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ABSTRACT

Stiff differential equations form a class of problems which
have very practical industrial significance. They are problems in
which the time constants differ greatly in magnitude. The system of
differential equations y' = By, where B is a real square matrix, all of
whose eigenvalues have negative real parts and sueh that the modulus of at
Teast one of them is Targe as compared with the others, provides a typical
example of this kind.

In attempting to solve such differential equations numerically,
the exponential function is approximated in some way. Some of the popular
approximations include the Padé approximations, the Chebyshev minimax
approximations and the order-constrained minimax approximations. A1l
these approximations are rational polynomials and many numerical methods
employ the technique of factorizing the numerators and denominators of
these rational functions into linear or quadratic factors. It is
found that all (except perhaps one) roots of the denominator polynomial
of almost every approximation in these families are complex. Hence,
nearly all factors of the denominator will be quadratic.

This thesis is concerned with the developing of a class of
rational approximations whose denominators can be factorised completely
into linear factors. Let Rg be the set of all rational functions
having such a property, and whose numerator and denominator polynomials
are of degree less than or equal to m and n respectively. It is shown
that the best approximation in the minimax sense to exp(-x) in RS is

that unique rational function - whose denominator is a product of n



identical linear factors, and that the error curve of approximation
alternates exactly twice. Such an approximation can always be found in
Rg, with a minimax error of the order O(n—]) as n tends to infinity.

With the help of classical approximation theory, it is shown that
the error curve of the minimax approximation in R;, m > 0, will alternate
at Teast m' + 2 times, where m' is the degree of its numerator. If the
alternation is not more than m' + 2 times, then it is proved the aenomina—

tor will have the same property as in the case of Rg.

In all computational
tests, error curves of approximations in RQ do exhibit an alternation of
not more than m' + 2 times.

Motivated by the above results, an algorithm is then developed
to compute rational functions of the form

m
+a.x+,...+a X
397y m

(1+bx)"
whose error curves alternate m + 2 times. It is found that Rm+2—approx1ma—
tions are the most judicious choice when both degree of approximation and
computation cost are taken into consideration together. For a fixed
m, the error of the best approximation is inversely proportional to nc,
¢ being a constant that increases with m.

Order-constrained approximations of this form are also investi-
gated. Most results are similar to the unconstrained case. |

Finally, the merits of such approximations as applied to the
numerical solution of stiff systems are discussed. On the real axis, they
are obviously A-acceptable. It is shown that there is also much gain in

operation cost, storage requirement and numerical stability.
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CHAPTER 1

THE 'STIFF' PROBLEM

1.1 Introduction

In the numerical solution of differential equations, there is a
class of problems classified as stiff systems; it appeared as early as
1952 [13] and has been associated with many important industrial problems
[2,3,8,39,42,43]. The purpose of this thesis is to investigate a class of
approximations  to exp(x) thatbhas special application in solving this
kind of problem, The first chapter will describe what constitutes such
a stiff system and the numerical difficulty that one can encounter when

trying to solve it.

1.2 Stiff Ordinary Differential Equations

Consider the initial value problem

-y, (1.2.1)
y(a) = Yoo

where x ranges from a to b.

(1.2.1) has an exact analytic solution of the form
y = ygexplex). (1.2.2)

If we try to solve (1.2.1) numerically by Euler's (point-slope)

method, we have,



L= '
Y+ I * hyn

(1 + he)y, (1.2.3)

(1 + he)™ly

it

0

bl = X for all m,

where h=x
is the step-size, which we shall assume to be uniform for x ¢ [a,b].

We notice that, for (1.2.1), if ¢ < 0 and b = =, then
y>0 as x - o

while the same‘behaviour can be found in (1.2.3) only if
[T + he| < 1.

In other words, it is necessary that

2.
0 <h<Ter>

for the numerical solution Yn to remain bounded as n tends to infinity.

This means, for the class of problems (1.2.1) with ¢ < 0, we
have to impose a restriction on the step-size of its numerical solution
(by Euler's method) in order that the numerical method retains its
stability. If |c| is large, the restriction can be very severe. One may
regard this as merely a statement about an appropriate time-scale for the
solution of this simple example.

Unfortunately, such severe restrictions on step-size can exist
in a problem which may look innocent enough and have a solution time-scale,
which is not similarly constrained. For instance, the following illustration

is from [18, p.1].



Consider the initial value problem

dy .
o = flxy),
y(a) = Yy a<x<hb. (1.2.4)

If f(x,y) is expanded in its Taylor's series about the point (a,ya), (1.2.4)

can be transformed to

dy of (xe
o = flawy,) + 5 ) (x-a)
*a
of
+ = y-y. ) + ... .
Vla,y,) = 72

Ignoring all higher terms in (x-a) or (y—ya) on the right, we have

dy .
dx A + Bx + Cy,
v(a) = y,» (1.2.5)
where
_ of _, of
A= (f-agr -y, By)(a,ya)’
of
B = 2L
X ’
(a,ya)

- éﬁl
Ylay,)

If x is near a, we believe the solution of (1.2.5) will give us
an approximate answer to (1.2.4). In fact, (1.2.5), being a linear first

order differential equation, has an analytic solution of the form [47, p.56],



y(x) = —[é-+ + %3‘—] + Cqexp(cx), c=C, (1.2.6)

C")Nlm

where C, is a constant of integration so that y(a) =y,.
Looking at (1.2.6), we notice that the undesirable property of
(1.2.1), when C < 0, may creep into the innocent-looking problem (1.2.4)

through the last term in (1.2.6) if, in (1.2.4),

of
C = & < 0.
Byl (a,y,)

In fact, when we try to approximate the solution of (1.2.4) by
‘applying some numerical method on (1.2.5), we expect the numerical answer
obtained to be close to (1.2.6). This means the numerical method should
be good enough to give a satisfactory approximation to both the linear

term

B
t =5t

o=
Ol
x

(]

as well as the exponential term
C]exp(cx).

Obviously, the first requirement will be met quite readily by
many numerical methods, regardless of step-size.

However, to satisfy the second requirement, any numerical
approximation E(x) to the exponential function should satisfy certain
properties. For example,
if ¢ > 0, fhen

(a) E(cx) =1, for x > 0,

(b) E(CX) -+ ®.as X > o ;

9



while if ¢ < 0, then
(c) E(cx) <1, for x =0,

(d) E(cx) > 0, as x » o .

Conditions (a) and (b) are satisfied immediate1y by many numerical
methods, e.g. the Runge-Kutta processes. However, in many practical
situations, it is the case when ¢ < 0 that is of interest.

Let us use the Runge-Kutta processes as an i]iustration to
investigate further the iatter case.

For the initial value problem (1.2.1), the exact solution at

X =a+ ih, i = 1,2,3,..., is given by

Ynt1 = Ypexp(ch).

A Runge-Kutta process of order p using r substitutions and step-

size h gives

.yn+] = E(ap+'| 3ap+29 LR ’ar;Ch)yn s

where
i r i
h)
E(a_,7,...,a_3ch) = E (Ch) + ) a, € (1.2.7)
p+1 r j20 1! j=p+] ! il
and a »a_ are functions of the parameters of the Runge-Kutta

p+],ap+2,... r
process, and are not constrained by order requirement.

As we have just discussed, there is a restriction on the value of
ch in (1.2.7) when it is applied to (1.2.1) if we want conditions (c) and

(d) to be satisfied. Figure 1.2.1 shows such regions of restriction for the



ordinary order 4 Runge-Kutta process (RK4), and Lawson's order 5 and 6
Runge-Kutta processes (RK5ES, RK6ES) [29,31] with extended region of
stability.

Im(z)

N I BN S g

Fig.1.2.1 Stability regions for Runge-Kutta processes
of orders 4, 5 and 6

For each process, ch has to be inside the corresponding region

so as to satisfy condition (c). For any z = ch outside, the sequence

¥, = Elch)y,

[E(ch) 1",

does not converge to zero, but, instead, grows indefinitely as n » .
As the above discussion would suggest, when the classical Runge-

Kutta processes are applied to (1.2.1) and (1.2.5) with
c <0 and |c| > 1,

the result could be extremely unsatisfactory unless the step-size is
Timited to a very small magnitude so that ch is within the region of

stability. In fact, all explicit Runge-Kutta processes, when applied to



(1.2.1), will reduce to a polynomial in ch with positive degree in the form

of (1.2.7). This means conditions (c) and (d) will not be satisfied for

large ch. Actually, Dahlquist [14] pointed out that such will be the

situation for all explicit Tinear multistep methods as well. And among

the implicit multistep methods, we cannot expect anything better than order 2.
Nevertheless, (1.2.1) is a scalar differential equation and the

value of h will usually be determined according to the allowable truncation

error, rather than conditions (c) and (d). However, if (1.2.1) is generalised

to a system of differential equations, we shall confront a worse situation.

1.3 Systems of Ordinary Differential Equations

Consider the following system of differential equations

dy -
dx ¢y,
yla) = y,> | (1.3.1)

where C is a real square matrix whose eigenvalues are all distinct. (1.3.1)
can be readily solved analytically. It can be shown [11, chap.3] that

(1.3.1) has the fundamental matrix exp(xC) and its solution is of the form

y(x) = exp((x-a)C)-y_,
[x| < o, (1.3.2)

where, for any matrix A,

2
exp(A) = I + A+ o7 t

3
]

I:D

& S

w

and the series is convergent for all A [11, p.65].



If C has the eigenvalues Xj5h ... 5, (1.3.2) can be written
‘also as
n -

y(x) = 1_Z]exp(ki(x—a))-Ci. ~ (1.3.3)
where Ci are column vectors of coefficients.

Now consider the numerical solutions of (1.3.1). We assume that all
the eigenvalues of C have negative real parts. Extending the argument in the
last section, the numerical scheme should be able to give a good approxima-
tion to each term in (1.3.3). If, for instance, K is the upper bound of
the region of stability of the method used, we shall have to choose the step-

size, h, such that

i.e. A h <K, (1.3.4)

where Amax is the eigenvalue with the maximum magnitude. Physical problems

leading to this kind of equation appear very often, for example, in the

flow of gas in chemical non-equilibrium, electronic circuit analysis, heat
conduction, etc. [2,39,42]. Moreover, they have eigenvalues that are
widely separated, i.e.
max|A.| >> min|A;].
. 1 . 1
i i
Because of these large eigenvalues and the requirement (1.3.4),
the step-size hmust be severely restricted in order to achieve numerical

stability » but the physical significance and contribution due to the



large eigenvalues in the total solution fade out rapidly once the initial
transient is over, i.e. when x is away from zero. This is obvious from

(1.3.3) because, if x >> 0 and Mpax® Mmin < 0o

x* “mi

).

exp(xxmax) << exp(kain

The dominant component of y(x) in (1.3.3), when x is large, will be the

).

Usually, we call those components associated with the large

term associated with exp(xxm.n
eigenvalues the highly damped components of the solution, and the whole
system a stiff system [13]. And we see that the solving of a stiff system
by an ordinary numerical method can be much handicapped by the presence

of a component which is of only slight significance in the overall solution.

1.4 Partial Differential Equations

Consider the Tinear parabolic equation

w|—

k
%‘t- = %; (a(x) -g%) + 121 v; (£)8(x-x.), | (1.4.1)

0O<x<lL, t>0,
subject to the homogeneous boundary conditions
u(0,t) = u(L,t) =0, t>0, | (1.4.2)
and the homogeneous initial condition

u(x,0) = ug = 0, 0 =<x <L, (1.4.3)
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where o(x) is a positive,continuous or a piece-wise continuous function
of x in 0 < x <L, B a positive constant, G(X-Xi) the Dirac delta
function used to represent source and sink terms and Yi(t) a constant or
positive, piece-wise constant. The class of physical problems which effectively
reduces to (1.4.1)-(1.4.3) is very extensive, and includes problems associated
with fluid flow in porous media [43], heat transfer [8], and mass transfer [3].
It is pointed out [9,12,52] that one way of solving problems of
this kind is semi-discretization. That is, if the problem is discretized
in space, but not in time, it can be transformed into a system of ordinary
differential equations.
For instance, if we impose a partition on the x-interval [0,L]
in (1.4.1)-(1.4.3), we can derive a system of spatial difference equations
by replacing the differential equation at each mesh point with an appropriate
finite difference equation [53]. If the standard three-point difference
approximation [53, p.175] of the spatial derivatives in (1.4.1) is used,
then the 'semi-discrete' approximation g(xi,t) = gi(t) satisfies the

following ordinary matrix differential equation:

B(oY) = -aG + §(t), t>o0, (1.4.4)
where i(0) =4y = 0,
and a(t) = (ug(t),uy(t),...u (£)).

The matrix B is a positive, real,diagonal,n x n matrix with diagonal
elements bii = 1/8 and A is a real, symmetric, tri-diagonal, positive-definite ,

n x n matrix. The vector g(t) represents the source terms in (1.4.1).
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For constant g(t), the solution u(t) of (1.4.4) can be verified

[12] to be

i(t) = A7'G + exp(-t87A)[G,-A 7151, t > o (1.4.5)

We notice immediately the term exp(—tB']A) in (1.4.5). Inevitably,
we shall encounter the same problem as before if (—tB"1A) has the same
undesirable behaviour as C in the last section, i.e. its eigenvalues have
negative real parts and are widely separated. Unfortunately, this is often
the case. In fact, (1.4.4) is in general stable, stiff and sparse, and
the matrices have only real eigenvalues. This means some kind of special

numerical method is required to deal with it.

In the discussion of this chapter, we confront a class of differ-
ential equations which is of great practical importance, but computationally
extremely challenging. In fact, much research interest has been aroused trying
to master the solution of stiff systems. In the next chapter, we shall
summarise some important results in approximation theory which are required

in many numerical methods for the solutions of stiff systems.
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CHAPTER 2

SOME KNOWN RESULTS IN APPROXIMATION THEORY

As the discussion in Chapter 1 reveals, the stiffness of a system
of differential equations is born out of the term exp(xA) in the exact
solution of the system, in particular, when A has widely separated eigen-
values in the left complex-plane. Consequently, many of the current methods
of solving stiff systems are designed with a motivation to tackle, either
directly or indirectly, this troublesome term. In fact, it turns out that
each of these methods, when applied to (1.2.1) or (1.3.1), is associated
with a way of approximating the exponential function exp(x). Usually, the
behaviour of the method depends on this basic approximation. We shall
elaborate, in more detail, upon these methods and their exponential
approximation behaviour in - Chapter 3. We summarise some definitions and
results in approximation theory that will be necessary for subsequent

discussion.

2.1 Padé Approximations

Let us write any approximation to the exponential exp(z) as
E(z) for any complex number z. The first three definitions are after
Ehle [19].

Definition 2.1.1

E(z) is of order m iff E(z)-exp(z) = 0(z") when z ~ 0 for some m = 1.

Definition 2.1.2

E(z) is A-acceptable iff |E(z)| < 1 for Re(z) < 0.
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Definition 2.1.3

E(z) is L-acceptable iff it is A-acceptable and |E(z)| » 0 as
Re(-z) » .
Let the (i,j)-th entry in the Padé table of approximations to
exp(z) be denoted by
N..(z)

~ 1 s s
Pij(Z)'TJXﬂ’ i=0,1,2,..., §=0,1,2,...,

i

where Dij(z) and Nij(z) are polynomials of degree i and j respectively.

N 0 1 2 .
2
0 1 1+ 2z 1+z+—§—
2
Z 22 Z
] BN 1+ 5 T+ 55+ =
1-z 1- Z 1- Z
2 3
2
z z .,z
) 1 1+3 "2t
Y 2 7
1-24 2 1- 22, Z_ 1- 24+ 2
2 3 6 2 12

TABLE 2.1.1 Pade Approximation to exp(z)

The next two theorems are due to Ehle [18].

Theorem 2.1.1

Pnn(z) is A-acceptable of order (2n+1) for all non-negative

integers n = 0,1,2,... .
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Theorem 2.1.2

Pn+],n(z) and Pn+2,n(z) are L-acceptable of order (2n+2) and
(2n+3)_respect1ve1y for all non-negative integers n = 0,1,2,... .

The two theorems guarantee that the diagonal entries in the Padé
table of approximation (Table 2.1.1) are A-acceptable, while the first and

second sub-diagonal elements are L-acceptable.

2.2 Minimax and Order-constrained Minimax Approximations

We shall adopt thé following notation and assumptions.

r (x) - the rational function pm(x)/qn(x), where pm(x) and qn(x) are
polynomials of degree less than or equal to m and n
respectively,

m
pm(x) _agragxt...tax

Y‘ X = =
m,n q,.(x) ‘ n °
n bO+b1x+...+bnx

5(rm,n) - the vector of coefficients of rm’n(x),
E(rm’n) = (ao,a],...,am,bo,b1,...,bn).

Rm,n - the set of all rational functions rm,n(x),
Rm,n B {rm,n(x)}

Ia,b - a closed subinterval of the real line,
Ia,b = [a,b] = {x:a < x < b}.

I0 - the non-negative real axis,

Iy = [0,0) = {x:0 < x < =},
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Since our barticu]ar interest is in the approximation of the
exponenfia] function exp(-x) on IO’ we shall assume that any function or
value is continuous and bounded in IO' Besides, any value that depends on x
has a limit as x > =, That means we can add the point x = = into IO’ and

redefine
Iy = [0,2] = {x:0 < x < =},

such that the value of a function at x = = is defined to be its limit as
x + o, Hence, in the remaining discussion throughout this thesis, I0 will
be considered conceptually as a closed interval. If any one of these
assumptions is not true or obvious, it will be discussed and dealt with
explicitly.

