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ABSTRACT

Let (S, +) be a finite commutative semigroup, H a

subset of 8, and b an element of §S. We define the

\c

semigroup program (H, b, ¢) as minimize ct over

(t, eIN: t,. 2 0, h € H) satisfying I t,*h = b (where z
h h . ~ "h ~
~ c heH
is the iteration of + and tﬁﬂh: L h); (H, b, c) 1is
: i=1

13

a master sémigroup program.when .H is the whole S. These
definitions include Gomory's groups and master group programs.
They also include the intéger covering programs: minimize

ct over integer solutions t 2 0 of At 2 b where A 1is

a matrix and b 1is a vector both ﬁith non-negative integer
entries, the columns Aj of A are gll different apd less
than or equal to b; the semigroup here is

({s: 0 < s < b, s integer}, +) with s + r = min(sA+ r, b)
(the minimum is takeq component by component).

We call 'E(H, b) the convex hull of the solutions t

of Z th

heH

of solutions x of some finite systems (a"x 2 a,: 1€ 1).

*h = b, E(H, b) is a polyhedron, that is the set

Knowing any one of these systems, the program (H, b, ¢c)
would become an ordinary linear program over E(H, b).
When P 1is a polyhedron we define its B-polar

polyhedron P? to be the set {y: xy 21 for all x e P}.

A4
We call P B-closed when P = PBB.. We characterize the

B-closed polyhedra and show the relation between minimal

systems of linear inequalities défining a B-closed

8

polyhedrdn P and extreme points and extreme rays of P .

These results extend the results of Fulkersonm on blocking

+

2



polyhedra.

We characterize those semigroup programé with P(H, b)
f~closed, in this case we use the results of polarity to
obtain minimal sysfems for B(H, b), thereby'extending
Gomory's theory charactérizing P(H, b) for group programs.

For mastervsemigroup programs, systems of inequalities
are also prbvided by the extreme pointé qf more highly
structured programs.

s 1is a b—compiemento: of s when s + s = b and
s+ r=nh+ s = b implies r + h =0b, (S, +) 1is b-complementary
when every element‘in S. has a b-complementor. For a
master b-complementary éemigroup program (S, b, c) we
obtain the following result: (g 2 0; vix 2 1: i € I) 1is
a minimal system for E(S, b) when v : i ¢ I are the

e eme i : = . > r .
Xtreme points of {w 2 0 T 1 mg + m_ "str’ s, € S;

T + T o= 1, 8 a b-complementor of s}.

We give some algorithms to solve semigroup programs

based on similar ones for group programs.
We obtain analogous results for integer packing programs

maximize- ¢t over non-negative integer solutions t of

A

At b , where A, b are defined as in covering programs.
Let S = {a: 0 £ a < b, a integer}, a master packing
program have all eiements of S .as columns of A, for
this program:‘(x > 0; vix € 1: i € I) is a minimal system
for the convex hull of integer solutions of (t 2= 0; At < b)
when vig i e I are the extreme points of

{n > 0: Tyo= 1; " + L < “s+r.f°r all é, reS, s +r1r s by
T4 oT =1 for all s e S}.
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Chapter 1

INTRODUCTION

1.1. Summary of Results*

This thesis is concerned mainly with semigroup
programs. Our interest in éemigroup programs derives
from their relation to integer programming as we will

show in this introduction.

Let (S, +) be a finite commutative semigroup and
let H be a subset of S and b an element of S. For
any vector ¢ € IRH (IRE

+ is the set of non-negative

real vectors (xh 2 0: ' h e H)), we define the semigroup

program (H, b, ¢) over (s, +) as
(1.1.1) " minimize ct, over
(1.1.2)  non-negative integer vectors ¢t = (th: h ¢ H),

(1.1.3) satisfying - I th°h = b‘,
heH

where I 1is the iteration of + and k*s is defined for

any non-negative integer k and any s in S as

=

S.
1

z

i
A sémigroup program (H, b, ¢) over (S, t) is
called a master semigroup p%ograﬁ when Hb is the whole
< ,
| Gomory introduced (commutative) gfoup programs in
(631, [G4] and [G5]. A group program (H, b, c) over
(S, +) 1is a semigroup program with (S, +) being a
finite commutative group. |
The results in this tﬁesis about semigroup programs

* The notation used in this section is given in section 1.3.



are not new for group programs, they appear in Gomory [G5]
and Gomory and Johnson [G6]. But the development here is
different and we believe our presentation clarifies the
concepts involved. T

'Furthermore semigroup programs also include (integer)
covering programs. A covering program (A, b, c¢) 1is

defined for any vector ¢ in lRJ gs:

(1.1.4) minimize ct, over
(1.1.5) non-negative integer vectors t = (tj: j e J),
(L.1.6) satisfying At = b.

Where A 1is the matrix (a?: i eI, j eJ), b is
the vector (bi; i e I) a?d?both A and b have
non-negative integer entries.

The ;esults obtained for coveringvprograms using
the results obtained_for.semigroup programs are new.
Covering pfograms and group programs motivated our interest
in semigrouﬁ programs in general;

Group programs were introduced because of a relationship
to integer programming and Yith_the hope that they will
be easier to solve than the integer programs (this
hasn't been proved) and becauée they.wi}l give insight
on the structure of the integer ﬁrograms. These same
statements can be claimed about semigroup programs and
their relation to covering programs.

&e will outline hefe the relationship between group

programs and integer programming. The relatioq_with



Smith Normal Forms can be found in Hu [Hl].or
Garfinkel and Nemhauser [GZI.

Let A .bevthe matrix (ai elNJ: i € I) and b be
the vector (bi: i € I), we assume rank 0f A equals
|1}.

(1.1.7){ An integer program is the program given by

:
©(1.1.8) maximize I c_ x,
jeJ 3

over vectors i(xj € R: j € J) satisfying
(1.1.9) Ax = b,
(1;1.105 x 20,
(1.1.11) xj in;gge? for all j e J.

(1.1.12) Let xo be an optimal basic solution of
the linear pfogram (1L.1.7) to (1.1.10) with (1.1.11)

omitted. Let KX be a subset of J satisfying |K| = I,

rank of . Ay equals rank of A and K 2 {j € J: x? z 0}.
Let L =J - K. We can now- formulate the integer
program (1.1.7) as
(1.1.13) maximize ¢ A-lb -A(c A-lA - c.)x
: ) KK KK "L L°7L
over solutions of ' : .
b Azt » '
k 7 Ag (b A,
xK, xL 2 0, xj integer for all j € J.
(1.1.14) Let d, = ¢ A_lA - ¢ H, = A—lA' and
R . L Kk L L’ L K “L
b = A—lb, d. is non-negative because by choice of K



0 -1 0

we have x_ = A_"b and x_. = 0. Consider the

K K L
of (1.1.13) in which the inequalities Xy

this relaxation is equivalent to

\..

L7L

2 0

(1.1.15) minimize d.x over éolutions

satisfying

(1.1.16) Xg = b - HLxL, L

X, 2 % integer,

are omitted,

K)

*x

integer.

(1.1.17) Any solution x of (1.1.9) to (1.1.11)

satisfies (1.1.16), moreover cx = cKB.— de

K

and c¢x < cx'. That is when x' is an optimal solution

K

L
is an optimal solution of (1.1.15) , (1.1.16) and

If

x'

x, 2 0 then x' 1s a solution of (1.1.9) to (1.1.11)

of (1.1.15) and (1.1.16) and: x! 2 0, it is also an

optimal solution of the integer program (1.1.7).

The interest in'group programs is because system

(1.1.15), (1.1.16) is eqdivalent to a group program.

(1.1.18) We have x, = b - H x  is integer if

K LL
and only if HLXL = b (modulo 1).
We denote by Hf: f e L the columns
H

(1.1.19) Let = {h e [0, 1]%: n =

‘We define r + s r + s (modulo 1) for

Let S8 ='{s € [0, l]I: s = L xlh (modulo
h
. heH

L 4
Then (S, +) 1is a finite group generated

a proof see [G2], Chapter 7).

(1.1.20) Let b' € [0, 1] satisfy b' = b (modulo 1)

and e, = min{df: h = H (mod 1)}. A consequence of our

feHd

of

He

any

1),

HL.

(modulo 1) for some

T,

s elRI.

relaxation

fel}l.



discussion is that to solve (1.1.15), (1.1.16) is equivalent
vto solve the group program (H, b', e) over (S, +)
and (by (1.1.17)) may solve the integer program (1.1.7).

We will describe now the rglations;ip of covering
programs with semigroup programs.

Given a covering program (A, b, ¢) we will make

the non-restrictive assumptions. i

[\
[wd

(1.1.21) b > 0, since b, = 0 implies a't :
for all t € lNi.

i i 0

(1.1.22)  a # 0: i € I, since a’ = implies no

t din lNi satisfies (1.1.6) when bi > 0. Notice that
with this assumption the set of solutions to (1.1.5) and

(1.1.6) is always non—empty;

(1.1.23) We assume that any colunmn Aj of A

satisfies Aj £ b. Because if Aj £ b then, for any

J

fe h 2 i i +
t e IN_, we ave At b if and only if AJ-{j}tJ-{j}

A}tj > b, where A' is the vector (min{a;, bi}: i e I).

3

. (1.1.24) We assume no two columns of A are equal.
Bacause otherwise, keepingronly one with minimum cost,
the optimal solutions of the new program are optimal

solutions of the o0ld one. . 4

(1.1.25) Let A(b) denote the set {a ele: a s bl.

For any al, 32 € A(b) 1let a; + 32 denote the vector
N & 2 L o >
(mln(ai +.ai, bi). i e I) in A(b).

(A(b), t) 1is a semigroup called a covering semigroup.



Now taking H to be the set of columns of A we
have that the covering program (A; b, ¢) is'équivalent.
to the éemigroub program (H, b, ¢) over (A(b), +)
because (tj: j € J) satisfies (1.1.5) and (1.1.6) if.

and only if (tA.: tAj = tj’ j € J) satisfies (1.1.2)
and (1.1.3). ?

For any semigroup program (H, b, c) we denote by
T(H, b) ﬁhe set of solutions of (lﬁl.Z) and (1.1.3). And
we denote by E(H, b) the convex hull of T(H, b).
Assuming that E(H, b)‘ is the set of solufions, x of
somé finite system (aix 2 ai: i € I), knowing any one
of these systems, the frogram (H, b, ¢) would become
an ordinary linear program over E(H, b).

Iﬁ,Chapter 2 we give the foundations of polyhedral
theory used in later chapters.

A polyhedron P is the set of solutions of a finite
system of linear inequalities, we call this a defining

.system of inequalities for P. When P = {x elRJ: Ax 2 b}
wé denote by 'ﬁAY(P) the set {x € RJ: Ax =2 0}.

Given a defining system of inequﬁlities for P. we
call the system irredundant when deleting any inequality
in the system the set of sdlutidﬁs is bigger than P.

In'sedtion 2.5 we'give'a summary of the elemental ]

properties about finite commutative semigroups that we

need.

In Chapter 3 we discuss three polarity types. For

any set P in IRJ the y-polar PY is the set
{y: xy 20 for all x e P}, the a-polar P® is the set



{y: xy £ 1 for all x ¢ P} and the B-polar PP is the
'set {y: xy 21 for all x € P}. The results for the
first two are not new and can be found in several texts
(Stoer and Witzgall [S3], Rockafellar [R1]), but the
results in B-polarity are new and extend resulté of
Fulkerson [F1] in blocking polyhedra.

PB is a polyhedron when P is a polyhedron.

We call P B-closed when P = PBB. We obtain the

following characterization of B-closed polyhedra.

Theorem (3.3.11). Let P be a non-empty polyhedron

strictly contained in IRJ. Then the following statements

are equivalent:
(i) P 1is B-closed. .
(ii) P 1is contained in RAY(P) and O % P.
(iii) P 1is the set of solutioms x of a finite

system of the form

m .
(a x 21, meM, M is not empty,
%% 2 0 » I e N .

We also show the relation between system of

inequalities for a B-closed polyhedron P and generating

sets for PB. Specially when P 1is full dimension we

obtain: . v
A4
Theorem (3.3.24). Let P be a full dimension

B-closed polyhedron strictly contained in IRJ.‘ Then the

system

.

n S
rx 20 , n e N;



is an irredundant defining system for P if and only if

B

{a®: m € M} is the set of extreme points of P and

{r®: n € N} is the set of extreme rays of PB satisfying
r® 2 2a® for any A 2 0 and all m e M," (that

is the ray generated by r® contains no extreme point).

Let A be the matrix (a? elRJ: i € I) and let Db

be the vector (bi e R: 1 ¢ I). Let P be the polyhedron
{x e RY: Ax 2 b}. For any 1I' ¢ I, the set {x e P:

alx = b, for all 1 e 1'} is a face of P. A facet of
P 1is a face of P with dimension one less than dimension
of P.  Whem P is full dimension and Ax 2 b is an
irredundant system fo; P, the facets of P are the sets
{x ¢ P:-a‘x = bi} for any i‘e I (for a proofiof this
see Pulleyblank {Pl]). Hence to characterize irredundant
defining systems:for P is equivalent to characterize
the facets of P. when P is full dimension. However,
we believe that the importance of the facets is that they
pro&ide irredundant systems. Thus we will refer to
irfgdundantlsystems rather than to facets. 1In Chapter 4

section 4.1 we define K-unbounded sets for any nonempty

set K ¢ J by:

T in lNi is K-unbounded when it satisfies

(i)i_O ¢ T and T = 9, B .
(ii) 4if t € T then tj = 0: j ¢ J - K,
(iii) for all t € T and for all j € K there is

k > 1 such that t + kéJ ¢ T.

Where lNi is the set of non-negative integer vectors
; .

in R and 67 are the vector wiéh all components zero



but the jth which is 1.
K-unbounded sets play a role in semigroup programs

because the sets of solutions of group and covering

N

‘programs belong to this class.

