ON THE EFFICIENCY OF ALGORITHMS
FOR POLYNOMIAL FACTORING

by
Robert T. Moenck
Research Report CS-74-12

Department of Applied Analysis and
Computer Science

University of Waterloo
Waterloo, Ontario, Canada
July, 1974

Keywords: Algebraic Manipulation, Polynomial Factoring,
Roots in Finite Fields, Analysis of Algorithms

This research was supported by NRC Grants A5549 & A8237.



ON THE EFFICIENCY OF ALGORITHMS FOR POLYNOMIAL FACTORING
by Robert T. Moenck*

*Department of Applied Analysis
and Computer Science
University of Waterloo
Waterloo, Ontario, Canada.

Keywords: Algebraic Manipulation, Polynomial Factoring,Roots
in Finite Fields, Analysis of Algorithms

*This research was supported by NRC Grants No. A-5549, A-8237,



ON THE EFFICIENCY OF ALGORITHMS FOR POLYNOMIAL FACTORING
by Robert T. Moenck*

ABSTRACT

Algorithms for factoring polynomials over finite fields are
discussed. A construction is shown that reduces the final step of
Berlekamp's algorithm to the problem of finding the roots of a polynomial
in a finite field Zp. It is shown that if the field is of the form

1 where & ~ L then the roots of a polynomial of degree N can

2

p= L°2'Q'+

be found in O(N2 Tog™ p) steps. As a consequence Berlekamp's method

2

can be performed in O(N3 log p + k 1092 p) steps. If N is very large

then it is shown that the factors of a polynomial can be found in

4

O(N2 log" N log p) steps. Some consequences and empirical evidence

is discussed.

*Department of Applied Analysis
and Computer Science,
University of Waterloo,

Waterlco, Ontario, Canada.

Keywords: Algebraic Manipulation, Polynomial Factoring, Roots in
Finite Fields, Analysis of Algorithms

*This research was supperted by NRC Grant No. A-5549.



1.1

I.) Introduction and Overview:

Polynomial factoring is an important operation in algebraic
manipulation. It is important not only in itself but also as a sub-
algorithm in other processes such as symbolic integration (cf Ris 68)
or simplification (cf Cav 69) or solving polynomial equations {cf Yun 73).
Naturally we wish to have a method which is quick and so we are led to

consider the efficiency of factoring algorithms.

Generally in computer algebra one is concerned with factoring
monic polynomials in one of more variables over the integers. Other
factdring problems can generally be reduced to this case. A method due
to Kronecker (cf Wae 49) is generally used to prove that such polynomials
can be factored uniquely up to the order of the factors. Kronecker's
method can be used as the basis of an algorithm for factoring polynomials
(Jor 69). However the algorithm is very inefficient and the time it
requires can be shown to grow exponentially in the degree of the polynomial

to be factored.

This had led to the development of homomorphism methods. These
methods reduce the problem to the univariate case with the polynomial
reduced modulo a prime p. The resulting polynomial is facfored over the
finite field Zp = GF(p). Any factors over Zp are used to determine factors

over Z. Currently the best method to do this is based on Hensel's lemma.

Musser (Mus 71) or Wang and Rothschild (Wan73) give a detailed exposition

of the considerations involved in performing this step in the factoring process.

Here we are mainly concerned with the probiem of finding a
factoring over Zp. Much of the work in this area has been done by

Berlekamp. He produced (Ber 68) the first complete factoring algorithm



1.2

which works in O(N3 p) steps, to factor a polynomial of degree N over Zp.
One of the handicaps of this method was the p term in the timing analysis.
This restricts the method to relatively small fields. Later Berlekamp
(Ber 70) refined his method so that the factoring problem reduces to

that of computing the roots of a polynomial in a finite field and showed

how the latter problem could be solved in time proportional to pﬂi/4

log p3/2.

In this paper we show (Sec. II-IV) a more straight-forward
reduction to the root finding problem and a method for finding the roots
of a polynomial of degree k in O(kz 1092 p)*.steps for special choices of p . These
imply that Berlekamp's method can be performed in O(N3 log P + k2 1092 p)
steps. It is further shown (in sec. V-VI) that a polynomial can be

4N Tog P) steps if N is very large. Finally (see VII)

factored in O(N2 log
we indicate methods for computing primitive roots of unity and irreducible
polynomials as are used in the new algorithms. In sec VIII we prasent

a few empirical results and draw some conclusions.

First let us note that we need only consider the problem
of factoring a monic polynomial with no repeated factors (square free).
This is because we can divide by the leading coefficient and we can find
repeated factors easily. Consider the case of a polynomial u(x) with

repeated factors fz(x). je.

u(x) = £1(x) f5(x)

n

differentiating: u'(x) f;(x)fg(x) + ”f](x)fg-](X)fé(x)

- ' ]
£ 0 (£ () Fy (x)+nf, (0, (x)).
This means that the GCD of a polynomial and its derivative will be the

product of the repeated factors. These can then be divided out.

fA]l logarithms in this paper are base 2.