Definition 2.2.1

The Chebyshev norm of f, defined, bounded and continuous in

Ia,b’ is

el = max  [F(x)]. (2.2.1)
XeIa b

Definition 2.2.2

Suppose that f(x) is to be approximated by r_ n(x) e Son Ia b
5 s

where S is a subset of R . The minimal deviation ps(f) is defined by

o (f) = inf [[f(x)-r_(x)]]. (2.2.2)

s m,n

r S
m,n®
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Definition 2.2.3

: *
If there exists rm’n(x) €S,S c Rm,n’ such that
= _ *
pg(f) = HE0x)-ry (O[], (2.2.3)

then r; n(x) is called the best approximation to f(x) with respect to

(or in) S on Ia,b'

Definition 2.2.4

The error curve f(x)-v‘m n(x) js said to alternate t times on

Ia b if there are t+1 points

a < X} < Xg <. < Xg < Xpp1 S b,
such that
f(xi)-rm’n(xi) = -(f(xi+])—rm,n(x1+])), i=1,...,t
= :llf(x)-rm’n(x)ll (2.2.4)

on Ia,b'

Definition 2.2.5

The points X; in definition 2.2.4 are called the extremal points.

Definition 2.2.6 [48, p.78]

A rational function o n(x) of the form

m
+ +".+

(2.2.5)

r  (x) =

m,n n
b0+b]x+...+bnx

L]

i
b.ix f 0, X € Ia,b’

.

1

i 1S

0
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is said to be of degree m(a) = mtn+1-d at a if r n(x) may be written as

m...
a6+aix+...+a' xn-P

r o (x) = m-p , (2.2.6)
m,n bl+bx+...+b' x4
01 n-q
where d = min(p,q),
aup * 0
bn—q # 0,
a= a(rm’n) = (aO,...,am,bO,...,bn),

and the numerator and denominator of (2.2.6) have no common factor. If

I 0, then m(a) = m+1.

Theorem 2.2.1 (Rational Minimax Approximation)

Let f(x) be continuous on I, o and w(x) a function, such that

wi(x) # 0, x ¢ Ia,b’ then
. * .
(a) There exists rm,n(x) € Rm,n’ such that
g (f) = llf(X)—W(X)-r;,n(X)ll,

m,n
i.e. f(x) possesses a best rational Chebyshev approximation in Rm n’

(b) r$ . is unique in the sense that two rational functions are

jdentical when they coincide after being reduced to the lowest term as

in (2.2.6).

(c) r;,n is the best rational Chebyshev approximation to f(x) iff
f(X)—P;’n(x) alternates at least m(a*) times where m(a*) is the degree of
r* (x) and a* the vector of coefficients of r:

m,n m,n’
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Proof [1, p.53-57] or [48, p.74-80].

Definition 2.2.7

Let f(x) be continuous on Ia be k =1, and f(x) « Ck'] at x = a,
then we define Rk,m,n(f) c Rm,n’
Rk,m,n(f) - {rk,m,n(x) € Rm,n:
q] di
— Ty n(x)l = ——?f(x), ,i=0,T,...,k-1}. (2.2.7 )
dx e x=a dx X=a

Theorem 2.2.2 (Order-constrained Rational Minimax Approximation)

Let f(x) be continuous on Ia b and f(x) e Ck'1 at x = a,

and w(x) a function such that w(x) # 0 in Ia b? then

(a) There exists rz (f), such that

m,n(x) € Rk,m,n

3

ka,m’n(f) = ) -wlx)erg o OO

i.e. f(x) possesses a best order-constrained rational Chebyshev approxima-

tion in Rk,m,n(f)'

(b) rE 0 n(x) is completely characterised by the fact that

f(x)—rE n n(x) alternates at least m(a*)-k times where m(a*) is the degree

s b
(x) and a* its vector of coefficients, a* = E(rﬁ n n)'
9 9

f *
0 rk,m,n

Proof [35].
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CHAPTER 3

CURRENT STIFF SYSTEM SOLVERS

Presently, there 1is a large variety of numerical methods designed
purposely for the solution of stiff systems. Table 3.0.1 gives a panorama
of the situation, the discussion of which will be the essence of this

chapter.
TABLE 3.0.1 Stiff System Solvers

. Linear Multistep Methods
. No classical explicit A-stable methods [14]
. Classical implicit methods of order < 2 [14]
. Stiffly stable methods [17,20]
. Composite multistep methods [51]
. Generalised multistep methods [27,33,36]
. One-Step Methods
. Implicit methods
. Runge-Kutta processes [10,18]
. Methods using higher derivatives [15,18,22,23,38,4Q,44,46 p.212]
. Explicit methods
. Generalised Runge-Kutta processes [30]
. Methods using the Jacobian matrices [7,21,49,50 p.180]
. Others [6,26,37,45]
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3.1 Linear Multistep Method

Definition 3.1.1

A linear multistep method is one of the form
k k
Y1 = Lo Anag P 0L bavpgs Il Ibd 0, (3.1.1)

applied to the solution of the initial value problem
y' = flxy), y(0) = y,. (3.1.2)

Nur discussion in this section will also be valid if (3.1.2) is a vector

initial value problem, y = f(x,y), y(0) = }O.

Definition 3.1.2 (Dahlquist [14])

An A-stable k-step method is a method of the form (3.1.1) which,
when applied with fixed positive h to any differential equation of the
form

y' = qy, Re(q) <0, (3.1.3)

always gives solution that tends to zero as n > .

Definition 3.1.3

The region of stability of (3.1.1), when applied to any initial
value problem of form (3.1.3), is that region S in the left half complex-
plane such that if gh is in S, then all solutions of (3.1.1) tend to zero

as n > »,
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Definitions (3.1.1) - (3.1.3) imply:
(A) The region of stability of an A-stable method is the whole left

complex-plane;

(B) Using an A-stable linear multistep method to solve the system
y' =Ay,
7(0) = 3.
Re[Ai(A)] <0, (3.1.4)

for all eigenvalues xi(A) of A, we do not have to care about the stability pro-
blems  when choosing the step-size h. The sole consideration will be that
of the truncation error.
However, in many cases, k-step methods are not a satisfactory
tool for the solution of stiff systems because of the following results of

Dahlquist [14] :

Theorem 3.1.7

An explicit k-step method (b_] = 0 in (3.1.1)) cannot be A-stable.

Theorem 3.1.2

The order of an implicit k-step A-stable method cannot be greater

than two.

Theorem 3.1.3

The trapezoidal rule has the smallest error coefficient of all
A-stable linear multistep methods.

There are at least three different ways to overcome the order
restriction imposed by Theorem 3.1.2, namely, "stiffly stable k-step methods",

"composite multistep methods", and "generalised multistep methods".
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Stiffly stable multistep methods

These were introduced by Gear [20,17]. They are methods of type
(3.1.1). Figure 3.1.1 shows the typical appearance of their regions of
stability. They are not strictly A-stable according to definition (3.1.2)
since the region does not include the whole -left complex-plane. However,
only a small portion is left out. And at the expense of this small area,
such methods can achieve order higher than two. If the bi's in (3.1.1)
all vanish, the maximum possible order is conjectured to be six [17],

otherwise it is guessed to be eleven [24].
Im(z)

- 8

k=6

k=4

/’//' unstablq'

stable

Re(z) -8 -6 -4 -é | [6
Fig.3.1.1 Stability regions for Gear's stiffly
stable k-step methods
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Composite multistep methods

These methods were proposed recently by Sloath and Bickart [51].
Instead of using only one equation of the form (3.1.1), these methods

employ a set of p multistep formulae,

p-1 p-1

jz_kafiymn+3 - h ‘Z kbijymn+j =0, 1=1,2,3,...,p. (3.1.5)
With the help of k past known values ymn+j’ Jj=-k,...,-1, a set of p new
values Yon+j ? j=0,1,...,p-1 are solved from (3.1.5). The first m values

of this set, namely Y = 0,...,m-1, together with any other past

n+j, \]
values that may be necessary, are then used for the next iteration while

the rest, y s J =m,...,p-1 are discarded. It can be shown that if each

mn+j
formula used in (3.1.5) is of at least order r, then the whole method

will be of order r too.

Generalised multistep methods

These formulae are studied by Lawson in [36]. They may be consi-
dered special cases of the methods discussed by Lambert and Sigurdson [27].
Let (3.1.2) be a vector initial value problem of dimension s,

and A a square matrix of the same dimension. Applying a transformation
z(x) = exp(-xA)y(x), (3.1.6)

to (3.1.2) will give us

z'(x) = g(x,z)
exp (-xA){f[x,exp(xA)-z(x)]-A-exp(xA)-z(x)},
z(0) = Yo- (3.1.7)

11
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Integrating (3.1.7), we have
1
y(x+h) = exp(hA)-y(x) + hJ exp[(1-1)hA]-u(x+Th)dT, (3.1.8)
0

- where u(x) = f(x,y(x))-Asy(x). _ (3.1.9)

In [33], Lawson suggested the use of a quadrature formula to

evaluate the integral in (3.1.8), such that, we have the approximation

k
< By, + b ] () xtagh). | (3.1.10)

Yn+1 L
1_

where wi(hA) are the weight matrices to absorb the matrix weight function
exp[(1-t)hA] in (3.1.8), a; the distinct abscissae of the quadrature formula,

and E(hA) an approximation to exp(hA).

With the motivation to make (3.1.10) exact for vector polynomials

u(x), we require
1
iy (1) (0) = [ expl(1-1)MATIdr = i (A, (3.1.11)
0

k
L

i=1

j=0,1,...,k-1,

where Wi(hA) are the weight matrices in (3.1.10) when E(hA) = exp(hA).
A way to calculate Mj(hA) is
fig(hA) = (hA)™ [exp(hA)7'1,
fis(h) = (hA) LM (hA)-10, = 1,2,... k1. (3.1.12)

If, instead of following (3.1.11), (3.1.12) exactly, we choose

a basic rational approximation E(hA) of order (k+1) to exp(hA) and define
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Mo(hA) = (hA)'LE(hA)-1,
M, (hA) = ()7 LM,y (A)-1T, 3 = 2.kl (3.1.13)
k .
y wi(hA)(ui)J = M.(hA), j =0,1,...,k-1, (3.1.14)
i=1 J

putting back these to (3.1.10), we expect it will provide us with an approxi-

mate solution to (3.1.2). Moreover, we have the following three properties:

Theorem 3.1.4

If in (3.1.10), E(hA) is an A-acceptable or L-acceptable approxima-
tion to exp(hA), and w.(hA) are calculated according to (3.1.13), (3.1.14),
then the method is A-stable when applied to (3.1.4).

Theorem 3.1.5

If in (3.1.10), E(hA) is an order (k+1) approximation to exp(hA),
and wi(hA) are calculated from (3.1.13), (3.1.14), then the method is exact
for any particular integral of y' = Ay + p(x), where p(x) is an arbitrary
vector polynomial of degree k+1 or less and A is a real non-singular square

matrix.

Theorem 3.1.6

If (3.1.10) is A-stable and exact for the particular integral of
y' = By + p(x), where B is a stable square matrix of constants, then,
regardless of step-size h,

Tim [y -y(x )] = 0.

n->co
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Proofs of the above three theorems can be found in [33].

If the abscissae {ui} in (3.1.10) are chosen as follows:

a, = 2-1, 1=1,2,...,k, (3.1.15)

we have an implicit Adams-Moulton generalised multistep formula. If,
a, = 1-i, i=1,2,...,k, (3.1.16)

we obtain an explicit Adams-Bashforth generalised multistep formula.

3.2 One-step Methods

Definition 3.2.1

A one¥step method is a method of the form

(1), (3)y, (3.2.1)

- 1 1
Yorr = OX Y s ps-e-s¥y T3Xni1 Y a1 Y et Ynt

for two non-negative integers i,j, applied for the solution of the scalar or

vector initial value problem (3.1.2).

Definition 3.2.2

An explicit one-step method is a method of the form (3.2.1)
in which ¢ is independent of Yot and its derivatives. Otherwise, the

method is implicit.

Definition 3.2.3

A one-step method is A-stable if, when applied to (3.1.3) with a fixed
positive step-size h, it always gives solutions that approach zero as n - «.
Another way to look at this definition is that, when the method is

applied to (3l1.3), or (3.1.4), it can be represented in the form
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Yo = Elahly, > (ory .5 = E(hA)y ) (3.2.2)

where E(gh) (or E(hA)) is an A-acceptable approximation to exp(qh)
(or exp(hA)).

Definition 3.2.4

A one-step method is strongly A-stable when E{gh) in (3.2.2) is
an L-acceptable approximation to exp(gh).
One-step A-stable methods can be classified as in Table 3.0.1

at the beginning of this chapter, and will be discussed in that same - . =

order here. MUY 1

Implicit Runge-Kutta processes (IRK)

Runge-Kutta methods are of the form

v

where
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and

Ynt1 = Yn * hf(xn+1’yn+1)‘ (3.2.6)

These have errors of order 0(h3) and 0(h2) respectively. Their corres-
ponding E(gh) in (3.2.2) are in fact the P]’1(qh) and P1,0(qh) Padé
approximation to exp(qh).

The highest attainable order of a v-stage IRK was found to be
2v by Butcher in [4]. He then gave four classes of IRK based on the
Lobatto, Radau and Guassian quadrature formulae of arbitrary order.

It can be verified that the corresponding E(qh) in (3.2.2) for the IRK
based on the Guassian quadratures are in fact the diagonal entries in

the Padé table of approximation to exp(gh). Noticing this fact, Ehle [18].
started an investigation on the Padé table. His results are summarised

in Theorem 2.1.1 and Theorem 2.1.2. These immediately establish the

following two theorems.

Theorem 3.2.1

The IRK based on the Guassian quadrature and derived from the

P (gh) approximation to exp(qh) are A-stable.

n,n(
Proof Ehle [18] or Wright [54].

Theorem 3.2.2

The IRK based on the Lobatto and Radau quadrature and derived
from the Pn+],n(qh) and Pn+2,n(qh) Padé approximation to exp(gh) are

strongly A-stable.
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Proof Chipman [10]. (These two classes of IRK are generated by Ehle
in [18].)
These three classes of A-stable methods are of arbitrary
order. Details of their implementation can be found in [10,18].
Recently, Lawson [32] pointed out two additional properties of
these three classes of IRK exactly corresponding to Theorem 3.1.5

and Theorem 3.1.6 of the generalised multistep methods.

Implicit methods using higher derivatives

An obvious extension of (3.2.5) and (3.2.6) is the formula

2
h ) 1 h 1] (1]
Yp t ?{yn+yn+1] * T?{yn'yn+1]

Ynt1 =
_ h
=yt alfx sy )+ Flx o qne)]
2
h . .
+ T?{f (Xn,yn) - f (Xn+1’yn+1)]' (3.2.7)

This method is A-stable [46, p.212] and has an error of O(h5). However,
when applied to (3.1.2), it requires the computation of the derivatives
of f(x,y).

Similar methods that involved such derivatives had been proposed
by Davison [15], Makinson [40], Liniger and Willoughby [38], etc. They
are all of the form

v h, . . :
- i (i) (i)
o1 T 121 TT(a¥pei * Byyy ) (3.2.8)
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They differ from each other by having truncation errors of different mag-
nitude in h, and in that their corresponding E(gqh) in (3.2.2) approaches
exp(gh) differently as h ~ =. Some of them are designed for differential
equations of a particular form. Table 3.2.1 summarises their main

properties.

l - n | Derivatives | Tim E(aﬁf.
| Method 0(h"'),n= | used, v= h-o

!

§(3 2.7) 5 2 1

[15] Davison 5 3 1

{40] Makinson (a); 4 2 1-/3

{ " (b)) 5 3 -0.635
{38] Liniger &(a) 2 1

i ; determ1ned
_ W1110ughby(b), 3 ; 2 by

E : users

1 ( c) 4 2

{ D e et s e s s s e e+ —

TABLE 3.2.1 Properties of some A-stable implicit one-step
methods involving higher derivatives

One interesting property of [38] is that the three classes of
methods in it have parameters left to be chosen by the users to take
care of those extreme eigenvalues in their stiff systems that are to be

solved. The three classes are:
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| ] 2 .
(a) Youq = ¥y t L(1-a)ypq +ay ]+ 0(h%), 2 < 1/2; (3.2.9)
(b) ¥y = ¥y * pL(Fa)ypyg(1-2)yg]
2
h " " > 0 3.2.10)
+ 1—{(b+a)yn+1-(b-a)yn], a=0,bz=0 (
() Yoy = v+ gLy + (1-ady,]
h2
+ Tﬁ{(1+3a)y;+] - (1—3a)yH], a > 0. (3.2.11)

The restrictions on the parameters a and b are for the A-stability of the
method.

If in (3.2.8),

_ i+1
bi = (-1) a;

we get a method first given by Hermite [22] (see also [23,44]), of the Fform
Fa. i) (ni,H)
Ynar =t Ly h g 1) ). (3.2.12)
1= ?

If 3y y is the i-th coefficient in the numerator of the v-th diagonal

Padé approximation Pv,v(z) to exp(z), then the corresponding E(gh) in

(3.2.2) is also Pv,v(qh)' This means (3.2.12) is then a method of order
(2v+1) and, by Theorem 2.1.1, A-stable for all v. In fact, this is a

special case of the following more general result of Hermite [22], Obrechkoff

[44], and Hummel and Seebeck [23].

Theorem 3.2.3

Let y(t) be continuously differentiable at 1least (j+k+1)

times in [a,x]. Denote
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P - ! i
o " qlp-gyr » A E P

=0 , if q > p.

Then

L (ktg-m) i ok
y(x) = yla) + %1 LT%%E?%l{Cm y™(a)

m=

- (M) Y™ 01 (x-a)" + R, (3.2.13)

Y I S
()" %%%%§¥T%%K¥T7T'f(J+k+])(6), a <6 <x.

(3.2.13) reduces to a method of

where R

When = = =
en a Xn, X Xn+-‘ Xn+h,

the form (3.2.12). Furthermore, for the three cases, j = k+i, i = 0,1,2,
the corresponding E(gh) in (3.2.2) of the three methods are respectively

the P P k = 0,1,2,... Pade approximations to exp(gh).

ke Pret ke Prea ke
Again, with the help of Theorems 2.1.1 and 2.1.2, we have (Ehle [18]),

*

Theorem 3.2.4

The quadrature formulae based on the derivatives given by
(3.2.13) for j = k,k+1,k+2, k = 0,1,2,... respectively are all A-stable.

