Abstract - Several sorting algorithms were run on a machine
which uses paging to manage storage. The praging activity
which occurred as a result of the algorithms being run was
observed as the ratio of virtual storage to real storare was
varied.

It was found that partition sorts such as QUICKSORT resulted
in the smallest number of page faults being issued while

insertion sorts such as BRINARYINSERTION caused the most.

Acknowledgement

I would like to thank Pieter Kritzinger
suggesting to me the tonic of this report and
his ideas which I have incorporated into it.

I would also like to thank Romney UWhite
deal of help with all aspects of this report.

This research was suprorted in part by N,

number A8975,

J. G. Peters

August 1974,

for originally

for many of

for a great

R, C. Grant

PAGE

27.

29.

32.

40.

44.

48.

53.

INDEX

Introduction

VM/370 Features
2.0 General
2.1 Page Replacement Algorithm

Machine Environment

3.0 Hardware

Real Machine Environment
Virtual Machine Environment

W N
. e
N 4

est Progsrammes
0 General

1 Samplesort

2 Osort2

3 Nuicksort

L Merge

5 Naturalmerge

6 Listnaturalmerge

7 Linearinsert

8 Binarvinsert

9 Listinsert

10 Linearselect

11 Mergeselect

4.12 Bubblesort

4,13 Shellsort

L.1k Heapsort

L.,15 Order

P g i - R

Random Input Data

Test Results

First Set of Tests

Second Set of Tests

Third Set of Tests

Discussion of Results

Bibliographv

1. INTRODUCTION

The data presented in this report 1is a result of
rerformance tests of fourteen sorting algorithms run on a
machine which uses paging to manage main storage.

The sorting algorithms chosen for study represent the
major internal kev comparison sorts in common use or varia-
tions of them. The algorithms were written for non-paging
machines. Mo attempt was made to modifv the algorithms to
run more efficiently on a paging machine, as the purnose of
this study was to discover which characteristics of the al-
gorithms degraded their performance in a naging environment.

This report is preliminary to a more detailed study
which is currently being conducted.

The programmes were run under CMS of VM/370 on an IPM
370 Model 158 at IPM Canada's Toronto DPCE Customer Educa-

tion Centre.

2. VM/370 FEATURES

2.0 General

The IBM Virtual Machine Facilitv/370 (VM/370) is a
system which provides virtual machine suprort for multiple
users on an IBM Svstem/370 computer. It consists of several
parts.

The Control Program (CP) controls the resources of the
real machine and simulates simultaneous operation of several
virtual machines, each of which is being controlled by its
own operating svstem,

The Conversational Monitor Svstem (CMS) is an in-
dividual user operating svstem which runs in a virtual
machine under CP and can be controlled by the user from an
interactive remote terminal,

The service nprogrammes which are used bv CP perform
such functions as remote spooling operations, printing real
machine storage dumps, handling disk to tape, tape to disk,
and disk to disk file transfers, and formatting direct ac-
cess volumes,

A detailed descrirtion of VM/370 is availakle in the
references included in the bibliogranhyv and onlv the raging

algorithm will be discussed here.

2.1 Page Replacement Algorithm

In order to be able to map addressable virtual storage
onto available real main storage, virtual storage is divided
into pages of size WK bytes while real main storage is
divided into page frames of the same size. HNormallv a large
address-space is available to each virtual machine so that,
as a result, there will be more nages in the virtual
machines than real page frames. A page manager is needed to
put nages referenced by a virtual machine into rage frames,
at the same time removing pages as necessarv.

The pages in the dynamic paging area (the nageable
nages) are on three linked lists. The USERLIST contains en-
tries for all nonlocked page frames currently allocated to
virtual machines in the in-aueue group (the group of virtual
machines that are currently competing for use of the real
CPU). When a virtual machine is dropped from the in-aueue
group, the page frames it has been allocated are nrlaced at
the end of the FLUSHLIST. The FREELIST contains entries for
page frames not currentlyv assigned to a virtual machine and
is maintained in first-in, first-out order,

The nage manager attemnts to keep frecuentlv used vir-
tual pages in real storage and when rages are removed, the
least frecuently used pages are removed first. The current
status of a page frame may be temporarilv locked for an I/

oneration, permanently locked, in the FLUSHLIST, in the

FREELIST, shared, reserved, allocated to CP, or unavailable
for allocation,

When a reauest for real storage is made, page frames
from the FREELIST are allocated. 1If this is not nossible,
nage frames from the FLUSHLIST are used., If the FLUSHLIST
is also empty, the most inactive page frame in the USERLIST
is used.

If a rage frame can be allocated from the FREELIST, a
page write can be avoided, so a threshold minimum of rage
frames are kept in the FREELIST. 'henever a nage s
reclaimed from the FREELIST or the number of page frames in
the list falls below the threshold, a nage selection routine
is called to replenish the 1ist. The FLUSHLIST is first in-
spected and the change bits (which indicate whether the vir-
tual page currently in the page frame has been modified) for
the first page frame are inspected. The page is written out
if it has been changed and then is added to the end of the
FREELIST.

If more page frames are still recuired for the FREELIST
to contain the threshold number, the USERLIST is insrected,
starting at the beginning of the list, to find a page frame
that hasn't been referenced since the last inspection., Fach
page frame inspected that has been referenced is moved to
the end of the list and its reference bits (which indicate
whether it has been referenced since last inspection) are

turned off. If an unreferenced nage frame isn't found, the

first page inspected is selected because its reference bits
are now turned off. A page write is performed if the change
bits are on and the rage frame is added to the end of the
FREELIST.

The FREELIST is always searched before selecting a rare
frame for allocation. If the desired virtual nage is in a
nage frame in the FREELIST, the page can be reclaimed and a
rage read avoided. If reclamation 1is imrossible and the
nrage is not «currently being paged 1in as a result of a
nrevious reaquest, a page frame must be selected for alloca-
tion.

The page manager routines also maintain statistics for
each virtual machine in a table called the VMBLOK, It is

from this table that the figures for the number of npage

reads and page writes were obtained,

..

3, MACHINE ENVIROMMEMT

3,0 Hardware

The machine used for these tests was an IPM 370 Model
158 with two megabytes of semiconductor main storagse which
included 8K of cache memorv.

An IBM 3330 Direct Access Storage Device was used for
paging operations. The maximum paging rate achieved was
anproximately 66 page reads and writes ner second with the
average being between 55 and 60 per second. 3330 disk packs
vere also used for real secondary storage.

The programmes were run interactively using an IBM 3270

display terminal as the virtual operator's console.

3.1 Real Machine Environment

The tests used to obtain the data in this rerort vwvere
run stand-alone. This was necessarv for two reasons.

Firstly, since the purpose of the tests was to study
paging activity, the test programmes were designed to cause
a large number of page faults. This would degrade the
rerformance of a shared machine to a point that would be
unaccentable to other users of the system,

Secondly, although a virtual machine can be guaranteed

a minimum working set size (the number of npage frames al-

located to the machine) , there is at present no facility in
VM/370 for guaranteeing a maximum working set size. In
order to 1limit the tests to files of realistic size while
keeping execution time low it was necessary to 1limit the
number of real pages available. This had to be accomplished
by locking all pages not used by the test nprogrammes into
another user's virtual machine or to the svstem or onerator.
Clearly, every time another user logged on or logged off of
a shared system, the number of available nages would change.

Also, each of the three sets of test runs took at least
five hours real time and would take substantiallv longer on

a shared svystem.

3.2 Virtual Machine Environment

The virtual machine was defined as four megabvtes for
most of the tests to guarantee that enough virtual storage
was available for all the nprogrammes to run. This was
necessary as the array being sorted occupied two megabvtes
of virtual storage in most cases.

Version 2.4 of CMS was used to maintain the virtual

machine environment for all tests.

L., TEST PROGRAMMES

4.0 General

This section contains listings of the fourteen sorting
algorithms tested plus a wutility routine called ORDER,
ORDER wuses the 1list of pointers produced by LISTIN and
LISTNATURALMERGE to reorder the array of elements being
sorted.

The same mainline programme was used to drive all four-
teen routines. The functions of the mainline programme were
initialization of variables, generation of the random data
(discussed in Section 5), and acauisition and outnut of the
statistics nresented in Sections 7, 8, and 9.

The nrogrammes were comriled using an IBM ALGOL F com-
piler with Princeton modifications which vas adanted by the
author for wuse on ‘YM/370 for the nurrose of these tests.
The code nroduced was not self-modifving, Most inrut and
output in the mainline programme was performed with FORTRAN
subroutines through an ALGCOL-FORTRAN interface.