We obtain the following results:

Theorem (4.1.8)...For any J-unbounded set T in

lRJ, the convex hull P of T is a*full-dimension
B-closed polyhedron with the following irredundant defining

system:

’vx 21, for all éxtreme points v of PB,

3

x, 2 0, for all j € J such that min{t }= 0.
. ) ‘ teT

Furthermore the set PB is the set - of solutions
to the system
{tﬂ 2 1, for any minimal element t of T,

'ﬂj 2 0, for all j e J.

Theorem (4.1.12). Let T be a J-unbounded set in
R and K a non-empty subset of J. Let
K J. . S ' K
X7 = {x € R”: x, = 0 for all j € J - K} and T denotes
T n XK. The following relations hold between the convex

hull P of T and the convex hull PK of TK .

(i) P =1p nxX. | .
| K ‘ ' K
(ii) The set V of extreme points of P equals
the set V n XK where V 1is the set of extreme points
of P.

- Theorem (4.1.8) extends to J-unbounded sets theorem

(7) to (9) of Gomory [GS5]. Theorem (4.1.12) extends



theorems (12) and (13) of Gomory [GSi about the relation
betweeﬁ a group program and its master group program when we
regard T as an integerimaster program for TK,

These extensions will cérry ovér to;semigroup programs
(H, b, c) over (S, +) whose T(H, b) are H-unbounded
and in this case theorem (4.1.12) applied to any semigroup
program. (H'; b, ¢) over (S, +) when H' € H since we
can consider T(H', b) as T(H, b) % XH'.

In section 4.2 we introduce unbounded semigroup
programs. Giveﬁ a semiéroup program (H, b, c¢), we call
it unbounded (or H-unbounded) when T(H,_b) is H-unbounded.
| Let (S, +) be a finite commutative semigroup. For
any s, b € S wé define b ~ s to be the sét
{x € s: s + x = b}.

The follqwiﬁg éonditions are imposed in a semigroup
program (H, b, ¢) over (S, +) to.avbid trivial
cases; (s, ) 1is generated by H, b is not the identity
of the semigroup and b ~ h 1is non-empty for all h e H.

With these assumptions we obtain:

Theorem (4.2.16). A semigroup program (H, b, ¢)

over (S, +) 1is unbounded if and only if there is

k > 1 such that b = ke*b.

We congider a pblyhedral neopolariéy between two
families of polyhedra to be a relation which assigﬁs to
each polyhedron P. in the firsf family, one polyhedron
Q in the second family t&gether with a rule to obtain
a defining system for P knowing-the extreme rays and

extreme points of Q. The better known examples of polyhedral



neopolarities are provided by the polyhedral polarities
and this justifies the name.

In Chapter 5 we introdﬁce several polyhedral
ﬁeopblarities for ﬁnbounded master éemig}oup programs.

‘We can apply the results of section 4.1 to unbounded
semigroup programs. But also we can use the semigroup
structure to obtéin more informatio? about the extreme
points of EB(H, b). These points together with
inequaiities‘ Xy z 0 provide an irredundant system for
E(H, b).

‘Lét (S, +) be a finite commutative semigroup and
' iet b be an qlemenf in S. For all s, s € S we call
s a b-complementor of s when s % S =D and for all
r, h € S we have s + r =vﬁ‘t s = b implies r + h = b.
The semigroup ié called ﬁ-complementary when every element
has a b-complementor and uniquely b-éomplementafy when
every eleméﬁt has one and only one b-complementor.

It is easy to verify that for any element b in a
group, the group_is uniquely b-coﬁplementary because theunique
b-complementor'of any elemeﬁt s 1is b - s.

It is also easy to vefify that any covering semigroup
(A(b), +) 4is uniquely b-co;plementary because fpr any
s € A(b)v the wunique b-complementor of s dis b - s. .

L4

We obtain.

Lemma (5.2.23). A semigroup program (H, b, c) over

(§, +) 1is H-unbounded when (S, +) 1is b¥compleﬁentary.
Let (H, b, c¢c) be an H~unbounded éemigroup program

.



over (S, +). We show that the extreme points of EB(H, b)
are minimal points of ES(H, b) and that any minimal point
m  of EB(H, b) satisfies:

. N

Subadditivity: if h, r, h + r ¢ H then

T, o+ 1T =21
h r h+r

Monotony: if b ~h ¢ b ~r and h, r ¢ H then

o'l

Complementarity: if h, h ¢ H and is a

b-complementor of h then T + m. = 1.
: h

We also 6btain~ Ty, =1 when b ¢ ﬁ.
For groups the monotony condition is trivial because
when S is a group we havel! b ~s = {b = s} for all
s €-S. Therefore b ~ h € b~r 1is equivalent to h = r.
For covering programs the monotény condition is
relevant because when h, r € A(b) and h < r we have
b~h <c<b ~r, since for any s € b ~ h we have
b < h + s < r'; s, hence 8 ¢ b ~ r.

In master semigroup programs subadditivity has strong

implications.

v

Theorem (5.2.11). Let (S, b, ¢) be an S-unbounded

master semigroup program. If 7 elRi ,satisfies T 1

and "h + L 2 “htr for all ﬁ, r €¢ S then we have

7x 2 1 for all x ¢ E(S, b), i.e. = e EP(S, b).

This result for group prdgrams'is in Gomory and

Johnson [G6] (theorem I.5). -



As a consequehce of theorem (5.2.11) we obtain several
characterizations of defining systems for E(S, b) wusing
the extreme points of highly structured programs. In

particular we obtain: he

_Thedrem (5.2.25). Let (S, b, ¢) be a master

semigroup program and let (S, %) be b-complementary.
Then A : i

vxz21l ,1e¢e1I,

b
v

0 , s e85,

is an irredundant defining system for E(S, b) when

i, . o e
vi: i € I are the extreme points of

for all s, h e S,
T+ n_ =1 for ail § a b-complementor of s,
s -

" 20 for all s € S.

And the following conjecture:

Conjecture (5.2.35). Theorem (5.2.25) is still
valid with the weaker assumption (S, b, c) is
S-unbounded instead of (S,'i) being b-complementary.“

Theorem (5.2.25) for group programs is in Gomory
[G5] (theorem 18{. '

In Chapter 6 we describe a family of ﬁniquely
b-complementary semigroups larger than groups and covering

semiggbup and give some examples to show the difficulty

of characterizing uniquely b-complementary semigroups as a



sum of a given family of semigroups.

In Chapter 7 we introduce (integer) packing programs.

and obtain results similar. to those obtained for semigroup

N,

. programs.

A pééking program (A, b, c) 1is defined as

(1.1.26) maximize ct, over

-
»

(1.1.27) non-negative integef vectors t = (t

(1.1.28) satisfying At < b.

Where A and b are defined as in covering

programs. Let A(b)v be the set {a elNi: a <bl.

master packing program is a.packing program (A, b,

where the set of columns of A is the set A(b).

Using a-polarity we obtain:

Theorem (7.2.14). Let (A, b, ¢) be a maste

packing program. Then

m
vx<1, meM,

v

X 0, jedJd.

3

is an irredundant defining .system for the convex hull of

solutions of (1.1.27) and (1.1.28) when vi:im e M

the extreme poin%s of ' v

¢ : .
., = 1 when A. = b,
3 3 -
nj + T < LR when j,k,e € J and Aj +

1 ‘ .

' “j + T = 1 when j, k e J aéd .Aj + A

my 2 0 for all jJ € J.

r

A

k

k

c)

are

L4

= A

= b,

s



Finally, in Chapter 8, we discuss some algorithms
to solve semigroup programs. These algorithms are based

on similar ones for group programs.

1;2,' Remarks

We don't think that th;s thesis exhausts the topic
of semigfoﬁp programs, on the contrary we believe that .
this work opens a field where several éuéstions appear,
some in relétion with Integer Prdgramming and the possible
use of the theory exposed here in a better understanding

of this field or to obtain bettep algorithms to solve



integer progr#ms. Others are queétions opened by the
semigroup programs themselveé. Examples of this latter
type of question ére, |

Given avsemigtoup (s, i) and a ion element b in
S, is there an extehsion of S to a b-complementary
semigroﬁp? | |

or :

What is a characterization of reduced b-complementary
semigroups as sum of a small family of b-complementary
Seﬁigroups? In.Chaptér 6 we show the difficulty of such
characterization.

The extension of packing programs to packing semigroup
programs is under way and uses not only a semigroup
structure but also a partiallorder over the eléments of
the éemigroub, Qe are nowvtrying to put as few conditions
as possible in this.paftial order. We hope the'results
will be av#ilable very soon.

The defini;ion of K-unbounded sets is still too
restrictive, from the results in polarity of polyhedr; we
really are intérestéd in sets of integer vectors which
convex hull is.B—ciosed and.these sets are far more than
the K-unbounded. Therefore a more general definition is
desirable. 3

Respect to algorithms, those - known for group
programs (and therefore their extension to semigrqup
programs) gré theorgtically'inefficient, although they

may bé useful empirically. Thus research for more

efficient algorithms for éemigroup programs will be useful.



Respect to empirical results most of the work remains to
be done, no experimental data has been used and no
implementa;ion in Eurisﬁical programs have been intended,
gure1y a work for covering programs as the one reporﬁed
in Garry et al [G7] for group programs is necessary. From
the theoretical point of view, it is worthnoting
ﬁhat the iﬁportance of the cﬁaracterizétion of sysﬁems
H

of inequalities (redundant or not)‘for the convex hull
of the solutions of an inteéer program seems to reside mainly in
the possibility of utilization of the strong L.P. Duality
Theorem and the Compleméntary Slackness Theorem as in
Edmonds'_éaper_fEl].. Howevef it is noticeable that most
algorithms for group programs only use subadditivity constraints but
no complementarity and algofithms for covering programs
can also use m&notony, more efforts are due.

Knapsack programs, that is packing orbcovering
programs. with one eqdation have spécial theoretical
interest and speciél structure also., Knapsack covering
programs correspond to semigrbup programs over subsemigroups
of cyclic semigroups and tﬁey are always b-complementary
(see'sectidn 6.2). Special algorithms for cyclic semigroup
programs gain relevance an& their study is worthwhile.

InAconclusipn; we believe that the theory exposed ,
in this thesis is interesting by‘itsel% and by the
implications it could Have in the important and elusive
area of Integer Programming.

We want to pdint-out that in Goméry's papef [G5]

(as well as in other papers motivated by it) there are



a lot of other resul;s about group programs, some about
the relation of group programs with integer programs, others
about group programs themselves. We have checked several |
of the lattef'type and found that they have a semigroup

N
counterpart. We have not included them here because we
consider they are not so important or we don't need them
in the lime followe& in this thesis. However, we‘want to
"clarify the relation that other restults m;y have. From

the results in this thesis we can conclude:

‘(1.2.15 ‘It seems that to solve group programs 1is as
difficult as to solvé covering programs, maybe more,
since we have some structure in the characterization of
‘facets of master covering polyhedra which is not present
for master group polyhedr#.i Hence the study of differences
and similaritieé between group programs, semigroup programs
and covering programs may give insight to obtain efficient

algorithms for one of these classes.

(L.2.2) Some properties of semigroup programs and -
their polyhedra that have little thgoretical interest
may be very useful in the implementation of heuristic
algorithms. From thié point of view, it is important to

kcep in mind that most properties of group programs

translate to semigroups. ' v

v

We close with a quotation ffom Gomory ([G5], p. 452)
(here P 1is the convex hull of the solutions of an
integer program).

MSince any algorithm for the integef programming

problem, whether related to linear programming, branch



and bound, exhaustive search, or whatever, must end uﬁ
finding a vertex of P, information on P seems relevant
to any approach to the integer programming problem. Yet

information about P 1is very difficult to obtain."

1.3. General Notation

We use the symbol "=" to ini}cate a definition and
reserve the symbol "=" for denoté the equality of
”FWO objects. | |

If X and Y are sets wé denote ‘the union and
_intersec;ion of X and Y by X vu Y .and- X nyY
respectively. We leé X'-.Y dénote the set theoretic

difference, that is

X -y = {x ELX:'X'¢ Y} .

We denote ghe empty set by @.

We let |X| denoﬁe‘the cardinality of X.

We use X < Y to denote "X is a subset of Y"  and
we use X © Y to denote "XI is a proper subset of Y"
(thus X = Y). |

We denote the cartesian producf of two sets X

and Y by X x Y. Thus
X' xY =z {(x, y): x € X, y € Y}.

When J is a finite set, we denote the cartesian
product of |J] cqpies'of'a set X by xY. Thus

J

xY = {(x,: J € J): xj € X for all j e‘J}.

j’
' We let IR denote the set of real numbers.

L]



Chaptervz

FOUNDATIONS

2.1. 'Linear Algebra

Let J be a finite set. We let lRJ\ﬁ {(xj:,j € J):
X, €e R for all j € J}. We let O denote the vector
&hich is zero in every component, Gj the vector which

is zero in every component but j which is equal to 1,

- - i
and 1 'the vector whose components are all 1.

(2.1.1) A set X S IRJ is said to be linearly

independent if whenever I axx = Q0 for some (ax € IR:
xeX '

x € X) we have a =0 for all x ¢ X. Otherwise X

is linedrly dependent.

(2.1.2) Let X ¢ RJ. “A basis of X 1is a maximal

lineafly indépendent subset of X. The following result

‘is wéll known;

(2.1.3) Theorem. (Birkhoff and MacLean [Bl],

Ch. 7, 84). All bases of X ¢ RJ have the same

cardinality calle& the rank-0of X , and the rank of X
'is no greater than [3]. O

»

(2.1.4) 1f x, ¥y eiRJ' we let xy denote I X.y..
' ' jeJ 3

(2.1.5) The null space of X < R% is defined to

be {y € RJ; yx = 0 for all x e X}. The following is

a basic result.