In addition, the last two cases are strongly A-stable.

Explicit one-step methods

Various authors had produced explicit one-step methods that are
A-stable, notably, Lawson's generalised Runge-Kutta process [30] and the
method of Rosenbrook [49,50 p.180] and Calahan [7], with modifications
by Haines [21].
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The generalised Runge-Kutta methods produced by Lawson use
an approach very similar to that of the generalised multistep methods
previously described in section 3.1. By the same transformation (3.1.6),

we have the analogue of (3.1.8):

y(x+h) = exp(hA)y(x)
h
+ I exp[ (h-8)AJ{f[x+6,y(x+0)]-A-y(x+08)}de (3.2.14)
_ 0
Instead of using a quadrature rule, the integral on the right is to be

evaluated by a modified m-stage Runge-Kutta process as follows:
* = »
k1 = f(xnsyn) - A yn’
* 1_] . *
p; = exp(cih-A)-yn + h jz]aijexp[(ci—cj)hA]kj,
= f(xn+cih,p§) - ApfL, = 2,3,0..,m,

m
Y1 = exp(hA)ey 4 h_Z]biexn[(l—ci)hA]-k?, n=0,1,2,... (3.2.15)
"I:

The method would typically be applied to problems of the form,

y' =By +u(t,y), ( )
3.2.16
¥(0) = yys
where B is stable and stiff. If A =B and u = 0, (3.2.15) gives
Ypep = Lexp(n-B)I™y . (3.2.17)
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This means that if an A-acceptable or L-acceptable approximation to

exp(z) is used in (3.2.15), we have an A-stable process. Hence, by means
of a transformation, a Runge-Kutta process can be made A-stable. It should
be noted that the generalised Runge-Kutta processes (3.2.15) do not have
the exactness properties analogous to Theorems 3.1.5 and 3.1.6. 1In [34],
they are modified so as to induce this exactness.

The method of Rosenbrook with modifications by Haines useé a
somewhat different technique. It requires not only values of f(x,y), but
also of the Jacobian matrix (%;0 at each step in the process. It is A-stable,
with error of O(h4) and E(gh) approaches -0.8 as h » «,

There are many other similar methods proposed by, among others,
Pope [45], Kuo [26j,»Legras [37] and Calahan [6]. They are all designed
for the particular problem of (3.2.16) and use the fact that its exact

solution is
: X
y(x) = exp(Ax)-y(0) + J exp[ (x-t)-AJu(t)dt. (3.2.18)
0
The difference is in their methods of evaluating the integral on the right.

The resulting methods would be A-stable if A-acceptable approximation to

the exponential is used.

As the discussions of section 3.1 and 3.2 indicate, there is a
very intimate relationship between a numerical method of solving stiff
equations and a numerical approximation to the exponential function. In
particular, Gear had shown [16] the following property in the family of the

Runge-Kutta processes with respect to rational exponential approximation :
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Theorem 3.2.5

Let R(z) be any rational approximation, of the form

R(2) - R
degree of P(z) < degree of Q(z) < n, (3.2.19)

to exp(z). If R(z) has distinct non-zero poles, there exists a n-stage
Runge-Kutta process whose corresponding E(qh) in (3.2.2) is R(gh).

This means any A-acceptable rational approximation to exp(z)
will give us an A-stable Runge-Kutta process. However, the resulting
process of Theorem 3.2.5 is generally of a much lower order than the

order of the rational approximation.

3.3 Methods for Partial Differential Equations

As mentioned in section 1.3, by means of semi-discretization,
many linear parabolic partial differential equations (PDE) of type (1.4.7)
commonly found in problems of heat conduction, fluid flow etc. can be
transformed to a system of ordinary differential equations (ODE) having

the form

y'(t) = Ay(t) + F(t),

(3.3.1)

() = 3y
where A is a constant square matrix and f(t) is a forcing term from time-
dependent boundary conditions or source and sink terms. In addition, A

often has only real eigenvalues, and is stable, stiff and sparse.
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A well-known numerical method for (3.3.1) is the Crank-Nicolson

method

plesh)-y(t) - prz(een)ey(e)y f(t+h%+f(t) (3.3.2)

Solving for y(t+h) in terms of y(t) and f(t), it reduces to

glth) = (1- 5hA) 7' (1+ ZaA)F(t)

b h(1- Jpa) 7 [ELERE(E) ), (3.3.3)

We notice immediately this corresponds to the Padé approximation

P]'](z) = (1-x/2)/(1+x/2) to the exponential function exp(-x).

If f(t) of (3.3.1) is a polynomial of fixed degree in t, then
the generalised multistep methods in section 3.1 [(3.1.10), (3.1.13)-(3.1.14)]
with an A-acceptable exponential approximation, or the implicit Runge-
(z),

z), n=0,1,..., described in section 3.2 will give asymptotically

Kutta processes based on the Pade approximation Pn,n(z)’ Pn+1,n

Pn+2,n(
exact solutions to (3.3.1). These methods exactly reproduce the particular
integral and suppress the complementary function. Hence, the familiar
Crank-Nicolson method (3.3.3) gives exact solution of the particulér
integral for linear f(t).

If f(t) is a constant and A has only real eigenvalues, the exact

solution of (3.3.1) can be verified to be

F(t+h) = exp(hA)*¥(t) + (I-exp(hA))A"TF. (3.3.4)
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Let us also define

r"z) - sup lexp(x)-Pp (] (3.3.5)

where Pp q(z) is any Padé approximation to exp(z). Then we note the

following result of Varga [52].

Theorem 3.3.1

If Wp q(t) is the computed solution obtained from (3.3.4)

using a Padé approximation P_ (z) to exp(z), then

P.q
|13} )] < rS™ b (a)) ] [7g-A71¢1 (3.3.6)
for p=20,1,2,...,
q=0,1,2,...,
m=1,2,...,
t>0,
and A(A) = qulki(A)l,

i

denoting the Euclidean norm

Ai(A) being the eigenvalues of A, and |

of a vector.

Theorem 3.3.1 is valid for all entries in the Pade approximation
table. However, the method will be A-stable for matrices A with real
eigenvalues only if p = q.

(3.3.6) implies that a computed answer will be accurate if
réTé (mhA(A)) is sufficiently small. This, in turn, will mean the necessity
of a small step-size h. But, by using a global minimax Chebyshev

approximation in place of a Padé approximation to exp(z) in (3.3.4), we

expect to be able to bound the error for any step-size h. This is made

possible by the next theorem.
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Theorem 3.3.2

The exact solution y(t) and the computed solution Wp(t) of

(3.3.4), when the minimax Chebyshev approximation to exp(-x),

n_(x)
Qp(x) = dlr;_(;(-)' s
is used, have the following properties:
1F@)-R ()] = Hol15g-A7 FI1, &> 0, (3.3.7)
where Hp = ps(exp(—x)) (definition 2.2.2),
= {rp p(x), rational functions whose numerator and
denominator polynomials are of degree p or less}.

(m)

Since Hp is usually of much smaller magnitude than rp for

large z, using the minimax approximation would be "globally" superior to
using the Padé approximation. This means, if ||§O-A']%|| is not

too unreasonably large, we can still have a small error bound in (3.3.7)
for any step-size h. Otherwise, Pade approximation with a small step-size
would be necessary in order to have the error under control.

This leads to the study of order-constrained minimax approxima-
tion by Lawson [35]. It is a compromise between Pade approximation and
minimax apbroximation. The result is in Theorem 2.2.2.

Although order-constrained approximation does not have as good
a "global" error control as the true minimax épproximation, it has the

following two advantages:
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(a) It provides a "best" uniform approximation to exp(-x) on
[0,) with prescribed order at x = 0. If Ilyo—A—]?]] of
(3.3.7) is too large, a sufficient small step-size h will
ensure the truncation error is bounded. Otherwise, we can use
any step-size and are still guaranteed a global error bound.

(b) True miniméx approximations are of order zero. Hence, they are
not applicable to Theorems 3.1.5, 3.1.6 and their analogueg
in the case of one-step methods. Order-constrained approximations

provide a remedy for this.

Implementation techniques for solving PDE of the type discussed

in this section can be found in [9,12].

Lastly, it is worthwhile to mention that the 'Box Scheme'
for parabolic mixed initial-boundary value problems in one space

dimension described in [25] is also A-stable.
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CHAPTER 4

A NEW APPROXIMATION TO THE EXPONENTIAL FUNCTION

In Chapter 3, it is shown that many of the methods for solving
stiff systems are closely related to the numerical approximation of the
exponential function. In this chapter, a new class of exponential
approximations is introduced, which will have certain practical computa-
tional advantages when applied to the numerical methods of the previous

chapter.

4.1 Definitions and Notations

We shall assume, in addition to those at the beginning of

section 2.2, the following notation and definitions:

4.1.1) m an integer greater than -2, m ¢ {-1,0,1,2,...}.

—
™
~—
]
1

a positive integer, n ¢ {1,2,3,...}.

(

(4

(4.1.3) b,b some positive real numbers, b,b. > 0.
(4.1.4) 1 - the non-negative real axis, I, = [0,=).
(

4.1.5) pm(x) - a polynomial of degree m or less.

(4.1.6) p ](X) - the constant function = 1.
(4.1.7) r;(x) a rational function of the form

(x)

rn(x) - m

m ,XeIO.

(1+bix)

i =S5y T

i=1

(4.1.8) fg(b,x)— a rational function in x for a certain fixed b of the form
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(4.1.9) Rg' - the set of all rational functions r;(x)
n Py (x)
Rm={—r—'——:X€IO, b'i >O,n2k2deg(pm)a
I (1+b.x)
i=1 !
deg(pm) < m}.
(4.1.10) R\ - the set of all rational functions r(b,x)
R"{p’“(x) b>0 k > deg(p.)
R = t———— : x €I, Db>0,nz2K2degip ),
m (1+bx)k 0 m
deg(p ) < m}.
(4.1.01) RY - {1 x e Iy, b > 0, n > O,
il (1+bix)
i=1 -
(4.1.12) R", - {—1—:x¢ Iy b>0,n >0
(1+bx)

Notice the slight difference in the definitions (4.1.9) and
(4.1.11). 1In (4.1.9), the degree of the denominator can be less than n,
while in (4.1.11), we include only those that are of degree n. This same
difference occurs between (4.1.10) and (4.1.12).

Our interest is in the approximation to exp(-x) on the non-nega-
tive real axis and hence all discussions will be confined to IO’ unless
the contrary is explicitly stated. We shall start the investigation with

approximations in the special form

rl(x) = in R",.

(1+bix)

1

[T e

1



- 42 -

Since n = 1 implies the rational function has a linear denominator, the
discussion reduces to a particular case of the usual Chebyshev rational

approximation. We shall assume n > 1 in what follows.

4.2 Exponential Approximation in R?]

In this section we shall try to establish the existence, uniqueness
and characterisation of a best approximation in RT] to exp(-x). In other

words, we attempt to find a r*(x)e RT], such that, (see Definition 2.2.2),

= | e x}FF(x)]],

o)
-
—
—
~—
1

exp(—X), .

—
—
<
~—
1]

to show it is unique and to find a characterisation by which it can be
determined. Since the parameters {bi} of a function element r?l(x) in RT]
are nonlinearly related, the problem belongs to the class of nonlinear
approximation. It is very unfortunate that r?](x) is of such a particular
form that many of the classical results of nonlinear approximations are not
applicable to it. Hence, most of the results here have to be established
independently.

The first two lemmas establish two basic important properties of
the function g(x),

g(x) = exp(x) -_E](1+b1x). (4.2.1)
":
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Lemma 4.2.1]

n
If ) by <1 then
is1

(b) g(x) > 0, for x > 0.
Proof
(a) Obvious.
(b) Compare the Maclaurin series of exp(x) and the multinomial expansion
n ‘
of 1 (1+bix),
i=1
x2 x"
exp(x) =1+ x + ST et It (4.2.2)
I Tod T bl ]
I (1+b.x) = 1+x b.+x b.b.+x b.b.b, +...
j=1 S S T A A TR B AL
i<J i<j<k
n
+ X b]bZ"'bn' (4.2.3)
Since 0<) b, < 1,
i
we have, for any positive integer k, k <n,
n
0< ()b
N e
i=1
| n, n n
- + n =k n]!nzlk:.n ! bl]bzz' bnn
n]n2+-..nn- n
= ( ) kib; by ...b, + some other positive terms) < 1.

1si]<...<iksn 1 2 k
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This means
0 < ) kib, by ...bs <1,
1<11<...<1k£n .] 2 k
. 1
or 0 < b, b, ...b. < 7.
1<i]<.§.<1ksn (IR PR DR S

Putting back to (4.2.3) gives, for x > 0,

n i

n
1 (1+bix) < ¥ ?T'< exp(x). Q.E.D.
i=1 i=o "
Lemma 4.2.2
n
If ] by >1 then
i=1
(a) g(0) = 0,
(b) there exists exactly one other point o > 0, such that g(a) = 0,

(c) g(x) > 0 iff x > a.

(a) Obvious.
(b) and (c).

For small x near 0, g(x) < O because

2)

Hn =5

(1+b1x) =1+ x‘Zbi + 0(x

i=1

>1 + x + O(xz) = exp(x).

For very large x, obviously, g(x) > 0. This means g(x) has at least one

positive zero at x = a, o > 0.
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Differentiating g(x) n+1 times gives, for x > 0,
g(n‘"])(x) - eX > O,

which shows, by repeated application of Rolle's theorem, that the number
of positive roots of g(x) is finite, at most n+l. Hence, it is possible
to find its smallest positive root. Let it be o and g(x) <0, 0<x < a.
We shall try to prove that g(x) > 0 if x > a. For any x > a > 0, let

X =2ca, ¢>1. Since

g(a) = 0, or
exp(a) = H (1+b, u),
i=1 _
we have, exp(x) = exp(ca)
= [exp(a)]°
n
= [ I (1+b, u)]c
i=]
= p[ (1+b1u)c

-
—

Expanding (]+biaf:in Taylor's series, we get

exp(x) = T (1cbior S (14 )62 0)?)

=]

i=1

>

=
H‘.:I:

(1+bica) =

(1+b X), 0« £; < a.b
1 i

: 1 i

Therefore, g(x) > 0 if x > o and g(x) < 0 if 0 < x < q. 0.E.D.
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Since n
exp(x)- II (1+b1x)
1 ' _ _ i=]
- - exp(-x) = -
I (1+bix) exp{x) I (1+b1x)
i=1 i=1
= 9(x)
d(x) °

where d(x) > 1 for x > 0, the curve of any rT](x) will be of either one of

the two patterns in Figure 4.1.

y N
1 (1): Zbi <1
\§§§§§\\ ©O) (2): b, > 1
N
N
\\\\\ —
- T e &« 1
. gl 6] +b'i X)
------- L//,exp(—x)

> X

. i 1
Fig.4.1 Graphs of exp(-x) and
Hil+bix5

The next lemma embodies a very important technique commonly used in
approximation theory for establishing the necessary condition of a best
approximation and will be used in subsequent discussions. Given an appro-
ximation r(x) to f(x), it provides a criterion to find, if possible, a

r*(x) which will be a better approximation to f(x) than is r(x).
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Lemma 4.2.3
If r(x) approximates f(x) on Iab and {Ei},_i =1,...,n is that
sequence of points on Iab at which the error curve attains its extrema
alternately, i.e.

(a) fg= @8] << g =b=E 4,

n
(b) )\'I = r‘(‘E;.I) - f(£1)’ i= ]323---sn3
(c) Aipthy < 0, i=2,3,....n,
(d) If Ay > (<) o, i=1,2,...,n,

then A, = (<) r(x) - f(x), £i 1 X < E&5q-

Let r*(x) be another function, such that
* n-1
ri(x) - r(x) = w(x)_H](x-Bi), (4.2.10)
'|=

where a =By <y < Bl < &y < By...< En-] < Bn—] < gn < B, = b,

and w(x) is a continuous function satisfying
(a) w(x) # 0 for x ¢ (a,b),
(b) that r*(x)-r(x) may vanish at an end point only if that end point
is not an extremal point.
Then, if w(x) can be made sufficiently small in Lp> r*(x) is a better

approximation to f(x) than r(x).

- e R / A’z
| & 8y | 2 ey
a l[ \/ EZ - "\’ ‘I{ g
>\'| / \\\
i ,\/ B )\3
‘ ; / * _ n-1 Lo
Ki/// = r (x)-r(x) = w(x)ig](x-Bi) ‘ﬂip/)
__r{x)-f(x)

Fig. 4.2.1
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Proof [1, p.55-56]
Pictorially, with reference to Fig.4.2.1, in each of the

subintervals
[B.i_] )B.i], i= ],...,n,

in turn one of the following two inequalities is satisfied:

If Ai >0
min(ki_],xi+]) + o < r(x) - f(x) < Ai.
If Ai <0

max(Ai_],Ai+]) - a > r(x) - f(x) = Ags (4.2.11)

where AO = AZ’ An+1 = An-] and o is a certain small positive constant.
Hence, if w(x) is appropriately chosen, such that
. n-1
[P (x)-r(x)] = Jw(x) .H](X-Bi)l < a,
'I:
and the sign r*(x)-r(x) relative to r(x)-f(x) is as illustrated in Fig.4.2.1,
then r*{x) will be a better approximation than r(x) as a consequence of the

inequalities (4.2.11) and the equation
ri(x) - £(x) = (r(x)-f(x)) + (r*(x)-r(x)). Q.E.D.