For a descrirtion of the sorting algorithms, the reader

is referred to Lecture MNotes on Sorting by P. S, Kritzinger.,

h.1

Samnlesort

'"PROCFDURP® ! SAMPLESORT (A, N) ;
YYALUE' N; 'INTEGERY N; 'ARRAY' A;
IBEGIN?

PART:

RIGHT :

COMPRRE:

IDPROCEDURTEY QUICKSORT(A,L1,11,N) s
'YALUF' L1,U1,D; 'INTPGFP' 11,U1,D; $RRRAY' Aj
TREGIN?
YINTPGER! P,0,1X,12,1,J3,M4,L,0;
'"REAL' X,XX,Y,2,27;
TINTEGER' 'ARRAY' LT,UT(/1:LM{((UT-L1+1) /D) /LN (2) +0.5/) ;
M:=03; L:=L1; U:=U1;

=A(/P,1/) ;5

L; MOVE:=MOVE =05 X3
= J:=Q~-P-D; COMP:=COHP+1;

= +
::A(/Qv1/); I:=0
IFt X>Z 'THEN!

Y:=X; MOVE:=MOVE+2; A (/P,1/) :=X:=Z3; A(/Q,1/):=Z:=Y;
INTER:=INTER+1;

'"END?;

*IF' U-1L>D 'THEN!

'BRGIN! _
XX :=X: MOQVR:=MOVE+2; IX:=P; ZZ:=Z; IZ:=0Q;

'FOR' P:=P+D 'HHILE' P<Q *'DO?

'BEGIN? ’
X:=A(/P,1/); MOVE:=MOVE+1l; COMP:=COMP+1;
YIF! X>=XX 'THEN' 1G0 TO!' RIGHT;:

'ENDY P

P:=0-D; 'GO TO?' QUT;

'FOR' Q:=Q-D 'WHILFE' Q>P 'DO?
'BEGIN?
Z:=A(/0,1/); MOVT:=MOVF+1; COMP:=COMP+1;
YIFY Z7<=2Z7Z 'THEN' 'GO TO' DIST:
TENDY Q3
Q:=P:; MOVE:=MOVE+2; P:=P=-D; Z:=¥; X:=A(/P, V)
*GO TO' COMPARE;

COMP:=CONMP+1;
1TR? X>Z 'YTHEW!?
tBEGIN?
Y:=X: MOVE:=MOVF+2; M (/P,1/):=X:=Z; A(/Q,1/)1=2:=Y;
INTOP:=INTFR+1; }

COMP:=CONMP+2;
'TFY XD>XX YTHEN?
'BEGIN?
XX e=X; MOVFE:=MOVE+1: T:=T+D; IX:=P;
FENDY ,
VIFY 7<Z7 YTHEN!
"REGIN?
27:=7; MOVE:=MOVF+1; I:=1I4D; TZ:=0;
1PNDY
fFND!
rFLSw!
'BEGINY

ogm e

¥X:=X; MOVE:=MQVE+2; IX:=P; Z2Z:=7; TZ:=Q; T:=I+D+D;

'TND;
"GO TO' LEFT;

TF P 'NCTECUAL* 'IX *THEN?

"BEGIN?
‘ A(/P,1/)2=X¥; A(/IX,1/):=X; MOVE:=NOVF+2;
TFNDY g
TIFY O 'NOTFQUAL' TIZ 'THEN?
TREGIN?
A(/Q,1/):=22; A(/IZ,1/):=Z; MOVF:=MOVE+2;
1TFNDY;
1IFY U-Q>P-1 ?'THEN!?
'BEGIN?
L1:=L; U1:=P=-D; L:=0Q+D;
*FND?
'FLSE?
*BEGIN?
U1:=U; L1:=C+D; U:=P-D;
YEND?;
YIF' I 'NOTRQUAL' J 'THEN?
' BEGIN! :
'IFY U1>L1 'THEN?
tBEGIN?

M:=M+1; LT(/M/):=L; UT(/M/):=U; L:=L1; U:
'GO TO' PART;

tENDY
ITFY > 'THEN' 'GC TQ' PART;
TENDY
TEND?;
IRt M 'NOTEQUAL' O 'THEN!
'BEGIN?

L:=LT(/M/): U:=U0T(/N/)
tTFY U>L *THEN' 'GC TO
'END';
'END?' QUICKSOR™:
'INTEGER! 1,J,P,0,L,0,5;
'REAL' X,Y;
T:=L:=1;

'*FOR! T:=I+1 'WHILE' 2%*TN*LN(2)/LN(N) 'DO* L:=2%%I-1;

'TPY ND>S50 'THEN!
'"BRGIN'
'*REBAL! 'ARRAY! TEMP(/0:L+1,)
St=(N=1) '/ (1=1); TI:=7
QUICKSOPT(A,1,14+(1=-1)*S,S)
'*TORY J:=1 'STFD' 1 (UNTTL

L 'DpoO!?
'BLGIN'
TEMP (/J/) 1=2 (/T,1/); T:=T+S; MOVE:=MOVE+1;
'END ! ;

P:=L+%; TEMP (/0/):=0; TENMP(/B/):1=N;
'FOR! P:=P!/t2 'WHILE! P>) DO
tFOR! Q:=P 'STFRP!' 2P *tUNTTL' L *DO?
'BREGTN?
I:=TUMP(/Q=-P/) ; U:=TENMP(/C+D/)};
1IF!Y T+41<0 'THEN?

10.

'BEGIN'
J:=U+1; X:=T¥MP (/0/) ;
PIRST:
TFORY I:=T+171 YYWHILR' ILJ 'O
' BEGIN!
COMP:=COMD+1;
YIFY A(/I,1/)>=X YTHEN' 'GO TO' SECOND;
'EFND?
T:=J3
SFCOND:

'FOR! J:=J=-1 'HHILF' J>T DO
'BFGINY
COMP:=COMP+1;
‘TP A(/J,1/)<=X 'THEN!
'BEGIN!

Y:=A(/I,%/); 2(/I,1/):=A(/0,1/); A(/T,1/):=Y;

INTER:=INTRR+1;
, "GO TO' FIRST;
*ENDY;
'END?;
TEMP(/Q/) :1=1-13
*END!
TPLSE!?
TEND (/Q/) :=U;
TEND!;
TtPORY I:=0 'STEP' 1 'YUNTIL®' 1L *'DO?
TBEGIN?
P:=TEMP (/I/)+1; Q:=TENMP (/I+1/);
1TFY PLQ YTHREN!' QUICKSORT{(2A,P,Q,1):
tEND!;
'END!
TELSE?
QUTICKSORT{(2,1,N,1)3
YTEND' SAMPLESORT;

1.

h,2 Osort?

*PROCEDIURFE?Y QSORT™2(A,L1,UMN ;
TYALUEY L1,01; 'TNTEGER! L1,U15 'APTRAY' A;
TREGIN?
tTNTRG®™® P,0,TX,T2,T7,3,M4,L1,0;
'REALY X,XX,Y,2,27;
*INTEGER' 'ARRAY' LT,UT(/1:LN(ABS(U1-L1)+2)/LN(2)+0.01/);
Me=0: L:=L1; U:=01;

PART:
P:=L; MOVE:=MOVE+2; Q:=U; X:=A(/P,1/);
Z:=2(/0,1/); T:=0; J:=0-P=1; COMP:=CONP+1;
'IF? X>Z *THEN!
'BEGIN?
Y:=X: MOVE:=MOVE+2; A(/P,1/):=X:=%; A(/0Q0,1/):=2:=Y;
INTER:=INTFR+1;
'END';
'IFY U-1>1 'THEN!
'BEGIN'
¥XX:=X: MOVE:=MOVE+2; IX:=P; 22:=Z; 1Z2:=Q;
LRFT:
'RFOR' P:=P+1 'WHILE' P<LQ 'DO!
'BEGIN?
X:=A(/P,1/): MOVE:=MOVE+1; COMP:=COMP+1;
1IF! X>=XX *THENT' *'GO TO' RIGHT;
TEND?! P; :
P:=Q=-1; 'GO TO' OUT;
RIGHT:
fFORY Q:=Q-1 'WHILE!' Q>P 'DO!?
'BEGIN!
Z:=A(/0,1/); MOVE:=MOVE+1; COMP:=COMP+1;
1TFPY 7<=27 'THTN' 'GO TO' DIST;
tEND' Q3
Q:=P; MOVE:=MOVE+2; P:=P-1;
Z:=X; X:=A{(/F,1/); 'GO TC' COMPARE;
DIST: ‘
COMP:=COMP+1;
1IFY X>Z 'YTHEN?
'BEGIN?
Y:=X: MOVE:=MOVE+2; A (/P,1/):=X:=2; A{(/0Q,1/) :=2:=Y;
INTER:=INTER+1;
COMPAPE:

COMP:=CONMDP+2;
YIFY X>¥XX 'THEN!
1REGINM?
XX:=X3: MOVP:=MOVE+1; T:=I+1; IX:=P;
1TNDY; _
1TRY 777 YTHREN!
tRTGTINY
27:=7: MOVF:=MOVE+1; I:=T+1; IZ2:=Q;
tFND';
IE‘\]DI
'FLSE!
"BRGIN! .
XX:=X; MOVFE:=MOVFE+2; IX:=P; ZZ2:=2; T7:=0; TI:=T+2;
'E“D': .
GO TOY LEIT,

ouT:
$TFY P YNOTFQUALY TX *THEN?
"BEGIN!?
A(/P,1/) +=XX; E(/I¥,1/):=X; MOVE:=MOVE+2;
YENDY;
YIFY O 'NOT®WQUAL' TZ 'YTHPN!
'BEGIN?
A(/0,1/) =273 R(/IZ,1/):=2; MOVE:=MOVF+2;
'END';
I ¢ g-0O>P-1 'THTNM!
tBEGIN?
L1:=L; U1:=P=1; L:=0+1;
'ENDI
' TLSE?
'BEGIN? N
Uls=0; L1:=Q+1; U:=P=-1;
*END
'IF? T 'NOTEQUAL' J !'THEN!
fBEGIN?
*IFY UI>L1 YTHEN!
'BEGIN!
o Mr=M+1: LT (/M/):=L; UT(/M/):=U; L:=L1; U:=013
‘GO TO! PAPRPT:

'END?';
fTIFY U>L 'YTHEN' 'GO TO' PART;
TEND?':
tENDY
'IF' M '"NOTEQUALY O 'THEN?
YBEGIN!

L:=LT {(/M/); U:z=UT (/M/); M:1=¥-1;
'IFY DL 'THEN?! 'GO TO' PART:
TEND Y
'END?!' QSORT2;

LEFT:

@

-3

4.3 Cuicksort 14

'PROCEDURE' QUICKSCRY (A, M,N);
‘VRLOFY M,N; 'INTEGRRPY! ¥, N; 'APTAY! Aj
'REGIN®
'"INTEGER' I,J;
'IFY MCN-1 'THEN!
"REGIN?
PARTITTION (i, M,V,
QUICKSORT (A, 4,J)
N)

I,3)3
QUICKSORT (A, I,N);

TEND!
'ELSE?
*TF? N-M=1 'THEN'
*BEGIN?
IF A(/N,1/)<A(/M,1/) 'THEN?
I BEGIN!
YY:=A(/M,1/) 3 A(/M, V) =R(/N,1/) 5 R{/N,1/) =YY,
INTRR:=INTER+1;
YVEND?;
COMP:=CONP+ 1
tEND?;

TEND' QUICKSORT;

'*PROCEDURE!' PARTITION(A,M,N,TI,Jd);
'

- ¥
'*VALUE' M,N; 'INTEGER' I,J,M,N; 'ARRAY' Aj
'BEGIN?
'REAL' X3

T:=M~-13; J:=N;

1TFt M<KN-2 'THEN?

'BEGIN? .
X:=h (/N=- (N-M+1) " /*2,1/); A (/M- (N=M+1)*'/12,1/) :=A(/N,1/) 3
MOVE:=MOVT+1;

tEND!

VRIS E!?

X:=a (/N,1/) 3

TFOR' T:=T+1 'WHILE' I<KJ 'DO!
'BEGIN!

COMP:=COMP+1;

'IF!' ¥X<2{/I,1/) tTHEN?

'BEGIN!
A(/J,1/):1=A(/I,1/); MOVE:=MOVE+1l; 'GO TO' RIGHT;
"THDY
YENDY T
I1:=J;

'FORY J:=J-1 'WHTL®! I<J 'DC!?
"REGIN?

COMPs=rOMP+ T :

YTPY X>A(/T, /) YTHEN!

13RGIM!

A(/T,1/) 2=h(/3,1/); MOVE:=MOVE+1; 'GO TO' LEFT;

tEND?Y
tENDY J;
2(s/I,1/):=X; MOVE:=MCVE+2;
tTRY Y CNOTEQMALY M O'THEN' J:
tIFY T YNOTEQUALY N 'THEN' I:=

1TTNDY PAVRTITION

h, b Meree

'PRNCEDURE' MERGF (A,N);
YWALUEY N; 'INTHGFRY N; 'ARPAY' A
'REGINY

'*INTEGFP' T,J,K,L,M,D,P,0,R; 'BOCLFAN' S;
S:='FALCE'; P:=1;
PASS:
S:=*NOT' S; D:=1; Q:=P; R:=P;
'*IF! S 'THEN! '
YBEGIN?
T:=1; J:=VN; K:=N; L:=2%N+1;
VEND!?
'EFLSE!
'REGIN?
Te=N+1; J:=2%N; K:=0; L:=N+1;:
YFNDY;
'FOR' K:=K+D 'WHILE' K *NOTFQUAL' 1 'DO?
'BEGIN?
tTF? BR>0 'THEN!
' BEGIN!
1TPY O>0 'THEN?
YBEGIN?
COMP:=COMP+1; MOVE:=MOVE+1;
YIFY A(/T,1/V2A{/J,1/) 'THEN!
LYFT: .
*BEGIN! ,
A(/R," /) 2=2{/3,1/): J:=J~13; R:=R-1:
tEND?Y
tTLSR?
RIGHT:
*BEGIN?
A(/K,1/) :=A(/1,1/); T:=I41; Q:=0-1;
YEND'
'END?
'ELSE?
tGO TO' LEFT:
tEND?
tELSF?
PTFY Q>0 YTHEN' 'GO TO' RIGHT
1PL3™?
tBRGINY
Q:=P; R:=P; M:=K~-Dj; K:=L; L:=M; D:==D;
1END !,
tENDY
P:=D+P;

'TF' P<KN TTHEN' 1GO TO' PASS:

1IFY S YTTHEN!

'TORY Tr=1 PSTEDY 1 TUNTTILY N DO A(/TI,1/):=A(/I+N,1));
'END! MTRGF;

4,5 laturalperee

16.

*PROCEDURE' NATURPLMPRGE® (A, N);
'VALUF! N; 'INTRGFR' N; 'ARPAY!' };
'REGIN!
'INTEGRERY T,J,K,L,D,H; "BQOOLFAN' S,F;
S:='"FALSE';
PASS:
S:='NOT' S;
*ITF' S 'THEN!
TBEGIN?!
I:=1; J:=N; K:=N+1; L:=2=%N;
'END!?
'FLSE!
*REGIN!
Te=N+1; J:=2%N; K:=1; L:=N;
'END?;
:=1; F:='TRUE'; H:=K;
TFOR' K:=K+D *WHILE' I *NOTFQUAL®' J 'DO!
*BEGIN?
H:=K; COMP:=COMP+1;
'IFY A(/T,1/)D2(/J,1/) ‘'THEN!?
'BEGIN! :
A(/K=D,1/):=A(/J,1/); MOVE:=MOVE+1; J:=J-1; COMP:=COMP+1;
*IFY A(/J+1,1/)>0(/3,Y/) 'THEN!
*BEGIN!
A{/K,1/):=A(/1,1/); MOVE:=MOVE+1; COMP:=COMP+1;
TPOR!' K:=K+D 'WHILP' A(/T,1/)<=A{/I+1,1/) *'DO?
IBRFGIN?
T:=TI+1: A(/K,1/):=A(/1I,1/); MOVE:=MOVE+1; H:=K;
COMP:=CONP+1;
TEND?;
T:=T+7; F:="FALSE'; K:=L; Ll:=H+D; Dz:=-D;
'END';
YEND?
'RLSE?
'BEGIN?
A{(/K-D,1/):=A(/TI,1/); MOVF:=MOVE+1; I:=TI+1; COMP:=COMP+1;
TIFY A(/TI-1,1/)>A(/1I,1/) 'THEN?
'BEGIN!
A(/K,1/):=2(/3,1/); MOVE:=MOVE+1; COMP:=COMP+1;
1PORY K:=K+D 'WHILE?! A (/J,1/)<=A(/J-1,1/) 'DO?
'REGTN! .
J:=J=1; 2(/K,1/):=L(/3,1/); MOVE:=¥OVT+1; H:=K;
COME:=CONP+1;