(2.1.6) Theorem. (Birkhoff and McLean [Bl], Ch VIII,

J

Theorem 11). For any X < R s the rank of X plus the



rank of the null space of X -equals |3].0
- (2.1.7) If x, y eIRJ, we say x <y if xj s'yj

for all j é J. We say x <y if xj Q”yj for all

j e J .

(2.1.8) We demote by JRi the set {x elRJ: 0 < x}.
. 4 :

: o . . IxJ

(2.1.9) Let I, J be finite sets. If A e R

is the matrix (ai € RJ: i € I) then for any 8§ ¢ J

we let AS denote ((ai: j e 8): 1 e I). If S 1is a

single element- v we abbreviate A{v} by A, .

at: 1 ¢ I are the rows of A and Aj: j € J are the

columns of‘_A. If x € RY we define the product Ax

to be the vector y = (yi: i e I) e RY where vy = aix

for all i e I.

(2.1.10) Theorem. (Birkhoff and MacLean [Bl],
p. 221, Corollary 3). The rank of the set {ai: i e J}
equals the rank of {Aj: j € J} and is called the rank

of A. [

(2.1.11) The vectors xk elRJ: k ¢ K are affinely

independent when for any h ¢ K , the vectors xk - xh:

k ¢ K~ {h} are.linearly independent.
) 1 4

(2.1.12) Proposition. Let X ¢ RJ and 0 belongs

to X. Then the maximum number p of affinely independent

vectors in X equals the maximum number ¢ of linearly

independent vectors im X plus 1.



Proof: Let. A = {ai: i € I} be a set of q linearly
independeﬁt vectors in X. Clearly O ¢ A and A v {0}

is affinely independent.

Let yo, yl,...,yq be affinely independent points

of X , where p =q + 1 is the maximum number of affinely

independent points in X. Then 'y;'— yo,...,yq -y

0

are linearly independent. If y =%0 then yl,...,yq

are linearly independent. Otherwise
0 1 0

2.1.13) o 0-30 = I % -y
. . e=1

)

because 0 € X and choice of yo, yl,...,yq. Moreover

some Ae' are non-zero (being yo z 0) , say Aq # 0. We
0 1 q-1 ’

claim that y 43 ¥V seee,¥ . are iineariy independent.
Let
q=1
I uy =0. We have
e
e=l
q-1 q-1 q-1 q-1
e .0
Tuy = & ue(ye -y)+ (2 ue)yo » let a = I u_,
e=0 e=1 . : : e=0 e=0
using (2.1.13).
0 0

L ueye-= Eu, (3 -y) -ac: le(ye -y) =
e=0 e=1. _ ‘ e=1
q-1 : , : '

T (. - ai )(ye - yo) - aA.(yq —-yo) = 0, Hence

_ e e’ q
e=1 . " - .
(ue - axe) =0 for 1 <e <gq-'1 and a&l = 0 (because
1 0 q 0 : - R
Y = ¥ secesy = ¥y are linearly independent. Since

A # 0 and oaoX = 0 we have a = 0 , therefore u_ = 0
q q . q-1 e

for ¥ < e sq-1, and ., = a - T u_ = 0. We have

0 A e
q-1 e=1

proved that T ye =0 implies u, = 0 for 0 < e <q -1,

e=0 ©



thus yo,..,,yq-l are linearly independent. [

'2.2. Systems of Inequalities
Let I and J be a finite set. ‘We associate with
‘any matrix A = (ai eIRJ: i € I) and any vector b

in mI the (finite) system of (linear) inequalities:

(2.2.1) Ax = b , d.e. aix 3 bi for all 1i ¢ I,
and we denote by <Az b> the system (2.2.1). The

inequality aix z,bi‘ will be denoted by <all bii'

'(2.2.2) The rank of the system <A, b> 1is the

rank of - A - by definition.

(2.2.3) A poiyhedron is defined as the set of

solutions of a finite system of linear inequaiities.

Given any system <A, b>, the solution set of <A, b> ,

written P(A, b), is the set ({x elRJ: Ax =2 b}. Thus

P(A, b) 1is a pblyhedron. We call <A, b> a defining
system for a polyhedron P when <A, b> is a finite

system o0f linear inequalities and P equals P(A, b).

"Clearly any finite system of linear inequalities and
linear equations can be reﬁresented in the form (2.2.1)
since ax £ b 1is equivalent to (-a)x 2 (~b) , and

A g

ax = b 1is equivalent to ax 2 b and ax < b .

X

(2.2.4) Let x ¢ P(A, b) and 1 = {i e I: aix = bi

We call the equality system of x , writtem EQ(x), the

system <(ai € RJ: ie Ix), (bi: ie Ix)> . The set I

X

is called the equality index of x.

}.



(2.2.5) Let x € P(A, b). x 1is called a basic

solution if the rank of the system EQ(x) 1is lJ|.

Let ¢ € mJ. Consider the (primal) linear program:
. , = , ,

(2.2.6) minimize c¢x

for x e RY satisfying

(2.2.7) a'x 2 bi for all i e®I , where I is finite.

The dual linear program is

(2.2.8) | ' maximize I b

y
iel 171

for y = (yi e R: 1 € I) satisfying

(2.2.9) Yy 2 0 for all, i € I

(2.2.10) z'yiai = c.

iel
A vector x € RY satisfying (2.2.7) is called a

feasible solution to the primal program. A vector y € Ri

which satisfies (2.2.10) 1is called a feasible dual solution.
A feasible primal solution x0 which minimizes

c*x for all feasible primal solutions is called an

optimal primal solution; an 6Qtimal dual solution is
defined analogously .
The following is a fundamental theorem of linear

programming (see Dantzig [D1l], p. 120, Theorem 1).

(2.2.11) Theoren. For any linear program exactly
one of the following situations dccurs.

i) There exists no feasible solution.



ii) For any. y € R there is a feasible solution x

such that c¢c+*x < v.

'1i1) There is an optimal feasible solution. O
'_ . \4'
The following theorems give the relationship between

the values of cx and by for priﬁal and dual feasible

solutions.

:
(2.2.12) Weak L.P, Duality Theorem. (Dantzig [D1l], p. 130).

If x 1s a feasible primal solution and y 1is a

feasible dual solutionlthen ex 2 by .0

(2.2.13) Corollarz. If for any B € R there is a
feasibie dual solution y such that by 2 B then there

is no feasible primal solution. [

(2.2.14)E Strong L.P. Duality Theorem. (Dantzig [D1],
p. 129, Theorem 1,‘§. 134, Theorems 2, 3). If there is
a féasible primal solution and a 1ower bound of c¢x over
ail feasible priﬁal solutions then there is an optimal
primal soluti;n' x0 and an optimal dual solution y

and cxO = byo..D

(2.2.15) We say that <a, b> 1is a valid inequality

for P(A, b) whenever ax > b for all x « P(A, D).

(2.2.16) Let A= (a' e®R’: 1 1), b= (b:icI)

and e € I. We call <a€, b,> redundant if P(A, b)
is equal to P(A, b) where <A, b> = <(ai € RJ: i e 1-{e}),

(bi: i € I-{e})> , otherwise we say that <ae, be> is

irredundant. The system <A, b> 1is irredundant if each




of its inequalities are 'irredundant.

(2.2.17) Clearly <a®, b,> is redundant if and

only if <ae, be> is a valid inequality for P(A, b).

We will now characterize all valid inequalities for
P(A, b), this characterization is an immediate consequence

of the Strong L.P. Duality Theoren. ‘

(2.2.18) Lemma. Let A = (ai élRJ: ieI),
b = (bi: i € I) and -P(A, b) # §. Then <a, B> 1is a

valid inequality for P(A, b) if and only if there exists

(2.2.19) 2 elRi such that a = I Aiai and

’ v iel
B < I A;b. .

iel
Proof: Let <a, 8> be a valid inequality for P(A, b).
Consider the primal program minimize ax over x € P(A, b),
since P(A, b) # § there is a feasible primal solution.
Moreover ax 2 B for all x e P(A, b) since ?a, B> is

a valid inequality for P(A, b) hence '8 1is a lower

bound of ax over all primal solutiom x .

‘By'the Strong L.P. Duality Theorem there exists an’
optimai dual solution X € Ri such that
pX Aibi = min ax é B, moreover a =, z A.ai because'
iel xeP (A,b) iel
A is dﬁal feasible. |
In the other way, lef A satisfy (2.2.19). For all
x € P(A,b)we have |

ax = L A.a;x 2 Zkib.i 2 8 . Hence <a, 8> 1is a
iel T



valid inequality for P(A, b). O

(2.2.20) Complementary Slackness Theorem. (Dantzig,
[pD1], p. 135, 136). A feasibie solution \xo to |
(2.2.6)-(2.2.7) and a feasible solution yb to
(2.2.8)-(2.2.10) are optimal if and only if vy 0

implies a'x = b for all i € 1. O

L

i

2.3, Convex Sets

(2.3.1) A convex set C 1is a set of points such

that

x* € C, x7 € C S 2
iffrxx” + (1 - M)x" € ¢ .

0<as1

(2.3.2) A point =x 1is called convex combination

of {xke‘k € K} , where K 1is finite, if

X = I Akxg for some (A > 0: k ¢ K) such that I X = 1.

keK keK

It is easy to justify this name by showing that the

set of linear combinations of {xk: k € K} is convex.

(2.3.3) The convex hull of a set X _C_IRJ , denoted

by CONV(X), is the set of all convex combinations of any
finite subset of X. Again it is easy to show that ;

T

CONV(X) is convex.

(2.3.4) C 1is called a polytope if C = CONV (X)

where X is finite, the set X 1is .called a generating

set for C , furthermore if X 1is a minimal generating

set for €, we say thag X 1is a basis of C.



(2.3.5) Let € be a convex set and let x € C ,we

call X .an extreme point of C if there exists no two

different points xl, x2 e C satisfying

X = Ax> + (1 - A)xz , 0 <™ < 1.

(2.3.6) We call ¢ gointed if it has an extreme

point.
3

It is easy to verify that the following sets are

convex.

(2.3.7) The solution set of any inequality ax 2 b.

(2.3.8) The intersection of two convex sets.

‘(2.3.9)_ The solution set of any finite system P(A,b).

(2.3.10) The sum of two convex'sets Cl' and C2 ,
where thé sum C1 + 02 is defined as the set

{cl + c?:.c1 € Gl, c2 € C2}

(2.3.11) A subset C ‘of lRJ is called a convex
cone it it is closed under the ope:ations of addition

and multiplication by nonnegative scalars, that is,
(2.3.12) if x, y e C" then x +y € C ,

(2.3.13) iff x € C and A eIR+ then Ax ¢ C .
‘

From this definition any convex cone is convex.

Exanples

62.3.14) The set of all nonnegative vectors -Ri

. R ' J
is a convex cone called the nonnegative orthant of R".




(2.3.15) For any vector r = 0 in RJ the set of

vectors of the form Ar , A ¢ m+ is a convex cone,

called a ray and denoted by [r] . Thus
[r] = {x: x = Ar , A e}R+}.

(2.3.16) The set of all solutions x of the

inequality ax 2 0 -is a convex cone.
;

(2.3.17) 1If Cl gnd C2 are convex cones, their
_ sum CI + C2 (asvdefiped in (2.3.10)) is also a convex
cone. |
(2.3.18) 1f C'l and C2 are convex cones, their
intersection Cl n C2 is again a convex cone,

It is easy to verify that the sets in (2.3.14) to

(2.3.18) satisfy the conditioms (2.3.12) and (2.3.13).

(2.3.19) A convex cone C is called a finite cone

if it is the sum of a finite number of rays, that is,

C = CONE({r®: ' = [xll+. n : k
= r : 1<k <n}) = [r7]+.0+[r] = {x: x = I Akr s
. k=1
Ak 20 for 1 < k < n}.
(2.3.20) The vectors rl to r" are called
generators of C. By definition CONE(P) = {0}. .

4

(2.3.21) A minimal set of generators is called a
(cone) basis of C. Any sum of a finite number of rays

is a finite cone, by (2.3.15) and (2.3.17).

‘.

(2.3.22) A polyhedral cone C is the set of solutions



of a finite system of linear homogeneous inequalities.
That is, € = {x eIRJ;'aix'z 0, 1 e I} where al ¢ rY

for all i € I and I is finite.

By (2.3.16) and (2.3.18) the polyhedral cones are
.convex cones. From the definition 0f polyhedra (see
2.2.3) we see that polyhedral cones are a special case of
polyhedra.

(2.3.23)  Theorem. (Gale [Gl], pp. 56-58, Theorems

2.12, 2.13). € 1is a finite cone if and only if C 1is

‘a polyhedral cone. [

Let C be a convex cone. We call [r] < C an

extreme ray of - C if thérefexists no two different rays

[rl], [rZ] < C : such that [r] ='[rl + r2] .

(2.3.24) Theorem. (Gale [GIJ; p. 65, Tﬁeorem 2.16)5
Let C = P(A, O)V be a polyhedral cone and let r be
non-zero. [r]'S C 1is an extreme ray of C if and only
if the set of réws ai .of A such that air = 0 has

rank |Jl - luD

(2.3.25) Theorem. (Gale [Gl], p. 63, Theorem 2.15).
If the matrix A has rank IJI then the come P(A, 0)

L4

is the sum of its extreme rays. {J v

(2.3.26) Corollary. With the conditions of the
theorem above, the set of extreme rays of P(A, 0) is
the unique basis of P(A, 0). Because from the definition

of extreme ray they have to be in any basis and (2.3.25)



says that there are enough. [

(2.3.27) P 1is a finite convex set if P 1s the

sum of a polytope and a finite cone, i.e, for K and
L finite,

P = CONV({x": k ¢ K}) + CONE({r®: e ¢ L}).

