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Abstract

Three new types of context sensitive parallel rewriting systems, called
-global context L-systems, rule context L-systems and predictive context L-systems
are introduced in this paper. We jnvestigate the generative power of these new
types of context sensitive parallel rewriting systems and we compare it to the
generative power of TOL-systems [9], L-systems with interaction [10], regular
grammars and context sensitive grammars. '

1. Introduction

Parallel rewriting systems were introduced in [6], [7] as a mathematical |
model for biological developmental systems.” Most of the papers related to parallel
rewriting have dealt with rewriting systems of context free type, e.g. OL-systems
[7], TOL-systems [9], and their generalisations [2], [11].

A generalisation of context sensitive grammars with parallel rewriting
known as L-systems with interactions has been studied in [10]. L-systems with
interactions have the same basic rules (productions) for rewriting as OlL-systems,
but with restriction on their use given by right and left "context". A rule may be
applied only in the given context. ‘

However, in the case of parallel rewriting it is quite natural to consi-
der different forms of “context".  Since we are replacing all symbols at once, we
may restrict the use of a rule, a ~ a say, by the context adjacent to o after
simultaneously replacing all the symbols in a string rather than by the context
adjacent to a before the rule was applied. We will call this kind of context,
predictive context.

Even more generally, the restriction on the use of a rule may concern
rules used on adjacent symbols. We will call this type of restriction rule
context.

Clearly, all these generalisations make sense only in the case of

parallel rewriting. .
We can also consider restrictions on the use of rules, which in distinc-

tion to the above are of a global rather than a local character. In a global




context L-system, in addition to the set of labeled rules, a control set
over their labels is given. We can only rewrite a string with a sequence of

‘rules with labels from the control set.

The new types of context sensitive L-systems introduced in this paper
also have a natural biological motivation. The development of a cell might be
completely independent of the other cells, i.e. in OL-systems, or it might depend
on the configuration around the cell before the development takes place i.e. in
L-systems with interactions, or it might be restricted in such a way that only
compatible cells can occur adjacently, i.e. in predictive context L-systems, or
only compatible developments can occur adjacently, i.e. in rule-context L-systems,
or even the development of an organism as a whole is restricted by certain
patterns, e.g. the development can be different in certain parts of the organisms,
i.e. in global context L-systems.

In this paper we investigate the generative power of these new types of
L-systems. Among other results it is shown that global context L-systems with
regular control sets (regular global context L-systems) are equivalent to rule
context L-systems. We also show that thelfamily of regular global context
L-languages pfoper]y contains the family of languages generated by L-systems with
interactions and the family of TOL-languages.

2. Preliminaries
~ We.shall assume that the reader is familiar with the basic formal
languages theory, e.g. [5], [12].
Now, we will review the definitions of OL and TOL-systems [8], [9], and
L-systems with interactions [10], and we will introduce some notation used
throughout the paper.

Definition 1. ‘A table OL-system (TOL-system) is a 3-tuple G = (I,P,o0), where:

(i) I is a finite, nonempty set, called the alphabet.

(i) P is a finite set of tables, P = {P]’PZ""’Pn} for some n = 1, where
each P,, 1 = 1,2,...,n is a finite subset of I x £*. Element
(a,a) of P, 1 <1 <n, is called a rule and is usually written in the
form a ~ a. P must satisfy the following condition of completeness.
For each a e L and i, 1 < i < n, there exists a e =* so that (a,0) « Ps.

(i) o e £¥, the initial string of G.

Given a TOL-system G = (L,P,0), we write o Eo B, where o e'z+, B e I,
if there exist k 2 1, 21,35,...,3 € I, and By,By,...,8 ¢ * so that

O = 3189...3)s B = 8132"‘Bk and for some table Pi e P, aj > Bj € Pi for 1 < j < k.

The transitive and reflexive closure of the binary relation kg is
denoted by E>*.



The language generated by a TOL-system G is denoted by L(G) and is
defined to be the set {a ¢ £*:0 ﬁb* al.

(£,P,0) is called an OL-system if P consists of

Definition 2. A TOL-system G
exactly one table of rules, i.e. P = {P]}.

Notation. Throughout the paper if r is any binary relation, then r* denotes
the reflexive and transitive closure of r, without repeating it specifically in

every case.

Notation. The empty string is denoted by €. The length of a string a is denoted
by |lol. For any string a and k = 1, we define Firstk(a) and Lastk(a) as follows.

First, (@) = if lal = k then first k symbols of
else a.

Lastk(a) = if Jal = k then last k symbols of o
else a.

For any string a, we define
fal
Firsto(a) = g, First (a) = {Firstk(a)},
k=1

n
n

Lasto(a)' e, Last (a) {Lastk(a)}.

k=1

Definition 3. A context L—éystem is a 3-tuple G = (z,P,0), where

(i) Z is a finite, nonempty set of symbols, called the alphabet.
(i) P is a finite subset of {#,e}-5* x £ x £™-{#,e} x £*, called the
set of rules, where # is a symbol not in I called the endmarker. A
rule (a,a,B,y) ¢ P is usually written as <a,a,8> = y.
(iii) o e £, the initial string.

Given a context L-system G = (Z,P,0) we write o g B forace =¥,
B e £¥, if there exist k = 0, 3153p5-+58 € L and By,By,...,8, € I¥ so that
O = a785...3;, B = 8182...6k and for every i, 1 < i < k, there exist m,n 2 0

such that (Lastm(#a1a2...ai_]),ai, Firstn(ai+]ai+2...ak#2,8i) e P.

Context L-system G must be strongly complete, i.e. for any a € 5t there
exists B ¢ £* such that a T 8 -

The language generated by a context L-system G is denoted by L(G) and

*

is defined to be the set {a ¢ I*:o > ol.

Note. The definition of a context L-system given above is a simplification
and an unessential generalisation of the definition of an L-system with inter-
action from [10]. It is obvious that both types of systems have the same
generative power.




Notation. We say that a language L is a A-language (where X may be OL, TOL,
context L, etc.) if there exists a A-system G such that L = L(G).

The family of context L-languages will be denoted by Q.

If f is a mapping from £ to subsets of A*, then f can be extended to

strings and languages over I as follows.
(i)  fle) = {e}.