We now continue to show a necessary condition for the best
approximation to exp(-x) with respect to RT]. This will then allow us to

search for the best approximation within a much smaller subset of R?].
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-~ Lemma 4.2.4
If r?](x) = — ] approximates exp(-x) best with reference to
it (1+bix)
i=]
R" -1° then
(a)  the error curve r?](x)Qexp(-x) alternates exactly once,
(b)  by=b,=...=b =b,
1
(C) b > ne
Proof
(a) If r ](x) approximates exp(-x) best, then 1—————7 will also be the
best weighted approximation to exp(-x)+ H2(1+b .X) with the weight function
'l._
1 That is, the function Ti%_i' should also minimize the weighted
H (1+b X) 1
i=2

maximum norm

”E(

1+b1x)
i=2

<(1+b] " oexp(-x)- _R (1+bix)>"
i=2
Classical Chebyshev rational approximation theory guarantees that the error
curve alternates at least once. By Lemmas 4.2.1 and 4.2.2, we know the error
curve cannot have more than one positive root. Therefore, it alternates
exactly once.
(b) Suppose, that there exists a best approximation rf](x), for which

at least two of the bi differ . Then, without loss of generality, let b] < b2.
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(1+b x),
3

i
H = >

Let BB(X)
i
1
rT1(X)

w
—
—
x
~
1

= (1+b]x)(1+b2x) 83(x) =
By(x) = (1+byx) (1+byx)B4(x),

B (x)+B,(x)
By(x) = J— 2
4 TR
where bi = b] + 6],
= b

(=2
N -
!

2 = 92s
0<6]<b2_b]!
b

- e . 2
0 < 6, = ¢ 6], 1 <cc< bi s
and the point d = BEE%BT-lies between the two extremal points of rf](x)~exp(-x).
2 "1
The choice of c and d is possible because 6] is such that

b
> 1 and, as ¢ moves from 1 to b?’ d moves from O to « . Now
] 1

1T
CAC I ¢)

_ 1 1 ] 1 ]
83(x)1(1+béX)(1+bix) (1+b2x)(1+b]x)

U‘D‘
RS

d(x) =

1
EZTRT{(]+b2X)(]+b1x)'(]+bzx'62x)(1+b]X+6]X)]

—~7—7{(a -81 )+x (b 8,-b 8, +6,6,)1.

If §; is small, d(x) can be bounded sufficiently small. Also,

§5=81 = 6;(c-1) > 0,
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and b]d2 - bzés1 + 6162

i

6][cb]—b2+c61]
= 6][cbi—b2] <0

imply d(x) > (<) 0 for small (large) x and that d(x)=0 at x=d. Since, by
Lemmas  4.2.1 and 4.2.2, the error curve rT](x)-exp(x) is negative for small x
and positive for large x, d(x) satisfies completely (4.2.10) of Lemma 4.2.3.

Therefore, Bg%ij is a better approximation to exp(-x) than r?](x). Obviously,

E_%YT is in R"; too. We thus arrive at a contradiction.
> .

n
(c) (b) implies ) b; = nb, and by Lemma 4.2.2,
i=1

nb > 1, i.e. b> %a Q.E.D.

The implication of Lemma 4.2.4 is that we can confine our search

for the best approximation in RT] to its subset BT] >

RN = {p" (b,x) = -——l———}.
--1 -=1] (-I_l_bx)n

If a best approximation does exist in B?], 1t‘w111 be the best with respect

to R"; too.

. ph .
Before we proceed on our search in R_,, we need to define two

functions x](b), Az(b) as follows:

Consider, for any b > 0, the error function e(b,x) of r?](b,x),

e(b,x) = r';(b,x) - exp(-x). (4.2.13)
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Since e(b,0) = 0,

and 1im e(b,x) = 0,

X~>00

e(b,x) attains its minimum and maximum in Iy = [0,»), at say yq and v,

respectively. Define:

11

min e(b,x) = e(b,Y1),

\ )
XEIO

Az(b) = max e(b,x) = e(b,yz).
XeI0

If nb <1, by Lemma 4.2.17,

(o]
§

_Y-l <Y25

—_——
o
N
1}

0 < Az(b).

If nb > 1, by Lemma 4.2.2,
O<Y]<Y2=
A (b) < 0 < ay(b),

(4.2.14)

(4.2.15)

(4.2.16)

Since our interest is in the case when e(b,x) alternates, we

shall assume nb > 1.

Lemma 4.2.5

n

e(b¥,x) alternates exactly once.

r_](b*,x) approximates exp(-x) best with respect to BT] iff
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(a) only if part

Ifr ](b ,X) is the best in R by Lemma 4.2.4, it is also the

'I’
best in R_] and hence e(b*,x) alternates exactly once.

(b) if part
If e(b®,x) alternates once, by Lemma 4.2.2, nb > 1 and (4.2.16)

reduces to

Consider any other ET1(b’X)’ b # b*.

If b > b", [T]( X) =1 ](b x) >0, x>0,

and A1(b) min e(b,x)

min {fT](b,x)-exp(—x)}

1

min {[§T1(b*,x)—exp(-x)]—[gT](b*,x)-r?](b,x)]}
= e(b*,vq )-Ir" (6% ,vq)-r" (byyy)]

< e(b*:vY‘I )

Therefore,

[le(b,x)]] = max{—A](b),Az(b)}
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and hence r?](b,x) is not as good an approximation to exp(-x) as

-

rn](b*,x). We get a similar result for any b < b*. Therefore

r?l(b*,x) is in fact the best approximation in BT . Q.E.D.

Lemmas 4.2.6 and 4.2.7 establish the existence and uniqueness of

the best approximation.

Lemma 4.2.6 (Existence lemma)

There exists a b* > 0 such that e(b*,x) alternates exactly once.
Proof Consider the function

A(b) = A](b) + Az(b), 0 <b <,
Because, for any b2 # b],

e(b,,x) = [rf](b1,x)-eXP(-X)]+[rT](bZ,X)—rT1(b],X)]

e(by.x) + [rl (by,x)-r" (by,x)]1, (4.2.20)

As b2 > b], the second term of (4.2.20) tends to zero, so e(bz,x) + e(b],x)
and hence é(b,x) is a function continuous with reference to b.
Furthermore, all terms in (4.2.20) are bounded and it can easily be

shown that A](b), Az(b) are continuous functions with reference to b too.

Now,
Tim A(b) =1lim A](b) + 1im Az(b)
b~-0 b+0 b0
=0+1=1,
and Tim A(b) = 1im A](b) + 1im Az(b)
b b0 b0

1+0= -1,
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That means there is a closed interval [a,c], ¢ > a > 0, such that A(b)

is continuous in it and that

x(a) > 0,
Alc) < 0.

Clearly, we have a point b* > 0 in the interval where
A(b*) = 0,

that is, xz(b*)= —A1(b*).

At this point b*, e(b*,x) alternates exactly once. Q.E.D.
Lemma 4.2.7 (Uniqueness lemma)

The best approximation to exp{(-x) in B?] is unique.
Proof If [T](b1,x), le(bZ’x) are two distinct best approximations

to exp(-x), by # bs.

Let A;(by) = e(by,yq) = Aq(by),
Ap(by) = elby,y,) = Ay(by).

Since b] # b2, |

n n
r_] (b'l 5Y'| )"E_-I (b2 ’Y'I )

[r?](b]:Y])‘eXp(’Y])]’[rT](bz:Y])‘exp(‘Y])]

I

A](b])“[KT](bzaYi)‘exp(‘Y])J < 0,

- n n
Similarly, f-](b]’Yz) - [_](bz,Yz) > 0.
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Hence r?l(b],x) - [?](bz,x)

has a positive zero x* > 0, But this is obviously a contradiction because

its only zero is at x = 0. Q.E.D.
We summarise this section by the following theorem:

Theorem 4.2.1

Let RT1 be the set of all rational functions of the form

r?](x) = ]

n
II (1+b1x)
i=1

where bi > 0 and n is a positive integer, then

(a) there exists a best approximation to exp(-x) in R?].
(b) the best approximation is completely characterised by the facts
that
(i) by = b, = ... =b,
(i) the error curve rT](x)—exp(-x) alternates exactly once.
(c) the best approximation is unique.
Proof
(a) Lemmas 4.2.5 and 4.2.6 show that a best approximation exists in

BT]. By Lemma 4.2.4, this is also the best approximation
with reference to RT].
(b) Lemma 4.2.5.

(c) Lemma 4.2.7.
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4.3 Errdr Estimation and Asymptotic Behaviour

In this section we investigate the quality of the approximation
in RT1 to exp(-x) as a function of n. Because of Theorem 4.2.71, we shall
denote, for any positive integer n, the best approximation to exp(-x)

with reference to RT] by

*x [k 1
ri (bl ,x) = ———— . (4.3.1)
-1 n (-l+b;x)n

And the error curve

e(b:,x) = Pf](b:,x)—exp(-x) _ (4.3.2)
has the two extremal points Yn.1°Yn.2 such that

0<Ypq1<Tn,20

* _ *
>\] (bn) = e(bn’Yn,l) < 0,
*y (K
Az(bn) = e(bn’Yn,Z) > 0, (4.3.3)

where Al(-) and AZ(-) have the same meaning as (4.2.14). Because of the

alternating property, we also have

(b*) > 0, (4.3.4)

*
—Al(bn) =X n

and x (exp(=x)) = [, (bX)] = |x,(b})]. | (4.3.5)
-] :

Theorem 4. 3.1

s i e . * *
For any positive integer n, bn > bn+1 > 0.
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Proof

*

N+l > 0. To establish a contra-

By Lemma 4.2.4(c), b: >0, b

diction argument, suppose that b:+] 2 b:. Then, for x >0,

*

* * *
rop(b,15%) < rop(by.x).

In particular,

* *
Al(bn+1) : e(bn+1’Yn,1)

_ * LR * . %

= e(bn’Yn,]) + r_](bn+],Yn,]) - r_](bnaYn,])
*

< A](bn).

Similarly,
* _ *
Aplbpg) = elbyyq vy o)

_ * * (X * ¥
= elbavpyy o)+ ri(b v o) - P (b Yney o)

N e(bn’YnH,Z) = Aplby).

Since, as in (4.3.4),

*y *
"A](bn) - Az(bn) > Os

we have

* *
A bppg) > Aplbrgg)s
which is a contradiction to the alternating property of e(b:+],x). Q.E.D.

The first implication of Theorem 4.3.1 is that the sequence

{b?}, i=1,2,... is strictly monotonic decreasing, bounded below by zero.

S * .
Therefore, 1im bi exists.
i
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Secondly, it is useful when we try to determine the best approxi-
mation numerically. Once we obtain the best approximation in R?], and
hence b;, we know, for the best approximation 1in RTT], b:+] will be in
the region (1/n, b:), by Lemma 4.2.4.

The next theorem tells us that the minimax error is also strictly

decreasing with respect to n.

Theorem 4.3.2

For any positive integer n and f(x) = exp(-x),

p o (F) >0 (f)>0.
R R
-1 -1
Proof
- . * *
Obviously, pRn (f) > 0 and pRn+](f) > 0. Otherwise, r_](bn,x) or
-1 -1

rf](b:+],x) is identical with exp(-x) which is impossible.

If we rewrite rf](b;,x) in the form

* 1
(b7 ,x) = ]
-1 (1+§x)(1+b:X)n

where b = 0 and can be considered as an extra parameter, then, applying the
same technique as in Lemma 4.2.4(b) by perturbing slightly b and one b:, we

obtain a new approximation

1
(1+0'x) (14b% x) (1+b x)"]

roy(x) =

where 0 = b < b' < b* < b* and

¥ (0% ) -exp(=x) || > [[FT (x)-exp(-x)]].
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Since F?](x) € RT;] we have

'pRnT] < [P0 G-exp(-x) ] < pRn1-‘ Q.E.D.
By the above theorem, we know the minimax approximation in RT]

is always better than those in R51, k < n. That means asymptotically

as n -~ o, we shall get the very best approximation. And the case of degeneracy

does not happen, unlike the situation in classical rational approximation

theory. Theorem 4.3.3 is an analogue of the de la Valleé Poussin

Theorem in classical approximation theory. It  gives an upper and a

Tower bound of the minimax error.

Theorem 4.3.3

If r*. (b*,x) is the minimax approximation in R"., r™ (b,x) an
-1'"n -1° --1

arbitrary member of BT], and f(x) = exp(-x), then

min{lkl(b)|,|A2(b)[} < pRn (f) < max{lk](b)l,lxz(b)l}, (4.3.3)
-1

*

where equality is attained iff b = bn

Proof By definition,
_ * - *
P (f) = -2(b,) = A,(by) > 0.
-1
Obviously, if b = b:, we have equality in (4.3.3).

If b > b:, for x > 0,

* g * n _ 1 1
r_](bn,x) - [_](b,x) = - > 0.

(1+b7x)" (1+bx)"
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At x =y, 1> the first extremal point of rf1(b:,x)-f(x),

A(b) < v by, 1) - expleyy q)

* * * * n
[r_](bnaYn’])"exp('Yn,])]f[r_](bn:Yn’])‘E_1(bnaYn,])]

*
’](bn) - O')

which means

5] < (A (b)] = max{]a; ()], ]2, (b) |1

H

Similarly, at x = v,, the second extremal point of CT](b,x) - f(x),

Az(b) ET](baYz)'exp(Yz)

]

[rf](b:sYz)‘eXp(Yz)]‘[rT](b:aYz)‘tT](bn9Y2)]
< Aplbr),

and hence

A (65)] > [a,(b)] = min{]a7(b)[,]A,(b) |3

If b < b:, we can similarly prove
[Ao(bF)] < [Ap(b)] < max{[xy(b)[5[xy(b)]},

JA](b:)] > [a(B)] > min{[x](b)l,lxz(b)l},
where A](b) may be zero if nb < 1. Q.E.D.

Before we proceed to find the asymptotic bound for the minimax

error, we need the following three lemmas.
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Lemma 4.3.1
For 0 < x £ a < ©, as h > o,

2

Xyn _ X\ X 1
(4 "= (- Bt + oty
Proof Since x is bounded, as n > o,
2 n
X\n . . n{n-1) n! | x
(D7 = Teneps B Sre e B0 0
n n
2 n
= [1+x+ ?T‘+ + %T]
3 n
1:x° | 3.2 X n(n-1) x 1
Tlgr T et T il
2 " X2 M 2 ]
2
= Xy X 1
= (1- 2n)e + 0(;7)

Lemma 4.3.2

The function

g(x) = (&=L (1 2™ exp(x)

has exactly two positive real roots Yio i=1,2, and

Tim v, = 2x/2.
oo |

Proof Consider the error function
e(x) = o - exp(-x).

1
X
(1+ X0

Q.E.D.

(4.3.5)
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Since, n°ﬁ%1-> 1, by Lemma 4.2.2, there exists a £ > 0, such that e(¢) =

In addition, e(0) = 1im e(x) = 0. Hence, we have at least two distinct
X0

points Yo > Yy > 0 at which its derivative

- g(x)
-1y (14 Z™ exp ()

-N

(n-1) (14 Zo)""]

e'(x) = + exp(-x)

0.

vanishes, i.e. g(x) has at least two positive roots. In Chapter 5, Lemmas

5.3.1, 5.3.2, it will be shown g(x) has at most two positive roots.
Now, consider OnTy the interval [0,4]. x is bounded in it.

For large n, by Lemma 4.3.1,

g(x) = (1- D+ ZoZas X" T
2
- (- O PP ey
- XL0- DO+ - 2’;5_”»1 10t )
- KLyt - ]ﬁ]+o(:—2—)
- Z_E%;_)[xz-amz(]- l—)]+0(:]—2).
The roots of [x°-4x+2(1- 1)] are
4-‘*%;;(-:_9;) + 2t/2, a5 n > e

2

Therefore, if we assume Y; are continuous with n, then

lim vy, = 2+/2, §=1,2,

n—oo

3.4142, 0.5858. Q.E.D.
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l.emma 4.3;3

Let exp(-x) be approximated with reference to RT] by
n 1 n
E-](E:T3X) < Rys

n ;1 B
E—l(ﬁ:T3X) B X _y\n

1f e(x) s vy 27000y (11)5 A, (chy) are as defined by (4.2.13), (4.2.14),

then, for i = 1,2,

_Yi
1 e (Yi—])
(a) Xi(n—l) ) n
(b) T 2+/2, as n > o,
(c) Ai(nll) +'—0623 ’ 0.0Z94 L as n - o
Proof Consider, for i = 1,2, the error curve
1 1 -X
e(-—y.x) = - e
n-T (1+ _%ér)n
At x = Yy
e(dey.) = A () (4.3.10)
n-1°Yi itn-T’" -3

Since n(—l—) > 1, by Lemma 4.2.2, v, do exist and y, > y, > 0. Furthermore,
n-1 i 2 1

differentiating e(ﬁ%T’ x) onceat these two extremal points, which are

inside (0,»), we have

de, 1 -n -X
(%) = + e =0 . (4.3.11)
dx‘n-1 |X=Y1 (n_])(]+ X )n+]
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Rewriting (4.3.11) as

1=y Y (4.3.12)

gives, together with (4.3.10),

Ys Y
G = e DO -1
“Y: Ys: 1 Y
=€ 1[ﬁ%T'— n " nl;-l)]
_’Y'i
e (Y.i‘])

>

n

proving (a).

AZ > A] > 0, being the extremal points of the error curve, are

roots of its derivative (4.3.11). Rewriting (4.3.11) in term of g(x) in

Lemma 4.3.2, we have,

 elrx) -

g(x)
X yn+1

-exp(x) (B (1+ X7

Since the denominator is bounded for 0 < x < o, Yj» i =1,2 are in fact
the two roots of g(x) in Lemma 4.3.2, proving (b).
(c) follows immediately from (a) and (b).
Q.E.D.
Similar to Lemma 4.3.3, we include also

Lenma 4.3.4

Let exp(-x) be approximated with reference to RT] by r?](%yx) € B?],

U I
r_‘l (n’x) (]+ i)n s
n
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Proof

(a)
does not alternate and has only one maximum.

(b)

Because n'(%Q =1, by Lemma 4.2.1, the error curve r?](%3x)—exp(-x)

Can be proved similarly as in Lemma 4.3.3(a).