The pair ({xk: k € K}, {£: e ¢ L}) 1is called a generating
o i
set for P. Let (V, R) be a generating set for P.

We call (V, R) a basis for P if for any VI ¢V,
R1 € R such that Vl z V or Rl 2z R then (V°, R7) is

not a generating set for P.

(2.3.28) An extreme ray of P 1is an extreme ray

of CONE({re: e € L}).

2.4, Polzhédra.

Let I and J be finite sets, let

A = (a1 e R": i € I) and let b = (bi: i e I) .

v(2.4.l) A polyhedron P 1is defined as the solution

set of any finite system of linear inequalities. Hence

{x € RY: Ax > bl is a polyhedron.

»

P = P(A, b)

i

We take A, b, I and J- to be defined as above

throughout the rest of this chapter.

If there is i ¢ I such that a = 0 , then either

bi > 0 in which case P(A, b) = 9§ or else bi < 0 and
atx 2 bi for all x € RJ, hence aix 2 bi can be

deleted from the system. Therefore we will henceforth



assume that a’ 2z 0 for all 1 € I (that is, the

matrix A has no zero rows).

(2.4.2) With any polyhedron P(A, b). we associate

a polyhedral cone RAY(P(A, b)) given by

RAY(P(A, b)) = P(A, 0).

Clearly if x € P(A, b) and r € P(A, 0) then
x + r ¢ P(A, b). Hence {x} + RAY(P) ¢ P for any x in

the polyhedron P.

(2.4{3) Let' P in R’ be a polyhedron. We define
the dimension of P to be k if the largest affinely
independent subset of P has'cardinality k + 1. 1In
view of (2.1.3) and definition (2.1.11) the dimension of
P(a, b). is not gréater than ]JI. We say that a

polyhedfon has full dimension when its dimensiomn is IJI.

(2.4.4)‘ When O ¢ P we have dimension of P equals

rank of P , (by (2.1.3) and (2.1.12)).

We denote by <x, t> where x e RJ and t € R , -

the vectors of iRJ‘XlR.

1 4

{(v" RJ: m e M}

For the rest of this chapter let V

and R = {rn € RJ: n € N} with M and N finite sets.

A4

(2.4.5) For ény finite convex set Q = CONV(V) +

CONE(R) in RJ we denote by 6' the finite cone
CONE((vle})'u (Rx{0})) in RI x® .



(2.4.6) .With the association of (2.4.5), x ¢ Q

if and only if <x, 1> ¢ Q . Because

x € Q iff x = L[ A vm + I u r® for some L Am = ]
meM © neN N meM
‘ o m n
and A_, u_ 2 0 iff <x, 1> = £ X <v, 1> + L u <r , 0>
m” "n m n
meM nelN

for some Am, p_ =20 iff <x, 1> € Q .

n ——

.
*

(2.4.7) Proposition. (V, R) 1is a generating set
of a finite convex set Q if and only if (Vx{1} u (Rx{0})

is a generating<sét of the finite cone Q .

Proof: . Let (Vx{1}) u (Rx{0}) be a generating set of
Q. Then x ¢ Q 1iff <x, 1> ¢ Q (by (2.4.6)) iff

<x, 1> = I A <vm, 1> + Zip»<rn, 0> for some A_,
m m
meM , neN

v 20 41iff x = I A vm + Iy r® for some A =1
n m
meM neN

and A_, u_ 2 0. Therefore (V, R) 1is a generating set

Let (V, R) be a generating set for Q. Then

Q = CONE((Vx{1}) v (Rx{0})) by definition, that is

(vx{1}) u (Rx{0})) 1is a generating set for Q . 0O
(2.4.8) With any polyhedron P = P(A, b) 1in RJ .
we associate a polyhedral cone P in h; x R. ﬁ is

the set of vectors <x, t> satisfying:
Ax - bt 2 0 ,

(2.4.9)
t 2 O L



Clearly x € P(A, b) if and only if <x, 1>

satisfies»(2.4.9).

(2.4.10) Theorem. The set P in RJ is a

~N
polyhedron if and only if P 1is a finite convex set.

Moreover if (V, R) 1is a generating set for P then R

is a generafing set for RAY(P).
: ¢
Proof: Let P be the polyhedron P(A, b). Let P be

defined as in (2.4.8), since P is a polyhedral cone,

it is also a finite cone by Theorem (2.3.23). Let

{<xk,'tk>: k ¢ K} be a basis for P , we have ty 0

for all k € K since <xk, t,> satisifes (2.4.9).
Let M = {k e K: te > 0} and v% = %— for m e M,

A

\"

g

=]

let N =K -~ M  and rn = xn for n € N. Then

~

(vx{1}) v (Rx{0}) 1is a basis for P because the rays

m

[<v®, 1>] and [<x®

. tm>] are equal.

Now we have x ¢ P iff <x, 1> € ﬁ (by definition
of ﬁ) iff <x, 1> € CONE((Vx{1}) u (Rx{0}))) (because

-~

(Vx{1}) v (Rx{0}) is a basis of P iff x € CONV(V) +

CONE(R) (by lemma (2.4.6)).

Hence P being equal Eo' CONV(V) + CONE(R) 1is a
finite convex ses.'-Letl Q be a finite convex set and |,
(V, R) be a basis of Q. Let Q be defined as in
(2.4.5), since Q is a finite cone, it is also a
polyhedral cone by Theorem (2.3.23). Let Q be the

. ‘ { .

solutions <x, t> of the finite system: <a™, -bi><x, t>

for all i € I.



If <x, t> € Q thea <x, t> = 3 Am<vm, 1> + I ou

meM neN‘

<r , 0>, A, u_ 2 0. Therefore ¢t = me 2 0. We obtain

(2.4.11) . <x, t> ¢ Q if and only if Ax = bt = 0
. o

and t 2 0.

Now we have x ¢ Q iff <x, 1> € Q@ (by lemma 2.4.6)

iff Ax 2 b (by (2.4.11)) 41ff x € P(A, b) = {x ¢ R’:

. , . . .
Ax 2 b}.  Let x € RAY(P). Then Ax 2 0, i.e. <x, 0> € P.
Hence <x, 0> = I km<vm, 1> + = u_<r", 0> for some

meM , neN ’

A, u.20.Thus A _ = 0: m € M since I A = 0. That is
m n m : neM @

x € CONE(R). ©Let x = I unfn for some un-z 0. Clearly
' ' neN

<x, 0> € P. Thus Ax 2 0, i.e. x € RAY(P).0O

(2.4;12) Lemma. Let ‘P be a polyhedron in RJ

and - P be defined as in (2.4.8). The following relation holds.

(2.4.13) x 1is an extreme point of P if and only

if . [<x; 1>] 1is an extreme ray of P .

(2.4.14) [x] is an extreme ray of P if and only

if [<x, 0>] is an extreme ray of P .

Proof: Let x mnot be an extreme point of P. Then
2 1

X = Axl + (1 - A)xz"where 0 < A <1, xl 2 X and x7,
2 ! 2 - '

x € P. Hence <x7, 1>, <x", 1>, <x, > € P and

<x, 1i>= A<xl, 1> + (1 - 1)) <x2, 1>, therefore we need

only to prove that the rays [A<x1, 1>] and

[(1L - A)<x2, 1>] are differents. Assume they are equal,

that is, there exists 6 2 0 such:that 6Ax1 = (1 - A)x2

and 6x = (1 - 1). Then 6 = l;A and 'Llillkxl = (1 - A)xz-

Therefore xl = x2 s, absurd. if [<x, 1>] 1is not an



extreme ray then <x, 1> = <x1, tl> + <x2, t2>. We have
0

xl z x2, otherwise x = 2x1 and xl = x2 = but then
. 1
. X
[<0, t1>] = [<0, t2>]. If tys t, # 0 then <EI, 1>,
L2 . 1 .2 hE
<T=» 1> € P and %—, %— € P. Therefore
2 1 2 :
kxl x2 ' :
X = tl(EI) + tZ(E;) and t, + t, = 1. If tl = 0 then
2 1 . 1 S '
£, = 1, x* € P and x~ e RAY(P) since Ax~ - b0 2 0 ,

therefore x2.+ 2x1 € P and x = %xz + %—(x2 + 2x1) .
Let [x] be not an extreme ray of P. Then

X = x1 + x2 . [xlj z [xz] and xl, x2 € RAY(P) then

<x, 0> = <xl; 0> + <x2; 0> and all belong to P since

Ax 2 0 implies Ax - b0 2 0.

> + sxz, t,> then t

If <x, 0> =-<x;, t 5 1’

1 t, =0

because they are not negative, hence 'Axl 2 0 and Ax" 2 0

hence [x] is not an extreme ray of P. [

(2.4.15) Theorem. Let P = P(A, b) be a polyhedron.
Then x 1is an extreme point of P if and only if x  1is

a basic solution of P(A, b).

Proof: Let x be an extreme solution of P. Then

<x, 1> 1is an extreme ray of 'ﬁ by (2.4.13). The set

{<ai, =b;>: atx - b, =0, 1ic¢ I} has rank [J| + 1 -1 = |J|

(by theorem (2.3.24)). Let K = {ile I: éix = bi}

AK = (al € RJ: i € K). Then bK = AKx is linearly

dependent of the columns of AK , therefore
I o= rgnk{<ai, -by>: 1 e K} = rank AX . Being K the

equality index set of x and having rank |J|, x is

.

4 basic solution.



Let x Dbe a basic solution hence rank of

{ai: a’x = bi} is |J|. The rank of {<a®, =b,>:

a’x -b, = 0} is also |J|, because this set is the
equality set of <x, 1> in P and <x, 1> = 0. By

Theorem (2.3.24) <x, 1> 1is an extreme ray of P and

by (2.4.13) x is an extreme point of P. [

(2.4.16) Theorem. Let P(A, é) be not eﬁpty and
rank of A equals |J|. Call V the set of extreme
points of P(A, b) and R the éet of extreme rays of
P(A, b). Then (V, R) is the unique basis of P(A, b)

and V 1is not empty.

Proof: Let P be the cone defined in (2.4.8), since

i

rank of A is |J| we obtain rank of {<a’, -b,>:

ie I} u.{<0, 1>} is. |J| + 1. By Theorem (2.3.25) and

its corollary (2.3.26) the set E of extreme rays of

~

P 1is the unique basis of ﬁ. Since t 2 0 for any

<x, t> € P we can take the rays of P to be of the.
form [<x, 1>] lor [<x, Oi] as in.the proof of theorem
(2.4.10). Let.’V>= {x: <x, 1> € E} and

R = {x: <x, 0> ¢ E}. Hence E = (Vx{1}) u (Rx{0}) and

»

(V, R) is the unique basis of P(A, b) by corollary

(2.4.7) and E being unique basis of P . By lemma v

r

(2.4.12) V 1is the set of extreme points of P(A, b)
and R 1s the set of extreme rays of P(A, b).

If V 1is émpty them t = 0 for any <x, t> € P .

But since P(A, b) 1is not empty, there is an x € P(A; b)

and <x, 1> € P . O



(2.4.17) Corollary. P(A, b) 1is pointed if and
only if rank of A equals [|J| and P(A, b) 1is not

empty.
AN

Proof: Let P(A, b) be pointed. Then there is an
extreme point x. of P(A, b) and P(A,vb) is not empty,
moreover rank of A = |J] since x is a basic solution

(by theorem 2.4.15). .

Let P(A, b) # p and rank.of A equals |J|, by
the theorem above V is not empty. Therefore P(A, Db)

is pointed. 0O

2.5. Commutative Semigroups

(2.5.1) A (finite commutative) semigroup is the
ordered pair (S, *) where S is a non-empty finite set

and + is a function from s2 in s (we denote

s+ p = t(s, p) for all s, p € §), with + -satisfying:
associativity: (s + p) + q¢ = s +(p + q) for all
S, Py q € S.

cbmmutativityi s +p=7p s for all s, p € S.

+

»

(2.5.2) The order of the semigroup (S, +) is the

cardinality of 5, when S is finite we call the semigroup

finite.

(2.5.3) The identity or zero o of the semigroup

is an element satisfying

s + 0 =38 for all s € s .



Clearly such element, if there is one, is unique.

When - (S, +) doesn't have an identity we can always adjoin

one element o ¢ S defining s + o = s for all s € §
and o + o0 = o _and‘thé pair (S u {o},‘f) will be a
semigroﬁp with identity o. Therefore we will denote
by o the ideﬁtity of (S, t). when it has one or this

new element added in the way explaipned above.

(2.5.4) The inverse of an element s in S 1is
another elemeﬁt P in S , when there is one, such that
s +t+p =0, clgariy s can have at most one inﬁerse.
When all the elemepts have inverses, the semigroup is

_dalled a group.

(2.5.5) For s, p € S we define s ~p to be
the set of solutions x to the equation p + x = s, i.e.

s ~p = {x e S:. p t X = s}.

(2.5,6) For any non-negative integer k and any'

s in S we define k°s by the recursion:

o when k =0

(k - 1)*s + s when k > 0

(2.5.7) Since we are considering only finite
semigroups the sequence 0°+s, l+s8, 2-+s'... has only
finitely many different elements for any s in S ,

the order of s, written o(s), is the minimum integer

which repeats one element in the sequence, i.e.

o(s) = min{k; there is e < k such that e*s = k*s} .
k20



The loop of s is the set {p € S: p = k*s, k = o(s)} ,

when s Dbelongs to its loop we call s a loop element.
It is easy to see that s is a loop element if and only

if there is a k > 0 such .that s = s +~kes .

(2.5.8) We denote by L the iteration of the

. . . k
operation + , that is for any succession sl, sz,...,s

of elements from 8 , 4
) ‘87 denotes s1 + 32 t...tsk .
je{l,..., k}

(2.5.9) Let H €S and ¢t e mE . We say that

t represents s if g'th'h = s, The representation function
S heH
H . . = .
QH. W+ + § 1is defined as GH(t) = héch h .