(i) for a € £, o ¢ L¥, floa) = f(a)-f(a), where "+" is the operation of set

_concatenation.
(ii1) for L ¢ ¥, f(L) = {a:a ¢ f{B) for 8 € L}.

We will use these extended mappings later on without repeating the
process of extension in every single case.

3. Context sensitive parallel rewriting systems

Now, we will define three different types of context sensitive parallel
rewriting systems. All1 of them are using only one type of symbols, i.e. we are

not considering any nonterminals.

First we will give the definition of global context L-systems. A global
context L-system has, similarly as an OL-system, a finite set of context free rules,
however, each rule has a finite number of labels. The use of rules in a global
context L-system is restricted by a language over labels, called the control set.

Definition 4. A global context L-system is a 5-tuple G = (z,I',P,C,0), where:

(i) Z7is a finite, nonempty set of éymbois, called the alphabet.
(i) I' is a finite, nonempty set of symbols, called the labels.
(ii1) P is a finite, nonempty subset of p(T') x £ x £*, where p(T') denotes the
family of nonempty subsets of T. Element (B,a,a) ¢ P is called a rule
) and is usually written in the form B:a - a.

(iv) C c I'*, called the control set.
(v) o € Z+, the initial string.

Given a global context L-system G = (£,I',P,C,0), we write o T8 for
o€ ¥, B ¢ I*, if there exist k 2 1, A1535s5--0538) € Ty BysBrs..usBy € z* and
B],BZ',..._,Bk e p(I') so that a = 43,...3,, B = BiBL. B, (B.,a,,B:) ¢ P, for

j = 1,2 d B,B B 1 oI
J =1 seresk @n 182--+B n C#¢.

The Tanguage generated by a global context L-system G is denoted by L(G)
and is defined to be the set {a € I*:g =* a}.

1 8182...8k is the concatenation of sets B]’BZ"“’Bk‘



A global context L-system G is said to be a A global context L-system
if its control set is of the type A. In this paper only regular global context
L-systems will be studied and their control sets will be denoted by regular

expressions.
The family of regular global L-languages will be denoted by Y.

Example 1 Let G, be a regular global context L-system, G, = {{a},{S],Sz},P,C.a},
where P = {{s]}:a > aa]{sz}:a + aaa} and C is denoted by regular expression

S*+S*

1 °2°

Clearly, at any step in a derivation, we can apply either the production

a + aa to all symbols in a string, or the production a + aaa is used throughout
@2 |
a .

the string. Therefore L(G]) = :i 20, j =0},

, Since we may consider an L-system as a model of the development of a
filamentqQus organism, it is natural to require that for any stage of the
development there exists a next stage of the development. Therefore, a condition
of "completeness" is usually included in definitions of all versions of L-systems.

Now, we will give the formal definitions of the completeness and strong
completeness for regular global context L-systems.

Definition 5. Let G be a regular global L-system with an alphabet Z. G is
complete if for any a e L(G), o # €, there exists B ¢ I* so that a = B.

Definition 6. Let G be a regular global L-system with an alphabet £. G is
Strong]y complete if for any a € Z+ there exists B e I* so that a Eo B.

Note that in [10] only strongly complete systems were considered
(and called complete). However, this is unnecessarily restrictive, there is no
biological motivation to require that a next stage of the development is defined
also for configurations of cells which can never occur in the development. More-
over, it follows from the next Temma that every complete regular global context
L-system can be modified to an equivalent strongly complete regular global context
L-system. |

Lemma 1. For any regular global context L-system G, there effectively exists an
equivalent reguliar global context L-system G' which-is strongly complete.

Proof. Let 6 = (£,I',P,C,0) be a regular global context L-system. Let f be a
finite substitution on I'* defined byxa e f(k) if and only if there exists a rule
(B,a,a) ¢ P so that k ¢« B. Let R = f(C), let Ry = £*-R. Since regular languages
are closed under finite substitution and complement, R and R] are regular languages.
If o ¢ R, then there exists 8 ¢ I* such that o & B. If R; = ¢ then G is strongly
complete.



Suppose that R] # ¢. Let s be a new symbol not in I'. Let h be a
homomorphism defined by h(a) = s for any a in L. Let G' = (z,I',P',C',0),
where ' =T u {s}, C'=Cu h(R]), and P' = P u {({s},a,a):a € Z}. From the
construction of G' follows that G' is strongly complete and if o ¢ R, and a T B

for some B ¢ I*, then o L and if o ¢ Ry then o = a. Therefore L(6') = L(G). O
Lemma 2. It is undecidable whether a regular global context L-system is

complete.

Proof. We will show that for any instance of Post's Correspondence Problem [12]

there exists a regular global context L-system which is complete if and only if

the instance of Post's Correspondence Problem (PCP) does not have a solution.
Let £ = {a],az,...,an} be a finite alphabet, and let A and B be two

lists of strings in I* with the same number of strings in each list. Say

A= 0 s0,.e 50y and B = B;,B5,...,8,. LetG = (z',r,P,C,$) be a regular global

L-system, where ' = Z u {$,¢}, T = {sy55,53.54} u {ryei =1 +2,...,0},

P = {({s]},$,ai $ Bg) i=1,2,...,n}u {({r 1, a; )i =1,2,...,n} u

v {({szha;,a;):d = oot u {({s,), $,¢)} u { ({s4}.¢.¢)}, where B denotes

: ot
the reverse of»Bi, and C is denoted by 535153 + 53 oS3 + 53 4t 548 3 + s3 45 3
* * * ok * *

T SgrySarysg t SgrpSarasy t ... + s3rns4rns3.

Clearly, $ =% a; a; ...o; $B B .87 B> 0 0y .0y ¢
G T, 1j j J 16 11 12 ]j

T for =1, i],iz,..., j being integers smaller or equal to k.

ror
B: B: ...B;
15715 i
If aa ¢ aB e L(G), where a,8 ¢ £*, a € £, then aa ¢ a8 2 ad B Ifaafbselle),
where a,8 ¢ ¥, a,b « £ and a # b then ca ¢ bB Eo aa ¢ b8 is the only possible

derivation in G from aa ¢ b8. Therefore $ * ¢ if and only if the instance of
PCP has a solution. Since Sq ¢ C, G is complete if and only if the instance of
PCP does not have a solution. Thus it is not decidable whether G is complete. g

Now we will give the definition of a rule context L-system. A rule
context L-system has a finite set of context free rules, each rule having a finite
number of labels. For each rule p there are restriqtions on what rules might be
used on the symbols adjacent to the symbol on which p is used. These restrictions
are specified by a finite number of triples.