2.1

II) An Overview of Berlekamp's Algorithm

Berlekamp's Algorithm for factoring polynomials over a finite field
is a major milestone in the study of the factoring problem. Since we are
going to look at methods of improving it, it is pertinent to briefly review

the basic method. The algorithm rests on three major observations:
a) For a square free monic polynomial u(x):
u(x) = I fi(x)

jts factors {fi} are pairwise relatively prime in the Euclidean Domain

Zp[x]. Thus they can be used in the:

Chinese Remainder Theorem 1: (Lip 71). Any polynomial: v(x) e Zp[x]
s.t. deg (v) < deg (Hfi) = deg (u)

can be uniquely represented by its residues si(x) with respect to the fi(x).
i.e.
2.1) v(x) = si(x) mod fi(x) vi.

This implies that for'a given v(x), if we could find the residues'{si(x)}

then we can compute the factors. This is done by taking GCD's.

fi(x) = GCD(v(x) - si(x), u(x))

b) The second observation provides a method finding the {Si}
and the corresponding v{(x). We see that it is worthwhile to choose

a V(x) such that s, Zp i.e. the residues are field elements, not

polynomials. Then we can apply:

Fermat's Theorem 2 {Alb 56): For all a e GF(aq), ad = a.

When applied to the relationship of the residues (2.1) we get:



2.2

(2.2) Vi y(x)p = s? mod fi(x)
=S, by Fermat
= v(x) mod fi(x)
Now: v(x)P = v(xP) in Zp[x] by the multinomial Theorem.

So we are looking for a polynomial v(x) such that:

v(xp) - v(x) = 0 mod fi(x) .

It is sufficient to find a v'(x) such that
(2.3) v'(xP) - v'(x) = 0 mod u(x)

since fi(x)[u(x) implies that:
v'(xP) - v'(x) = 0 mod fi(x) .

¢) The third observation is that if we build up a matrix Q such

that its row vectors qj are of the form

. N-1 .
xPd = 3 Qs 5 x' mod u(x)
j=0 Y
than finding a polynomial v(x) can be viewed in terms of matrix
operations as:

W-1=0

where vV is the vector of coefficients of v(x). In other words the

problem reduces to finding the null space of the system:

v[Q-11 =0
with scalars in Zp‘ In general one gets a set of null space vectors
'{V#jnc]uding the trivial one v.= (1,0,...,0). Berlekamp shows (Ber 68)

0 .
that the number of such vectors is equal to the number of factors of



2.3

u(x). To find the residues {Si} which correspond to.the factors,
Berlekamp suggested trying successive elements of the field until some

were found which produced non-trivial factors.

Note that the factors produced by a given v(x) may not be prime
(irreducible) even though they are relatively prime. However each v(x)
will produce a different factoring and by trying all the {v(x)} all the

factors may eventually be produced.

Timing of the Algorithm

We can analyse the number of steps required by the algorithm as
a.function of the cardinality of p and N the degree of u. First we note
that if p is large (say of the order of a computer word) it is necessary
to compute field inverses when they are required. The best methods to do
this computation use 0(log p) field operations (Col 69).

Also we note that multiplying or dividing a polynomial of degree
N by one of degree M can be done in O(NM) field operations using the
standard. methods. As a corollary we see that squaring a polynomial of
degree N-1 and computing its residue with respect to another polynomial of
degree N can be done in O(N2 + N log p) field operations. Thus building

2

up the Q matrix involves computing xP mod u(x) in O(N® log p) steps and

3 4+ N2 1og p). Computing

2

producing xpj mod u{x) for 2 < j < N-1 in O(N
the null space of the matrix Q-1 can be done in O(N3 + N° Tlog p) steps using
a standard triangularization algorithm. Collins (Col 68) has shown that the
GCD operation to compute the factors can be computed in O(N2 log p) steps.
If there are k factors, in the worst case each v(x) will yield only

one prime factor. To find this factor we might have to try every element

in the field. This means that the algorithm is bound by the last step which



2.4

requires O(N2 k p Tog p) operations. If p is large and k=0(N) then

the algorithm may require O(N3 p log p) steps. It is the factor p in
this expression which Timits the algorithm. It is the factor p in this
expression which limits the algorithm. It is because of it that the

algorithm is efficient only for smalil primes.