.(2.5.10) Since (s, +) 1is associative and commutative

z th°h + I ti‘h equals (th +'t;)'h , that is
helH heH th

6. (t + t1) = 0.(t) + 0. (el) .
~H H~—% < ZH

(2.5.11) . Substitution Lemma. Let t, t', t" € NE

be such that t' < t and GH(t') = SH(t").' Then
- ' n = ' A ‘
eH(t t' + t") eH(t).

Proof: Since t - ' elNE we have

[ 4

- [} 1" = - ' " = - '
OH(t t' + t") eH(t t') + eH(c’) GH(t t') +
BH(t ) QH(t)
by (2.5.10), the hypothesis and (2.5.10) again. O

The substitution lemma is useful because it allows



-us to replace a portion of a vector t by another

representing the same element, in particular if t > 0
. s _

we can subtract ¢ from t and add to the vector ¢t

. N
any representation of s without changing the semigroup

element represented.

(2.5.12) 1If a subset R of S 1is closed under #,
. ‘
that is r + h ¢ R for all r, h ¢ R , then (R, +) 1is

a semigroup called a subsemigroup of (S, +) .

(2.5.13>' Lemma. Let ’(S, +) be a'semigroup with
identity o and H be a non-empty subset of S. Then
the pair (R, +) , where R = GH(INE) , is a subsemigroup
of (S, i) and o 1is represented by 'BH(O). Moreover

~

if (H, +) 1is a subsemigrouﬁ of (S, +) then R = H u {o}.

The proof is trivial from the definitions of GH

and kes. [

(2.5.14) Let - (S, +) be a semigroup and H. a

-~

subset of S. Then the semigroup generated by H 1is the

semigroup (eH('NE)’ +). That it is a semigroup follows

~

from lemma (2.5.13). H 1is a geﬁeratigg set for (S, %)

when the semigroﬁp generated by H 1is (S, +), a minimal

generating set 1s+- a basis. A cyclic semigroup is one
L4

having a basis of cardinality one.



Chapter 3

POLARITY OF POLYIIEDRA

.Given any.symmetric relation @ on~a set X , the
polar of any set P 'in X is defined as the set
p? = {y € X: xQy for all x ¢ P}. Several polarities are
defined in polyhedral theory and the main properties studied

are the closed polyhedra (P is closed when P = PQQ

) and
the relation between the defining irredundant systems and
the basis for a closediﬁolyhedron and the basis and the
defining irfedundant systems for its polar.

These properties‘are well-known for the polarity given
by the relation xy‘s 0. It is used in Gale [Gl] to
obtain the theorems cited in -chapter 2.

Another polerity is given by =xy < 1, called "polarity
of convex sets" (see Rockafellar [R1] or Stoer and Witzgall
{S2]). A natural question is what happens with the poiarity
given by the reletien xy 2 1? Although some special cases
.have been treated elsewhere, as in Gomory [G5] and
Fulkerson [Fl1], we have not.seen a general solution elsewhere.

In section 3.3 we solve the main questions about
this polarity. 1In section 311 we give simple properties of
any polarity (we use symmetric relations because it is the
only type we will consider). Section 3:2 is devoted to the
polarity given by the relation xy 2 0 . In section 3.4

we sﬁudy the polarity given by the relation xy < 1 using

tihe same approach as in section 3.3.



3.1 Polarity Defined by a Relation

Let X be a given set and a symmetric relation
@ ¢ X x X. We denote (x, y) € f by xQy .

For any set T ¢ X the polar (respéht to Q) of T

L]
1)

is the set "1.‘5‘z given by
(3.1.1) ¥ - {y ¢ X: xQy for all x € T}.

Let T and T' be both subseﬁg of X. Then we have

(3.1.2) If T c¢ T' then 'I.‘Q 2 T'Q. Clearly since

if y e 7'?  then xQy for all x € T', in particular

xQy for all 'x,e T cT' , hence vy ¢ TQ.
QQ .
(3.1.3) T always contains T , because for any

x € T and all y e-TQ we have xQy = yQx (2 is symmetric)
and therefore x_e,(TQ)Q.

(3.1.4) Lemma. We always have p 008 equal to .

2,09 2

Proof: We have (TV) > T by (3.1.3).
' ' QR \ )
Let T' = T'", hence T ¢ T by (3.1.3), using (3.1.2)
we obtain TQ é T'Q = TQQQ. Therefore ,TQ'= TQQQ . a

(3.1.5) Let C ¢ X , we say that C is Q-closed

f ¢ o= ¢

»

(3.1.6) Lemma. C < X is GQ-closed if and only 1if

there exists T ¢ X such that C = TQ H

Proof: If C = T then c*% = %% 2 1% _ ¢ by (3.1.4).

If C = CQQ let T = CQ. Hence C = CQQAi TQ .0



3.2 Cone Polarity

(3.2.1) Consider the polarity given by the relation

Xyy 3'xy 2 0 . For any set Q in IRJ', the polar QY
. ~

Y

is a convex cone, we call Q the polar cone of Q.

(3.2.2) Lemma. Let C be the polyhedral cone, say

C = P(A, 0). The polar cone of C is CONE({ai: ai is

-
»

a row of Al}).

Proof: Let A = (ai € RJ:_ i € J). We have

y ¢ ¢V iff yx 2 0 for all x ¢ C iff <y, 0> is a valid
| inequélity for P(A; 0)
(by definition of valid inequality (2.2.15)) iff there
exists A e Ri such that. & ='.Z Aiai (lemma 2.2.18)
iel

iff y ¢ CONE({gi; iell) (b& definition of CONE(2.3.19)). 0

(3.2;3). Lgégg: Let A = (ai € RJ: i € I) where I
is finite; Let C be the finite cone CONE({ai: i e I}).
The polar cone of C. is "P(A, 0). |

i

Proof: Let y e€ P(A; 0). Then y( I A.al) = I A,a’y 2
i i
: . - - ieI iel
b AiO =0 1if X € mi , hence y e c¥.. '

iel
Let vy é P(A, 0). Then-there is i e I such that
a'y <0, but a' € C , hence y ¢ ¢’ . O

v

v

(3.2.4)  Corollary. Polyhedral Eones are y-closed.[

(3.2.5) Corollary. If C 1is a polyhedral cone then

its polar cone cY is also a polyhedfal cone., Because
C is also a finite cone by theorem (2.3.23), therefore

¢’ is a polyhedral cone by the lemma above. a



(3.2.6) Theorem. Let C be a polyhedral cone. Then
we have <(ai: i € I), 0> 1is a defining irredundant system
for € if and only if %{ai; 1 ¢ I} 1is a cone-basis for

N

cY.

Proof: .<(ai: ie€1), 0> is a definipg system‘for c if
and oniy 1f  {at: i € I} 1is a generating set for cY by
lemmas (3.2.2) and (3.2.3). Hence é(ai: i e I), 0> is
a defining irredundant systém for € if and only if fof

all e € I there is no ‘(Ai 2 0: 1 € I - {e}) such that
e i

a = T A.a (by lemma (2.2.18)) if and only if
i
iei-{el} :
{a*: i € I} is a minimal generating set for C', i.e.

{ai: i € I} is a cone-basis for ¢' .0
The next lemma is used in sectionm 3.3. We recall that
,dimension of a polyhedron is the maximum number of affinely

independent poiﬁts in the polyhedron minus one (see (2.4.3)).

(3.2.7) Lemma. Let C be the polyhedral cone P(A, 0).

Then rank of A ,equals dimension of C".

Proof: Since 0 € cY then dimension of C equals rank
of ¢! by (2.4.4). But rank of A equals rank of cY

by (4.2.2). [ ' i

3.3 B-Polarity of Polyhedra

(3.3.1) Consider the polarity given by the relation
xBy = xy 2 1.
(3.3.2) Clearly, for any set Q in RJ containing

0 the B-polar QB'- g.



J

Also the B¥polar'of the empty set is IR°. Hence § and
RJ are fB-closed, and no set-different from RJ and
containing O is B-closed. We call P and 'RY  the
trivial polyhedra. | o

(3.3.3)  The stateﬁents "y € PP"  and "oy, 15 is a
valid inequality for P" are equivalent. Because Yy € pP

: ' 5
iff xy 21 for all x € P 1iff <y, 1> 1is a valid inequality

for P by definition of wvalid inequality~(2.2.15).

Our intention is to characterize the B-closed
polyhedra and give the relation between defining systems
and représenting sets for these polyhedra and representing

'sets and defining systems for their B-polars.

(3.3.4) We define s%  for any K f I as the vector

of R ‘with components 6? =1 41if i € K and 65 =0

if i € I - K. We denote 6{1} by st for any i € I.

Through the rest of fhis chapter we will need several
times to consider two finite sets of.vectors and a matrix
formed using és-fdws the vectors of those sets. To avoid.
repetitions we will reserve the letters V. and R to
indicate the finite sets and’consider always V = {v™:meM}
and R = {r: neN} where M and N are finite disjoint
index sets. VR ;ill denote the matrix ' (ai: i e M U N3

al = ot , i eZM; al = ri,vi e N).

(3.3.5) Lemma. For any non-empty polyhedron P if

(V, R)®" is a representing set for P then

8 M M}

P” = P(VR, 6°) = {x; VRx 2 §



Proof: Let x e P and y € P(VR, GM). There exist

(Am: m € M) and (un: n € N) both non-negative and

¥ A_ = 1 such that \.

m .

meM . .
x = I Am V'm + I unrn .
' meM neN
Hence
Xy = L A vmy + Iy rny 2 Zx 1l + Zu;O = 1 (since yeP(VR,GM)).
m n m n <
meM neN

Therefore we have

p(vr, &) < PP .

M'). Then there is e e M u N such

Let .y ¢ P(VR, 6

e e M 1

that aey < 52 . If e €M then a~ =v e P and 6 =

e ’

therefore v'y < 1 and y { ?B. Otherwise e ¢ N, a° = r°

and éz = 0 , that is rey < 0. Let x € P (there is one

since P = f). 'x + or® ¢ P for all a elR+ . We have

xy + ar®y < 1 where a > 1-XY | Hence y ¢ pP. From this
e
-
8

we obtain P~ = P(VR, GM

B ).0

and P(VR; SM) c P
(3.3.6) Corollary. If. P 1is a polyhedron so is

PB. Because P 1is also a finite convex set by Theorem

(2.4.10), thereforé, PB .is a polyhedron by the lemma

above.,[

(3.3.7) Let P be the family of non-trivial B-closed

polyhedra in R”.

(3.3.8) Lemma. Let P be a non-trivial polyhedron.

Then P 1s PB-closed if and only if there is a system

<A, GMS where M # § and such that P = P(A, GM) =

{x: Ax 2 GM}.



Proof: Let P = P((ai: ie 1), GM) and M = §. Let

Q = CONV({éi: i ¢ M}) + CONE({ai: i e I-M}), Q 1is not

empty because M is not empty. By lemma (3.3.5) we have

. \ -
P = QB , hence by lemma (3.1.6) P 1is RB-closed.

Let P be fB-closed, that is P = (PB)B. PB is a

polyhedron(by (3.3.6)), moreover P6 is non-trivial because

P 1is non-trivial (see (3.3.2)). Lek (V, R) be a basis

B

of P® and A = VR, by lemma (3.3.5) P = P(A, &1).0

(3.3.9) Lemma. Let P = P(VR, GM) be a non-trivial

B-closed polyhed:on. Then PB = CONV(V) + CONE(V u R).

Proof: Let y € PB, then <y, 1> 4is a valid inequality
for P(VR, GM). By lemma (2.2.18) there are vectors

(Am ewR+: m € M) and (un € m+: n € N) such that

y= LA v+ un:n

meM ™ neN
" and o T LA =21 .
m
We can write y as
A . A
y = I 'Eﬂ,vm + I (A -.EE)Vm + I unrn ,
meM meM & : neN
Am Am 1
here z — = 1 and A _-* = 2 (1 - =) 20 because
meM  © m a m a

Am 20 and o 2 1. Therefore y € CONV(V) + CONE(V u R),.

In the other way if

y = A vl + oz U v+ oz unrn s Where Am’ W =2 0: m € M,

meM n meM n neN

u =2 0: n e N and Z A =1 _then
n . m
: meM



y = L (Am + um)vm + I unrn s Where Am + Mo 2 0ssm c M, -
meM neN :

u_20: neN and I (A_ + u ) 2 1. By Lemma (2.2.18)
n meM B m .

<y, 1> 1is a wvalid inequality for P(VR,\§M), hence
y e'PB. O

 We recall th;t when P = P(A, b), RAY(P) is P(A, 0)
" by definiﬁion and when (V, R) 1is a generating set for

P, RAY(P) is CONE(R) by theorem (2.4.10).

M

(3.3.10) Corollary. Let P = P(VR, §°) belong to

P . The following equality holds, (RAY(P))Y = RAY(PB).

Proof: We have

(RAY(P))Y = (P(VR, 0))Y = CONE(V u R) by (3.2.2)

“and RAY(P®) = RAY (CONV(V) + CONE(V u R)) = CONE(V u R)
by (3.3.9) and (3.4.10).0
Using (3.3.5) to (3.3.9) we obtain the following theorem

which characterizes the non-trivial B-closed polyhedra.

(3.3.11) Theorem. Let P be a non-trivial
polyhedron in RJ . Then the following statements are

equivalent,

(3.3.12) P is B-closed.

. *
-

(3.3.13) P is equal to some P (A GM) where M is
not empty.

(3.3.14) P is contained in RAY(P) and O ¢ P.

Proof: The equivalence of (3.3.13) and (3.3.12) is lemma

.



(3.3.8).

(3.3.13) implies (3.3.14) because if x e P(A, 6"

.tﬁen Axfz 0 and  x € RAY(P(aA, SM)). Moreover - 0 & P
since P isv,B-closed and non;trivial }éee (3.3.2)).