Q.E.D.

We now establish the last theorem of this section.

Theorem 4.3.4

If f(x) = exp(-x) is to be approximated with reference to RT],
then
-1
e _ 0.3679
(a) o (f) <« 5= =
-1
e (y;-1) e T(y;-1)

(b) min {|~———7;—————|} <p  (f) < max {I——_"-TT—_—_I}

i=1,2 R i=1,2

where v, are the two positive real roots of (4.3.5),

(c) Qp%?i<pn(f)<0.§3,as n - o,
Proof
(a) Lemma 4.3.4(b) implies
-X -1
IR (f) < max |2& l = g-ﬁ—-at x =1
R_] XeIO
0.3679
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(b) and (c). Theorem 4.3.3 and Lemma 4.3.3.
Q.E.D.
Theorem 4.3.4 reveals that the minimax error converges rather
slowly with reference to n 1in R?]. In true minimax rational approximation,
it is likely that the r_ n(x) minimax approximation has, as (n+m) - =,

s

an error [41, p.168] of

min! (]+0(])).
m+n)! (m+n+1)!

2m+n (

This prompts the study of minimax approximation by rational functions of
the form

Py (X)

(1+bx)"

in R;, m = 0, in the next chapter.
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CHAPTER 5

APPROXIMATING EXP(-X) IN R;

In Chapter 4, the theory of approximating exp(-x) by rational func-

tions r?](x) of the form

r(x) = (5.0.1)
(]+bix)

is proposed and developed. Such approximations have errors of 0(%), which
is very large compared with true minimax approximation in the whole space of
rational polynomials. For instance, it was shown in [12] that

(exp(-x)) < (2e*)™, o = 0.1392, n = 0,1,2,...

o
Rn,n

Naturally, we would 1ike to look into the set Rg. By allowing the numerator

of (5.0.1) to be a polynomial of degree m or less, we expect to get a much

better approximation. Such will be the theme of this chapter.

5.1 Existence of best approximation in Rg

The first question we attempt to answer is: Does there exist a best

approximation to exp(-x) in R;? In other words, is it possible to find a

real vector

(5.1.1)

IA
<
In
3

é(r*g:g) = (ao,... a byse.sb ), 0

[aw]
IA
=
In

n,
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such that the rational polynomial

2 aij
I (x) = E—— (5.1.2)
I (1+b.x)
j=1
satisfies
pRn(exp(-x)) = Ilr*g:g(x)—exp(-x)]l (5.1.3)

m

are as defined in Definitions 2.2.1 and 2.2.2 for the

where o - and |

m
interval IO = [0,»)? The answer is in the affirmative as will be shown in

this section.

Theorem 5.1.1

Among the functions r;(x), n=k= deg(pm), in R;, there is at

least one function for which

llr;(X)-exp(-X)ll (5.1.4)

attains its minimum.

Proof
Step 1:  Existence of a convergent subsequence in R;.

Since (5.1.4) is bounded below by zero, it has a greatest lower
bound

0, = e Lexp(-x)]

m R

inf llr;(x)—exp(-x)!l > 0. (5.1.5)
neRn :

m<"m

r



- 70 -

By definition, there exists an infinite sequence of functions ri(x)

(i =1,2,...) in R; such that

pri = IIPi(X)-eXp(—x)ll > pRg,

as i > o,

Denoting ri(x) in the form

m .
) aiij
r.(x) = =0 - , b.. >0,
i n ij
+b. .
jE1(] b]Jx)

we perform a normalisation on their coefficients as follows:

. 1§ .- 2
j=1 Jj=1 ]+bij 'l+b1.J
m
J
jZOUijx
" n
jE](ViJ+W1JX)

Because bij > 0, {vij}’ {wij} are bounded as indicated:

1T >w,. 20, j=1,2,...,n,7=1,2,...

The sequence {uij} is also bounded as will be proved below.

(5.1.6)

(5.1.7)

(5.1.8)
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Since the function
g(x) =0

. n
is in R d
S q an

| 1g(x)-exp(-x)|| = 1

o, of (5.1.5) is bounded by 1. Because

Rm

limp,. = p
i i RR

the sequence oy has an upperbound G,
: i

Pp. < G. (5.1.9)
1

Let {£4,655...,6 .1} be a set of (m+1) distinct fixed points in Iy. We

then have

|ri(€)] < G + max |exp(-x)|
XeI0

=G+ 1, (5.1.10)
where £ is any of the points gi. This at once implies

m . n
I < .
ljgouijg | = (G+])|j£](v13+w

15651 (5.1.11)

for all i. As Vij’ Wij are bounded (5.1.8), this means

m »
..EJ
Ijgou13) | <K

for a certain constant K.
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If the values of the polynomials

m
Usn + U.qX + ... + U, X
i0 il im

are bounded at (m+1) fixed distinct points, then all coefficients of these

polynomials are also bounded.

We now make use of the fact that the sequence of vectors
a, = (uiO""’uim’Vi1"'f’vin’wil""’win)’ i=1,2,...,

is bounded and select from it a certain convergent subsequence (which

will Tikewise be denoted by {51}), such that

1im 51 = 3
10
= (UO""’um’Vi""’Vn’wl""’Wn)' (5.1.12)
Define
m
¥ ou.xd
* j=0 J
re(x) = = - (5.1.13)
AW
jE](vJ wa)

Step 2 r*(x) € Rg.

Since Vij > 0, Wij > 0, we have
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and we shall consider separately the two cases:

Case A |vkl Wl = v tw =0, (5.1.14)
for a certain k, 0 < k < n. This implies

1im v., = 0,
foc0 ik
}iﬁ‘wik =0, (5.1.15)

whence, because of (5.1.11),

Timu,., = u;, =0, j=1,2,...,n.
i 10

r*(x) is thus the zero function

r*(x) £ 0,

which obviously is in RE.

o+ o= v, oW, .
Case B le[ IWJI vyt > 0 (5.1.16)
for all j = 1,...,n.

In this case, r*(x) has no positive pole; hence is defined for all

x > 0. We shall prove it is also bounded.

Because of (5.1.12), pointwisely,

1im ri(x) = r*(x), x> 0, (5.1.17)

o0

and hence
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-
*
—
>
—
1!

|exp(-x)-Lexp(-x)-r. (x)1-[r, (x)-r* ()]

IA

]exp(—x)|+|exp(-x)-ri(x)|+|ri(x)—r*(x)|

< suplexp(-x)|+ Py *Ess (5.1.18)
x>0 i
where € 0 as 1 » .
Because of (5.1.9), and
suplexp(-x)| = exp(0) = 1,
x>0
(5.1.18) implies
Ir(x)| <sM=1+6, x>0, (5.1.19)

proving r*(x) is bounded in (0,).
Next, consider the linear factors in the denominator of r¥(x).

They are of the form

F. = (V. ) P = ... 5.1.20
; ( i wa), j=1,2,...,n (5.1.20)

We can rewrite them in one of the three ways:

(1) If Vj >0, Wj > 0,
"
L= v (14 %) = v, . . 0. 5.1.21

FJ vJ(l ij) vJ(]+be), bJ > ( )
(ii) If vy = 0,

F] = wjx.

(ii1) If Wy o= 0,
F. = v.. (5.].22)
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Putting these back to r*(x) in (5.1.13) and after reducing the

fraction to its lowest terms, r*(x) can assume any one of the three forms:

miu J
a.X
L. J n > O’ a # Oa
* - J=0 0
r(x) n-v * a _ #0,b.>0; (5.1.23)
xU T (1+b.x) H J
51
m-p
) aij
* _ 3=0 .
ri(x) = 55 ; 3y # 05 by > 03 (5.1.24)
m (1+b.x)
j=1
or r*(x) = 0. (5.1.25)

(5.1.23) is not possible because r*(x) can then be arbitrarily
large as x approaches zero, contradicting the bounded property of r*(x) in

(5.1.19). Similarly, in (5.1.24),

(m-p) < (n-v),

otherwise r*(x) grows unbounded as x - w. Hence, r*(x) is of the form

m-u .
) aij
P = 2 () < (nev), Aoy # 05 by > 0, (5.1.26)
' m (1+b.x)
=1
or r¥(x). = 0 - (5.1.27)

both of which are in R;.
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Step 3 r¥(x) is the best approximation.
Since r*(x) is in Rg, it is defined for all x = 0. Also, by

definition,

n S | lr*(x)-exp(-x)]]. (5.1.28)
R

P

On the other hand,
[P ()-exp(-x)[ | = [[¢*(x)-rs (x)+r. (x)-exp(-x)] |
< [T )-ry OO+ ey (O-exp(-x) . (5.1.29)

As i > «, (5.1.29) implies

Hr*(x)-exp(-x)|] < p

RN
m
Hence,
[P (x)-exp(-x) ] = o ,
‘ R
m
and r*(x) attains the minimum of (5.1.4). Q.E.D.

5.2 Necessary Conditions for the Best Approximation

The significance of finding the necessary conditions is that it
allows us to have a more specific search for the best approximation. Instead
of investigating the whole set R;, we only have to direct our attention
to a particular subset of Rg which satisfies the necessary conditions because

we are guaranteed that the best approximation will not lie outside it.
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Lemma 5.2.1
Given
(i) bysb,, by > by = 0;
(ii) a set of (m+2) distinct points {Bi}’ B; >0, 1 =1,2,...,m2;
(iii) a polynomial pm(x) of degree m;

_] .
pm(B‘l_) # 09 if b'l 75 09

pm(B—Z_) # 0’
m+2
(iv) o(x) = T (x-B.);
=1

then there exist
{i) b], b2 and
(i) a polynomial qm(x) of degree at most m, such that

(1+b1%) (14b,yx)q_ (x) = (1+b1x) (1+byx)p (x) = wo(x) (5.2.1)

for certain sufficiently small w.
Proof

(AR) Assume by > 0,
Consider the function

g(x) = [1+(b]+6])x][1+(b2—62)x]pm(x)+w®(x). (5.2.2)

We shall prove, for sufficiently small w, that there is a choice of 6], 62,

such that g(x) has two zeroes at x=—1/b1 and -]/bz. Form the two equations
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b +6 b2-—62

g(-;—}) - pm(g—:—)n- ]bi]][]_ ;. ]+w¢<%> - 0,4 =12

Since pm(%l) #0,1i=1,2, (5.2.3) reduces to
i

wb2o(2h
1%%,
81(by-by-8,) = ———,
pm(BT)
-wbgcp(l;—‘)
| ) 2
8(by=by=6y) = ———=—,
: Pm(gz—)

Or, in another form

’Yé_i “6]62:&19 1 =]92’

where
Y = b2 —b] > 0,
-wb?@(é%&
ai:pm(;—)

which reduces to

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)
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Y6$ - (y2+a]—u2)6] oy = 0. (5.2.9)

Being a quadratic equation, (5.2.9) will have a real solution if its

discriminant
(Y2+u1-u2)2 - 4Y2a]
= (v2-ay-0,)2 - dana, > 0 (5.2.10)
L 1% = ¥ e

This can be satisfied easily if

YZ > 4 max[oq|,]o,]], (5.2.11)
that is, if
(bz‘b])z

lw| <€, = , (5.2.12)

1 b2¢(—])

i'bh,

e[|
i=1,2 pm(z)

where, by our given conditions, the denominator on the right never vanishes.
Hence, for any w whose magnitude satisfies (5.2.12), g(x) has two
real zeroes at -b{] and —bé] for certain 8;,8,. This means g(x) can be

represented in the form

i

g(x) = (1+byx) (1+b,x)q_(x)

(1+bix)(1+béx)pm(x)+w®(x)

where 8., 1 = 1,2 satisfy (5.2.8), (5.2.9); qm(x), a polynomial of degree m

or less; and
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Proof.

If b] = 0 and b, = b', then the left-hand side of (5.2.1) will be

1 1’
a polynomial of degree (m+1) contradicting that ®(x) on the right-hand
side is of degree (m+2).

If in (5.2.1), b] = bi £ 0 or b2 = bé, then the expression on
the left will have at least one real, negative zero at —b{] or —bé],
contradicting the definition of ?(x), whose zeroes are all real and
positive.

Corollary 5.2.2

In (5.2.1), for any w satisfying (5.2.12), by and b, are given by

the equations

(Y2+u]—u2)t//(yz—u]—a2)2—4a]a2

17 2y »
(YZ-G +o, )i//(yz—u -0 )2-4a a
5. = 172 172 172 (5.2.15)
2 2’Y 3 . .
bi = b] + 6],
bé = b2 - 62,

where v, oq, a, are as defined in (5.2.6), (5.2.7) or (5.2.13).

Proof This is obvious from the proof of Lemma 5.2.1, where b1 and bé

are obtained by solving the quadratic equations (5.2.5)-(5.2.9) for 81 and 8o

Q.E.D.
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Corollary 5.2.3

(i) bi > b] or b2, as w > 0;
(ii) b, > b,s as w > 0, and bi > bys
(iii) by > bys as w~> 0, and by > b,.
Proof By definition, for i = 1,2, as 0 as w ~ 0. Therefore, from

Corollary 5.2.2,

2, 2
6] > X§§1——= y or 0, as w~> O,
= b,~-b, or 0.

2 71
Therefore,
bi = b] + 6] > b2 or b],
proving (i).

(i1) and (iii) follow immediately from (5.2.7).

Corollary 5.2.4

S
_ i/(‘yz— ]—u2)2—4(x](x2
b, - by = :
2 1 Y

Proof This is obvious from Corollary 5.2.2 and the equation
by - by = (by-by) - (8,+5;)

yzi/(y —a1-a2)2—4u]a2

v

e e N

=-y=

i/f(yz—oc.l -O{,2)2—40L] 4y
Y

(5.2.16)

(5.2.17)

0.E.D.

(5.2.18)

Q.E.D.
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Corollary 5.2.5

The following are equivalent, if w # 0:

(1) [bs-bil < [by-byl; (5.2.19)
(i) (oay-0.)% < 2v2(aq+a,); (5.2.20)
1% Y 17%2/5 L.
2’yzl<x]'+océ,
(iii) Wl < ey = ———F~, ifo #ap, (5.2.21)
a]‘uz) .

where Yy = (bz-b]),

m
b2<1>(:—]—)
1 b]
= e , otherwise,
p. (=)
m b]
2 ;-1
by ()
Oh = ~—2 b2
2 -1 >
p. ()
m b2
= W(x%, i=1,2,
_ . m .
a. = coefficient of x 1in pm(x), a # 0.
Proof From Corollary 5.2.4, we have
lbé-bil < [bz—b][, (i)

iff

iff (Yz—oc]—ocz)z-‘loc]ocz < Y4
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iff

iff
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(07 -,)% 2y (i hary), (i1)
wz(ui—ué)z < ZWYZ(ui+ué)
(iidi)

Let us denote the best approximation to exp(-x) in Rz by

m-1 N
n . a0+a]x+...+am_“x m = 0,
re(x) =
m n-v -
m (1+b.x) ’
=1 .
no-om,
0 <y <m,
= N_—pm(x) 0<v<n
n-v PV s
1 (1+b.x)
j=1 J am—u 70,
b, » 0,
m-{ % n-v,
and let the error curve
r*&(x)—exp(—x)
alternate k times on I, = t0,) . We assume also that r*m(

e. p (-b71) £ 0 (§ = 1,20, .0

J
If we rewrite the errov tunction

r*g(x)moxp{wx)

(5;2.22)

(5.2.23)

X) is dirreducilile
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we note that the rational polynomial

should also be the best weighted minimax approximation to

exp(-x)

H =

2(1+bjx)

J
with the weight function
n-v

i (1+b.x)"
j=2

Hence, by Theorem 2.2.1, (5.2.23) alternates at least m-u+2 times, i.e.

k = m-p+2, (5.2.25)

If k = m-p+2 then v = 0. Otherwise, if v > 0, by Lemma 5.2.1,

we can find by, b, and a polynomial qm(x) of degree at most (m-n) such that

(T+byx)q _(x) - (1+b{X)(1+béX)pm(X) = wo(x),

o(x) = w
J

= =x

](X—BJ), ' (5.2.26)

where Bj’ (j = 1,...,k) are those points as depicted in Figure 4.2.1 of

Lemma 4.2.3. (5.2.26) implies

qp, (x) Py, (x)
- e .
'I bl bl i .
(1+ %) (1+by )j22(1+be) j21(1+bjx)
c T a n-v o(x)
(1+bix)(1+béx)‘21(1+bjx)

wix)o(x). (5.2.27)
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For sufficiently small wby Corollary 5.2.2, 61, bé will satlisfy

6] = bi > 0
bé = b]—62 > 0,
and hence
q_(x)
n _ m
rm(x) - n-v
(1+b]x)(1+b2x)j22(1+bjx)

will be in Rg. Furthermore, since
(m-p) < (n-v)

(otherwise, r*g(x) will become unbounded as x -+ «, contradicting that it is

the best approximation) we have

Tim|w(x)o(x)|

X-¥00
o W
R R T
X bibr T b
172 j=2 J

which is bounded because (m-u) < (n-v). And because w(x) is also bounded

for any 0 = x < «» , hence,
[w(x)o(x)| < |wlK , x =0

for a certain constant K. If w is made small enough and its sign chosen

appropriately, then, by Lemma 4.2.3, r;(x) will be a better approximation

*n(

than r™ (x).
m
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Similarly, we can prove

Otherwise, if there are say b2 > b1 > 0, then we can again construct a

r;(x) which approximates exp(-x) better than r*;(x). Hence, we have proved

Theorem 5.2.1

Let the best approximation to exp(-x) in R; be r*g(x) (5.2.22)

and Tet its error curve (5.2.23) alternate k times on [0,»), then

(-I ) k = m-u+2 H
(ii) v = 0 and
b] = b2 = ... = bn’ if k = m-pt2,

In most cases of approximation, it is found py = 0 and k = m+2
(non-degenerate approximation). Because of Theorem 5.2.1, now it may be
possfb]e for us to search for the best approximation inside B; instead of
working on the whole set RE. One implication of Lemma 5.2.1 and
Corollaries 5.2.3 and 5.2.5 is that, given-any rational function in Rg,
they provide us a way to construct a better approximation using (5.2.15).
Furthermore, since w is in general very small, (5.2.18) and (5.2.19)
imply that the bj's in the denominator of an approximation move towards
one common point as the approximating function approaches the best
approximation. |

In the next section, it will be shown that the best approximation

in Rg is non-degenerate and the error curve alternates exactly twice.
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In the numerical algorithm that finds the best approximation in R;
for general m,n, it will be assumed that the solution is nondegenerate and
the corresponding error curve alternates exactly m+2 times. Such assumptions

are found consistent with all computation tests attempted.