TENDY;
J:=J=-1; F:='FRLSE'; K:=L; L:=H+D; D:=-D;
'RND Y
TENDY
Hi=K;

"FNDY;
A(/H,1/):=2(/T,1/); FOVE:=KCVE#+1;
'TF' F 'THEN!
"BFGIN!
'IF' S 'THEN!
*FOR' T:=1 'STEP' 1 'OUNTIL' N *'DO' A(/I,1/) :=A(/I+N,1/);
'VEED !
"ELSE!
"GO TO' PASS;

TENDY NATURALMERGE;S

L,6 Listnaturalmerce

'*PROCFDUREY LISTNATORALMYEGT(A,LTNK,N):
'"VALUE' N; 'INTEGER' N; 'YAREAY' A; 'INTEGER' 'ARPRAY' LINK;
'*BREGIN?
'"INTEGER' 1,9,0,58,7;
LINK(/0/) :=15 T:=N+1; COMP:=COMP+N-1;
tFOR!' P:=1 !STEP! 1 TUNTIL' N-1 'DO?
YIF' A(/P,INYK=A(/P+1,1/) VTHEN?
LINK (/P/) :=P+1
'ELSE?
'BEGIN! .
LINK (/T/) == (P+1); T:=P;
'END?';
LINK (/T/) :=LINK (/N/) :=0; LINK(/N+1/) :=ABS{LINK(/N¢+1/));
PASS:
S:=03; T:=N+1; P:=LINK{/S/): Q:=LINK{/T/);
'FOR? :=SIGN(LINK (/S/)) 'WHILE?' Q *'*NOTEQUAL®' O *'DO?
IBREGIN!
COMP:=COMP+1;
1Tt A(/P,1/)VD>A(/0Q,1/) 'THEN?!
'BEGIN!
LINK(/S/) :=I*RBS(Q); S:=Q; Q:=LINK (/Q/);
1IF? Q<=0 'THEN!
'BEGIN?
LINK(/S/) :=P; 5:=T;
$FORY Ts3=P 'WHILE' LINK{/P/)}>0 'DO!' P:=LINK(/P/):;
T:=P; Ps=~LINK(/P/)3; Q:==Q;
PIFRY Q=0 'THEN!
!BEGIN?)
LINK{/S/):
LINK(/T/):
TEND?;
YEND';
tEND!?
'ELSE!?
! BEGIN?
LINK(/S/) :=I®ABS(P); S:=P; P:=LINK(/P/);
'TFPY' P<=0 'THEN!
'BEGIN!
LINK(/S/) :=0Q0; S:=T;
TFORY T:=Q 'WHILF' LINK{(/0/)>0 'DQ' Q:=LINK(/Q/);
T:=0Q; Q:=-LI¥K(/C/); P:=-P;:
'IFY O0=0 'THEN!
YBEGIN?
LINK(/S/) :=SIGN(LINK({(/S/))*ABS (P);
LINK(/T/):=0; *GO TO' PASS; '
YEND?';
TEND Y
'ENDY;
TEND
TENDY LISTNATURALMERGE;

SIGN (LINK{/S/))*ABS (P);
0; 'GO TO!' PASS;

4.7 Linearinsert

YPROCTFDIRFE' LINFAPINSERT(A,N)
*YALUFY N 'INTEGER' N; 'ARFAY' 2;
*REGIN?
*TNTEGERY I,J; 'RFALY X;
tFORY T:=2 YSTFP' 1 ¢yUNTIL' N *'DO!
TBEGIN?
X:=A(/I,1/); MOVE:=MOVE+1;
tFOR!' J:=T-1,J-1 'WHILF' J>0 'DO!
TBEGIN!
COMP:=COMD+1;
TTPY A{(/J,1/)>X 'THFN!
A(/341,1/):=A{/3,"/)
tELSE!?
GO TCY LQOOP;
MOVE:=MOVE+1;
TEND' J;
J:=0;
LOOP:
A(/3+1,1/) =X MOVE:=MOVE+1;
'*ENDY I
tPND' LINEARINSERT;

18.

4.8 [linarvinsert

'PROCFDURRE!' BINARYINSERT (A,N);
'VALUE!' N; 'INTEGFR' N:; 'YAPFAY' A
'*BFEGIN!
YINTEGER! T,X,P,0; 'YREAL' X;
'*FCR' T:=2 *STFP' 1 'UNTIL' N *'LO!
'BEGIN?
Xe=A(/1,1/); P:="7; Q:=T: MOVF:=MOVE+1;
YFOR' K:=(P+Q)*'/'2 'WHILF' Q>P+1 'DO!?
'*BEGIN?
'TFY X>=A(/K,1/) 'THEN?
P:=K
'ELSE?
0:=K;
COMP:=COMP+1;
'END?' K3
COMP:=COMP+ 13
'*IF! X>=A(/P,1/) 'THEN'! P:=P+1;
1TF? P<I *'THEN!

'BEGIN?
"FOR' K:=TI,K-1 'WHILE! K>P 'DO? A(/K,1/) :=A(/K-1,1/);
A(/P,1/) :=X; MOVE-~vovv+1 P+2;
TEND?;
'EXD' I;

"END' BINARYINSERT;

19.

h .9 Listinsert

'"PROCTDURE!' LISTINS¥RT(2,LINK,N);
YVALUR' N; 'INTEGER' N; ?'ARRAY!' 2; 'INTEGER!
1BRGIN!
SINTEGER' P,Q;
TINK {(/0/) 2=N; LINK (/N/):=0;
TFOR?! N:=¥-1 'WHILE' N>O0 *'DO?
*BEGIN?
: P:=LINK (/0/); 0:=0; COMP:=CONP+1;
LOOP:
YIFY A(/N,1/)>L (/P,1/) tTHEN?
IBRGIN? .
Q:=P; P:=LINK(/Q/); COMP:=COMP+1;
fTF' P>0 'THEN! ‘GO TOY LOOP;
TEND?;
LINK{(/Q/):=N; LINK(/N/):1=P;
TEND? N:
'YEND' LISTINSERT;

TARRAY!

LINK;

20.

4,10 Linearselect

*PROCRDUREY LINFARSELECT (A,N);
'VALUE' N; YINTEGER' N; 'ARRAV' A;
TREGIN?
*INTREGER' I,J; 'REAL' X;
tFORY Ni;=N 'STFP' -1 TUNTIL' 1 DO
TREGIN?
J:=N;
'FORY T:=N-1 'STFP' -1 YUNTIL' 1 'DO?
'BEGIN?
TIFY A(/T,V/)>A(/T,1/) YTHENY J:=1;
COMP:=COMP+1;
YEND!' T;
TFY J 'NOTEQUAL® N 'THEN!
'BEGIN!
Xe=A(/3,1/); A(/3,1):=2A(/N,1/); A(/N,V/) :=X;
INTER:=INTER+;
'END?;
TEND® U;
'END!' LINEARSELECT;

21.