We will prove that (3.3.14) implies (3.3.12).

Let (V, R) be a basis for P and P c RAY(P) ,
0 ¢ P. Since .P is non-trivial aad O ¢ P we have PB
is non-trivial (see (3.3.2)).

By lemma (3.3.5). P® = p(vR, 6™) and M 1is not
empty because P is non-empty and (V, R) is a basis
of P. |

8

By lemma (3.3.9), since P is B-closed; we have

pPB . CONV(V). + CONE(V u R).

We only need to show that CONE(V u R) = CONE(R) to

prove that PBB = P , because (V, R) is a basis for P,

that is P = CONV(V) + CONE(R). But by theorem (2.4.10)
RAY(P) = CONE(R), hence since V < P < RAY(P) = CONE(R)

we obtain CONE(R) = CONE(R u V).[

(3.3.16) Corollary. Let P ¢ P and (V, R) be a-
basis for P. Then <vm, 1>: m € M are irredundant in

M
>

<A, § , Where A = VR.

e : ,
Proof: Let <v 4, 1> for some .e ¢ M "be redundant in

<a, 6™>. mHence P® = p(a, ™ = P((al: i e MU N - {e]),
s"te}y by (3.3.5) and (2.2.16). Therefore
P = QONV(V - {ve}) + CONE((ai: i eMuN - {e})). But

V . CONE(R) implies .CONE((ai: i eMuN- {e})) = CONE(R)



and (V, R) 4is not a basis for P, []

(3.3.17) Corollary: Let P = P(A, b) belongs to

P . Then dimension of P° equals rank of A.

- Proof: Clearly PB is non-trivial because P 1is

non-trivial, Hence

(3.3.18) dimension of pB equals dimension of RAY(PB),

B

because P~ ¢ RAY(PB) (by theorem (3,3.11)) and for any

X € PB, {x} +-RAY(PB) S PB , therefore if {xk € RAY(PB):

B

k € K} is affinely independent then x + xk € P for

all k € K and '{x + xk: k € K} 1is affinely independent.
Also we have - RAY(PP) = (2(A, 0))Y (by (3.3.10))

and dimension of P(A, 0))Y1 equals rank of -A (by -

Lemma (3.2.7)).: 0

.From (2.4.17) and (3.3.17) we obtain:

(3.3.19) Let P be a non-trivial B-closed

pdlyhedron. Then P is pointed if and only if PB is

full dimension,

(3.3.20) Lemma: Let P € P be pointed and V, R

be the sets of extreme points and extreme rays of P

respectively. For any e R, <rn, 0> is redundant in

<VR, 6M> if and only if vP e [rn] for some m € M.

Proof: The "if" part is trivial,

Let e € N and <re, 0> be redundant iﬁ <VR, ¢ >,

Let ~K=N"' {e}c.

By lemma (2.2.18) there exist vectors (Xm c m+: m e M)

.



and (uk € m+: k € K) such that

k

e
r L

(3.3.21) %= A v+ 2

b
meM m ke K k

Since V < P c RAY(P) = CONE(R) (by thcorems (3.3.11)

and (2.4.10)) there exists vectors (ym e'mﬁz m ¢ M) such

that
1 (3.3.22) vt a1 y:rn .
neN 3

Reemplacing (3.3.22) in (3.3.21) and regrouping we

obtain
e = I (uy, + I A yz)rk + (z Amyz)re .
keK meM mA meM
Let B, = u + LA™ k e K d B =-1+4+ I A Y™
k Y o'k’ € an e m'e’
meM _ meM
Then
(3.3.23) 1t B =0 , where B_ =2 0 for n e K.
- n . n
‘neN
. ' e Bk k
] cannot be less than zero; otherwise r = I r ,
e -8
keK "e
Bk ' e _
- 2 0: ke K and r is.nqt an extreme ray.
e
Bn: n ¢ N cannot be greater than zero because then
. B, : .
r = L EL tk € RAY(P) and t® = -r. Therefore for any
keN-{n}"n '

n
x € P we have x + r , x # r ¢ P , hence

»

%(x + ) + %(x + ) = x + %rn + %r =x and x + 1" #x +r

L4
3

(rn # 0 since t? is an extreme ray'of P), that is P
is not pointed.
Then Bh is equal to zero for all n e N.

. m
3Since Bk = My +-m§MAmyk = 0: k ¢ K and all the values

are non-negative we obtain M = 0: k ¢ K and

.



y: = 0: k € K for all Xm > 0. Combining this with

(3.3.21) we have t® = .z A v® and at least for one

_ meM
moe M, A > 0 because r® = 0. Let Ao o0 then
v = g y:rn = YZre since y: = 0: n e N - fe}. Therefore

neN
v e [£%]. O
We have now all the elements td ﬁrove the main theorem

of this -chapter.

(3.3.24) Theorem. Let P € P be full dimenéion.

Then <(ai: i e 1), 6M> is an irredundant system for P

if and only if

(3.3.25) V = {al:

points of PB R

i € M} 1is the set of extreme

and

(3.3.26) {a*: i € I - M} =R - T where R is the
set of extreme rays of PB and T = {r € R: a~ € [r]
for some 1 € M}.
Proof: By (3.3.19) PB is pointed since P = PBB is
full dimension . (V, R) is the unique basis of PB (by
(2.4.16)).

"if Part": aﬂy <al, 1>: i ¢ M 1isirredundant (by
(3.3.16)) in <VR, &">. Hence it is irredundant in

<(al: ie 1), 6M> which has less rows than <VR, 6M>.

That <ai, 0>: ai €e R-T 41s irredundant is given

by lemma (3.3.20). By (3.3.5) P = P(VR, &) and by



definition of redundant inequélity (see (2.2.16)) P(VR, 6M)

M).
M

"only 1if" part: Let <A, 6 > be an irredundant system

P((alz i e I), 6
for P . It exists by theorem (3.3.11). ‘Lgc X = {31:
i e M} and Y = {ai: i eI-M}. (X, XuyY) 1is a

B

generating set for P (Lemma (3.3.9)).

Since (V, R) is the unique basis of PB , we have

¥

VcX and R<c XuvuY., If y e X~-V then <y, 1> is
redundant by lemma (2.2.18) because y e CONV(V) + CONE(R).
Therefore V = X and X satisfies (3.3.25).

Now if r ¢ Y -~ R then <r, 0> 1is redundant because
r ¢ CONE(R) (apply‘Lémma (2.2.18)). Hence R > Y. By

Lemma (3.3.20) <r, 0>: r ¢ R is redundant only if r € T

hence Y = R - T and Y satisfies (3.3.26). 0O

(3.3.27) Let's call P(C) , where C 1is a cone in

R7 , the family {P ¢ P: RAY(P) = C}.

We have shown that with each P ¢ P (C) the B-polarity
associates a unique PB eP (CY). In particular if C is

pointed and full dimension, so are P, PB‘ and Cc'Y . For

these families we have characterized their defining irredundant

systems in terms of extreme points and extreme rays of the

polars.

J

+ has

0f special interest is the family P( mi). R
the propertiés: it is pointed, full dimension and
J ]
+ Hence~ P

Jyy J o J '
( R+) = R € P(.R+) yhen P e P( m+). The

pairs _ (P, PB): P ¢ ﬁ( Ri)' are what Fulkerson ([Fl]) calls

blocking pairs.



' . c
For any given cone C ¢ i , define x < "y for x,

Cy

y € C, to mean y - x € C. Clearly "s is a partial

order relation. Notice that "x s %y" isg equivalent to

"x £ y" when C is lRi . N

(3.3.28) Lemma. Let P e P(C). "If x is an extreme

point of P , then x is a minimai member of P relative

to the order s ¢ . 4 .

c '

Proof: Let x, x' e P, x' £ "x and x' # x . Then

r=x-x' e€eC and r # 0 . Therefore x + r € P since

RAY(P) = C . But then x = %x' + %(x + r) and x is not

an extreme point of P. [

"(3,3.29) Theorem. Let P be a polyhedron in P (C) ,
where C 1s a full dimensionlpoiyhedral cone.

Let Q be a polyhedron contained in 'BB and let the

B8

extreme points of P be contained in Q.

Then the system of inequalities

(3.3.30) vx 2 1 for all extreme point v of Q,

rx 2 0 for all extreme ray of cY .

is a defining system for P.

Moreover, when v' is dn extreme point of Q , the

inequality v'x 21 :is redundant in  (3.3.30) if and on}y

Y
if there is y € Q@ such that y < ©Cyv''and y = v' .

Proof: Let V be the set of extreme points of PB ’

"Let V' denote the set of extreme points of Q.
Then we have

(3.3.31) : S VeV,



because V 1is contained in Q and for any v € V if there

are yl, y2 € Q such that v = Ay1'+ (1 - A)y2 for some
A satisfying 0 < x <1 then yl = y2 = v since yl,

y2 E'Q c PB and v 1is an extreme point of PB. Therefore

v 1is an extreme point of Q , that is v e V' .

Let R be the set of exgreme réys of PB. Thén R
is the set of extreme rays of cY befause RAY(PB) =
®RAY(P))" by (3.3.10) and (RAY(P) = C (since P ¢ P(C)).

Thérefore (V', R). is a generating set of PB because

(V, R) is a basis.for 28 and V ¢ V' ¢ P? . Then (3.3.30)
is a défining system for P = PBB (by lemma (3.3.5)).
| If there is v' 1in_ V' and y in Q such that

y s gyv'. and y # v; then v' 1is not an extreme point of
PB because vy € PBA and usingilemma (3.3.28). Tﬁerefore
the inequality v;x 21 is redundant'in (3.3.30) by theorem
(3.3.24).

Let v' € V' and let the inequality v‘x 21 be
redundant’in (3.3.30).

Let V" = V' - {v'};

By Lemma (2.2.18) we have

vi'= £ Av+ Zur and a = I A =21

L}
vev" V ‘reR T. » vev'" V
for some Av’ o 2 9 . v
A v v
Let y= I —v , clearly y € Q since y is a

, veV" _
convex combination of points in Q .

y is different from v' , otherwise v' would not be
an extreme point of Q because y 1is a convex combination

‘of points of V" = V' - jV'}.



' Y
c
Therefore we only need to show that y < v' 1in order

to complete the proof of the theorem.
That is, we need to show that v' - y ¢ CY,
Since v' -y = I 2 (1 - %)v + I N v' - y ©belongs
vev" V reR '

to CONE(V" u R) because Av >0 for all v € V" , W 2 0

for all r ¢e R and 1 - 2 0 (being o 2 1), But

8 B

< cY (since P €

m |~

V" c CONE(R) = C' because V" c Q < P
P (CY)). Therefore CONE(V" u R) = CONE(R) = C'. Thus

v -y ec’. O

3.4, oa-Polarity of Polyhedra
Let A be the matrix (a-i € IRJ: i € I) and b be

the vector (bi €e R: 1 ¢ I).

(3.4.1) We define Q(A, b) by

i

Q(A, b) {x eIRJ: Ax S b} = f((-ai: ie 1), (-bi:_i e I)).

(3.4.2) By Lemma (2.2.18) <-a, -B8> 1is a wvalid

inequality for Q(A, b) if and only if there exists

A ¢ RI such that a = I A,ai and B8 =2 % A.b, .,
+ . i1

ier *- iel

(3.4.3) We will now consider the polarity given by
the relation xay = xy < 1. Clearly for any ‘Q 1in IRJ{
0 belongs to Q% . Also the statements '"<-y, -1> is a°
\4

valid inéquality for Q" and "y € Qa" are equivalent for

any polyhedron Q.

(3.4.4) Lemma. For any non-empty polyhedron Q ,

if (V, R) 1is a representing set for Q then Q% equals



.

Q(VR, &M).

‘The_prodf is similar to the proof of lemma (3.3.5).[]

1}

(3.4.5) Corollary. 1If Q is a polyhedron so Is Q

Proof: If Q 1is empty then Q% equals kY and R’ is
a polyhedron. Let Q be non-empty. By theorem (2.4.10)
Q 1s a finite convex set, hence Qq‘ is a polyhedron by

the lemma above.[]

(3.4.6) Lemma. Let Q be a polyhedron. Then Q 1is

M

a-closed if and only if Q equals Q(A, §') for some

matrix A = (ai: i € IT) and some M c I.

Proof: Let Q = Q(A, 6M) » we can consider ‘M 2 @ because

0x <1 1is always a valid ine&uality for Q , hence we

have

Q = (CONV({al: 1 ¢ M}) + coNE({al: 1 e T - M}))® (by (3.5.4)),

and Q is a-closed by‘lemma (3.1.6).

a

Let Q be a-closed, that is Q = @Q@®® , q is a

non-empty polyhedron by (3.4.3) and (3.4.5). Let (V, R)
be a basis of Q* and A = VR , by lemma (3.4.4) Q

equals Q(A, GM).D i

M

) be an a-closed

L4

polyhedron. Then Q¥ = CONV(V u {0}) + CONE(R).

(3.4.7) Lemma. Let Q = Q(VR, §

Proof: By (3.4.2) and (3.4.3) y € Qa if and only if

there exist A = (Am 2 0: me M) and u = (un > 0: n € N)

such that y = L Amvm + I u r" and Z,Am <1 4f and

- meM neN n meM



only if y = I vam + (1 - Z A YO + oy "  and A,

meM meM n necN
w20 if and only if y e CONV(V u {0}) + CONE(R).O

(3.4.8) ‘Theorem. Let Q be a polyhedron. Then Q

is a~closed if and only if 0 ¢ Q,

Proof: Clearly if Q 1is a-closed then 0 ¢ Q. Let

0 e Q and (V, R) be a basis for *Q . We have

Qa = Q(VR, GM) ‘by lemma (3.4.4), therefore

Qaa = CONV(V u {0}) + CONE(R) by lemma (3.4.7). We only

need to show that Q 2 Qaa by (3,1.,3).