5.3 Sufficient Condition and Uniqueness in RB

In this section, we attempt to complete the theory of approxima-

tion to exp(-x) by rational polynomials in Rg of the form

pO(X)

n-vy
M (1+b.x)
=1

, bj >0, 0<v<n,

by establishing the sufficient condition for and uniqueness of the best

approximation.

Recalling the function g(x) in (4.2.1),

n
g(x) = exp(x)- Il (]+b1x), bi > 0, (5.3.1)
=1

we have

Theorem 5.3.1

The following are equivalent for g(x) of (5.3.1):
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Proof

(i) => (ii) Lemma 4.2.1.
(ii) = (i) If g(x) > 0, x > 0, then g(x) has no positive zero.
n
By Lemma 4.2.2, 7§ b 1, hence (i).
9
(i) => (iii) Trivial.

(iii) = (i) For small x,

L 2
g(x) = (1= 7 bo)x + 0(x%).

i=1
n
If, by contradiction, ) b g(x) < 0 for x near zero,
i=1
hence contradicting (ii 1) Q.E.D.

The next theorem is a counterpart of Theorem 5.3.1. The proof

will be omitted since it would be very similar to that of Theorem 5.3.1.

Theorem 5.3.2

If g(x) is as defined in (5.3.1), the following are equivalent

gix
b1 > 1,

(1)

He—13 —h

1
(i) there is exactly one point £ > 0 such that g(&) = O.

.i

(ii1) there exists € > 0 such that g(x) < 0, 0 < x < €.

Proof. Lemmas 4.2.1, 4.2.2 and Theorem 5.3.1.
Lemma 5.3.1

Define

II,‘—_-IS

h{x) = a exp(x)- (1+b X), bi >0, x 20, a>0, (5.3.2)

i=]

If a< 1, then h(x) has exactly one positive root.
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Differentiating h(x) (n+1) times,

h(n+])(x) = a exp(x) >0, x > 0.

Hence, h(x) has at most n+1 roots.

At x = 0,
h(0) = a-1 < 0.
As x - «, obviously,

a exp(x) >
;

==

(1+b1X),
1

and hence h(x) > 0. Therefore, h(x) has at least one positive zero. Let

X = vy be

We shall

Case A

By Lemma

Together

its smallest positive zero, such that

h(x) < 0, 0< x< vy,

==

h(y) = a exp(y)-

i

(1+b.y) = 0.
: i

show h(x) > 0, for x > v.

b. = 1.
i

i ~1>

i=1

4.2.1,

exp(x) > (1+b1x) >0, x >0.

i=1
with (5.3.4),

==

(1+b.v)
1 by

= 3

a exp(y)exp(x) >
;

|| e R}

(1+b.x)
1 i

i

]
==

[(]+b1y)(1+b1x)]

i=1

v
=S

i=1

[1+bi(x+y)], X > 0.

(5.3.3)

(5.3.4)

(5.3.5)
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Therefore,

n
a exp(ytx) » 1 [1+b, (x+y)], x > 0,
i=]

hence, h(x) > 0, for x > vy .
n
Case B} b, > 1.

Because of (5.3.3),

= >

a exp(x) < (I+b.x), 0 < x <,

i

i=1

which gives, by the transformation x = y-y,

==

[1+b1(v-y)], 0<y<y
1

a exp(y-y) <

1

= 3

< L0 1)-by]

i

=

n bjy
T (1+b,y) T [1- 5=—7—1].
=1 = Ty

it
—

Therefore, by (5.3.4),

n biy
0< exp('y) < []' T+b ]0 0<y<y
i=1 i
or exp(y) > - [] biy ]
1T
j=1 1¥byy
n b.y b.y
i i 2
iﬁ1[1+ by © ey e
n b

Vv
~3
—
+
—
+
T —e
—te &
<
——J
O
N
<
A
T
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By Theorem 5.3.1, this means

by

[+ 5 Y], O<y<m

—y
[ e n.}
—

exp(y) >

n
H1[1+b (y+v)]
- 12 , (5.3.6)
II (1+b y)
i=1
which gives
n
exp(y) 1 (1+b,y)
i=1
= a exp(y)exp(y)
n
= a exp(y+y) > T [T+bi(y+y)], 0 <y < =,
‘l:
proving
n
a exp(x) > 0 (1+bix), X > .
i=1
Hence, in both cases, y is the only positive root. (Q.E.D.
Lemma 5.3.2
If in (5.3.2), a > 1, then h(x) has at most two positive zeroes.
froof

n .

Case A ) b, = 1.
sy 1

i=1

By Lemma 4.2.1,

(1+b, X), x > 0.
1

exp(x) >
i

Il.‘:l:
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Therefore,

==

a exp(x) >

(1+b.x)
;

1
hence, h(x) >0, x >0,

and h(x) has no positive roots.

n
Case B 7§

bi > 1.
;

1
By contradiction, let h(x) have at least three positive roots, the first

two of which being Y i=1,2, and
Yo > Yy > 0.

Since a > 0, h(0)> 0 and hence
h(x) > 0, 0< x < K
h(x) < 0, Y1 < X<y,

Therefore,

==

a exp(Yz’Y) < .
i

][1+b1(Y2-y)], 0 < y< (yy-vq). (5.3.7)

By exactly the same argument as in proving case B of Lemma 5.3.1, it

can be shown
h(x) >0, x > Yo
Hence h(x) has at most two roots. Q.E.D.

Let the best approximation to exp(-x) in Rg be
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Obviously, a # 0 otherwise r*g(x) = 0 and we know this is not the best

approximation. By Corollaries 5.3.1, 5.3.2 and Theorem 5.2.1, we know

the error curve

a
o - exp(-x)
I (1+b1x)

i=]

alternates exactly twice. Hence, r*g(x) will be found inside the subset

88 of Rg, and can be denoted in the form
*N a*
ria(x) = —= , b* > 0.

*n

To establish the sufficiency condition and uniaqueness of s (x), we need

the next lemma.

Lemma 5.3.3

The function

a a
] - 2 . b b > O (5.3.8)

(14b,5)0 (1+box) ~ 172
1 2

has at most one non-negative zero.

Proof Solving (5.3.8) for x, we have, assuming a, #0,

T1+b, x a
Lo (L, (5.3.9)

1+b2x a,

If n is odd, (5.3.9) has at most one real root,
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a
[Hna;
2 .

x I e N
a
[by 0 (5"

provided the denominatcr does not vanish.

a
If n is even, but 51-< 0, then (5.3.9) has no real root.
2
4
If n is even and — > 0. Let
2
4 n
(7)) = (za)", o>0
a
2
(5.3.9) implies,
« = 1-(+a)
_ 1-a or ~-(1+a)
bza—b] b2u+b]
: -(1+a)
Obviously, b2a+b] < 0.

Hence, (5.3.9) has at most one non-negative root.

Lemma 5.3.4 (Sufficiency Lemma)

If the error curve

*
a

{i+b*x

n - exp(-x) = r*g(x)-exp(-x)

*N

(5.3.10)

(5.3.11)

Q.E.D.

(5.3.12)

alternates twice, then r O(x) is the best approximation to exp(-x) in

n ,n-1
80‘80 .
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Proof If there is a better approximation
n a
rq{x) = (5.3.13)
0 (T+bx)"

then, consider the function

Ax) = a _ a

(+6*x)"  (1+bx)"

*

= [ - exp(-x)] - [—"—~ exp(-x)] (5.3.14)

(1+b*x)" (1+bx)

At each extremal point of (5.3.12), the sign of (5.3.14) will be the sign
of (5.3.12). Since (5.3.12) alternates twice, it means (5.3.14) will

have at least two positive roots, contradicting Lemma 5.3.3. Q.E.D.

Lemma 5.3.5 (Uniqueness)

The best approximation in Bn - 88'] is unique.

Proof Let (5.3.12) and (5.3.13) both be best approximations. Consi-
der again (5.3.14) the function A(x). If £; (i = 1,2,3) are the three

extremal points of (5.3.12), we have

Case A Alg;) # 0, 1 =1,2,3.

As in Lemma 5.3.4, this means A(x) has at least two positive
zeroes, contradicting Lemma 5.3.3.
Case B A(gi) = 0 for more than one point .

This is impossible because A(x) cannot have more than one non-

negative zero.
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Case C A(gi) = 0 at one point.
If A(gi) =0at i =1 or 3, there will be one more point 6,

£ <0 < &g such that A(6) = 0.
Let A(éi) =0 at i =2. It can be easily shown that EZ cannot

be a double root. Hence, there will be a point £ <0 < 53 such that

A(B) =0, 0 # £o In both cases, we get a contradiction to

Lemma 5.3.3. Q.E.D.
Because of Theorem 5.2.1, Corollaries 5.3.1 and 5.3.2,

the best approximation of exp(-x) in 88—38_] is in fact that in Rg .

This allows us to conclude this section by

Theorem 5.3.3

Let RB be the set of all rational polynomials of the form
k, . Polx) )
ro(x) ol , bj >0, k <n,
1 (1+bjx)

where po(x) is a polynomial of degree 0, then
(a) there exists a best approximation to exp(-x) in RS;
(b) the best épproximation is completely characterized by
(i) k=n,
(i1) by =b, = ... = b,
(iii1) the error curve rg(x)—exp(-x) alternates exactly twice;

(c) the best approximation is unique.
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n

5.4 "Sufficiency" in Rm

It turns out that the case is much more complicated when we
try to extend the results of the last section for any m > 0.

The weighted approximation problem

Py, (x)

1 (
‘1+b]x

(1+b1x)exp(-x)) (5.4.1)
2

II.::13

i

=1

(1+b1x)
=2

i
has been proved always non-degenerate for m = 0. That is, the error
curve will alternate exactly m+2 times. However, for general m > 0,
though in practice it is always found that the approximation is also
non-degenerate, an analytic proof will be very difficult. Hence, we
do not have, for m > 0, an analytic result similar to Theorem 5.3.3, al-

though all computational tests do show that the best approximations are

. n
in R .
-m

In fact, it can be shown that the sufficiency condition in
Theorem 5.3.3 does not hold for m > 0.

By Theorem 2.2.1, we know, for any fixed b > 0, there is a

polynomial pﬁ(x) of degree at most m, such that

1Y o0
- exp(~x
(1+bx)" P
= inf HM - exp(_x)H. (5.42)
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Define
Py (x)
g n(b,x) = - exp(-x), x =20, b > 0, (5.4.3)
Ms (1+bx)
and
.Y = oy ()] (5.4.4)

Fig.5.4.1 is the graph of ¢3’5(b). Graphs of ¢m’n(b) for all
other valid values of m and n are typically of the same shape.
Theorem 2.2.1 guarantees that, for any b > 0, gm’n(b,x) alternates at
Teast m+1 times for a nondegenerate p;(x). It is found that at those
points where ¢m,n(b) attains its local minimum, gm,n(b,x) alternates one
time more, i.e. m+2 times; and only m+1 times for other values of b.
Hence, unlike Theorem 5.3.3, a value of b at which gm,n(b,x) alternates
m+2 times cannot be -a sufficient condition, that ¢m,n(b) is the global

minimum. Instead,‘we would formulate

Conjecture 5.4.1

Let B;(b,e) c B; be defined as

n P, (x)
Bm(b,e) = {———-——h:|b—b'| <e}l,b>e>0.
(1+b'x)
If the error curve
*
p.(x)
——— - exp(-x)
(1+4b%x)

alternates at Teast m+2 times, then
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py(x)

(1+b*xf

is the best approximation to exp(-x) with reference to B;(b*,E) for
certain ¢ > 0.
Conjecture 5.4.1 means that an (m+2)-alternation can only be a

sufficiency condition that

p (x)

(1+b*x )"
is a best approximation locally in a certain neighbourhood of b*. To
determine the global minimum for all b > 0, it would be necessary to
compare the different Tocal minima, just as in the case of finding the global
minimum of a polynomial. If ¢m n(b) attains its global minimum at two

different points b] and b2, i.e.

0 < gy olby) = g (b)) <o (B), b >0

then the best approximation to exp(-x) with reference to B; is not unique.
Fortunately, all test cases performed so far, for m = 0,7,...,4 n =mm+l,...,m+7
show that the global minimum, and hence the best approximation is unique
in each case.

The graphs of some ¢m,n(x) have been p]otted out numerically,

and the following table gives the number of local minima found for each

{ (X)

i
m,n
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]
n > 0 1 2 3 4
0 - -
1 [ 1 -
2 1 2 2 -
3 1 2 3 3 -
4 1 2 3 3 4
5 1 2 3 4 4
6 2 3 4 4
7 2 3 4 5
8 3 4 5
9 4 5
10 5

TABLE 5.4.1 Number of minima of ¢_ n(x)
Table 5.4.1 seems to suggest that the number of local minima
of ¢m,m is m and that of ¢m,n is at most m+1.
An interesting finding in plotting out O n(x) as Fig.5.4.1

is that, in all cases, the global minimum of ¢ n(b) is either one of the two -

m,
local minima that are on the two sides of b = %u: This is consistent with the
fact that 1im(1+ )™ = ¢7* and can be a useful guideline in the numerical

n->o«

~ computation of the global minimax approximation.
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5.5 Order-constrained Approximations

In Section 3.3, order-constrained minimax approximation proposed
by Lawson is mentioned, and its advantages when applied to the solution
of stiff partial differential equations arebdiscussed. It can be shown
that many of the results obtained so far in this chapter can be extended
readily to the case of order-constrained approximation.

Similar to Definition 2.2.7 is

Definition 5.5.1

Let f(x) be continuous on Iab’ and f(x) « Ck"] at x = a,

then we define

n N
Rk,m(f) ‘ Rm
n ] n
Rk,m(f) —<[rk’m(x) € Rm
di j d]
—ry (x) = —= f(x) ,
dx’ ksm 'x=a dx’ 'x=a
i=0,...,k=T}, 1 < k = mt+l. (5.5.1)

Theorem 5.5.1 (Existence theorem)

Among the functions rﬂ’m(x), n=j> deg(pm(x)), in RE,m’

there is at least one function for which
J —exp (-
Hrie mO)-exp(-x) ] (5.5.2)

attains its minimum.
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Proof The proof is nearly identical with that of Theorem 5.1.1.
It can be shown there exists a convergent subsequence in RE,m

whose 1limit function attains the minimum of (5.5.2). Using the same

argument, the limit function will be in R;. It will also be in RE,m because,

for each member of the subsequence, its coefficients are such that they make

the coefficients of the first k powers of x in the expression

i

)
0" i

aix1
0

H I~

[ =]

(

i

I o~3 g
Ix

(1+b1x) -
1 i

vanish. Obviously, the 1imit of this sequence of coefficients has such a

property too. Hence, the Timit function is in RE m Q.E.D.

Theorem 5.5.2 (Necessary conditions)

Let the best approximation to exp(-x) in RE o be as in (5.2.22),

z (1+b.x)

and let its error curve (5.2.23) alternate j times on [0,»), then

(1) j o= m2-(utk);
(i) v = 0 and
by = b, = ... = b if j o= me2-(utk).
Proof The proof is again identical with that of Theorem 5.2.1 except that

the function ®(x) in Lemma 5.2.1 is replaced by
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o(x) = K (x-8.). 0.E.D.

It should be noticed that rational functions in R?1 discussed
in Chapter 4 are in fact order 1 approximations to exp(-x). Hence, for
n
R1,0, we have

Theorem 5.5.3

The best approximation in R? 0 is unique and has the form

b

1
(1+6x)"

completely characterised by the fact that the error curve

(1+bx)"

- exp(-x)

alternates exactly once.

Proof Theorem 4.2.1. Q.E.D.
The above theorem implies that we can also apply the results

of section 4.3 to provide an error estimate and analysis to the order-

constrained minimax approximation in R? 0 In particular, the minimax

L)

error will have bounds as in Theorem 4.3.4.
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CHAPTER 6

NUMERICAL IMPLEMENTATION

6.1 Some Analytic Derivations

In this chapter, we shall describe an algorithm that implements
some of the results of Chapters 4 and 5. The algorithm will try to

compute a rational polynomial of the form

pk,m(X)

. k20, n=m 20, n >0, (6.1.1)
(1+bx)

where Py m(x) is a polynomial of degree m,

di pk,m<x) di

. _n = —={exp(-x)) (6.1.2)
dx’ (l+bx)n x=0 dx’ 'x=0
i=0,71, Jk-1, 1 < k < mtl
and the error curve
p, (x)
_Bam__ﬁu_ exp(-x) (6.1.3)
(1+bx)

alternates m+2-k times. If k = 0, it means we do not have the conditions in
(6.1.2), and so the approximation will not have any order at the origin.