4,11 tlersreselect

'PROCEDUREY MERGESELECT (RA,N)
TYALDEY Ny 'THTEGTR! N; 'YARFAY' A3
'BEGIN?
' PROCFEFDYRE! LINTARSRLECT(L,™) s
TVALD®Y L,U; YINTPGRR' L,U;
'*BEGIN!
YINTEGWR! I,J;
YPORY Ja:=U YSTEP' -1 *UNTIL' L 'DO!
*BRGIN?
J:=U;s
tFOR' T:=U-1 $STEP' -1 *QNTIL* L 'DO!
*BEGIN?
YR A(/TLI/Y>A(/3,1/) 'THEN' J:=13
COMP:=COMP+1;
tENDY T
fIF' J 'NCTEQUALY U ?THEN!
'*BEGIN?
YY:=A(/J,1/): A(/3,1/):=A(/U,1/); A(/U,1/):=YY;
INTER:=INTER+1;

TEND
tEND!' U3
tEND?! LINTARSELECT;
'INTEGERY ¥,T1,J,K,03
O:=ENTIER (SQRT (N} +1); M:=N'/'Q+1;
1TFPY N=(M=-1)*Q 'THEN' M:=M-1;

'BEGIN?
'INTREGRR? TARRAY!' P(/1:M/)
1TOR? T:=1 tSTEP!' 1 fUNTIL' M-1 'DO?
*BEGIN?
P(/T/):=(I=-1)*Q+1; LINEARSELECT (P (/1/),I*Q);
‘END';
P(/M/) 1= (M-1)*Q+7 3
LINEARSRLRECT{(P{(/M/) . ,V);
'PORY K:=N+1 'STEP*' 1 'UNTIL?' 2%N 'DO?
YBEGIN!?
*POR! T:=1 'STEP' 1 'UNTIL! M-1 'DO!
1TFY p(/I/) 'NOTEQUAL' I*Q+1 'THEN' 'GO TO! SELECT;
I:=M;
BLECT:
IFOQR?! J:=I+1 'STEP!' 1 'ONTIL' ¥ 'DO!?
1TIFY P{(/J/) 'NOTEQUAL' J+Q+1
PAND' P(/J/) 'HOTEQUALY' N+1 !THTN!
fBRGIN!?
COMP:=COMP+1;
TR A(/P(/3/),A)YKA(/P(/1/), /) THEN' I:=J;
LR S L
A(/K,1/) 1=A (/P (/1) V) s BPA/T/) 1= (/T/) +13
MOVR:=MOVT+1;
S PENDY K
TEND Y
1TNDY MPRIGESHLRCT;

4,12 LDubblesort

*PROCEDURE' BUBBLESORT(A,N) ;
'YALUT! N3 'INTEGER' N; 'ARBAY' A;
'BEGIN'
'"INTEGER' I,J; 'REAL' X;
'FOR! T:=1 *STFP' 1 'UNTIL' N=-1 'DO?
'"BFGIN?!
'FOR' J:=I 'STEP' -1 'OUNTIL' 1 'DO’
1BEGIN!
COMP:=COMP+1;
YIFY A(/JI+1,1/)<A(/d,1/) VTHFN?
*BEGIN?

X:=A(/d+1,1 /) A(/d+1,1/):=A(/F,1));

A(/J,1/):=X; INT®R:=INTFR+1;

*END?
'TLSE!?
GO TO!' L0OOP;

TEND?' J;

L.OOP:
YEND! I
'"END' BUBBLYXSORT;

23.

L.13 Chellsort

'PROCFDURFE'Y SHELLSORT (A,N)3
"VALUE' N3; *INTEGERY N; 'YARPAY' 13,
'BRGIN?
*INTEGER' I1,J,D,K; 'PEAL' X;
D:=T:=4;
tFOR! T:=3%T+1 'WHIL®' T<K¥ 'DO! D:=3%D+1;
*FOR' D:=(D=-1) '/'3 'WHILE' D>0 *'DO!
'FOR!' J:=1 'STEP! 1 *UNTIL' ¥N-D *'DO!
'BEGIN?
X:=A(/J+D,1/); K:=J+D; MOVF:=MOVF+1;
'FOR! T:=J,I-D 'WHILE' I>0 'DO!
'BEGIN!
COMP:=CONMP+1;
'*IF' X<A(/I,1/) ‘THEN?
'BEGIN?
A(/I+D,1/):=A(/1,1/); K:=I;
MOVE: =MOVE+1;
TEND?
*ELSE?
'GO TOY LCOP;
TENDY TI;
LOOP: . .
'*TFY K 'NOTEQUAL' J+D 'THEN?!
"BEGIN? .
A(/K,1/) :=X; MOVE
'END?Y;
TtEND! J;
fTND?' SHRLLSORT;

LX)

=MOVE+1;

L.,14 leapsort

'*PROCFDURF' HFAPSORT (A, N)3
TVALUFY N; YINTEGFR' N; 'AREAY' A;
'*BEGIN! }
'PROCFDUPHY SIFTOP (T ,N);
‘VALURY I, N; 'INTEGER' I, N;
'REGIN?
TINTEGER* J: 'REAL' X
X:=A(/1,1/); MOVE:=MOVE+1;
LOOP:
Je=2*T1;
1TFt J<=N 'THEN!?
"BEGIN?
tTPY J<N 'THEN!
'REGIN? :
YIFY A (/J+1,1/)>A(/3,1/) YTHEN' J:=J+1;
COMP:=COMP+1;
YFND?;
COMP:=COMP+1;
YIFY A{(/J,1/)>X YTHEN!

TREGIN?
A(/T,1/):=DA(/3,1/); MOVE:=MOVR+1; I:=J;
TENDY;
'END?;

A{/I,1/):=X; MOVE:=MOVE+1;
TEND' SIFTUP;
'INTEGERY T3 'RTFAL' X;

GO

TPORY Y:=N?'/?'2 'STEP' -1 'UNTIL* 2 'DO' SIFTUP(I,N);

*FOR! T:=N 'STEP' -1 'UNTIL! 2 'DO!?
'BEGIN!

SIPTUP (1,T);

*BEGIN!

X:=a(/1,1/); R (/1,1 :=A(/2,1/); AU/I, /)=

INTER:=INTER+1;
TEND';
fENDY T3
TEND' HEAPSORT;

X3

TO!

L.OOP;

L.,15 rder

1PRINCEDNRES ARDYR (A, LTNK, V) ;
'*VALUE! N3 *INTEGER' N; *'ARRAY' A; 'INTEGER' 'ARRAY' LINK;
"RPGIN!
'*INTEGER! I,K,P,T; 'RPAL' X;
P:=LINK(/0/);
*FOR! K:=1 'STEP' 1 'UNTIL' N 'DO°’
'*REGIN?
tFOR! I:=P 'WHILF! I<K
X:=A(/K,1/); A(/K,1/):
T:=LINK (/K/) ; LINK(/K/
T:=LINK (/K/); LINK(/K/
tEND! K3
'*END' ORDER;

PO P:=LINK{(/P/):

A(/P,1/) s A(/2,1/) =X
=LINK (/P/): LINK{(/P/):=T;
=P; FE:=T;

g | |

5. RANDOM INPUT DATA

The random numbers used in these tests were generated
in two stages. Firstly, a file of random integers between 0
and 10000 was created on a Honevwell 6050 computer using the
FORTRAN programme below,

The 1linear congruential method was used with a mul-
tiplier of 16807=7 and a modulus of 2 . The starting
value, 538965, is relatively prime to the modulus. The file
of integers was created by choosing four digits from the
centre of each number generated.

The second stage was performed in the mainline of the
test programmes. The integers nroduced in the first stage
were read into an array and then arravys of random real
numbers were generated from them bv setting
ACi):=ACT)/ACi+j)*A(i+j+1) for i=1,2,3,...,n and j=1,2,...,k
where k is the number of test runs, and n is the number of
elements being sorted.

Mone of the arrays of real numbers produced by this
second stage were found to contain any repeated elements.

A two stage random number generator was used because
tests of a different nature were being run on these sorting
algorithms on the Honevwell 6050 and comparable results were

desired,

27.

100
110

15

INTEGER A,X,R,I
X=538965

A=16807

I=0
IF(I.GE.1000)STOP
X=X*A
R=IABS(X/10**6)
R=R-(R/10000)*10000
IF(R,LE.0)GO TO 110
WRITE(10,15)R
FORMAT(1X,1I4)

I=1+1

GO TO 100

END

28.

6. TEST RESULTS

The next three sections summarize the results obtained
from three sets of test runs.

In all three sets of tests, CP and CMS were locked into
real storage to prevent them from being paged out, This
eliminated all opaging activityv excent that associated with
the programmes and their data areas.

As mentioned rpreviously the size of the working set
(the number of real pages available for paging operations)
was controlled by locking in pages of real storage to the
operator and system thus making them wunavailable to the
sorting programmes.

The numbers of page reads and page writes performed
while sorting were obtained by accessing the information
available in the VMELOK immediately before and after the
sort routine was called.

The elements of the arravy being sorted were spaced
equal distances arart on the pages in virtual storage. The
number of elements per virtual page was varied as indicated
in the tables,

It should be noted that the figures given for
LISTINSERT and LISTNATURALMERGE do not include the data
movement and paging operations that were used by ORDER to
reorder the array of elements being sorted. The results for

CORDER are listed sepnarately.

29.

It should also be noted that at the completion of
MERGESELECT, the sorted numbers will be in a second data
area and must be moved back to the original data area. The
figures for MERGESELECT include these operations.