Since 0 € Q and (V, R) is a basis for Q there

exists (Ag 2 0: m e M), (ug 2 0 n € N) such that
0= £ %% + £ %™ and 229 =1, Let x ¢ %%, hence
m m
meM - neN

thefé exist (Am 2 0: m e M) , AO 20, (u 2 0: n € N)

with I A_+4+ A, =1 and x= L AvVE + 2.0+ T u r® .
m 0 m 0 n -
meM meM neN

Therefore we have‘

‘ 0, m 0, . n
X = I (Am + Aolm)v un)r where

+ Z(uy +
meM o

‘o

0

0, 0;: me M) , (un + Aghpy 2 0: n € N) and

(Xm + Aokm

" : |
z (Am + onm) = I Am + AO, 1. The?eafter x ¢ Q.0
meM meM
(3.4.9) Corollary. Let Q = Q(A,‘b) be a-closed.’
L4
Then dimension of Q% equals rank of A. 1In particular

we have Q 1is full dimension if and only if Qa is pointed,

The proof is the same as in lemma (3.2.7) for cone

polarity, notice in that proof that we only need that

a

0 € Q, Q and "if 'y e Q® then y is linearly



dependent from the rows of A" (this last statement 1is

provided by (3.4.2) and (3.4.3)). 0

N

(3.4.10) Theorem. Let Q be a a-closed polyhedron.
Then <=VR, -6M> is an irredundant system for Q if and
only if 0 ¢ V and either (V, R) or (V u {0}, R) is

, a '
a basis for Q . , : L

Proof: Clearly O & V whenever <-VR, —GM> is an-:

irredundant system for Q . Let Q = Q(VR, GM). Then we
have v°x s 1 is redﬁndant if and only if

Q® = coNV(V - {v®} u {0}) + CONE(R) (by (3.4.7)) if and
only if neither (V u {0}, R) nor (V, R) 1is a basis of
a

Q , here the ohly non-triviél part is to show that (V, R)

is not a basis of Qa » let then (V, R) be a basis of

Q* , 0= Agvm-+ z ugrn and ve = z A v o+ AOO +
meM neN meM-{e}™ '
Lou ot where AO, uo, A, BH_, An 20 and z AO = 1,
n : m n m n? 0 o)
neN , meM
z Am + AO = 1. Therefore we have
meM-{e} :

e : O, m . 0 e |, >0 n
v o= T A+ A2 A )v + A A v + I (u_+ A n)r .
meM-{e} © 0'm 0"e neN o 0"n”

v

If A AO = 0 then (V, R) 1s not a basis, otherwise

0'e . .
A AO < 1 and ’
O'e 4

0 ' 0,.n
o (A + AgA)) - w + Aoun)r
v = I 5 v+ I 5 , ,
meM-{e} (1-xoxe). neN (l-AO e)

again (V, R) 1is not a Basis,
Now consider the rays,' r®x s 0 1is redundant if and

oaly if Q% = CONV(V v {0}) + CONE(R - {r%}) <(by (3.4.7))



if and only if neither (V, R) nor (V u {0}, R) is a
basis of Qa » otherwise R 1is a basis for RAY(Qa) =

CONE(R ;'{re}) (by theorem (2.4.10)).0

N

(3.4.11) We call x € Q(A, b) interior when

i .
ax < bi' ieI.

(3.4.12) Lemma. O is interioer in Q(A, SM) if and

.

only if (Q(A,-GM))a is a polytope.

Proof: O 4is interior in Q(A, GM) if and only if M =1

if and only 1f RAY((Q(A, 6™))%) = {0} (by (2.4.10) and

(3.437)) if and only if (Q(A,'GM))d is a polytope;U

3.20



Chapter &

 J-UNBOUNDED SETS

4,1, J-Unbounded Sets

Let J be a finite set, we denote by NJ the

J

vectors of R that have integer components and by Ni

the sét NJ n mi .

(4.1.1) Let K cJ and K # @, We call a set T

in mi K-unbounded whenever T satisfies:

(4.1.2) 0 & T and T =9 ,

(4.1.3) if t ¢ T then ty =0 for jeJ-K,

(4.1.4)' for all t € T and for all j ¢ K there
is k 2 1 such that t + ké1 ¢ T, Clearly this implies
that given any u 2 0 there’is k > p such that

t + k83 € T.

We will consider firét J-unboundedvsets. Our aim
is to show that if T is J—uﬁbounded then CONV(T) € P( Ri).
We will show how‘K—unbounded sets arise when considering
the sets of so}utidns of semigroup programs. We can
then use polyhedral polarity to chéracﬁefize irredundant

linear systems for semigroup programs,

(4.1.5) Let T be a J-unbounded set, we denote

by T the set of minimal points.in T', i.e. t € T

when t € T and there is no t' € T such that t' =t 2 ¢t',

(4.1.6) Lemma. Let T be defined as in (4.1.5).

fhen T 4is finite.



4.2

Proof: Clearly the elemenfs of f are pairwise incomparables
in the sense that neither t < ;; nor t' <t for any

pair t, t' of different elements of T. We will prove

the lemma.by showing thét any set A ino Ni of pairwise
incomparable elements is finite. Wé prove this last

statement by induction on IJIT thice that for |J] = 1

the set A can have at most éne eﬁement. Suppose any

set in 'mi. of pairwise incomparabie elements be finite

when |I]'= 3] - 1.

Let A ¢ NJ be a set of pairwise incompafable

+
elements. Let A .. 2 {x ¢ A: %, = a}. The sets
(G,J) h| } :

have pairwise incomparable elements, therefore

A

(a,3)
these sets are finite because deleting the jth
component these sets are still pairwise incomparable in

Jf{j}

N, . Let a € A. Then for any a' ¢ A and a' = a,
there exists j é'J. such that ;5 < aj and a' ¢ A(a',j)'

: - h|
Therefore

A= {a} u ( U'A(a,j)) , where Nj = {n'e N, : g < aj}.

aeN.,
. ]
[jEJ

Hence |A| <1+ % |A, ..|. But each A, .. is
aeN. (@53) ' (a,3)
3 »
jed
finite and the number of terms is I a, . Therefore |A]

JGJ rJ

is finite since is finite. [J

L a
jed 3

(4.1.7) Lemma. Let T' be J-unbounded and T

defiﬁed as in (4.1.5). Then CONV(T) is the polyhedron

J

CONV(T) + R, . .



iel i 1
i i

EA, =1, |J| <= and 't~ e T: 1 € I. Let S e T:

Proof: Let x = I A,t- , where A, 2 0: 1 € I ,

s st , 1 € I (Clearly there exist such ,si's). Then

X = I Aisi + I Ai(ti - si) = I Aisi + I (z X(t%-s;))GJ €
iel iel , iel & jeJ 1el

J.
+ L

J

Therefore CONV(T) ¢ CONV(T) + R .

"CONV(T) + R
_ ’ t
~Let 8 € T and (uj 2 0: J € J), there exist

k, > (¢t ﬂ Y: § € J (by (3.4.4))4such that 8 + k Gj e T
3 eed e ‘ i

for all j € J. Let x = s + L ujGj , We want to show
: A Jjed
J

that x e CONV(T) since this will imply {s} + R, < CONV(T) ,

J

+ S CONV(T) as

for all s e T. ‘Thefefo:e CONV(T) + R
we need.

-We can ﬁrite X as

x=s+ 5 Yjreda@- z Mps+ z Yi(s+ kjdj)

| jeJ k, jed jed K
] Lo h| 3

where the sum of the coefficients equals 1. All the
vectors belong to T and all the coefficients are

greater than or equal to zero because uj, kj 2 0 for

all j ¢ J and by the choice of k we have

]
, z uj I u,
r M o< jeJ < _je3 ¥ <1 .0
jeJ k. ,|J|min{k,} [J] & w, .
J jed jeJ I, -

(4.1.8) Theorem. For any J-unbounded T in RJ,

CONV(T) 1is a pointed full dimension polyhedron in

P( Ri) with the following irredundant defining system
: ‘ , \\\
A
\



vx 2 i, for all extreme points v of (CONV(T))B,

(1) . , ‘
x, 2 0, for all j € J such that min{t,} = 0.
3 teT i

~N

Furthermore the set (CONV(T))B is the set of solutions
1 to the system |

tm 2 1 , for any minimal element t of T,

(11) | ;
“j 2 0, for all j € J.

Proof: Froﬁ (4.1;6) and (4.1.7) CONV(T) is-a polyhedron
and  CONV(T) ¢ mi = RAY(CONV(T)) , since 0 ¢ T we have
CONV(T) e P( Ri) by theorem (3.3.11). ﬁut all the sets
in P (IRi) are pointed and full dimension. |
(CONV(T))B 'glso belongs:to P ( Ri) therefore

(63 j e J} is its set of extreme ray.

Let. 2 denote the set CONV(T) and e be an element
of J.

If we show that there is an extreme point v of
pP belonging to'the ray [6%] 4if and only if min{te} >0
then system (i) would éorresﬁond to the system ozezheorem

(3.3.24) which is an irredundant defining system for 'P.

Let min{t_} = 0 . Thed A6° ¢ P° for amy A 2 O.

teT ‘
Therefore no extreme point of PB 'belongs to the ray .
14
[6°1.
l_ e B
Let k = min{t_} > 0.  Then ¥8 € P . Moreover
teT

l.e . ' - ' 3] ) _
EG is an extreme point of P . cherwlse there are
xl, x2 ePB -satisfying x1 2 x2 and Axl + (l-A)x2 = %Ge

+



where O < X < 1, Then Ax§ + (l-A)x? = 0 for all
j e J - {e}, that is x§ = x? =0 for all j € J - {e}
because PB c lRi(PB e P ( mi))l Therefore xi = x:6e

and min{xit} = min{x't } = xik for i = 1, 2. But then
teT teT

i1 i.e 8 o 1 2 _ 1

x, 2 o because geé € P for 1 =1, 2 and Xy + X x°

this contradicts xl # x° .,

By (4.1.7) and (3.3.5) (i4i) is;a,defining system

for (conv(T))®. O

(4.1.9) We denote by zf' the set {x e_IRJ: xj = 0,

j e J - K}.

{

(4.1.10) Let T ©be J-unbounded in RJ

and K
a not empty proper subset of: J. We denote by EE the

set T n XK.

(4.1.11) From the definition of K-unbounded TK

is K-unbounded.

The next theorem relates CONV(TX) with CONV(T).

(4.1.12) Theorem. Let T and TK be defined as

ia (4.1.10). Let P = CONV(T) and PN = conv(r¥).

The following relatiomns hold

(4.1.13) P° =P a X, v

(4.1.14) The set VK of extreme points of PK

equals the set V n XK whereb V 1is the set of extreme

point% of P.



Proof: Since TK < XX we have for any x equal to a

convex combination of elements in TK that xj = 0 for

all § ¢ J -~ R. Hence PF c xX,

N

Also PK ¢ P Dbecause TK € T. Therefore PK c P n XK.

Let L be a finite set and let x = I Aete where
‘ ' eel

te e T and. A > 0 for all e € L ' and p) Ae = 1, If

. : e ¢ eel
x ¢ XX then x, = £ A t® =0 for all -j € J - K, Since
3 eel € 3 :
Ae > 0 and t?}z 0 for all e ¢ L , t? must be zero
for all j € J - K and all e € L. Therefore t° e TX

for all e € L, this implies x ¢ PX. Hence we have

P n XK’S PK. Therefore (4.1.13) holds.

Let x e VK. By (4.1.13) x € . 1 x = %(x

where xl, x2 € P, then %(x; + x?) = 0 for all

j € J - K, but since xl, x2 2 0 we have x§ = x? = 0

for all j € J - K. Hence xl, x2 € PK, this means that

1 2 ' , . . K
X~ = x = x because x 1is an extreme point of P .

Therefore x € V n XK.

If x e PK - VK then . x ¢ P - V because PK c P.
Hence if x € V n XK then x € VK

1 + xz),

sinée x € P by

(4.1.13). [

»

(4.1.15) Corollary. If CONV(T) = P((ai € RJ:i € I),b),
where T 1is a J-unbounded set in IRJ 'then for any

non-empty subset K of J we have

P((a;: j € K): 1 € I),b) = CONV({tKe R%:t ¢ T n XK}).U~

>



4.2, H—Unboundéd Semigroup Programs.

(4.2.1) A semigroup program (H, b, c) over (5, %)

where (S, +) 1s a semigroup, H 1is a subset of S, b

belongs to S and ¢ is a vector in lRf , is the program

(4.2.2) minimize I ¢,t
» heH bh

over t € mE éa;igfying

(4.2.3) 6.,(t) = L t.*h = b.
H heH D
Through this chapter we will consider (S, +) fixed
and understand that any semigroup program is over (S, +).
Without loss of. generality we can make some more

assumptions:

k3

.(4.2.4) Cieafly'there is a t € Nﬁ satisfying
(4.2,3) if and only if b belongs to the semigroup
generated by H., therefore we assume that b belongs to
this semigroup. Furthermore, when b is the identity o

vf S8 one optimal solution is 0., therefore we assume

b different from o.

(4.2.5) For any h e€e*H 1if b ~ h is empty then
ty, = 0 for any solution t of (4.2.3) because th > 0
: " hy, _ hy * h,_
aad SH(t)> b implies h + GH(t §'y) = OH(G') + GH(t § )=
OH(C) = b, hence OH(t - Gh) €e b ~h. Therefore the

programs (H, b, c¢) and (H ~ {h}, b, ¢) are equivalents.

'Consequently we assume that b ~ h # @ for any

It € H.