Let (6.1.1) be written in the form

(a0+a]x+...+amxm)/(1+bx)n. (6.1.4)

If k = 1, in order to satisfy (6.1.2), it is sufficient that a;,
i=0,...,k-1 agree with the coefficient of the term having the correspond-

ing power in the series expansion of
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(1+bx)" - exp(-x),

a; = f Myl G e (6.1.5)

i =0j ——(1—_\]—)—" N srees . i
Because of the alternating property of (6.1.3), there is a set

of m+3-k points {Xi}’ at which (6.1.3) achieves its maximum value |A|, i.e.
P (X5) :
—HL—l-—ﬁ‘- exp(—xi) = (-1)1+]A, i=1,...,m3-k. (6.1.6)
(1+bx1)

(6.1.6) can be rearranged to

(x;) .
P T - (1+bx. )exp(-x.) = (—1)1+]x(]+bx.)
(1+bx,)"" ! ! !
m X‘j 4]
or ] a, ——— -b(x; exp(-x;))-A(-1)"" (1+bx;) = exp(-x;)

a.
jeo J (1+bxi)n']
i=1,....m3-k. (6.1.7)

(6.1.7) is a system of equations Tinear in a,, i = 0,...,m
but not in b. Hence, we need two other auxiliary formulae for the

computation of b.

At any extremal point X of (6.1.6), if X is in (0,»), we know

(x) .
d Pt exp(-x)]._. = 0. (6.1.8)

dx (]+bx)n X'Xi

From (6.1.6) and (6.1.8) we can solve for b:
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1 n
T - X 6.1.9
b p&(x;)) : X3 ( )
P17 1 (21) ™ exp (x, )
dp_(x)
1 _ m
where pm(xi) = ——ai——-ixzx

Also, if b', b"are very close to b, we have, at x = Xss

p (x;) T+b"x. .
m' i i . i+
- (=r—)exp(-x;) = (-1)" "' (6.1.10)
(b'x )" T ‘
Assuming we have strict equality in (6.1.10) and  using (6.1.6),
we can again solve for b from
1+b"x . .
i i+l 1/n
% (pr e (-xg )+ (-1) 1)
) = . 6.1.
1+b! X exp(—xi)+(-])1+1x
When x, is Targe, (6.1.11) can be approximated by
w 1/n
= ] b
b=5b (BTQ
v 1/n
- b1+ 2 b by
. , (bn_bl)
= b'[1+ — 1. | (6.1.12)

We now propose
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. 4 4 .
a(()3+])+a](J ])x+...+aé3 ])xm (1+bé3+])x)

- exp(-x). (6.2.5)
(1+br(10)x)n (1+b£0)x)
When convergence is near, say
p{¥1)_(0) e
: < b50e, 6.2.6
Y“}gﬁﬂ““l

the coefficient term of exp(-x) in (6.2.5) can be replaced by 1.
Using the latest values obtained in step 1

23 4(0) (541 (541)

Compute a new b* by one of the methods below:

Using the two vectors (bh-]’bh—l ) and

(béo),béj+])), extrapolate linearly (b*,b*).
(Only at the start of the algorithm, or when 2.1 gives a b* < 0).

With the help of (6.1.12), compute

(Only if both 2.1 and 2.2 give a negative b*.) Compute b*
(3+1)

; , preferably

according to (6.1.9) at an extremal points x

the middle one.

If all three methods give a negative b*, the algorithm fails.
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Step 3 If the number of iterations exceeds a given limit, or
|b£o)-b£3+])| < ¢ (a stopping criterion)
terminate the algorithm; otherwise, set:

nents x{O B s, ks

(
5«05 5% b" co back to Step 1.

In Appendix I, a listing of an ALGOL program implementing the
above algorithm and tested on the Honeywell 6050 of the Mathematics
Faculty, University of Waterloo can be found.

It should be noted that we can use, as an alternative to Al-
gorithm 6.2, the more general algorithm studied by Barrodale, et.al. in
[55] for computing best 1 _ approximations by functions nonlinear in one
. parameter. The idea of the algorithm is similar to that used in the
plotting of Fig.5.4.1. Since an optimization technique 1ike the Fibonacci
method is used there to obtain the minima, their method guarantees

convergence, although it will require more iterations than Algorithm 6.2.

6.3 Numerical Results: Unconstrained Case

When k = 0, the algorithm converges in nearly all cases to produce
that rational function of form (6.1.1) whose error curve alternates m+2
times and whose value of b is that Tocal minimum of ¢m,n(b) (5.4.4)
nearest to the initia]_guess of b. Divergence occurs usually only when
the initial guess b is too large or the resulting approximation is near-
~degenerate, i.e. some of the extremal points cluster very close together.
The latter case can be remedied by a better initial guess of the critical

points.
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By using different starting values of b, we can compute all the
local minima or at least the few smallest of ¢m,n(b)’ from which we can
choose the best apbroximation in B;. As mentioned in section 5.4,
in all cases tested, the globally best approximation is at either b1 or
b2’ wherev

by < < by
and these are two local minima nearest to n'].

Let the globally best approximation in B; be

P o= Pn() : (6.3.1)

M (14bx)"

We know that if the best approximation in R; does not degenerate, then it

will be exactly (6.3.1). Searches have been done throughout some Rg
and they all confirmed that the best approximations in those Rg do have

the form (6.3.1). Let

em,n.é ||[; - exp(-x)|]- (6.3.2)

In Table 6.3.1, the values of e0 n® b0 n and the theoretical

error bounds computed according to Lemma 4.3.4 are listed. In all cases,
e, n are within ﬁhe error bound. As n = «, the column (n-e0n) tends
to a constant, showing that the errdr is inversely proportional to n,
as predicted in Theorem 4.3.4. |

Table 6.3.2 tabulates the value of €n.n for various m,n. Fig.6.3.1
plots -log emn égainst log n for various fixed m. It is obvjous immediately
that the function f1og €mn is nearly linear in log n for each m. That is,

we can describe en and n by
L]

n
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TABLE 6.3.1
n eon bon error bound N+,
1 0.09357  2.2397 0.2036 0.094
2 0.05037 0.7485 0.1161 0.101
3 0.03442 0.4363 0.0812 0.102
4 0.02614 0.3060 0.0625 0.104
5 0.02107 0.2351 0.0508 0.105
6 0.01764 0.1907 0.0427 0.106
7 0.01517 0.1604 0.0369 0.106
8 0.01331 0.1383 0.0325 0.106
9 0.01186 0.1216 0.0290 0.106
10 0.01069 0.1084 0.0262 0.107
20 0.00538  0.0521 0.0133 0.108
80 0.00135 0.0126 0.0034 0.108
320 0.00034 0.0031 0.0008 0.108
—1ogvemn = ¢ logn+ d. (6.3.3)
which means
€on ~ ‘gﬁ ’ (6.3.4)

n

where km and c, are constants for each m. As m increases, the gradient
of (6.3.3) becomes steeper and hence Con increases with m. So, for

large m, the
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€mnn decreases faster with n. Table 6.3.3 1lists out some values of
Cm and km‘
Another useful observation is that as m » =,

e % e .
m-1,m ° “m,m

Furthermore, with m fixed, the decrease of €nn with reference to n is

fastest for the first few values of n. Hence, given due consideration to

computational complexity and degree of approximation, the most recommended

m+2

m , i.e. rational function

approximation to exp(-x) would be that in R
of the form
P, (x)

(1+bx)™2

Some of the best approximations to exp(-x) in B; are listed in

Appendix II.

6.4 Numerical Results: Constrained Case

The case for exponential approximation of the form

pk m(x)

_____.?____.__..’kz'l’

(1+bx)"

with order k at the origin is very similar to the case with no order
constraint.
As in section 5.4, for any m,n,k, given a fixed b, let

pf;,m(X)

( T , ml =2k 21
T+bx



n. eO,n e1,n e2,n e3,n e4,n e5,n e6,n

0 | 0.5000

1 10.0936 0.0668

2 | 0.0504 0.0227 0.0195

3 10.0344 0.0129 0.0080 0.0073

4 | 0.0261 0.0086 0.0046 0.0033 0.00309

5 | 0.0211 0.0063 0.0030 0.0017 0.00116 0.00107

6 | 0.0176 0.0049 0.0021 0.0010 0.00057 0.00043 0.000401
7 | 0.0152 0.0039 0.0016 0.0006 0.00032 0.00021 0.000169
2Mi9.4'-2 2.3'-2 4.6'-3 4.2'-4 2.3'-5 5.1'-7  7.7'-9

TABLE 6.3.2 Minimax error en

m Cin km

0 1.0 1.1

1 1.4 0.06
2 1.9 0.07
3 2.9 0.17
4 3.5 0.27
5 4.5 1.42
6 5.1 3.40

n

TABLE 6.3.3 Cop? km in (6.3.4)
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be an order-k approximation to exp(-x) which attains the minimum of

pk,m(X)

R - exp(-x)]| (6.4.1)

for all pk m(x) which makes

Py m(X)/ (1+0x)"
an order-k approximation to exp(-x). Define

(b Plent™) (-x) (6.4.2)
g WX) = - exp(-X 4.
k,m,n (1+bx )"

and
¢k,m,n(b) = ||gk’m’n(b,x)||. | (6.4.3)
It should be noted thét, with reference to (5.4.3) and (5.4.4),
9o m,n(P>X) = g (box),

and ¢o,m,n(b) = ¢m,n(b)

Fig.6.4.1 is the graph of ¢k 3 5(b) for k = 1,2,3,4. A1l of
them Took 1like ¢3 5(b) in Fig.5.4.1. Again, it is found that at each

local minimum of ¢ (b), the error curve 9 m n(b,x) alternates

,m,n
m+2-k times while at other points, only m+i-k times.

From Fig.6.4.1, it is obvious that there is a correspondence
between the minima of each ¢k,m,n(b)' A1l ¢k,m,n’ k = 0,1,2,...,mt]

“seem to have the same number of local minima. However, for high order-
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constrained cases, the globally best approximation may not be at

1

that value of b nearest to n~'. Furthermore, when k is large, the slope

of ¢k,m,n(b) varies in  a very drastic manner. Hence, when Algorithm
6.2 is applied to compute high order-constrained approximation, convergence
is much more difficult unless a good starting initial guess of b is used.

Let us define, as in (6.3.2),
ek,m’n = Hgk,m’n(b)H, b>20 (6.44)

In Table 6.4,1 are some values of ek n

sl

n’ providing us an idea how

order-constrained approximations compare with the unconstrained ones

order k{ m=3,n=5 m=4,n=6, m=5,n=7

0 1.70'-3  5.69'-4 2.13"'-4
1 1.80'-3 6.03'-4 2.26'-4
2 2.38'-3 8.00'-4 2.99'-4
3 4,26'-3  1.39'-3 4.69'-4
4 1.20'-2 2.85'-3 8.25'-4

e
TABLE 6.4.1 K,m.n

Some order-constrained approximations computed by Algorithm

6.2 are Tisted in Appendix II.
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CHAPTER 7

APPLICATION IN STIFF SYSTEMS

In this chapter, we shall try to compare a Bg—approximation
having the form

Py, (X)
(1+bx)"

with other conventional exponential approximations whenthey are applied
to the solution of stiff differential equations.

Consider the differential system
y' = -Ay(x),
y(0) = &O, x > 0. (7.0.1)
We assume that A has widely separated positive real eigenvalues.
We know the exact analytic solution of (7.0.1) is
y(x) = exp(-xA)-y. (7.0.2)

If x is discretised by a step size h, such that,

Xg = 0,

X = Xk +h, k=1,2,..., (7.0.3)
we have,

y(xk) = exp(—hA)-&(xk_]). (7.0.4)

As discussed in Chapter 3, many numerical methods designed for
the solution of stiff systems are based on the idea of replacing the

matrix exponential in (7.0.4) by a rational approximation, say,
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o (x) = [a ()17 Ip ()1, (7.0.5)

m,n n m

where pm(x) and qn(x) are polynomials with real coefficients of degree

m and n respectively. Hence, the exponential function in (7.0.4)

will be approximated by
[q, (h)17"+[p, (hA)]. (7.0-6)

In this manner, the (m,n)-th approximation &k of &(xk) is defined, in

analogy with (7.0.4), for all x = 0 as

i = [0, (017 [p (M)]-F 4 k=150,

yo = y(0). (7.0.7)

<
~
H

<
o
!

Cavendish, et al. [9] proposed to solve (7.0.7) as follows:
The fundamental theorem of algebra permits factorization of
qn(x) and pm(x) into products of linear and quadratic polynomials with

real coefficients, hence (7.0.7) can be represented in the alternate

form

3
ke

q
[TV ()15 = [T W (A)I-5, . (7.0.8)

i=1 i=1

where Vi and wi are matrix polynomials of degree one or two. If we
define the right-hand side of (7.0.8) to be XO’ the solution ik can be

obtained by solving successively the nqsets of linear equations for ii:

[V;(hA)IX; = X g5 1= 152,0000n, (7.0.9)

it

and the final in
q

Yo
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However, to obtain the answer in this manner can be numerically
.unstable because, if 9n_] is contaminated by an error e in the direction
of the eigenvector that corresponds to the largest eigenvalue of A,
the error invo]yed in computing XO would be many times that of e,
especially when we try to use a large step-size h. With an incorrect
XO’ we would not expect the final answer to be accurate after solving
the nq systems of linear equations.

An alternate method is to express the rational approximation as
a partial fraction, such that (7.0.8) will look Tlike

1

- q - -
G = LI T (015 (7.0.10)

i
where Ui(hA) are matrix polynomials ofdegree one or two and Ti(hA) are
matrix polynomials ofat least one degree less than Ui(hA). Each term of
the sum in (7.0.10) can be computed separately and these, together, give
the final answer yn. Furthermore, (7.0.10) will be computationally more
economical than (7.0.8).

We know when confined to the real axis, B;-approximation is
A-acceptable when m = n and L-acceptable when m < n. So, for a matrix
with real eigenvalues, the numerical method will be A-stable. We now
try to compare a B;—approximation with an ordinary rational approximation
with reference to (7.0.10).

Let the rg(x) and r n(x) exponential approximation have the
- H

following partial fraction representations respectively:
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r(x) = E S (7.0.11)
B i=1 (1+bx)’

n

q T,(x)
= L Ty (7.0.12)

7.1  Operation Counts

In operation counts, we shall consider only muitiplications and
divisions for simplicity. We shall assume the order of the matrix A
is d and, for the sake of simplicity, take only the term having the
highest power of d in all counting.

In general, for an ordinary rational approximation (Chebyshev,
Padé or order—constfained), all the Ui(x) in (7.0.12) are quadratic,
except one of them when n is odd. Hence, we shall get more or less
the same result in the counting if we assume each term of (7.0.12) is
of the form

Ti(x) i t1’0+ti,1x

Ui(x) 1+u1,]x+u1’2x2 .

(7.1.1)

When applied to (7.0.10), it means we have to solve nq = n/2 linear

systems of the form

- 2,2y-1.
i, ” (Ttug jhivug ShOAS) 70 (t; ooty

i,1M) Yy

i,0
i=1,...,n/2, (7.1.2)

which is equivalent to solving for yk_.from
i
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(I+bhA)yk’] = Yi1»

(1+4bhA)Y, < = 5, s 4> 1 = 2,...0m,

Yy = .Z]ai Vi i (7.1.5)
i= ’

which is just n linear systems withdifferent right-hand side. It should
be noted that the left-hand side of (7.1.5) is a tri-diagonal matrix

compared with a five-diagonal matrix in (7.1.3).

In starting, it requires 2d operations to compute

(I + bhA) (7.1.6)

and 2d operations to perform a LDLT decomposition on (7.1.6). Hence,
the starting cost is 4d operations.

At each step k, for the n linear systems of (7.1.5), we need
3nd operations to solve for 9k’1? i=1,...,n and nd operations to compute
the final &k, a total cost of 4nd operations.

Hence, both methods require about the same operation cost
per step. However, using the Ba-approximation, the starting cost to
compute Az, the LDLT decomposition etc. will be much reduced, by a
factor of 2/3(n+1). Results for a band-matrix A will be similar.

If (7.0.3) is non-constant, i.e., A is a function of time,
then LDLT will have to be performed at every time-step. Hence, using

the B;—approximation will give further savings in operation cost.

7.2 Storage Requirement

When B;—approximation is used, the matrix storage requirements

are those for the matrix A, and the oL’ decomposition of (1+bhA).

However, for methods using ordinary approximations, we need the extra
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storage for Az, (t1’0+ti’]hA), and the LDL" decomposition of
(1+u1’]hA+ui’2h2A2), i =1,2,...,0/24 (cf. (7.1.3)). This means R'-
approximation allows a saving of about n matrix-core-requirements.

Such a saving can be practically very significant when A is
large and dense. If it happens that it is not possible to store all
the n/2 LDLT decompositions,the decomposition will have to be performed
at every step. In that case, Bg-approximation will be far superior because
it needs only one LDL" decomposition while ordinary approximation will
require n/Z every step. Storing the decomposition and A2 is unnecessary for

non-constant system when A changes at every time-step.

7.3 Numerical Stability

Let the spectral norm of a matrix M be defined as
[ 1M]] = max[a,(MM")1%, (7.3.1)
1

where the notation Ai(MMT) denotes an eigenvalue of MMT. We shall also

need to use the spectral radius, which is defined as

o(M) = m?x [Ai(M)I. (7.3.2)
Thus M| = [o(MMT)1%, (7.3.3)
and when M is symmetric,

[ [M]] = o(M). ' (7.3.4)

We shall assume that all matrices involved are symmetric for the discussion

of the rest of this section.
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We now proceed to rperform an error analysis on the solving

of the two different Tinear systems (7.1.3) and (7.1.5).

Let us denote the exact solution, the computed solution and
their difference in (7.1.3) by }k , 9& and Ek respectively. This
i i i

means

Yo T Yt e (7.3.5)

From (7.0.10), we know

} n/e_
Yk+1 © 1_;1)"(1,
and hence,
_ _ n§2 _
yii =Yt Ly Sk (7.3.6)

From classical error analysis of matrix equations, the error

in the solution of a linear system can be roughly bounded by

116%]] < O(|[Al]-]|A7T]]) sAl| . (7.3.7)

-

If the matrix norm used is the spectral norm and A is symmetric, (7.3.7)

can be written alternatively as

[[6%] | < O (p(A)ep(A )+ [|X][]IcA] ],
or || 8%]| < 0(}ETK7%@959 | |X]]-|]6A]]. (7.3.8)
A min
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For each 1linear system in (7.1.3), if A has widely separated,

positive real eigenvalues,

2,2

_ 2,2
|A(I+ui,]hA+u1’2h A )Imax = 0(]A(h"A )Imax)
_ 2
= 0 (]A(hA) [ o)) s
and [A(I+u; ;hA+u hZAz)I = 0 (|M(D)])
i,l i,2 min
= 0(1).