Definition 7. A rule context L-system is a 5-tuple G = (£,r',P,C,0), where:

(i) I is a finite, nonempty set of symbols, called the alphabet.
(i1) I is a finite, nonempty set of symbols, called the labels.

(ii) P is a finite subset of p(I) x £ x I*, called the set of rules. Rule
(B,a,a) in P is usually written in the form B:a - a.



;

, v,} . .
(iv) C'is a finite subset of {#,e}r* x I x r'* {#,e}, called the context set,

" where # is a special symbol not in I', called the endmarker.

(v) o ¢ ¥, the initial string.
Given a rule context L-system G = (Z,r,P,C,0), we write o T8 for
o e It, Be ¥ if there exist k = 1, 158550028 € I BysBys..sBy € £* and
S$13Sps--+sS) € I' so that o = P LPYRRL P B = 8182 Bk and for every i, 1 < i <k,
;+35385) € Pand m,n = 0 so that s; e B and (Last_(#s;s 2 S5 10845
Firstn(s1+] s4p S #)) e C.
The language generated by a rule context L-system G is denoted by L(G)
and is defined to be the set {a ¢ £ © Eo* a}.

there exist (B.

The family of rule context L-languages will be denoted by ¢.

Example 2. Let G, be a rule context L- system G, = ({a}, {51,52,53,54} P,C,al},

where P = {{s]}:a > a ,{sz}:a - a,{$3}:a + a ,{54}:a.+ a2} and

= {(#,57,#), (F,540#) (£.57555) 5 (57595#) 4 (59551 555) 1 (57559,51 )5 (#.54,53) s

(ss,s],#),(s],s4,s3),(s4,s3,s]),(53,31,54)}. Let o be a string in a*. If the
length of string o is divisible by 3, then according to control set C we can apply
on o only rules with labels $1:53s54 and the only string we can derive in G

from o is the string ocaa. If the length of a is even then we can derive in G

from o only the string aa. From tne initial string of G2 we can derive strings

aa and aaa. Therefore L(G2) = {a2 :n = 0} v {a3":n = 0}.

Now, we will show that the family of rule context L-languages is
equal to the family of regular global context L-systems.

Theorem 1. ¥ = &,

Proof. Let G] = (z,r,P,C,0) be a rule context L-system. Let k,m be positive
integers such that if («,a,B) € C, then o] < k and Bl <m. Let

L First(#Fk']) u Fk, R = Last(Pm']#) u ™. Let A be a finite automaton,
A (K,P,d,qO,F), where K= (L xI" x R) v {qo}, F=Ka((Tu{#)* xT x {#}),
and § is defined as follows.

1t

]

(1) If (#,p.8#) « C, where B « I* then (#,p,8#) < 6(qy.p).
(ii) If (#,p,8) e C where 8 ¢ I, then (#,p,8y;#) € 6(qy,p) and
(#.p.By,) € 8(qpsp), for every vq.v, € T* such that By;#s Byp e R.
(ii1) If (as,p,B) € C, where a € I v {#IT*, B ¢ I'™,s,p € T then
(Last, (vj0s),p,By,q) « §((y,e,s,pBY,),p), and
(Lastk(y]as),p,sy3#) € 6((y]a,s,psy3#),p) for any

nocol {8 v ve e T wl e #T% P+ csuch that Rv.a.B8v.# ¢ R and v.ae L.



(iv) If (e,p,B) € C, where p e T, B ¢ I'™, then
| (Last, (vy5),P,BY,q) € 6((v;,5,pBY,),p} and
(Last, (v;5),p,By3#) « 6((Yi,s.psv3#),p) for any.
selT,qel u{t) vyel, vy v3e I'*such that BY,Q.8Y5# € R.
(v) If (as,p,B#) € C, where o e T* v {(#3T*, B e '™, s,p e T then

(Lastk(y1as),P,B#) € 6((y]a,s,p6#),p) for any v, ¢ #r* o Tt such
that Yo € L. |

(vi) If (e,p,B#) € C, where B ¢ I'*, p ¢ I, then

(Last, (vys).p,B#) € 8((y;,s.p8#),p) for any y; e L.

L(A) is a regular language and, clearly, o is in L(A) if and only if
o is a string of Tabels of rules which can be simultaneously applied to a string
jn £* according to context set C. Therefore, the regular global context
L-system G, = (z,r,P,L(A),0) will also generate language L(G1) and thus ¢ c V.

Now, we will show the other inclusion. Let G = (z,I',P,Q,0) be a
regular global context L-system. Let A = (K,P,é,qo,F) be a finite automaton such
that &(q,e) = ¢ for any q ¢ K and L(A) = Q. Let Gy be a rule context L-system,
Gy = (Z,P3,P3,C3,o), where Ty = T x K, Py = {(A x K,a,a):(A,a,a) € P}, and Cy
is defined as follows. '

(i) If G(qo,a) # ¢, where a ¢ I', then (#,(a,qo),e) e C3.
(i) If r € 6(q,a) and §(r,b) # ¢ where a,b ¢ T and q,r € K, then
| ((a,q),(b,r),e) e Cs.
(iii) If r € 8(q,a) and r ¢ F, where q ¢ K, a ¢ T, then (e,(q,a).#) ¢ Cs.
It can be easily verified that o E> B if and only if o I B. Therefore
L(6;) = L(6). 3 | O

Let the completeness-and strong compieteness is defined for rule
context L-systems in the same way as for regular global context L-systems. Since
rule context L-systems are effectively equivalent to reguiar global context L-
systems, Lemma 1 and Lemma 2 also hold when replacing in them a regular global
context L-system by a rule context L-system. "

Since any triple in the context set in a rule context L-system
implicitly includes also a restriction on the adjacent symbols, it is quite
obvious that the family of rule context L-languages includes context L-languages.
We will show in the next theorem that this inclusion is proper.