The horizontal scale for the graphs is log2(number of
array elements on each virtual pasre). A logarithmic scale
was used to improve readability.

Table 1 below gives the number of comparisons, inter-
changes, and moves of elements of the array being sorted
used by each sorting algorithm. An exchange can be con-
sidered ecual to three moves. The results summarized in
table 1 apply to the tests of the following two sections and

are averages of tests on sets of 256 random numbers,

30.

31.

0°0
8°T¢¢e
0°¢sT¢
0°0
0°21sa
0°0C

0°0
8°608LT
9°L99L1
0°0

N h681
nTHELI
8°6901
¢ h60¢

0°¢T8T

S3IAOW

*S9AOW pue ‘sadueyousjuy ‘suosjdedwo) - T 3II4VL

0°95¢
0°8S¢
0°0
9°LS0LT
%°10¢C

8 8n¢

6°0

¢ hice

W 0hhe

0°L0¢LT
h°[SSS

0°0%9¢¢
9°CT¢LT
Htonel

0°L0¢LT
9°1¢0¢

9°509¢

N helT

9 ¢hoe

8°1.49¢

9 nnel

dwoo

0°0
§°T¢¢l
h'e¢bTe

0°0
£'88LLT
6°LNSLT
0°0
0°'0¢o61
0°8¢LT
S'0L0T
h°L60¢

LARAA R

S9AOW

0°959¢
0°ss¢
0°0
6°L¢0LT
8°10¢
1°052
0°0
0°0
0°0
0°0
0°0
0°0
0°1¢
0°L9¢

8°¢o¢

493U}

0T

0°0

S ¢TIee

T°184¢

STL8TLT
S°h9sS

0°0n92¢
6°C6CLT
2°¢hbT

9°L8ZLT
$°0¢0¢

1°999¢

0°8¢LT

1°¢¢12

§°L99¢C

T°¢82¢

- dwoo

A9pap
jJao0sdeay
340s||8Yys
140sa|qqng
1098 9sa3duay
109|9sJdeau]
149suUl3s|
j4asujAdeug
jJ49suydesu
a84awleanieuls |
93uvwean]yepN
CY.FEN
140S321nY
Z140sp

14059 | dueg

A3VVHIAY SNNY LS3IL 40 dIGWNN

7. EIRST SET OF TESTS

This section summarizes the results of test runs on
different sets of 256 random numbers. Table 2 indicates the
number of sets sorted for each algorithm,.

The virtual storage of the virtual machine nerforming
the tests was defined to be 096K bvtes.

As well as locking in CP and CMS, the bprogrammes were
locked into real storage as were all data areas except the
array being sorted. This was done in order to isolate the
paging activity associated with the array,

A dummy array was declared immediately below the arrav
being sorted, the size of which was such that the arrav
being sorted Was forced to start on a virtual pnage boundary,
The array being sorted was declared as
REAL ARRAY A(/1:M#2%1,1:102L/1/)
where 1 was the number of elements on each virtual pnage,
The array A was, therefore, alwavs 512 virtual nages in
lTength,

The two pages following array A were also locked into
real storage. This ensured that the array being sorted was
the only pageable rart of the virtual machine. A working
set of 8 pages was allowed for this array, the remaining

rages being locked into the orerator and system.r

32.

ELEMENTS / PAGE

33.

Samplesort
Qsort2
Quicksort
Merge
Naturalmerge
Listnaturalmerge
Linearinsert
Binaryinsert
Listinsert
Linearselect
Mergeselect
Bubblesort
Shellsort
Heapsort

Order

bl 32 16
-- 5 5
-- 5 5
-- 5 5
5 5 5
5 5 5
-- 5 5
-- 5 5
-- 5 5
-- 5 5
-- 5 5

5 5 5
-- 5 5
-- 5 5
-- 5 5
-- 9 10

10

10

W W W

W

TABLE 2 - Number of files tested.

FLEMENTS / PACF

34.

6h 32 16 8 3 2 1
famnlesort - n,n 83,2 180,68 351.2 759.0 --
Nsort? - 0.0 20,6 an.n 255.4 £21.0 --
Oulcksort - 0.0 2h .6 Q3.0 270.2 7%6.3 -
Merge 0.0 99.4 2u8.,2 50n,2 10n8.8 2006,.0 4091,7
Naturalmerge 0.0 106.0 251,k 5no .,y 1028.,2 2056.7 Loan,3
Listnaturalmerge -- 0.0 221.0 557.0 989,82 1500.0 -—-
Linearinsert -- 0.0 208.6 1474 ,2 3833.0 8477.3 -
Rinarvinsert - 0.0 258.,0 1753.0 r505.8 9559,3 18728.0
Listinsert - n.0 1451.6 7622.8 12907.0 15926.0 --
Linearselect -- n.0 ~ 805.6 3496,8 79R5.8 16k16.3 --
Mergeselect 0.0 20.3 3583.0 3772.2 3021.6 4138.3 5569,0
Ruhhlesort - 0.0 184.8 170,84 3833.4 8481.3 -
Shellsort -—- 0.0 73.4 228.4 632.0 1291.3 --
Heansort -- n.n 88.4 n3q.8 1101.8 2486,7 -
Crder -- n.0 20.1 ag.1 193 .6 300.5 -

TABLE 3 ~ Page Reads.
8
oo
8
3] o SAMPLES@RT
X QSZRT2
8 + QUICKSZRT
K o PRDER
8 N
<
E
"
n8
ggﬁ_
L
oz
o
LS
T4
a
a-
8
SR
o NN
o
o \
\\
8 A,
i \mr\
8 \\
il .iammM__-‘m
e
-
b p— T ¥ T T T T T L T L.
.00 0.50 1.00 1.50 2.00 2.50 3.50 4,00 4,50 5.00 S.50 B6.00

LBGZ2{ ELEMENTS / PRGE)

PRGE RERDS »ig®

PAGE RERDS #10°

©
o + MERGE
o NATURARLMERGE
8 lul LISTNARTURALMERGE
@ J 3 SHELLSZRT
><\ A HERPSERT
S.i . X MERGESELECT
3:3
S —
7
T e e 2.00 250 3.00 3.50 4.00 4.50 5.00 5.50 6.00
L@G2(ELEMENTS / PRGE)
8
8.
=
<R] LINEARINSERT
o X BINARYINSERT
S m LISTINSERT
=R & LINERRSELECT
o + BUBBLESART
[=)
il
8
8
o
g T T 7 T E;_»__‘“___'i\.,'r; I3 Y 4
0.00 0.0 1.00 1.50 2.00 2 450 500 5.50 6.00

LUG2

50 3.00 3.50 4.0
(ELEMENTS / PRGE

35.

FILLFMFMTS / PACF

64 32 16 8] 2 M
famnlesort -- 0.0 86.2 1R8.0 3060 5%7.0 -
Nsort? - 0.0 26,0 2N n 235.8 [4 --
Nuicksort -- 0.0 29.2 al.6 238.,h nag.,0 -
Merge 0.0 68.4 131.2 257.8 516.b 1027.7 2049,7
Maturalmerge n.n 68.2 132.2 265,2 528.8 1047.,7 2050,0
tistnaturalmerge - 0.0 10.2 10.2 10.2 8.7 --
Linearlinsert - 0,0 252.4 1518.0 3864 .4 8h23.3 --
Pinarvlnserf - 0.0 332.6 1660,k B104,2 8594 .0 17281.0
Listinsert - 0,0 10,2 10.2 10.2 8.7 -
linearselect -- 0.0 125.8 315.0 13,2 §62.0 -
Mergeselect 0.0 18.0 275.2 3ng.8 37h.8 511.0 80R,7
Pubhlesort - 0.0 237.2 1513,k 3867.,2 8423.7 --
Shellsort -- 0.0 82.8 208,2 587.0 1119.,3 -—
Heansort - n.n 111.6 L 973.0 1689.7 -
Mfrder - n.n 246 106.0 109,3 310.0 -

TARLE & - Page Writes.
Q
Q
=1
-~
8
ol] lu] SAMPLES@RT
o QSBRT2
8 + QUICKSZRT
@2 o BROER
A LINEARSELECT
8 X MERGESELECT
N .

ITES #0?
6.C0

et

o

FOGE I
3

2.00

1.00

0.00

0.00 0.50

T
1.50

2.00 2.5 3.00
L@BG2(ELEMENTS

5.50 .00
/ PRGE)

36.