3.1

ITI. Improvements to Berlekamp's Algorithm

A method of improving Berlekamp's Algorithm is to aid the compu-
tation of the residues {Si} given a null-space vector of coefficients v.
A way to do this is to follow a recommendation of Knuth (Knu 69 pp. 396)

and Berlekamp and retain s as a parameter in the computation of:
3.1 ged (u(x), v(x) - s)
This will compute a polynomial in s and is an application of:

Resultant Theorem 3: (Usp 48) Given two polynomials A(x,s),B(x,s) their

GCD will be non-trivial iff their resultant
3.2 Res (A,B) =r(s) =0

The resultant of two polynomials is closely related to their
GCD in that it can be considered as the determinant of their Sylvester
Matrix. Collins (Col 71) has given an efficient homomorphism algorithm
for computing resultants. From his work we can~see that:
if deg (u) = N then deg (Res (u(x),v(x)-s)) <N
and that Res (u,v-s) can be computed by doing N univariate polynomial
resultants and interpolating the results at a total cost of O(N3 log p)

steps. Thus we can find a set of residues fsi} by:

a) Computing the resultant
r(s) = Res (u(x),v(x)-s)
b) The GCD (u(x),v(x)-s) will be non-trivial when r(s) is zero

i.e. at the roots of r(s).

Since it does cost O(N3 log p) steps to find the resultant we want

to avoid doing it once for each basis polynomial v(x). We do this by forming



3.2

the product V(x) of the {v(x)} mod u(x). Now (V(x)-si) will split

in the same way the {v(x)} do. So we can compute:
g'(s) = Res(u(x), V(x)-s)

and find the roots of g'(s). However, since all the factors of the

2

{v(x)-s} may be duplicated in (V(x)-s) there may be as many as k° roots

of g'(s).

This means that we must be more careful about how we find the
factors of u(x). One method we can use is to store the factors in a binary
tree which forms a seive for factors. For each node the right and left
subtree will hold a factor of the polynomial stored at the node and its
cofactor. The polynomial u(x) will be stored at the root. The following

recursive algorithm Find_Factor might be used.

Algorithm: Find Factor (f,k)

Input: the polynomial f(x) to be decomposed and stored in the tree rooted at r.

Steps:
1) Basis: If r = null
then begin r:= node (f,null,null); J:=j + 1
end
2) Test equality: else if f(x) > = r(x)
' then begin
3) Split: g(x):=gcd(f(x),r(x));
f(x):=f(x)/g(x);

4) Recursion: . if g(x) >=1
then Find_Factor (g, left (r));
if f(x) > =1 |

then Find_Factor (f,right (r));
end 0



3.3

The algorithm is called by:
k=0; R:=node (u,null, null);
for s; e roots of g'(s) while J< k

do Find_Factor (gcd(u(x), V(x)-si),R);

Using this algorithm we see that in the worst case the tree can
become unbalanced and have a depth as large as k . In which case
O(N2 k Tog p) steps would have been required to produce it. If k=0(N)
this is 0(N3‘1gg p) which is the current Timiting step on the algorithm.
If care was taken to balance the tree at each stage this could be reduced

to O(N? Tog N Tog p).
On the other hand we could take the view that it is very unusual for

the first basis polynomial v](x) not to provide all the factors, if the

prime p is large with respect to k or N. In this case the bound on the original
Berlekamp a]gorigpmiisMO(Nz Tog p max (k,p)) and the resultant need only
be computed with:réébect to the first basis polynomial v](x).

In any case we have reduced the préb]em to that of‘finding the roots
of a polynomial g(s) of degree N, in a finite field GF(p). To do this we can
use:

Lemma 4 (Alb 56, p. 128) In a finite field of characteristic q

b

m
3.2 - t(s,m) =59 -s

is the product of all irreducible polynomials of degree which divides m.
In particular t(s,1) = sP-s

is the product of all linear polynomials in Zp[S]. So to reduce our search
for the roots of r(s) we can compute:

g(s) = GCD (r(s), sP-s) .
Then g(s) will be the product of the k linear factors of r(s), if there

are k factors of the (V{(x)-s).



3.4

One method of finding the roots of g(s) is to test each element
of the field. Before we needed to compute gcd each time we tested a field
element at a total cost of O(N2 p log p). Now we need only evaluate the

polynomial g(s) at a total cost of O(k p) < O(N. p).
If the prime p is sufficiently small that -

O(N3 log p) = O(N2 p)

i.e. O(p)is O(Nzlog p)
then we can use this method to find the roots of g(s) and thus the factors
of u(x) in O(N3 log p) steps (i.e. the time to manipulate the Q matrix

‘dominates the algorithm).

In summary we can state:
Theorem 5. A monic square free polynomial of degree N can be factored over
a finite field Zp in O(N3 log p + R(N)) steps where R{N) is the time to

find the roots in the field of a polynomial of degree N.



4.1

IV. Finding Roots of Polynomials in Large Finite Fields

In the previous section we reduced the factoring problem to that
of finding the roots of a polynomial g(s). Berlekamp (Ber 70) discusses
probablistic methods for finding the roots of a polynomial in a finite
1/4 3/2)_ I

n

field zp. He gives the timing of the method as O(p Tog p

this section we will discuss ways this may be improved upon.