Theorem 2. Q § 6.

Proof. Let G = (Z,P,0) be a context L-system. We construct a rule context
L-system G' = (z,2,P',C,0), where P' = {({a},a,B):(0q,2,05,B) € P, a € I, B ¢ ¥,
o « {#,e}z*,a2 e T¥{#,e}} , and C = {(a,a,B):(c,a,B8,y) ¢ P for some y ¢ L*}.

We have constructed the rule context L-system so that all rules for a symbol a in
Z have the same label a, and the context set of G' allows to obtain in G' exactly
~ the same derivations as in G. Therefore L(G) = L(G'). Thus we have shown that

2 < ¢ and it remains to show that the inclusion is proper. In Example 2 the
language L = {azn:n > 0} u {a3":n 2 0} is generated by a rule contex L-system.

It has been shown in [10], that L is not in f. O

Now, we will give the definition of a predictive context L-system.
In a predictive context L-system the use of a rule is restricted by the context
of the right hand side of the rule after the simultaneous replacement of all
the symbols in a string.

Definition 8. A predictive context L-system G is a 3-tuple (Z,P,o0), where

(i) Z is a finite, nonempty set of symbols, called the alphabet.
(i) P is a finite subset of I x {#,e}2* x * x I* {#,e}, called the set of

rules, where # is a special symbol not in I, called the endmarker.
A rule (a,B],a,Bz) in P is usually written in the form a > <g;,a,8,>.
(We assume that "<" and ">" are symbols not in I.)

(iii) o€ Z+, the initial string.

Given a predictive context L-system G = (I,P,0), we write o = 8 for
o € Z+, B € ¥ if there exist k > 1, 3589500053 € z and B]’BZ""’Bk € z* so
that o = CIE-PYRRE P B = 5182"‘8k and for every i, 1 < i < k there exist myn 2 0
such that

(a;.Last (#818,...8;_1).8;,First (B, 1B:,5...B #)) € P.

The language generated by a predictive context L-system G is denoted by
L(G) and is defined to be the set {a ¢ £*:o Eb* al.

The family of predictive context L-1anguéges is denoted by II.

Example 3. Let G be the predictive context L-system ({a,b,c},P,abc), where
P={a~ <e,a,bc>, b »~ <a,b,c>, ¢ » <b,c,a>, ¢ > <ab,cabc,#>, a » <g,aa,bb>,
b » <aa,bb,e>, ¢ »~ <bb,cc,e>, a > <e,a,a>, b » <b,b,e>, ¢ + <c,c,e>.

Using the first four rules in P we can generate from the string abc the

string (abc)™, m = 1. If we decide to use a rule which would double a symbo1l,
then, clearly, we have to double each symbol throughout the whole string (abc)m.
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Therefore, (abc)m T (azbzcz)m and from any string of the form (a'b'c")™, where

i>1,m=1only the string (ai*1p1+1cT+ 1M can be generated. Thus
L) = {(a'b'e")™ i =1, m 2 1}, »

We can define the completeness and strong completeness for predictive
context L-systems in the same way as for regular global context L-systems. We
can prove that it is undecidable whether a predictive context L-system is
complete. However, in this case we cannot show that for every predictive context
L-system it is possible to construct an equivalent strongly complete predictive
context L-system. - We can only show that every complete predictive context L-
system can be made strongly complete.

We will now define the contribution of a symbol and a direct derivation
in predictive context L-systems which we will need in the proof of the next lemma.

Definition 9. Let G = (Z,P,0) be a predictive context L-system. Let o be a string
in Z*, o # €. We say that o directly derives 8 (in the predictive context L-
system G) if a E» B. Let a;,ay,...,a, be symbols in I such that o = 5. ...

Let B;,B5,...,8, be strings in I* such that B = ByBy...B, and for every i,

1 < i <k there exist m,n > 0 such that (ai,Lastm(#B]Bz...Bi_1),Bi,
FirStn(Bi+1Bi+2"'Bk#)) € P. Then Bj is called the contribution of.aj, 1<j=<k
to B (in the direct derivation from o).

Let the relation %> be defined for any j = 0 as follows.
(i) ) %> o for any o e 5.

(i1) o é» B for i >0, a ¢ Z+, if there exists y e 5 such that

i-1
=> vy and y = RB.
e

Similarly we can define the direct derivation and contribution and
i .
relation => if G is a context L-system, a rule context L-system, etc.

S
319d

Lemma 3. The language L = {a :1 20, j 20} is not a predictive context

L-language.
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‘fProéf.  Suppose that there exists a predictive context L-system
G = ({a},P,0), L = L(G). Let # be the endmarker. We may suppose without
loss of generality that there exists an integer n, n > 0, such that

pcifalx y {#fartuvifa'l xu {a'} x v
i=1 n i=1 i=1

m, m > 0. LetL2 = {a3 n o=z 0}, L'I = {azn:n > 1}, C'lear"l_y, L] $ L and

{a'#} v {a"} for some integer

L2 ¢ L. Since L is infinite, there exists an integer p, 0 < p < m such
that (a,an,ap,an) e P. We will now prove several propositions which the system
G has to satisfy in order to generate the Janguage L.

Proposition 1. There exists exactly one integer p, p > 0, such that
(a,a",aP,a") € P.

Proof.  Suppose that there exist at Teast two different rules in P without the
endmarker in their context. Since L2 contains infinitely many strings, there
exists a rule g, = (a,a",ap1,an) in P,p; > 0, and an infinite subset A of

L2 such that for any a ¢ A there exists B € L, B E> o and the rule a5 is

used at least twice to directly derive a from B. Let qQ, = (a,an,apz,an)
be a rule in P, Py # Py- Let o ¢ A, Tet B € A be a string, B E> a such

that the rule 9 is used at Teast twice in the direct derivation of o from
B. Since we may replace twice the use of 9 by SPY

lal+2(p,-p;) -~ al+2(py-py)
B E> a . Since the Tlength of a is an odd integer,

Idl+2(P2'P])
a € L2. This is a contradiction, since there is no integer

c # 0 such that aleltc

€ L2 for any o € A. Thus there exists exactly one
integer, p, p > 0, such that (a,a",a",a") « P. 0

Proposition 2. Any string of L, Tonger than 2(n+m) is directly derived
from a string in L2.