PAGE WRITES s10?

10.00

PAGE WRITES o

40,00

25.00
1

30.00

L

20,00 FS.OO

7%
L

15.00

5.00

0.00

1

~5.00

I

-10.00

B X+ 0

37.

MERGE
NATURALMERGE
SHELLSZRT
HERPSERT

20.00

18.C0

16.09
-6—L

14.00

12.00

10.00

8.C0

4.00 F.UG !

2.00

0.00

3.50 4.0

2.00 250 3.00
L@G2(ELEMENTS / PRGE)

u
.0
+

W50 5.00 5.50 6.00

LINEARINSERT
BINRRYINSERT
BUBBLESERT

T
1.50

2.00 2.50 3.00 3.50 4.00
LBG2(ELEMENTS / PRGE !}

W50 5.00 550 6.00

FLEMENTS / PACE

38.

- Bh 32 16 R b 1
Samplesort -—- n.n 1f9 .1 38,6 655.2 1206, 0 --
Osort? -- n.n 51.0 170 .k ua1,2 1113.7 --
Nuicksort - n.0 53.8 187.6 5n8.6 1234.3% --
Merge 0.0 167.8 379, 758.0 1525.2 3033,7 6141.3
Maturalmerge 0.0 174.2 383.6 Thk .6 1557.0 3104k.3 6140,3
Listnaturalmerge -- 0.0 231.2 567.2 1000.0 1508,7 --
lLinearinsert - 0.0 461,0 2092,2 7697.4 16900,7 -
Rinarvinsert -—- 0.0 590,.6 13,4 8700,0 18153.3 36009.0
tistinsert - 0.0 1461.8 7633.0 12917.2 1593h.,7 -
Linearselect -- 0.0 931.4 3811.% 8374.0 16R78.3 -
Mergeselect n.on 38.3 3858.2 yng1,n L29F . b L6893 6377.7
Rubhlesort -- 0.0 422.0 28243 .8 7700.6 16905.0 -
Shellsort - 0.0 156.2 h76.6 1219.0 2610.7 -
Heansort - n.n 200,0 899.h 2074.8 4176.3 -
Nrder - n.n by, 7 2001 392.9 619.5 -
TARLE 5 - Total Page Faults.
8
S‘ﬂ
3
=N ul SAMPLESZRT
. o QSZRT2
s + QUICKSZRT
4 4 BROER
3 X LISTNRTURALMERGE
1‘5:,: .
o
}_.
~da
o =]
g1
-
&
a8
0.
-
@
8
b 0]
o
(=
£
8
o1
8
o‘_ -
8
o
0.00 .50 1.00 1.50 2.00 2.50 450 5.00 5.56 6.00

LBG2{

3.00 3.50 4.00
ELEMENTS / PRGE)

8.00
i

8.00

1

7.00

i

6.00

5.00

|

TBTAL PRGE FARULTS 107
.00 4.00

MERGE
NATURALMERGE
SHELLS@RT
HEAPSBRT
MERGESELECT

¢ X3+ 0

FAULTS «10°
25.00 30.08 35.00 40.00 45.00

,_
=
i

TGTAL PRG
20.09

5.00 10.C0 15.C0

0.00

-5.00

0.00 0.50 1.08 1.50 2.00 2.50 5.00 3.50 4.00
. L262(ELEMENTS / PRAGE)

] x LINEARINSERT
o] BINRRYINSERT
] LISTINSERT

3 & LINEARSELECT
+ BUBBLESORT

N\
g m\
\\\Q\
T Qikgfl\\\\\\\\\
\:gé‘i§\\\\\\\\\
i W
0.00 0.5 1.00 1.50 2.00 250 3.00 W50 5.00 5.50 6.00

3.50 4,00
LBG2(ELEMENTS / PAGE)

4.50 5.00 5.50 6.00

8. SECOND SET OF TESTS

The results 1in this section are averages of ten test
runs on sets of 256 random numbers.

The data areas in the first two pages after the arrav
being sorted were not locked into real storage. Excert for
this change, the test programmes were the same as those of
the previous section, as were the virtual and real environ-

ments in which the tests were run,

40.

FLFMENTS / PACE

32 16 3 b 2 1
Samplesort 0,0 al.h 180 .0 350 765,14 1648,1
Nsort? 0.0 26.7 97,7 270 667.5 1532, 6
Ouleksort 0.0 25,4 1026 209 76L,8 1807.8
Listnaturalmerge - -- - - 1522.0 216k .7
Shellsort 0.0 72.9 230,90 61 1343, 4 2614 .6
Heansort -- -~ -- -- -- 3549.1
frder - - - -- 306.1 46k, 5
TARLE 6 - Page Reads.
8
i
8
24 (0] SAMPLES@RT
- X QSZRT2
g + QUICKSZRT
®X ul SHELLSZRT
- A LISTNRTURRLMERGE
g b4 HERPSPRT
.bm._ o PRDER
b
*8
[T
Dm
G:N
LiJ
o
Q
) e
(O~
a
o4
ISPN
49
8
=B
8
a5
Q \\§\\\w
Q 35
=1 %‘m
8
‘P'
0.00 0.50 1.00 1.50 2.00 2.50 5.00 3.50 .00 4.50 5.00 5.50 5.00

LBG21

ELEMENTS / PARGE)

41.

FLFMFNTS / PACF

32 16 8 b 2 1
Samnlesort 0.0 an. u 170.1 307.5 5424 826.5
Nsort? 0.0 30.4 100.1 2L6,2 02,3 798.0
Nuicksort 0,0 30.3 aq,7 21,9 493 ,R N8, 1
Listnaturalmerge - -- - - .9 6.3
Shellsort 0.0 81.2 252.2 508.4 1173.,6 1863.3
Heansort -- -— - - - 2088.6
Order -- - - -~ 307.8 461.1
TARLF 7 - Page Writes.

8

g

3 _

B X SAMPLESBRT

o o WSERT2

S + QUICKSZRT

N ul SHELLS@RT

A HERPSEZRT
° @RDER

8

1

[

3

g

! 1 1 1 T t 1 T T - 1 1 1

0.00 -0.50 1.00 1.50 2 2.50 3.00 3.50 4.00 4.50 5.00 5.50

.00
LBGz{ ELEMENTS / PARGE)

ELEMENTS / PACF

32 16 - 8 h 2 1
Samnlesort 0.n 181.8 35h,1 A67.0 1307.8 2474 ,6
Osort? 0.0 57.1 107.8 517.1 1159.8 2330.6
Nuicksort 0.6 55.7 202.3 534,6 1258.6 2616.,2
Listnaturalmerge -- - -- - 1528.9 2171.0
Shellsort 0.0 © 154,11 k83,1 1280,3 2517.0 Wh77.9
Heapsort -- -- -- -- -~ 5637.7
frder - -- -- -- 613.,9 925.6

TABLE 8 - Total Page Faults,

8
0O _,
8
R X SAMPLESZRT
© QSZRT2
3 + QUICKSZRT
@ m SHELLS@RT
o X A LISTNATURALMERGE
78 X HERPSBRT
el ¢ DRDER
|._
= 4
=
a -
e T
1
O
ro
AN
-
jon T
589
PP RN
J?%N\\\s‘\\\;; \\\\\\
8
S e
ol
8

0.00 0.50 1L.00 Lso 200 250 5.00 5.50 400 450 5.00 5.50 5.00
LBG2{ ELEMENTS / PAGE)

9, IHIRD SET OF TESTS

The results 1in this section are averages of ten test
runs on sets of 512 random numbers.

Virtual storage was defined as 2048K bvtes for all
tests excent MERGE were it was defined as LQ9EK bytes.

A working set of 31 pages was used. Apnroximately 15
pages were used by the programmes and the variables, leaving
16 for the arravs being sorted. Unlike the tests of the
previous two sections, however, the programmes and data
areas were not locked into real storage and so were eligible
for paging orerations as well as the array being sorted.

A dummy arrav was not used, so the array being sorted
was not forced to start on a nage boundarv and could share
rages with other data areas and narts of the programme.

This set of tests is intended to he more realistic than
the previous two sets as a nrogramme would not normally be
locked into main storage on a paging machine. The results,
however, are harder to analyze because the code for the
programme is never modified, This means that code would
sometimes be raged out by the Control Programme (CP) instead
of parts of the array which have been modified in order to

avoid a page write.

44.

45.