What we can observe is that if we are free to choose the prime
characteristic, (as we are when we are using homomorphism algorithms
to .do factoring) then we can choose fields which expedite the discovery

of the roots of a polynomial.

In particular it is usefu] tq choose primes p such that p-1
is highly composite (e.g. p = L-22 + 1 where L is small, £ ~ L). In this
case we can find the roots of a polynomial by a process of refiﬁing the
multiplicative subgrbup of the field in which the roots lie. At most
2 < log p such refinements need be made in order to find a root. This
means that the time to find the roots of a polynomial in a field Zp
and thus the factors of a polynomial over Zp is algebraic in log p and

not proportional to p.

First we assume that the roots of the polynomial are nonzero and

square free. This is something that can easily be checked by the construction

of section I. Then we note the special case of Temma 4 that:
4.1) c(s) = P14
is the product of all nonzero linear factors in Zp.

Its roots are the members of the multiplicative group Z;. Members

of this group are called p-1 st roots of unity and generators are called



4.2

primitive p-1 st roots of unity. Note that c(s) factors as:

4.2) e(s) = (s(P-1)/2 4 gy (P-1)/2 _yy
so that half of the p-1 st roots of unity are also (p-1)/2 -th roots

of unity. In general c(s) has &+1 factors of the form:

4.3) c.(s) = s -1
where ci(s) is the product of all L-ZSL'1 -th roots of unity of Zp (i.e.

, 0<1i<2

elements of a subgroup of Z; ). Using this fact we can separate the

roots of a polynomial g(s) into those roots which are L-Z(?"1 -th roots

and those which are not, by taking
Lo2*
4.4) g;(s) = GCD (g(s), s - 1)
We can use this fact to refine the subgroup in which a set of roots
are contained. We could compute a sequence'{fi(s)} of polynomials where
fi(s) is the product of all L-2¥"7 _th roots of unity of g(s) which are

-i-1

A
not L-2 st roots of unity. This means fi(s) has the form:

4.5) £0s) = 1 (s - w32

where j is odd. If ¢ is another (not necessarily distinct) primitive
p-1 st root of unity then y = o™ where (p-1,m) = 1,in particular m is

odd. Then we form f;(s) as follows:

, o i
4.6) fi(s)=m (s - 2 -y ?)
=T (S - W ’21 (j+m))
i+,
=7m (s - w2 (J+m)/2) since j and m are odd.

Thus the roots of f;(s) are L-22'1-T st roots of unity and so

the refinement can be applied to them. Once we have found the roots
’ i

]
of fi(s) we can compute the roots of fi(s) by dividing by wz .



We can express the tfahsformation of fi(s) to'f}(s) in terms of

coefficients of fi(s). If
N j
fi(s) =L a;x aN=1

then expanding (4.6) we see:
4.7) £1(s) =_g ag y2 (-3)

Jj=0
So the transformation of fi(s) to f%(sg can be performed in 2N operations
given the coefficients of fi(x) and wz . Let the conversion be performed
by an algorithm called CONVERT. Then the following algorithm can be used
to compute the roots of a polynomial in a finite field.
Algorithm: Roots (u,w, 1, H, p)
Input: the polynomial u(s), Q the primitive (p-]I/ZT'th root of unity,
in field Zp where p = L'22+1, H a (possibly null) 1list of polynomials of
the form: . _
hj(x) = sL'ZJ -1 mod u(s), 0 = j <2 -1

Qutput: R a 1ist of roots of u(s) in Z

Steps:
1) Basis: If deg(u)=1 then return -u,

p*

2) Direct search: else if 2 | (pFl)/Z1

then return Direct-search (u,w,{p-1)/2',p)

3) Root separation:else begin.
| if H is null then compute H;
h(s):=head(H); H:=tail (H);
g(s):=6CD(u(s), h(s))
f(s):=uls)/9(s);

R:=null;

4.3



4.4

4) Recursion: if deg(g) > 0
then R := (R, Roots (g, W, i+, H, p))s
if deg (f) > 0
then begin
f:=Convert (f,w);
R:=(R,Roots(f,w2,i+1,nu]],p)/m);
end;
return R;

end.
The algorithm would be invoked as:

R := Roots(u(s),w,0,null,p);
where w is a primitive p-1 st root of unity. The algorithm Direct-Search (J,,,L,p)
is invoked in the Roots algorithm to find the roots of u(s) in the
mu]tip]icatjve group of w by direct evaluation. Since there are only L
members of this group and L is chosen to be small, this operation does
hot take long. Also if L is compoéite and the product of small primes
then a method related to the Roots algorithm can be used to further
refine the group structure of the field and the roots of the polynomial.