Proof. Suppose the(e exist integers i > 0, j 2 0 and k > 0, such that

i Kk 1aJ
3K 52 (n+m) and a2 3 Eo a3 . Let Cy be the number of symbols of a2.3

on which rules with the endmarker in their context is applied in the direct
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k _ k

derivation of a3 and Tet C, is the length of their contributions to a3
.o .. SaJ n
Then 3k - (2'3d - c1)p tcy = 213Jp-c]p + ¢,. Therefore, a2 3 3 a S,

where n = (253j-c])'p tc, for any s = i. Since Cy = CyP is an odd
k
integer, ng has to be a power of 3 for any s 2 i, i.e. n_ =3 S for an

k : s
integer ks’ kS > 0, and thus p = (3 S+c]p-c2)/253‘]. Clearly, if Sq = 52+1,
k .
then k. > k_ . Since p is a fixed integer, 1im(3 Stc p-C )/253J = o,
S S 17 =2
1 2 K S
which is a contradiction to (3 s+c]p-c2)/2533 = p. a0

34

Proposition 3. There exist integers q > 0 and Cq such that (a,an,a ,an) e P

la] -39

and for any o ¢ L],lal > Cps @ E> a
. 3d sk
Proof. Let j be an integer, j > 2(n+m), such that a E» a~ for some

integer k, k > j. Since 3k 2(n+m), the rule (a,a",a",a") has to be used

k

. 3 39
to directly derive a~ from a

33. Let c, denote the number of symbols of a
on which rules with the endmarker in their context is applied in the direct
derivation of a3k from a3J and let Cy denote the ]ength of the contributions
of these g symbols to a3k. Then we have 3k = (3j—c1)p+c2 = 3jp-c]p+cz.

Since 3jp-c]p+c2 is an_odd integer, 31p-c]p+c2 is an odd integer for any
31 S?p-c]p+c2 ; ki
iz j. Thus a E> a for any i > j, and 3 p-Cqptc, = 3 for

k. . kK.-1 k.-1 .
some integer ki’ k > 0. Therefore p = (3 1—cz)/(31-c1) =3 +(c13 ! -c2)/(31—c] ).

IA

Since 1093(p- %& < k;-1 1093(p+%0 for i > 1093(]2(c]p-c2)l), we have that

' k.-1 . k.-1i
]im(c13 1 —c2)/(31—c1) = 0. However, p is an integer. Thus, c,3 1 -C, = 0
1> ks-i k -3
for all 1 > j, and 3 ! is a constant for any i>j,and p=3 . Let

| (lal-cq)3%c q
q=k-j. Letael, |a] > Cy- Then o 39 a 1 (. aIOL|3 . 0
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Proposition 4. Let o be a string of L2. If B is a string such that o ED B

and |B] > 2(n+m), then B ¢ Ly.
T3]
Proof. Suppose that there exists o € L2 such that o I a2 3 for i >0,j 20,

213d s 2(n+m). Let k be an integer, k > 0 so that a = 3K, Let d, be

the number of symbols of o on which rules with the endmarker in their context
: .3
is applied in the direct derivation of a2 3 from o and Tet d, be the Tength

| ia3 L
of their contributionsto a2 3 . Then we have 2'3J = (3k-d])3q+d2 = 3k+q—d]3q+d2,

and d2-d]3q is an odd integer, since 3k+q is an odd integer and 213j is an
i _
even integer. Therefore for any 1 > c,, a’ T B where |81 = (2"-d1)3q+d2 =

= 2n3q-d]3q+d which is an odd integer. Thus B ¢ L2 which is a contradiction

2
to Proposition 2. d

Now we will complete the proof of Lemma 3 by showing that the
predictive context L-system G cannot generate all stringsin L1. Let k be an

integer, k > 2(n+m). By Proposition 4 there exist integers i >0, j 2 0
| 2izd ok 213
such that a E> a- . Let dT be the number of symbols of a on which
rules with the endmarker in their context is applied in the direct derivation
k i k
2 23

of a~ from a and let d2 be the length of their contributionsto a2 . Then

we have 2k‘= (213j-d])3q+d2. Since i > 0, dz—d13q is an even integer and

dz-d]3q # 0. Therefore, for any a e L,, |a| > max(d;,cy), where ¢q is
, (1al-d;)3%d,
defined by Proposition 3, we have o T2 € L2 and also, by

q_; a9
o] 39 1030 10l37-d;37Hd,

L a

Proposition 3, a g 0 Clearly, strings a

- cannot be both in L, for any a,la] > max(dy,cq) unless d2-d]3q = 0, which is
‘ k
a contradiction to d2—d]3q # 0. Therefore, G cannot generate the string al ,

k > 2(n+m) and thus L # L(G). 0
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Theorem 3. T g V.

Proof . Let G = (Z,P,0) be a predictive context L-system. Let k, m be natural
numbers such that {a] < k, |yl <m for any (a,a,8,Y) €« P. Let A be a finite
automaton, A = (K,P,é,qO,F), where K = (First(#zk']) u Zk) X (Last(zm'1#) u ™
v {gph, F=Kn (Zu {#17* x (#), and & is defined as follows.

(1) If p = (a,#,8,Y#) ¢ P where a ¢ £, and B,y ¢ £*, then
(Last, (#8),v#) e 6(qy,p).
(ii) If p = (a,#,B,y) € P, where a ¢ I, and B,y € £*, then

(Last, (#8),v8;#) e &(qy.p) for any 8 ¢ .£* such that
181 = m-!yl-1, and (Last(#B),de) € 6(do,p) for any 6, e z*
| such that IGZI = m-|vy].
(iii) If p = (a,0,8,y) € P, where a ¢ ¥ u #z7 and B,y e £*, then
(Lasty (v{aB),vv,8) € 8((yqa,Byy,).p) for any v e £* u #Z*,yz € I*,
8§ € £*¥ u I*# such that (y]a, Byz) e Kand |8 = |B|, and also

(Lastk(y]as),yyz#) € 6((§]a,6yy2#),p) for any vy € * u #I*, and
Y, € I* such that (ya,Byy,#) « K.