FLEMENTS / PACE

32 1A 8 4y 2 1
Samnlesort 0.0 26,6 358.0 784 .1 1566.0 3160, 4
Dsort? 0.0 17.5 1m0, b 355.3 1025.2 25982
Ouicksort 0.0 19.9 124.5 L26.4 1202.9 3078.6
Merge - - -- -- -- 5104,7 10182.9
Shellsort n.n 1.7 3uL .3 1N6S.0 2319.6 upal, 7

TARLE 9 - Page PReads,

(@]
= o SAMPLESZRT
_ x QSZRT2
8 + QUICKSERT
S m SHELLSERT
. & MERGE
84

8

[P

a

Ll

mC'J

we

(D @

[an

Q.
SE

-0 o]

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 450 5.00 5.50 6.00
L@G2{ ELEMENTS / PAGE)

ELEMENTS / PACE

32 16 8 I 2 1
Samplesort 0.0 21.1 339,09 670.1 1121.0 1627.6
Nsort? n.n 13.6 7.2 315.3 739.8 1362.8
Nuicksort 0.0 16.6 109,09 330, 7 755.5 1391.6
Merpe - -- -- -- 2566.9 5132,2
Shellsort 0.0 13.8 312.6 1004,3 1097, 4 330,

TARLF 10 - Page Vlrites,

N X SAMPLESZRT
o QSERT2
8 + QUICKSZRT
©-] SHELLSZRT
23 MERGE
\@\Mﬁ?}—_—_ .

2.50 3.00 3.50 4.00 4.50 5.00 5.50

0.0 0.50 1.00 1.50 2.00 0
L@BG2{ ELEMENTS / PRGE)

FILLEMENTS / PACF

Samnlesort
Nsort?
Nuicksort
Verge

Chellsort

32 1A
0.0 7.7
n.o0 31.1
n.0 3R.5
n.n 30.5

8 h 2 1
697.9 1LR3 .2 2687 .l 4788.0
197.6 670.6 1765.0 39671,0
2341 761,17 1058 .1 HL70,2

-- - 7671.R 15315,1

686.9 2069.,3 4317.0 8128.8

}8.00

16.00

1

12.00 14.00
1 5

TOTAL PAGE FRULTS s
§.00 8.00 10.00

4.00

I o
.://///////u

TARLE 11 - Total Page Faults,

SAMPLESZRT
QSZRT2
QUICKSZRT
SHELLSZRT
MERGE

0+ 06X

00 2
LBG2!

.50

3.00 3.50 4.00 450 5.00 5.50
ELEMENTS / PAGE)

10, DISCUSSICON OF RESULTS

The figures presented in sections 7, 8, and 9 seem to
indicate that a rartition sort such as CUICKSORT is the most
efficient type of sorting algorithm on a naging machine.
This is probably because, as the sort proceeds, the file of
numbers being sorted is rartitioned into smaller subfiles.
Eventually, all the elements of a subfile will fit into the
available real storage at the same time and sorting of this
subfile can proceed without naging activity.

CSORT2 improves upon CUICKSORT because the partitions
are made as close to the middle of the subfiles as nossitble.
This means that small subfiles will be created at an earlier
stage in the sort.

By this argument, SAMPLESORT should be still better,
but the first phase of SAMPLESCORT - sorting the sample, s
rerformed in place. Since the array elements comprising the
sample are evenly spread throughout the array, an operation
involving two sample elements likely involves two pages
also. This extra paging when sorting the sample more than
offsets any savings that SAMPLESORT makes bv partitioning
subfiles more evenly,

MERGE and NATURALMERGE have two characteristics which
cause them to nerform worse than expected. The first s
that they require 2n array locations where n is the number

of elements being sorted. This means that the ratio of real

48 .

pages to virtual pages used by MERGE and MATURALMERGE is
half that of all the other sorts (excent MERGESELCT) which
is clearly undesirable.

The second problem with these two sorts is that on each
pass all the elements being sorted are moved from one of the
data areas of n locations to the other, so all 2n arrayv
locations and therefore all virtual pages are referenced on
every pass. The set of pages in real storage, then, is con-
stantly changing and many paging operations result.

LISTMATURALMERGE avoids almost all the nage writes used
by the other two merge sorts by constructing a linked list
to indicate sorted order. The problem of recuiring twice as
many virtual pages is also eliminated by using rointers, but
all elements are still referenced on evervy pass.

The set of pages in real storage is probablv changing
more often In LISTNATURALMERGE than in the other merge sorts
because array elements are not necessarily being accessed
seauentially as they are in MERGE or MATURALMERGE.

The ratio of virtual nagses to real rages is, however,
‘the most important difference as can be seen from Table 5.
The page faults for MERGE and NATURALMERGE with L elements
rer page are nearly the same as for LISTHATURALMERGE with 2
elements per page.

LINEARIMNSERT, LIMNEARSELECT, and BUBBLESORT all give
similar results and are likely inefficient because of the

large numbers of comnarisons, interchanges, and moves thev

49.

nerform.,

BINARYINSERT is worse yet because a auadratic search is
used to find the correct position in which to insert the
element in auestion, This means that, as in
LISTNATURALMERGE, array elements and pages are not accessed
seauentially and the set of pages 1in real storage |is
changing often,

This is also the case for LISTINSERT whose onlv nrosi-
tive feature is that it performs no page writes.

SHELLSORT performs surprisingly well considering the
fact that the same characteristic which makes it efficient
in a non-paging environment should make it inefficient in a
paging environment. This characteristic is that the subsets
being sorted are spread out in a manner similar to the
sample in SAMPLESORT and are different on successive nasses.

The situation with HFEAPSORT is similar to that of
SHELLSORT. HEAPSORT, however, rerforms more comparisons
than SHELLSORT and involves approximately the same number of
moves (assuming an interchange to be three moves) so,
therefore, causes more page faults than SHELLSORT.

MERGESELECT exhibits behaviour cuite different from the
other sorting algorithms. The number of page reads in-
creases rapidly as the number of elements on each virtual
page decreases to 16, After this point, however, there s
little 1increase until the elements ner page ratio decreases

from two to one.

50.

This behaviour can be explained by the following argu-
ment.

MERGESELECT consists of two phases. In the first
nhase, the input array of n elements is split into n sub-
arrays of n elements each and these sub-arravs are sorted
individually., In the second phase, the largest element is
chosen from”among the largest elements of each sub-array. A
pointer is updated and the next largest element is chosen.

How, n was equal to 256 for the tests of Section 7 so
each subfile of 16 elements could fit into the 8 pages of
real storage until the elements per page ratio dronped hbelow
two. This accounts for the change between one and two ele-
ments ner page.

The second rhase of the sort is responsible for the
fairly constant paging rate between 16 and 2 elements rer
page. Since the average distance between elements being
considered in the second phase is 16, these elements will
all be on seperate real pages until the elements per rage
ratio \increases above 16. The set of pages in real storage
will, therefore, be changing with nearly every comparison in

the second rhase of the sort.

The above intuitive discussion is based on the data
collected to date and the author plans a more comprehensive
and analytical analysis in the future.

The tonics to be dealt with in this future study in-

51.

clude a more detailed analysis of the behaviour of the
sorting algorithms such as the order in which arrav elements
are referenced. It is hored that this will lead to a set of
measurable characteristics of algorithms and data base
management schemes which can be used to estimate the amount
of paging that will be nerformed when using a given paging
algorithm, Locality of reference, for exampnle, apnpears to
play a major role in the efficiency of a nrogramme executed
in a paging environment, as does the ratio of virtual pares
used to real pages available. Such characteristics could be
used to advantage in writing more efficient software for

paging machines.

52.

11. BIBLICOGRAPHY

A Guide to the IRM System/370 Model 158 (GC20-175L-1),
IBM Corporation, January 1974,

IBM Virtual Machine Facility/370 : Control Program (CP)
Program Logic, Release 2 PLC &4 (SY20-0880-3),
IBM Corporation, March 1974,

IBM Virtual Machine Facility/370 : Conversational Monitor
Svstem Program Logic, Release 2 PLC L (SY20-0881).
IBM Corporation, March 1974,

IBM Virtual Machine Facility/370 : Service Routines Program
Logic, Release 2 PLC L (SY20-0882-1).
IBM Corporation, March 1974,

Lecture Notes on Sorting. P, S. Kritzinger.,
University of Waterloo, April 1974,

Virtual Machine Facilitv/370 Features Surplement
(GC20-1757-0). '
IBM Corporation, January 1974,

53.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