Timing of the Root Algorithm:

. L3 . .
The polynomials hj =5 mod u(s), 0 < j=< & -

can be computed in 0(N2(2-i)) < n(N2 log p) steps where deg(u) = N.

Similarly the GCD operations can be computed in 0(N2 log p) steps.
The worst case situation for the a]gorithm js that the refinement of the
subgroups doesn't separate the roots at all. In which case the Direct-Search
algorithm must bé used to separate them. There can be at most log p

2

refinements. Thus the total cost is 0(N2 Tog” p + NL).



4.5

In summary we have
Theorem 6: In a finite field Zp where p = L-2k+1 and L ~ k. The roots

of a polynomial of degree N can be computed in O(N2 1og2 p) steps.

Corollary 1: Over such a finite field a polynomial of degree N can be

factored into k factors in O(N3 Tog p + k2 1092 p) steps.



5.1

V) Asymptotic Methods

The removal of the 1imit on the size of the field for the
algorithm raises the question: can the number of steps taken be pared
down further? The answer is that;they can if we are prepared to accept

asymptotic analysis.

The timing estimates for the algorithms which we have used
so far are reasonably consistent with the observed behaviour of algorithms
in real algebraic manipﬁ]ation systems for the size of problems usually
encountered. However if we are prepared to consider very large problems
then we can use a set of algorithms with slower growing timing functions.
It can be shown (see for example Moé 73) that two polynomials of degree
N can be multiplied together in O(N log N) field operations. Similarly
a polynomial of degree 2N can be divided by one of degree N in O(N log N)
fie]d operations and the GCD of two polynomials of degree N can be computed

in O(N 1092 N log p) field operations.

If we admit such algorithms into consideration do they help us
at all? The answer is yes but we must extensively reformulate the algorithm.
The bounding step now becomes the matrix operations. A]though Strassen
(Str 69) has shown that matrices can be multiplied or triangularised in

0(N2‘81) we can even improve on this limit of the algorithm.

Our first observation is that we can find a partial factoring
of a po]ynom1a1 using a method based on lemma 4: due to Golomb et al(Gol 59).
This partitions the factors of a polynomial into products of all the factors

of the same degree. The following algorithm achieves this:



5.2

Aigorithm : Distinct-Degree Factors (u)
Input: the polynomial u(x) over Zp, deg (u) = N;
Qutput: The distinct degree factors di(x)

u(x) = Td.(x) , dy(x) = T £3(1)(x)
Step:
1) Initialisation: ‘h(x) = xP mod u(x)
g(x) =1 := 3 :=1; v(x) := u(x);
2) Iteration: while j < deg (v)/2
do begin
-9(x) :=h(x) * g(x) mod u(x);
Ji=j + 15
d;(x) = 60D (g(x) - x, (x))
3) Non trivial factors:
if di(x) # 1 then
begin
v(x) = v(x)/d;(x);
i:= i+l
end
: . end;

4) Completion: 1if v(x) > 1 then di(x) := v(x)
A end. '
By lemma 4 at the j-th iteration of the loop g(x) is the product of all

irreducible polynomials of degree dividing j. Hence the GCD operation
finds all factors of degree j. Using the classical methods of sections

2-4 the algorithm can be shown to take O(N3 log p) steps. However we have.



Theorem 8: The Distinct Deqree factors algorithm can find the factors of

2

a polynomial of degree N in O(N2 log“ N log p) steps.

Proof:
xP mod u(x) can be built up by 0(log p) squarings for a total of
O(N Tog N log p) steps. The GCD operation can be performed in O(N 1092

=

log p) steps. Since the loop may be executed N/2 times the bound is
O(N2 1092 N log p) steps.

5.3



6.1

VI. Splitting Distinct Degree Factors

We have reduced the factoring problem to that of separating products
of factors of the same degree.

i.e.

k
6.1) d(x) = I fi(x)
i=1

where deg (d) = N = mk;deg (fi) =m for all i. To do this we find a monic
jrreducible polynomial r(x) of degree m. Then we can 'reduce d(x) mod r(x)

to compute the polynomial:

k
6.2) Fly) = ZO y! s where s; « y4 [x]/(r(x))
i=

This produces a polynomial of degree k over the finite field

GF(p™) = Zp[x]/(r(x)). If we can compute the roots {t } of the po]ynom1a1

F(y) then we can find the factors fi(x) of d(x). Since:
6.3) fi(x) r(x) - ti(x)

=y_t_i
If pm-1 is highly composite we could apply the algorithm of section IV to

find the roots of F(y). However in general it is not true that pm—1 is

h#ghly composite if p-1 is and it is difficult to éhoose a suitable p

a priori when we don't know m.