*, then

stich that

(iv) If p = (a,a,B,Y#) € P, where a € ¥ u #z% and B,y € L
(Last, (v;aB) ,v#) « 8((vja,8v#),p) for any vy ¢ £ v #2
(Yqo,8Y#) € K.

It follows from the construction of automaton A that if PP« P, € L(A),
where p; < P, p; = (ai’ai’Bi’Yi) for 1 <1 <n, then aja,...a & B;B,...8 and

*

vice versa. Therefore, the regular global context L-system G' = (Z,P,P',L(A),o),
where P' = {({a,B,0,v},a,a):(a,B,0,y) e P}, generates also the language L(G).
Thus X < Y.
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1,3
In Example 1 we have shown that the language L = {a3 2 120, j 20}

is a regular global context L-language. However, by Lemma 3, L is not a predictive
context L-language. Thus, the inclusion is proper. 0

It has been shown in [10] that the family of regular languages is
included in the family of context L-systems. It is easy to modify this proof to
show that all regular languages containing a nonempty string are also included
in the family of predictive context L-languages.

Let the family of regular languages be denoted by REGULAR.

Theorem 4. REGULAR-{{e},¢} ¢ T.

Proof. Let L be a regular language which contains a nonempty string. Let
A = <K,Z,6,q0,F> be a deterministic finite automaton with § - KxZ > K accepting
L. Let n be the number of states in A. Let B = {a:a € L1 la] < n}. Clearly, B
is a finite, nonempty set. Let 0 be a nonempty string of B. We can write
o = 33y...35, where j = 1, a; < I for 1 <43 <j. Let G = (Z,P,a]) be a predictive
context L-system with the endmarker #, where P consists of the following rules.

(i) | ay > <#,B,#> ¢ P for every 8 in C, wheré C=Bu {b]bz..;br: r=2,

- * Lok
b]bz...bkbi+]bi+2...br— OL-I, (S (qo,b]bz.-.bk) - 6 (qO,b-Ibz...b_i)
for somé integers. i,k,1 <k <i <r, and if 6*(q0,b] 2"'bs) =

* . _ s
S (q0’b1b2'f‘bv) for k <s <v<1ithens==kandv = i}.

(i) a; > <#B,e,#> ¢ P for 1 < i < j and B ¢ C.

(iii) a > <#B,a a,e> ¢ P for any a € £, a,B € £~ such that Bay ¢ C for some
v e I¥, 6*(q0,8a) = q for some q ¢ K, 8*(q,a) = g and if
6*(q,a]) = 6*(q,a2), a; and a, being prefixes of a, la]I < |a2|, then
either Gy = Qy Or 0 = € and a, = o.

(iv) a » <g,a,e> ¢ P for any a ¢ I.
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Clearly, P is a finite set. Using rules in (i) and (ii), the predictive
context L-system P generates from 0 in one step all strings in C. Using
rules of (iii) and (iv) the predictive context L-system P can generate

from string B]BZ in L string B]a 82 if B] leads the automaton A from the
starting state to a state q and o leads the automaton A from q to q withdut
going through any other state more than once. Thus L(G) = L and therefore
REGULAR-{{e},} < I. )

Since the language {a2 :n = 0} is in I, we have that

REGULAR-{{e},¢} ¢ . 0

Now, we will compare the generative power of TOL-systems with that of
context sensitive L-systems. The family of TOL-languages will be denoted by TOL.

Theorem 5. TOL * II.

Proof. TOL does not include all finite sets as shown in [9]. Therefore, it
follows from Theorem 4 that I ¢ TOL. We have shown in Lemma 3 that the language
: i |

L= {a3 2 :1 2 0,j 2 0} is not a predictive context L-language. However, L is

generated by TOL-system G = ({a},{{ a - aa},{a - aaa},a). Therefore,
TOL ¢ 1. W

Theorem 6. TOL g Y.

Proof. Let G = (Z,P,0) be a TOL-system, where P = {P], pseeesPp }.
Let G' = (£,I',P',Q,0) be a regular g]oba] context L -system, where
r = {5]’52""’Sn}’ Q is denoted by ST + 32 +...+sn, and P' is defined as follows.

P' = {(A,a,a):a € £, a € Z¥, (a,a) P, for some i, 1 < i <n and

A = {sj e I':(a,a) € Pj}}, i.e. a rule p has label S5 if and only if p is in the
table P Since the control set Q allows to use at one step in a derivation
on]y ru]es which all are from the same table of P we have L(G) L(G'). Thus
TOL ¢ V. U
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It follows from Theorem 3 and Theorem 5 that the inclusion is
proper. O
Lemma 4. The language L = {(anbncn)m:n,m > 1} is not a context L-language.
Proof. Suppose that the language L = {(anbncn)m:n,m > 1} is generated by
a context L-system G = (2,P,0). Let‘# be the endmarker. We can suppose

without Toss of generality that there exists an integer k, k = 0 such that

k'.l _i k k"] .i k J .
Pe(ul#lzl vz xzx Uz # v ) x U I for some integer j, j > 1.
i=0 . i=0 i=0

We will now prove several propositions which the system G has to satisfy in
order to generate the language L.

Proposition 1. Let Ai = {oc:(aTb]ci)m E> a for i 21, m> 2k + 1}. For any

i =21 either A, is a finite set or there exists a natural number n, such
n. n; n,
that A, < {(a b Te WYem = 13,

Proof. Let i 2 1 be an integer so that Ai is infinite. Letm> 2k + 1.