Using (7.3.5), (7.3.6) and (7.3.8), we have

|y Yol n§2 e, |l
Yo=Y = €
k+1 Vk+1 i4 ks

‘ 2,2 njz .
s (maxl|§(1+ui ]hA+u1 2h ASYD)-( ) ||yk [1)+0(] A (hA) |
i ; ; =1 K

(7.3.9)

) (7.3.10)

Turning our attention to (7.1.5), we first notice that, since

b>0, h>0and all Ai(A) have positive real parts,

|A(I+bhA) | 0 (|A(hA)]

max max)’
and

]

1 < |A(I+bhA)| 0(1).

min

(7.3.11)

(7.3.12)

This means, all ik ;» when computed according to (7.1.5), will be bounded.

In addition,

Yol ~ Y60 T &1

Vi © (I+bhA)—](5k,1-1 te i)t
— ‘] - -1
= yk,i:] ¥ Ek,19 i=2, oM

]
€ .
k,i

Kai

(7.3.13)
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where

_ -1, - =
i " (I+bhA) €k.i-1 + ek,
i
L [(1+bhA)" 17 g 1= 2,00,
s _ sJ
j=1
E&,] = Ek,]’ (7.3.14)
and Char

;i 1s the computational error incurred when each lTinear system in
-]

(7.1.5) is solved. Because of (7.3.12), we know, for all i,

2 (TbhA) | < 1,

and hence

;
e 511 = Z 1&g 511 (7.3.15)

From (7.3.8), (7.3.11) and (7.3.12), (7.3.15) gives

llgk’ill <

;
'(jz]lka,ill)-o(lx(hA)lmax). (7.3.16)
Putting back to (7.3.13), and using (7.1.15), we get
o n ) i
llyé - ykll = izllail lly&’i - yk31|

< 0()a(hA)] )+ o

Z 13, 511 (7.3.7)
i

Comparing (7.3.10) and (7.3.17), we notice that the error in solving

(7.1.3) differs from that in solving (7.1.5) by a factor of about

(n/2) O(|A(hA)]2 )

(n2/2) O(|A(hA) |

) ) O(|A(hA)] o) (7.3.18)
maXx
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Em n converges much faster than & .m? and hence is a better approximation.
] H]
n

However, because of the particular form of the L
approximations, the denominator of an Eim- approximation can in fact
be computed in m multiplication steps. Therefore, if we measure
the efficiency of the approximations in term of work done, a useful

comparison is that between E and e . Table 7.4.1 shows that
m,m m,2m

the latter does:converge much faster than Em,m‘ This means it can be
a more efficient scalar approximation to the exponential function
than the Chebyshev approximation. Futhermore, it involves a smaller
number of coefficients and therefore reduces the size of necessary

computer storage.

Since the results of the last three sections can be applied
directly to the comparison between om” and 52- approximations in
3

the solving of stiff systems, we confine our attention here only to

m
the comparison between L. and r§ - approximations. Using the latter,

(7.1.5) becomes a set of 2" linear systems as compared to only m/2
linear systems in (7.1.2)-(7.1.3). This implies a tremendous amount
of work which can quite easily offset the saving gained during the
LDLT decomposition stage. Nevertheless, despite the big number of
lTinear factors, they are identical and there is still a saving of

storage area when constant system is being solved. Also, (7.3.18)

becomes

*

27"7'51-o(lx(hA)lrm_ﬂX)

which means the conditions of the two systems (7.1.3) and (7.1.5)
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may become about the same if m is large.

In conclusion, though rﬁm-approximations are better approximations
to the exponential function- than rm,m-approximations and
in general r;—approximations have their advantages over rm’n-approximations
when applied to the solutionof stiff systems, we have to be scrupulous
when we try to increase the power of the denominator aloneof the
E;-approximation. Given a fixed m, it will be an interesting problem to
find out, for what value of n we shall have the best choice of an
ﬁg-approximation for the solutionof stiff systemsbof differential

equations.



APPENDIX I

Implementation of Algorithm 6.2
| in ALGOL
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t23=phi(x)s +3=bl1p1]1}

it* itest *gr* 0 *then® t1:=f(t2) *else"

F13=f(t2)* (L. 04b[1p02)1%4t2) /(1. 0¢btry*+2)}

‘for® It=1 *step' 1 *until®* | *do*
t33=t3%t2+bl1pl1-j1?

tht={1.0+4bTry* +2) 3

ift In(t4) "is® expcon *then®

t2r=t3/7(14"m) ‘else® t2t1=0.0%

dels=(+2-t1)}

*end® del?

*procedure” surmisly
‘comment®' reads In jnitial guesses of critical points ?
‘hegin® *Iinteger® kisi?
*for® 13=1 *step* 1 *untit®* 1pm? *do* x[ilf:=0.0°?
*for® [t=1 °'step*® 1 *until®' npi *do°
Input1 {05, (" *)°yx[id)}
outo Ut OB, ™ ("7 " (*Initial guesses of critical points*)*/")*)
*for?® =1 *step® 1 *until® n+i *do°’

" page 3
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outputl(06y*(*zz.dddddddd®*)Y*yxl 1)}
‘end® surmisiy

*nrocedurae® surmis:

*comment® computes [nitial critical noints?

*beqgin® *extended real® xisblsxmlspisz} *integer® ksi}
x13=0.0%kt=n/25 blt={bb=-aa)/Z.07 xmit=({bb+aa)/2.0?
Pit=3.14153265}

*for® it=1 °*step® 1 *until® Iom2 *do”® x[il2=0.0:
*for®* it=1 *step® 1 *until* k *do’
*begin® xjit=xji+1.0:
z¢=cos(pi*(1.0-xXxi/n))*b1}
XTTHLI=Z¥FXmI Y XTn=1+17¢=xmi~-2?
*end* s
x{1l3t=aa! xIn+1)i=bb;}
Z3=1ki1} zt=z/ipm2}
*for® ji=1 *step® 1 *untit® npl *do’
xTili=x[il+(bb=-x[il)*z}$
Toutput0 06, U™ /7" 1("initial guesses of critical points*)*/*) ")}
‘for® i2=1 *step® 1 *untii® n+i *do®
outputli (06, *{(*zz.dddddddd*)*.x[i1)}
*end® surmis?

‘extended real® "procedure® evalb}
*comment® evalb tries to evaluate b as a function of one
of the extrema x[ily, my and the error at x[]1:?
*heqgin® *extended real® t1,1t2,1t3,1t4y154%%x5 *Integer® tnyl,):
tnt=npl/2}
txt=x[tn]l/ (1. 0=-xItn])}
tit=plIpil$ t2:=0.03%
forY JiI=1T "s¥enp ¥ 1 "until* 1T "do" *begin’
t1i=t1*tx+plipi-}1}
t21=t2*tx+al Ipi-}) 15 *end*}
t3t=axp(-tx)? t43=signumitnl*blinpll}
t2i=tZ2/t1% t42=1.0+%4/%33%
tSet=m/(+2+1.07t4) -t x?
evalbi=1.,0/7t5¢ a
‘end* evalb)

‘procedure* searchi(x)}
*comment® searches the extremal points of the error curve?
‘extended real® *array® x;
‘begin® ’ '
stage??! wul=sign{xih)) z1:=0.0}
*comment® search for new crijitical points?
‘it* n*i1a* 1 *then*
*healn® hl{11¢=0.015%¥(x(2)-x{11)?
h[2]Jt=-h[1] *enqa*
‘010%else” "begln® Yfor® j$=2 ‘*step* 1 *until®* n *do°*
hli)3=0.015%(x[i+1)-x{i~-11)}

page 4
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KI11t=h(21*¥0.57 hinpilt=-h{nl¥0.5}

nend-: ’

*for® i1=1 *step® 1 *until® npi *do* o

*hegin® y2t=xIil} hit=h[171; y3t=y2+hl}
z23=delly?2)*u’ z32=del (y3)*u?

*1f* z3 *ig* z2 *then®
*begin® hlt=-h1} 2¥=z3% z3¥=z2% z2%=71
ye=y 3} y3i=y2iy21=y *end®;

pace? vyiz=y3+hl}

*if* y<aa ‘then® yt=aa 'else® *jif*® y>bb *then® yi=bbh ‘else’

*begin® ziz=del (y)*u?:

*if* z*gr*z3 *then’
*begin® y2i=y37 y3It=yz2:=2z3323%=z}
*go to® pace;’
*end® *else® yiz~z3-723+2+223%
*if* y*eq®*0. *then® yizy3 "elsa’
y1=(y2+y3)*0.5 + hi*(z2-z3)/vy}

*end*}

xTilt=y$ errlili=delly): ul=-u;

*if* i*gr*t *then® *begin® *if* x{il1*1qa*x[i-11 *then®
*begin® larmi=-13 *go to* output ‘end*:
‘end"'s

zt=abs(err(il) 3

*i[f* z°g9q* 10.0 *then®

' *begln® Tarmi==17 *go to* outout "end®:
yit=abs(xIb)} zt=abs(z-y)/y}

*jf* 21°%1s" z "then' z1$=23

‘end"?

‘romment® search for one extra extremal point between the
endpoints of the [nterval and the present
critical points:?

*if* x{11%gr*® 3a *"then*

*beagin® hit=(x[11-3a)*0.062535 ut=-sign(xtb)?
z3:=0.0} y?!=aa}

*for® 18=1 *step® 1 *untii*® 16 *do*
*begin® zi=del(y)*u}
*[f* z'agr*'z3 *then®
*begin® z3t=z3} z2!=y ‘end*?
yi=zy+hi
‘end'i ziz=abs(xibls
*it* z3%gr*z *then'
*beqin®
*for® it=npl "step* -1 *until® 2 *do*
*hegin® errlilt=errli=-115 x[il¢= x[i-11 *end®;
x[111=22% err{1)2=23*uj *go to' c?
‘end'?

*enrd*?

*if* x[nplli®is® bb *then®

*begin® hit={bb-x[np11)*0.0625% 2z3:=0.0% y!=bb}
ut=-signl{errinoti)}

j nage 5



06727774 23223 tciau thesis
" Yfor® it=1 *step® I *untit® 15 *do*
‘*begin®
zi=del (y)*u;
*if* z*gr®* z3 *then’®
*begin® z31=z3 z2t=y ‘*end*;
yizy-hi
end'? zi=abs{xXIb})¥
*it* z3%°gr®* z *then*
'begln'
*for® jit=1 *step® 1 *until®* n *do*
*begin® errl{ilt=zerr[itl1])s x{ilt=x[i+1) *end"}
, xInpll!=z23 errlnpllt=2z3*%u?
c?2t xXIbt==X1b§ zt=abslz3-2V/2z}
*if* z1*1s® 7z *then® zit=
‘end*}
‘end*}
*end® search?

outputli (06, (*4/* (*degree of numerator
outputl (06,*(*/*(*degree of denominator
outputi (06, (*/7°(*injitial
outputi(d6,*{*/*(*Initial guess of b

aat=0.0% bb2t=0.995}
*ift* | *eq* m *then® bb1=0.999999;
itnot=137 Ikt=order-1; lpilt=i+i}

jpm23=1pl1+23 dnit=n} dnpli=dn+i.0}$
bol1dt=-999,93; bboldi=-99999.035 evaol
CexXpeonti=35,, 0¥ 1100V /my 0 T T T
farm$=03
eps?203=20.0%eps?
*for* j2=1 °step* 1
*for® jt=1 *step* 1

funtit®
*untijil®

Ipl
ipl

'do!
ldol

*for® it=1 °step® 1 *until® 1pm2 *do*

‘Slgnuml11t=1.09

‘for® it=1 *step® 1 *until® npl *do°

signumlji+1lt=-signumlil}
*if* scode®*eq®l *then® surmis ‘*else"

staael?
Yfor® 1t=1 "steo® 1 *until® npl *do*
lineqs matinv}
*for* [t=1 ‘step® 1 *untii®* t "do*
*beglin® plili=bll]}
qlitt=j*bl[i+113% "end*:

bdelizabs({thtry-bl1p21)/btry)
‘bbhdett=abs{(boTd-blIp2Y)/bold}s
btryolidi=btry?

page b

guess of max error

ip2t=1+2%
npit=n+1}

= *)*yzzd') ', 1)
*Yryzzd*)'ym) 2
*Y'yzdeBd®) "yxIb) 2
") *92de8d") tybtry) s

o H

nt=ipl-1k? Ikis=|k+1?
mpilit=m+1s mmis=m~-13
$==-99,0) evadel t=99.0}

alil: .
err{ )=

surmisi?

xvallilt=phi(x[11)?
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pllptlt=blipil}?
xIbt=bl[ipm21}

larm2=03}
Itesti=-1] searchi(x)}

‘comment® check if computed b converges!

*it* (10.0*bbdel *gr®* bdel ®*and®' bdel *gr* eps)
*or' (bbdel! *gr* (§.01)
‘then* *go to" output?

*comment * computes new b from old b?

evanewt! =(evaold*b[lp2)l-btry*bbold)/
{(evaold+blip2])-(btry+bbolid))

"ift* (evanew *1g* 0.0) *or*®' (evaold *{g* 0.0) *then®
evanewi=btry* (1.0+(b [ 1p2)l-btry)/(m*btry))

"If* evanew "1q*® 0.0 *then' evanew!=evalb?
evaoldi=btry: bboldt=bll1p?2]}
btryt=evanew?!
evadel t=abs{{evanew-evaold) /evanew) !}

*If* itno *gr* jitermax ®or®

btry *Is® 0.0 "then® larmi=-13

*comment® search error curve using only new b?
*If* bdel "Is”® eps20 ‘or® evadel 'Is® eps?0 *then’
*begin?®
*for® i1=1 °*step® 1 *until® npl *do® xtestl[ili=x[il?
itesti=1 searchi{xtest)}
*if* z1 "Is® eps 'then' *begin®
larme=1}
"for® i!=1 *step® 1 "until* npl *do"*
x[i1e¢=xtest(i)}
‘go to® output} ‘*end®$ *end®}

output?
xIbt=abs{err{1J)} *for* i2=?2 °*step* 1 *untii*® npl °*do®
‘begin® *if* xIb*lg*abs(errlil) *then*
xibt=abs(errlil) ‘end* !

‘if* (ltarm °*na* 0) ‘or*® (pcode *na® 1) *then® °*begin®

output2 (06, °(*//*(*max. error & input b =°')*,~d.Rd"+d,

In=4.15d°4+d4*) *yxibebtryold)!

outnuts (06, *(*/*(*deg. of num, denom, and order = °*)°*,
3(zzzd) " (", no. ot iterations = *)*y,zzzd%)°*,
lsmyordery itno)}

outputd (06, *(*/7* (" crit. ptse. err. at crit. pts.*)*,

b O coeff. of nume B K error *¥Cs7')Y*)3
“for® jt=1 “step* 1 *until® Ipi °*do*

page 7
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0Ufpu*3(06, '('3208d,5b‘d.8d'+d,5b‘du Rd*+4/°%) *yxl1i1,
errlilyolil)?

outnput3 (06, *(*32.8dy5b-d.8d " +d,22b-d.B8d*+dd/*) sy x{1p2)yerrlip?]l,
bl 1p21)3

output3(06,°(*32.8ds5b~d.B8d*+dy22b~d.8d"tdd/*)* s x[Ipm2),
errliom2),bilpm21)}

vangey .

stage3? *1f* larm "eq'0 *then®

*begin® sumi=0.0}

*for® l3=1 *step® 1"until®* npi *do*
sumt=sum+signumiil*err{il}

xIbt=sum/dnply Itnot=itno+l}
boldt=blip21}3
‘9o to* stagel)

‘end*?

itermaxt=itno?
*if*" larm *Is®* 0 *then'® *go to® alarm}
*end® chebyshev}
‘comment® for honeywell time-sharing system, add3
sysparam (05424 4,4) 7 sysparam {06424 +4) 3 ;
sysparami{7,+24.,4) 3 sysparam(07,6,85)

aat=0.0% bhe=1.0-0.0000014%
epst=1.0"-7% scodel=1! pcodes=1!

outputlB {06y Y /777" rational chebyshev approximation of expl(-x)*}",
*{* usinagt { p(x) of degree 1 ) / {(1+bXx)**m *)**)"*);
outoutlB (0hy*(*//7/7°(*approximation of expl(=x)*)"*)*):

output2 (06, (*/*{"Interval of approxe. = (*) *yzZ.Bdy"(*y*) ",
Z«Bdy*(*)*)**)*,aa,bb)}
outputli(d6,*{*/7*(*"tolerance = *)*,2.8dy//7")*5ens)}

start?t Input7(05,°*(*/3(zd)szd.2dey2(zd)yz3d*)",
tymyordersbtryysscodeypcodeyitermax)?
*it' btry*na*0.0 *then® *beglin®
chebyshev(fysphistymyorder,eps,psbtrysxibshelp,itermaxsscodeypcode)
outnutS{07,° ("/3(zd) yb=de2d*+dybb-d.bd"+d") *,
IymyordersXIb,b¥ry¥yy ) '
*for® dojt=1 °*step® 1 *until® I+1 *do*
Yutputl (07, ("bb~-d.6d*+d%) *ypldo) 1)
‘goto® 11¢
help? outputQ(06s°(*//7°(*%* help ***)*//")*);
112 "goto® start? ‘and*} !
g A . 2
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APPENDIX II

Minimax approximation of the form

m
(A0+A]x+...+Amx )

(1+BX)"

to the exponential function
EXP(-X)

over the interval

[0,)

with order k at X = 0.
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