Instead we can use a construction of Berlekamp's (Ber 70) to

convert the polynomial back to one over Zp, This is based on the

Lemma 9: In GF(p™) = Zp[x]/(r(x))
p-1

6.3) Py - 7 (T (5)-s)

where



6.2

m-1 i
6.4) T.(y) =z yP

i=0
This fact can be used to find the roots of F(y) in GF(pm) by testing:

6.5) GCD(F(y), T (y) - s) ,

for each of the s ¢ Zp. In general it is necessary to test
6.6) GCD(F(y), Tr(x1y) -s) , for 0«1 <m-1

In order to find all the roots of F(y). We can find the values of s in
(6.5) which yield roots of F(y) using the resultant construction and

the Roots algorithm as outlined in sections III - IV. Let the algorithm
that transforms Tr(xiy) to Tr(xi+]y) be called Trans then the root finding

can be perfermed by the following algorithm.
Algorithm: Roots-in-GF (p™) (F,p,w,r(x),m);

Input: The polynomial F(y), the prime p with primitive p-1 root of unity w

in Zp » the field modulus r(x) where deg (r) = m.

Qutput: A 1ist of roots L.

Step:
- m"'-l .i
1) Initialisation: Tr(y):= 5 yP mod Fy)s
i=0
j=1; 1:=()
2) Iteration: while deg (F(y)) > 1 and j <m
do begin

if j > 1 then Tr(y) := Trans (Tr(y))

J =4

H := Roots (Res(F(Y),Tr(Y)-S),w,1,0,p)§



6.3

3) Find the roots in GF(pm):for.each s. ¢ H

begin
y'ti = GCD(F(Y)3 Tr(Y)'si);
Fly) := Fly)/y-t;

L:= (L:y'ti);
end

end;

4) Test F(y): if deg (F(y)) = 1 then L:=(L,F(y))
End. '

Timing of the Roots in GF(p™) algorithm:

First we note that

k-1 .
Ty) =2t (x)y' mod F(y)
i=0 i ‘
m-1 Py
where H#x)=z ng. .
2=0
and
k-1 i '
Tr(xy) = tr’(x) X'y mod F(y).
i=0 !

So the process of forming Tr(xjy) from Tr(xj']y)
corresponds to reducing ti(X'*x1)mod r(x) for the k coefficients ti(x) e GF(p™).

Each such reduction can be made in 21 m operations in Zp. So the transformation

of Tr(xJ']y) to Tr(ny) can be made in

k-1
2 ©im = 2km = 2N operations.
i=0 »



6.4

In general operations in GF(pm) can be performed in m operations

in Z_ for addition, O0(m log m ) operations in Z_ for multiplication and

P P
0(m 1092m log p) for computing inverses using the extended euclidean

algorithm (Moe 73).

This means that yp mod F(y) can be formed in 0(log p) squarings
mod F(y) doing arithmetic in GF(pm). This involves 0(log p . k 1og k . m log m)

operations in Z_ or O(N log k log m log p) steps. Similarly the resultant

p
of step 2 can be computed in O(k2 1092k log p) operations in GF(pm) using a method

similar to that used for polynomial GCDs in (Moe 73). This involves a total
of (k2 1092 (k) m ]og2 (m) Tog p) steps. Since the-iteration is performed
a maximum of m times the time spent computing resultants during the course

2 2 log p) steps. In fact it

of the algorithm is at most O(N2 log™ k log
is this that bounds the computation in the algorithm since the Roots algorithm
must deal wifh a polynomial of degree at most k. Theorem 6 shows that the
roots of such a polynomial can be found in O(kz"log2 p) steps. In summary we
have:

Theorem 10: Over the finite field GF(pm) where p=L.2£41 and L ~ g, the roots

2 2

of a polynomial of degree k can be computed in O(k2 log™ k m2 Tog“ m log p)

steps.

Corollary 11: If d(x) is a distinct degree partition of the factors {fi(x)}

of a polynomial over Zp then the k factors can be discovered in

2 2

O(N2 log“ k 1og“ m log p) steps.

where deg(d)=N, deg (fi) = m.

Corollary 12: The factors of a polynomial of degree N over a finite field
4

Z_can be found in O(N2 Tog" N log P) steps.

p



6.5

Proof:

The worst case for the factoring algorithm is when all k of the

factors are of the same degree m and m=k= /1. This situation can be solved in

O(N2 1092 N log p) by theorem 8

2

+ O(N2 1092k Tog” m Tog p) steps by theorem 10.

4

This is majorised by O(N2 log” N log p) steps.

Finally we should note that if we dismiss the use of asymptotic
algorithms then the methodé described in the last two sections can be
perfofmed in O(N3 log p) steps. This is the same bound as achieved by the

methods in sections II - IV.

As a non-trivial lower bound on the factoring problem we have:
Theorem 13: At least N log N/e rational multiplications are needed to factor

a polynomial of degree N over the integers.