Clearly, (aibici)m e Bin_Zk

leftmost, rightmost symbols of (a1b1c1)m respectively, in the direct derivation

61, where Bi’ 61 denotes the contribution of 3ki

and Y; denotes the contribution of a'b'c' not among 3ki leftmost or rightmost

symbols of (a1b1c1)m. Since m can be any integer bigger than 2k+1 and since
n. n. n,

A s infinite, there exists an integer ngs ng > 0 such that Y = (@™ 'chs

n, n; n.
‘for some integer s, s > 0. Thus Bivy = (@b 'c ™", r>0. Suppose that
a'b'c! which is not among 3k; leftmost or rightmost symbols of (a'p’c)™

can contribute in a direct derivation from (a'b'c")™ a string y%, Y% # Yio

. i i iym 1 m=-2k-1 . .
Since (a'b'c’) ® BiYiY §; e L, either y; = ¢ or

. n. N. n. s
Y5 = (a b e 1) ], where Sy is an integer, S1 > 0 and $4 # s. Therefore,
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C e n, n; n;
if (a1b1c1)m = B, m>2k+1then g=(a 'b'c ") for some integer -
g, q > 0. a

Proposition 2. There exists exactly one integer g, q > 0 such that if

<a¥,a,a% > o € P, <b,b,b% > g ¢ P, <«cX,c,cKs » Y € P then o = a9,

B = bq, Y = cd.

Proof. Let i > 2k, let o, B, v be strings in z* such that

Py = <ak,a,ak> + o € P, py = <bk,b,bk> + B ¢ P and Py = <ck,c,ck> +v e P.

i1 i\m i-2k i-2k i-2k -2
Then (a'b'c!)" = 6](a]a1 a28161 Bzy]y1 yz)m 8,5 where §;,8, denotes

the contribution of 3i leftmost, rightmost symbols of (a1bici)m respectively,

ars Gy denote strings derived from k lTeftmost, rightmost a's in a'blc!

in the direct derivation, similarly B]’BZ’Y]’YZ' Since
51 (a0 a8, 87 Ky, 17Ky )25, ¢ L for any i = 2k, either o = (aPbPcP)S

for some integers p > 0, s > 0 or o = aq, g = 0. Suppose now that

a = (apbpcp)s, p,s =1 and furthermore suppose that there exists a',0' # o

such that <ak,a,ak> + o' € P. Then we have

. i-2k-1 §-2k.  i-2k_ \in-2
Y Y2)

Gl(alu o 0oBy B BoY; 8, ¢ L for any i > 2k, m > 2.

Therefore o' = (aPbPcP)", r = 0. However, in this case we cannot generate
in G all strings(a'b'c')™ for i > p which is a contradiction to L = L(G).

Thus, o # (apbpcp)s, p,s > 1. Suppoée now that o = a9, g = 0 and furthermore

suppose that there exists a' # o such that <ak,a,ak> +~a' € P. Then we

i i i i-2k-1- i-2k i-2k i-2k i-2k
have (a'b c1)m => 6]a1u1 Sa'asa28161 82y1y1 y2(a1a1 a28161 82

Y]Y1—2kY2)m-353 el forany i > 2k, m>2,0=<s < i-2k - 1. Since i can be
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any fnteger bigger than 2k and m can be any integer bigger than 2 and
0 <s < i-2k-1, clearly, &' < a* and furthermore o' = a, which is a
contraction to o' # . Thus, there is exactly one integer q = 0 such
that <an,a,an> > a% ¢ p. Similarly, we can show that there exist unique
integers U, v such that if <b",b,b"> » B8 e P, <c",c,c"> v € P then

8=0bYand vy = c'. Thus we have (aibici)m g 6](a,a(i'Zk)qaZB]b(i'zk)u

(i-2k)v m—26

BZY]C yz) o Suppose that q = utc, where ¢ is an integer, c # O.

Let fa(a) be equal to the number of a's in a, and let fb(a) be equal to

the number of b's in a for any a ¢ £*. Then,

o (i-2k) (i-2k)u (i-2k)v. \m-2. _ m=2
f,(87(0qa T,8,b Bovq€ ¥o)" 08y = (8185 (0q08y By 1) 0N+

(u+c) (i-2k) (m-2), and fb(G](a]a(‘"Zk)qazs]b(i'ZK)“szy]c(1‘2k)vy2)m‘252 -
. -2 :
—fb(6162(a]a28182y]y2)m )+ u(i-2k)(m-2). Therefore, 1im(f2(d]62(a]a281Bzy]yz)m-zz)

j->00
+(u+c)(1—2k)(m-2))/(fb(6162(u]a281Bzy]yz)m'2)+u(i—2k)(m-2)) = (u+c)/u #1. A contra -

diction to a](a1a(1‘2k)qa261b(1f2k)” (i-2k)v, ym-24

BZch Y1 o € L. Thus, q =u

and similarly we can show that q = u = v. To generate infinitely many strings,
clearly, g = 1. O

. Proposition 3. Let nss A., i =21 be defined as in Proposition 1. For any

.l,

iz 2k+1, Ai is infinite and Niyq = ui+q, where q is defined in Proposition 2.

+1

Proof. It follows directly from Proposition 2. O

Proposition 4. Let A = {(a2k+]b2k+]c2k+])n:n > 1}, let B = {a:a ¢ Ai and Ai

is finite, 1 <1 < 4k+1} u {(a'b'c')™1 = m < 2k+1, 1 < i < 4k+1}. There

* (a2k+1b2k+1c2k+1)n

exists a constant r such that if o e for an integer n,

i, (a2k*1p2Kk+T 2k+Tyn

n =1 then a for an oo ¢ B u 1o} and i < r.
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Let r = 4k+2, let n be a natural number, n > 2k+1. Let

be strings in L such that ) = o7, B, = (a2kH1p2k+1 2kt Tyn

n n

P

and Bs T Bs+1 for 1 <s < pn-l. Let u],uz,...,up be integers such that

u
Bg =
Ph =
o1 > 4k+1,

there exist Vis Vo such that Pyt S Vg Pyt S Vp <V, <Py and uv] =u

u., u_m n

(a b S¢ 5) 5,1 <s <p_for some integer m_, m_ > 0. Suppose that
n

S S

r and none of Bi’ Pyt < i< Py is in B u {o}. Since n; > 2k+1 for

we have that ug < 4k+1 for any i, Pyt < i< Py Therefore

v2‘

Since Bi ¢ Bu {o} for p-r < i < P> Wwe have that n =n for

u u
+ +
Vits Vots

0<s < PhVos and therefore n =u_ = 2k+tl. Thus B e A,

- and n

2k+1+v2-v]

u - p V,+p -V
Vitp,mVo n 1%n "2

= Noppps 3 contradiction to Proposition 3. 0

Now we will complete the proof of Lemma 4 by using Proponsition 4.