Proof:

Any factoring algorithm must divide out the factors it generates,
from the factored polynomial. Clearly this operation must be at Teast as
difficult as multiplying the factors together to verify that they form the

polynomial to be factored.

In one extreme case where all the factors are linear Strassen

(Str 73) has shown that such a multiplication needs N Tog g-field multiplications.

While the Tower bound is for an 1hfinite field and we have been

considering finite fields it is probably reasonable to assume that a similar



6.6

result holds for finite fields. From similar results by Strassen it could

be conjectured that a bound of
N1 = 1) tog (U= /0,

would hold in a field of characteristic p.



7.1

VII. Finding Primitive Rocts and Polynomials

In the root finding algorithms we have used certain field elements
as part of the algorithm. We should indicate that these are fairly easy to
find.

Primitive roots of unity can be found quite readily using a method

which depends on the:

Theorem 14 (A1b 56) In the finite field GF(q),e is a primitive g-1 st root

of unity iff e(qé])/ai #1 mod q

for all prime divisors L ERREPL of g-1

: -1)
There can be at most log q prime divisors of g-1 and to form e(q a;

can take at most 0(log q) field operations. So, to test a trial primitive

2

root requires 0(log” p) operations in Z Not only that, such elements

0"
are fairly common in the field since there are ¢(q-1) = 0(q-1) of them in

the field. This implies that primitive p-1 st roots can be easily found.

Finding irreducible polynomials for the Roots in GF(pm) algorithm is

more difficult but we can use:

Theorem 15 (Lang 67 p. 221): Let K be a field and n an integer > 2. Let a ¢ K
and a # 0. If for all prime divisors c of n, a ¢ K¢ (a doesn't have a c-th

4

root in K) and if 4n and a ¢ -4K” then x"-a is irreducible in K[x].

We can test if a has a c-th root in Zp by testing for the existence
of any linear factors of x®-a. Applying the method of section V this involves
computing:

ec(x) = 6eD(xP - x, x° - a).



7.2

We see that:

o
|

a xP°% mod x© - a

a2 xP-te mod x© - a

where 2 = Lp/cl

Therefore ec(x) = GCD(a2 yP-RC-y, y©-a).

Therefore if ec(x) = 1 for all prime divisors c of n then x -a is irreducible
in K[x]}. Again there can be at most 1og n prime divisors of n. To compute
e, for all of them would take O(n2 log n log p) steps or O(n 1093 n log p) steps

using an asymptotic method.



VIIT. CONCLUSIONS:

As a test of practicality the modifications of Berlekamp's algorithm
have been programmed using the SAC-1 (Col 71a) algebraic manipulation system.
SAC-1 contains both the original Berlekamp algorithm and the distinct degree
method as part of the system. Some sample timés for these four algorithms
applied to a polynomial of degree 14 for various primes are given in table I.
These times are taken from an implementation of SAC-1 on the Honeywell 6050

at the University of Waterloo.

The first modified method computes the roots of the resultant by
eva]uéting it at sufficiently many points in the field. The second modi-
fication employs the Roots algorithm to find them. The upper half of the table
shows that for small and moderate sized primes the modifications are slightly
slower than Berlekamp's methods. This is to be expected since they have the
overhead of computing a resultant. However at primes of the order of 100
the modifications can already be significantly faster than the original
algorithm. Above this point the Berlekamp algorithm may on occasion be
faster than the modifications. This occurs when it is lucky enough to find
the factors after only trying a few GCD's. However in general it is slower

than the modifications.

This raises the possibility of dispensing with Hensel's lemma when
using the modular factoring to find factors over the integers. If a prime
be chosen so as to be twice as large as any coefficient of a factor, then we
could factor modulus this prime and test combinations of the resulting factors
as trial integer factors. This would by-pass the application of Hensel's
lemma for the univariate case. This approach is most reasonable if the

chosen prime is less than the word size of the computer.



Time (in seconds) for factoring and polynomial of degree 14

Prime P Berlekamp Modified With Boots QDF algor- Degree
Algorithm ithm of Factors
17 2.41 3.62 3.62 1.95 1,2,3,3,5
47 3.81 4.66 4.69 2.5 1,1,3,3,6
83 2.5 2.5 2.5 3.32 14
107 7.05 4,72 4.66 2.91 4,10
137 6.3 4.78 4.86 2.5 1,1,1,1,2,2,3,
199 3.56 4.4 4.45 3.3 7,7
251 8.88 5.63 5.66 3.04 2,2,2,4,4,
331 4.4 5.17 5.22 3.15 4,10
449 11.7 5.17 5.05 3.32 2,12
409611, 42 7.96 3.85 »1,1,2,2,3,4
= 5,241
179N9A7809 10.8 6.5 1,2,4,7
= 427.24241
1811939329 13.1 6.28 1,1,2,3,3,4
= 27.226 ] v
1835008991 14.8 6.28 1,1,2,2,3,5
= 875.2¢' 41
18&3319533 14.25 6.62 1,1,5,7
= 1777.2¢"+1

TABLE 1



However if the bound on the coefficients of the factors is larger
than the word size, I would expect that the overhead of doing multi-
precision modular arithmetic throughout the course of the computation
would slow down the algorithm considerably. In such a case a reasonable
strategy to use would be a hybrid method using factors modulo a word size
prime and Hensel's lemma. In general the smaller the prime the more
factors are produced. This means that in order to find the factors over
the integers more combinatiohs of small factors must be tried. This is
an additional benefit of factoring with large primes.

The lower part of the table shows the results for large primes; in
particular for primes close to the word size (236) of the computer. It
can be seen that for primes of the order of fifty thousand the first
modification is significantly slower than that using the Roots algorithm.
Also that the modification using the Roots algorithm is always within
a factor of 2 of the speed of the distinct degree method which is in

general the fastest method. The time for the Roots modification using

a word sized prime is only 5 times that using the prime 17.

While I feel that these times could be improved by using a different
algebraic manipulation system and turning the code and using a faster

computer; I do not think that their relative magnitudes will change much.



BIBLIOGRAPHY
Alb 56

Ber 68
Ber 70
Cav 69

Col 68

Col 69
Col 71
Col 71a

Gol 59

Jor 69
Knu 69
Lang 71
Lip 71
Moe 73
Mus 71

Ris 68

Albert, A.A. : Fundamental Concepts of Higher Algebra,
University of Chicago Press, 1956.

Berlekamp, E.R. : Algebraic Coding Theory: Chap 6; McGraw
Hi11, New York 1968.

Berlekamp, E.R. : Factoring Polynomials over Large Finite
Fields; Math. Comp. Vol. 24, No. 111, pp. 713-735, July 1970.

Caviness, B.F. : On Canonical Forms and Simplification:
Ph.D. Carnegie Mellon University 1967. :

Collins, G.F. : Computing Time Analyses of Some Arithmetic
and Algebraic Algorithms; Proc. 1968 IBM Summer Inst. in
Symbolic and Algebraic Computation.

Collins, G.E. : Computing Multiplicative Inverses in GF(p);
Math. Comp. vol. 23 no. 5 (Jan 69) pp. 197-200.

Collins G.E. : The Calculation of Mu]tivariéte Polynomial
Resultants; JACM vol 18, no 4 (Oct 1971) pp 515-532.

Collins, G.E. : The SAC-1 System: An Introduction and Survey;
Proc 2nd SIGSAM Symp., ACM New York 1971.

Golamb, S, Welch, L, Hales, A., : On the Factorization of
Trinomials over GF(2); JPL memo 20 - 189 (July 14, 1959)
(as referred to in Knu 69).

A

Jordan, D. and Kain, R: Clapp, L., : Symbolic Factoring of
Polynomials in Several Variables CACM (Aug 1966) vol 9 no 8.

Knuth, D., : The Art of Computer Programming vol II: Seminumerical
Algorithms; Addison-Wesley Reading Mass. 1969.

Lang S., : Algebra
Addison-Wesley Reading Mass. 1971.

Lipson, J.D.: Chinese Remainder and Interpolation Algorithms;
Proc 2nd SIGSAM Symp. ACM New York 1971.

Moenck, R.T.: Studies in Fast Algebraic Algorithms: Ph.D.
Thesis, U. of T. 1973.

Musser, D.R.: Algorithms for Polynomial Factorization; Ph.D.
Thesis, U. of Wisconsin, 1971

Risch R.H. : Symbolic Integration of Elementary Functions; _
Proc 1968 IBM Summer Inst. on Symbolic and Algebraic Manipulation.



Str 69

Str 73
Usp 48
Wae 49

Wan 73

Yun 73

Strassen, V. : Gaussian Elimination is Not Optimals;
Numerische Mathematik Vol 13 (1969).

Strassen, V. : Die Berechungs komplexitdt elementarsymetrischen
Funktionen und von Interpolations koeffizienten; Numerische
Mathematik Vol 17 (1973).

Uspensky, J.V.: The Theory of Equations Chap 11; McGraw
Hi1l, New York 1948.

Van den Waerden, B.L. : Modern Algebra vol 1: Fredrick
Ungar, New York, 1949. N

Wang P.S. and Rothschild L.P.: Factoring Polynomia1s over the
Integers: SIGSAM Bull. No. 28 Dec. 1973.

Yun, Q.Y.Y. : On Algorithms for Solving Systems of Polynomials
Equations; SIGSAM Bull. No. 27 Sept. 1973.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