It follows from Proposition 4 that A < C, where C = {a:B %» a, 0<ix<r

and B ¢

Bu {o}}. Clearly, C is a finite set, since B is a finite set.

However A is an infinite set, a contradiction to A € C. Thus L is not a

context L-language. O

Since we have shown in Example .3 that the language

L= {(a""c¢™)™:n,m = 1} is a predictive context L-language, it is clear that
context L-languages do not include all predictive context L-languages.

Theorem 7.

Proof.

T¢Q.

It follows directly from Lemma 4 and Example 3. O

Now, we will compare the generative power of context sensitive grammars

with that of predictive context L-systems and regular global context L-systems.
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Theorem 8. For each type 0 language L over alphabet T, there exists a predictive
context L-system G such that L = L(G) n T™.

Proof. Let L be generated by a type 0 grammar G, = (N,T,P,S). Let
G = (z,P',S) be a predictive context L-system, where
£=TuNu {{p,p):P € P} u {(p,A):p ¢ Pand A ¢ N u T}, and P' is constructed

as follows.

(i) If A+oa e P, where Ae N, a e (NuT)", then A>a e P'.

(ii) Ifp-= A]AZ"‘An -> B]BZ"'Bm e P, wherevA],AZ,...,An,B],Bz,...,BmeNuT,
m 2 n, then Ai - <(p’A1)Bl(p’AZ)BZ"'(P’Ai-1)Bi-]’(p’Ai)Bi’
(psA.H_] )B‘I‘H (p:Ai+2)Bi+2- o (p’An_] )Bn_] (p3An)Ban+] .o °Bm(p:p)> e P
for 1 < i <n-1, and An -+ <(p,A])B](p,Az)Bz...(p,An_1)Bn_],

(p,An)Ban+]...Bm(p,p),e> e P'.

(iii) If p= AAy. AL BiB,...B ¢ P, where A]’AZ""’An’
B]‘BZ""’Bm eNuT, T <m<n. Then
Ai 7 <Ay 0By (PaAg 0By PRy 1085 (A1), (oA 0By,
(p,Ai+2)Bi+2...(p,Am)Bm(p,Am¥])(p,Am+2)...(p,An)> e P' for
s i sm, and A > <(p.A7)B, (A))By. .. (pA JB (p.A )
(p,Am+2)...(p,Ai_]),(p,Ai),(p,Ai+])(p,Ai+2)...(p,An)> ¢ P' for
m+l < i < n.

| (iv) If p = AjA LA é, where A]’AZ"“’An e NuT, n>1, then

Ay > <(PaAy paAy) e (puAy 15 (PsR) L (p0AL ) (puA ) (pLAL)> € P!
for 1 < i < n.

~n

(v) (p,A) > € e P', and (p,p) > € « P' for any peP, AeNuT.
(vi) A~>AeP' forany Ae NuT.
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It follows from the constrqction that if aA1A2"‘AnB §? aB1BZ"'BmB’
where AjuAy,...5A 1B1,By,. By € NuT,a,8 ¢ (NuT)* using the rule
AJA,.. AL > BiB,...B sm = n, then aAjA,...A B g a(p,A])B](p,AZ)BZ...
(p,A)B B 1. .B (P,P)B 5> aByB,...B B, and if ayB &> a(p.A;)B,(p,A,)B,. ..
(p,An)Ban+]...Bn(p,p), then y = A]A A_. The same can be shown if other types

20.. n
of rules of G1 are used. Therefore S @9* o, where oo ¢ (N u T)* if and only if
S =>* a. Thus L(G,) = L{G) n T*. 0
G} 1

Let the family of context-sensitive languages be denoted by CS.

Theorem 9. I * CS.

Proof. Suppose that T < CS. Since context sensitive languages are included in
recursive languages and recursive languages are closed under intersection,
L n T* is a recursive language for any L in I and any alphabet T. This is a
contradiction to Theorem 8. Therefore, I ¢ CS. o

We have shown in Lemma 3 that the 1anguage-L = {a3123:i > 0,j 2 0}
is not in II. However, L is clearly a context sensitive ]anguage. Therefore,

CS ¢ 1. g

Now, we would like to compare the family of context sensitive languages
to the family of regular global context L-languages. It is clear from the
previous theorem and from Theorem 3 that the family of regular global context
L-languages is not included in the family of context sensitive languages. To
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prove that the family of regular global context L-languages does not contain
all context-sensitive languages we introduce the concept of exponentially dense
languages. ‘

Definition 10. Language L is called exponentially dense if there exist constants

9 and <y having th? fo%]owing property: For any n > 0 there exists a string
n-1)co

a in L such that c,e < lal < c]encz.

Lemma 5. Any regular global context L-language which is infinite is exponentially

dense.

Proof. Let L be an infinite, regular context L-language. Let G = (Z,I',P,C,0)
be a regular global context L-system generating L. Let ¢y = lol,

d, = max {1yl :(A,a,y) € P for some Acl', a ¢ £ and v ¢ Z¥}. Let ¢, = log d,.

Since L is infinite, d, > 1. If n = 0 then,clearly, c; < [0l < ¢y e 2. Letn
be an arbitrary fixed integer, n > 0. Since L is infinite, there exists a ¢ L

nc
such that |a] 2 c, e 2, Asa el and ja! > |og] there exist k > 1 and

81’82""’Bk e L so that Bi = Bi+1 for 1 ﬁci < k-1, B] =g andngk = o. Let j be
an integer, 1 < j < k such that |B.| < c,e 2 and [B..,| =2 ¢, € 2, Clearly,
J 1 3+ ! (n-1)c2

. ) ncoy _
such integer j exists. Now we have Ile 2 lBj+]|/d2 2¢c e /d2 =Cy e O

n
Lemma 6. The language {a22 :n 2 0} is not a regular global context L-language.
2n
Proof. The language {a2® :n > 0} is not exponentially dense and therefore by
Lemma 5 is not a regular global context L-Tanguage. 0

Theorem 10. CS $ ¥,
Proof. By Theorems 3 and 9, ¥ is not included in CS. The language

n .
L = {a22 :n > 0} is a context sensitive language, however, L is not in ¥ by

Lemma 6. g
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