(4.2.6) We also assume that H is a generator set
for (S, +) because the elements in S and not in the
semigroup genefated by 'H cannot be represented by any

, - .
t € |N+. ]

Henceforth we will assume that any semigroup program

(d, b, ¢) satisfies (4.2.4) to (4.2.6) unless specifically

omitted. ‘

v (4.2.7) We denote by T(H, b) the set
- .
{t e.N+: eH(t) = b} and‘by E(H, b) the set CONV(T(H, b)).
When T(H, b) ' is H-unbounded we call the semigroup

program (H, b, ¢) H-unbounded.

(4.2.8) We will assume that (H, b, ¢) 'is

H~unbounded.

In this case we can use the results of section 4.1

to obtain the next theoremn.

(4.2.9) Theorem. Let (H, b, ¢) be an H-unbounded

~

semigroup program over (S, +) .

(4.2.10) E(H, b) 1is a pointed full dimension

polyhedron in P ( RE).
(4.2.11) And the following is an irredundant defining

system for E(H, b)

' [vx-z 1, for all extreme points v of EB(H, b)

v lxh 2 0, for all h € H such that min {e,} = 0.
' teT(H,b)



(4.2.12) Where the polar ES(H, b) of E(H, b)

is the set of solutions = of
- - H
tm 2 1 for any t € T(H,b) n {t € IN_:

AN
ty < o(h), h € H}.

"h 2 0 for all h e H.

Proof: This is immediate from theorem (4.1.8) and we only
i
need to point out that the minimal elements t of

T(H, b) satisfy th < o(h): h ¢ H.O

Now we pause to characterize the H-unbounded semigroup
programs. We recall the definition of H-unbounded from

section 4.1, T EINE is H-unbounded when
(4.2.13) 0 ¢ T and T = @

(4.2.14) for all t € T ‘and for all h e€ H there

_is k 21 such that ¢t + k&h e T.

(4.2.15) _Condition (4.2.13) is valid for any
“(H, b) by assumption (4.2.4). Condition (4.2.14) means
that for any t such that GH(t) = b and for any

© ¢ H there is k_ 2 1 such that 0, (t+ké") = bk +h = b.

The next theorem characterizes H-unbounded semigroup

s

r

programs

(4.2.16) Theorem. Let (H, b, ¢) be a semigroup
program. Then (H, b, ¢) is H-unbounded if and only if

» 1is a loop elemeht (see (2.5:7)).



e~

T el

[

Proof: Let b be a loop element, Then there exists
k > 0 such that b = b + k*b. Let h ¢ H, by assumption
(4.2.5) b ~h =2 @ hence there is an element s € S
"such that h t 8 = b. We will show that there exists
k, 21 such that b + k

h
H-unbounded by (4.2.15).

h.h = b, then (H, b, ¢) is

Let p-hv- o(h)+h , p < o(h) Jsuch a p exists by
the definition of_ e(h)) and iet q = o(h) - p > 0,
hence p-*h - (p + q)-h.

Since b + k*b = b we have for any integer p 2 1,
b+ (pk)*b = b + keb + ((p - 1)k)*b = b + ((p - 1)k)-b.
Therefore, using induction on p, we obtain b + (pk)-b=b
for any p =z 1. |

Therefore b = b + (pé)-b =b + (pk)°(h + s), since

h+ s = b,

o
[]

b + (pk)*h % (pk)'s = b £ k*(p*h) % (pk)-s =

o
i+

k*((p + q)*h) + (pk)*s , because p°h = (p + q)°h,

b =1b+ (kq)*h + (kp)*h + (kp) s = b + (kq)-h + (kp)-*b,
since h + s = b ,

b =b+ (kq)+h , since b + (kp)+b = b.

Moreover kq 2 1 since k, q 2 1. Let kh = kq.

Then kh is as désired above,

Let (H, b, ¢) be H-unbounded, then by (4.2.15)
there is kh > 0 such that b t.kh'h = b for any
h e H,

> For any n ElNE the next relation holds



bt (L (n k. )-h) = b.

Z
€H

h
: | h
Because it 1is clearly true whenever n =0 or n = 4§

. for all h e H, i.e. whenever I n, < 1. Let's_assume

hGH N
it is true for any n € NH with I n, < p. Let m elNH
+ h +
heH
satisfies Im =p+1 and m_21 for some e € H.
h e
heH
e

Denoting by n the vector m - &8 . .we have

bt (Z (mk)h)=2>kkoedt (2 (nk)eh) =

heH ‘ ' } hel
b+ (I (nk )*h) =D
heH h'h
e ' H
because n = m .~ § eIN+ and I n, = z m, - 1= p.
heH heH
We denote by A = I kh'> 0 , and by Ah =z EA .
heH - ' h

Since T(H, b) # # there is t EINE such that

OH(t) = b, Let n, = Ahth , then nhkh = Ahthkh =

—)\'tk = At

kh h™h h °*

Therefore we obtain

b=1b it (L (At;)h) b+ 0,(At) = b & A-0, () =

~ hEH
b+ A:b ,

Tierefore b 1is a loop element. [J .

(4.2.17) Corollary. Let (S, b, ¢) Dbe a semigroup
program over »(S, +) not satisfying (4.2.5) but b
being a loop element. Then ({s € St b ~ s = ¢}, ) |is

a subsemigroup of (S, +).



P

Proof: Since

such that

Let s,

h € §

b

there are s', h'

Then we have

+

~

kb

(s + h) + (s'

is a loop element, there is k 2 0

€

b=Db+b+ kb,

satisfy b ~s, b ~ h # §. Therefore

S sugh that § + s' = h + h' = b,

L

(s £ 8") £ (h

i+
=

Therefore b ~ (s i h) # p since s' + h' + kb €

b~ (s + h).

We have proved that the set {s € 8:b ~ s =z p}

is closed under

of semigroup.

O

t

satisfying the definition (2.5.12)



Chapter 5

S MASTER SEMIGROUP PROGRAMS

In this chapter we develop mare conditions satisfied
Sy the minimal elements of EB(H, b). These minimal
elements give the inequalities with right hand side
greater than zero in the defining systems for E(H, b)
(see (3.3.28)).

When (H, b, ¢) 1is an H-unbounded master semigroup
program, we use these conditions totobtain polyhedra
with moré structure whose set of extreme points contains

(and some times are equal to) the set of extreme points

of EB(H, b).

5.1 Subadditivity and Complementarity

(5.1.1) Minimality Lem;a, Let (H, b, c¢) be a
semiéroup ﬁrogram and t € T(H, b) bhe an optimal solution
of (H, b, ¢). Then for any non-negative integer vector
r <t, r is an bptiﬁal solution of the semigroup
program (H, GH(r), c), i.e. cr =e (r?ige (r){cr'},

' H H
Proof: Let GH(r') = QH(r) , by the substitution lemma
we ha§e t -r+r' e T(H, b). Since_ t 1is optimal
c(t = +r') = ct —cr +cr' zct .,

Thus ec¢cr' 2 ecr. 0O .

Notice that the minimality lemma is valid for any
semigroup program.
Through the rest of this section we consider (H, b, c)

to be a fixed H-unbounded semigroup program over (S, *)



satisfying assumptions (4.2.4) to (4.2.6).

(5.1.2) We call n© a support of E(H, b) when 7
is a minimal element of the polar EB(H,\b), therefore
mx 21 for all x ¢ E(H, b) and na ' <7, 7' = 7w
satisfies 7'x 2 1 for all x € E(H, b). By lemma
(3.3.28) the extreme points of EB(H, b) aré supports of

E(H, b) since EB(H, b) € P(RE),

(5.1.3) Lemma. Let 7 be a support of E(H, b)
and let t° be an optimal solution of (H, b, w).  Then
nto equals 1.

0

Proof: Let t be an optimal solution of (H, b, m).

Since ® € EB(H, b) ﬂto 2 1. Moreqver 7wt 2 wto for all

t ¢ T(H, b) because to is optimal. Thus ( "O)t 21
’ ' ’ Tt

fpr all t ¢ T(H, b) , that is "0 € EB(H, b). But 7
Tt o

L3

= T >

is minimal in EB(H, b) and € m . Thereafter

Tt Tt

this is possible only if ﬁto = 1 Dbecause

w2 0 (w.e EB(H, b) " and Q * EB(H, b). O

(5.1.4) Lemma. Let =m be a support of P(H, b).
For any e € H there 1is r’0 € NE such that ro + 6% ¢
T(H, b) and 7(r° + 6% =1 .

. r .
Proof: Let 7 be a support of 'E(H, b) and let e belong

to H. Then we have ne'z 0 since 1w € EB(H, b) E’RE .

b

Case 1: Let w_ = 0.

Let to be an optimal solutiom of (H, b, m). By

.



lemma (5.1.3) wto = 1. Moreover there is ke 2 1 such

that to + keée e T(d, b) since (H, b, m) 1is H-unbounded.

Let ro = to + (ke - 1)6e. Then ro EINE . ro + 6% =
t9 + k6% € T(H, b) and (e + 6% = a(e® + k_6%) =
nto + ﬁeke = nto = 1 because L 0 and choice of to.

Case 2: Let "e > 0 .
‘ H

Since b ~ e 1is non-empty (by (4.2.5)) there is

s € 5§ such that s + e = b. Moreover there is r ¢ mf

such that GH(r) = s because H generates S (by (4.2.6)).
Then we have BH(r + de) = BH(r) + BH(Ge) =s +e=0D»,
that is r + 8% ¢ T(H, b). Therefore the set

R = {r e!NE: r + 6% € T(4, b)} 1is non-empty.

Consequently To = nin{7(r + Ge)} is defined.
3 reR '

If - To = 1 then the lemma follows taken as rO any
0

r ¢ R which satisfies the minimum »(r ~ + §e) = 7, = 1,

0
We will prove that Ty = 1.

e

Since e'EB(H, b) and r + § € T(H, b) for all

r ¢« R we have 1w (r + Ge) 21 for all r € R. Thus L 2 1.
R | e
Let o = min{——, 7.} and let ' =7 - a § . We
o(e) e

claim that ' € EB(H, b) ,'because:

{t e T(H, b): £, < o(n) for all h e H};

r

For all t ¢ T

If te = 0 then w't = (7 - ade)t = Tt - ate = 1t 2 1
since t € T < T(H, b) and 7 € EB(H, b).
If t > 0 then r =t - Ge € R. Hence 7wt = 7v(r + 5e) 2 "0

(S

bv definition of wb.' Therefore #'t = (= —Aade)t =



m,.~1

Tt —»ate 2 1t - :%;7 t, 2t - (no - 1) by definition of

a and because te < o(e) , that is
because 7wt 2 "O .
Thus 7't 2 1 for all t € T. .
By H '
T € E (H,.b) glR+ and o < To® By.

' € EB(H, b) .

't 2 (nt - no) + 1 2

AN
Also " 2 0 Dbecause

(4.2.12) we have

: B .
Therefore =' ¢ E (H, b) andé¢ n' = =7 - as® < 7

because a = 0 (no - 1, o(e) and

Since w 1s a support:  of E(H,vb) N

EB(H, b). Therefore =' = 7 - a8 =

Thus Ty = 1 since 7 > 0. O
e

(5.1.5) Lemma. Let (H, b, ¢)

semigroup program over (S,-+) and

E(H, b). Then ' 7 = min {nr} for
_ e
QH(r)=e

m
e

it 1is minimal on

m , that is. a = 0 .

be an H-unbounded
m be a support of

all e € H .

0 H

Proof: Let e e€ H. By lemma (5.1.4) there is r € N+

satisfying r0f+ §¢ ¢ T(H, b) and n(ro + de) = 1. Let
to = ro + §° , hence to is an optimal solution of
(H, B, m) and. 6% s t0 . 'Therefore 78°% = min {mr}

by the Minimality Lemma.

»

e ey _
But 78 To . and eH(a ) = e.

eH(r)=eH(ae?

I

5.4

are all non-negative).

Thus 7_ = min {nr}.0O

9H(r)=§

4

(5.1.6) Let (S, ) be a semigroup and b a fixed

element of §. Let s, s € S. We call s a b-complementor

of s when s + s = b and for all

-

P, ¢ € S we have

s +p=g4g % E = b dimplies p + q = b. Clearly s may



have no b-complementor or several,

(5.1.7) When s is a b-complementor of s , s 1is

a b-complementor of s because the defipition is symmetric,

When (S, +) 1is a group, clearly for any s in S
there is a unique solution x to' 8 + x =b, This is
b t.(-s) where =-s 1s the inverse of s (hence
b + (-s) 1is the b-complementor of 8). For other
sémigroups we lose this property and we need something to
replace 1it. The b-complementors will keep the properties
we need.

We close this section with a theorem that gives
several proberties of supports of E(H{ b) , and thereafter
of exﬁreme points of EB(H, %) since there are supports

of E(H, b).

(5.1.8) Theorem. Let beva support of E(H, b).

Then 7w satisfies the following conditions.
(5.1.9) When b ¢ H we have my = 1.

(5.1.10) When o0 ¢ H we have =m_ = 0.

»

(5.1.11) Subadditivity: If h, e, s e H and h = e + s

then m™ + 7w zZm .
e s h : .

(5.,1,12) M&notony: When e, s e H and b ~ e ¢
b ~s we have % < w_ .
e s
{5.1.13) Complementarity: When e, @ ¢ H and e

is a b-complementor of e we have Te + n_ =1,
. e



Proof: By lemma (5.1.3), min {7t} = 1 and by lemma
OH(t)-b

(5.1.5) T, = min ‘{nt} = 1 when b ¢ H. Hence (5.1.9)
GH(t)-b

holds.

If o e H then 7 = min {7t} = 0 by lemma (5.1.5)
eH(t)=o
and because m 2 0 and GH(O) = 0 . Hence (5.1.10) holds.

e

Let h, e, s ¢e H and h = e % s. Then 08_(8 + GS)=h.

H

By lemma (5.1.5) LAY < n(&e + GS) =T, + né. Hence

(5.1.11) holds.

_Let e, s e H and b ~e ¢ b ~ s. By (5.1.4) there
is ro eINE ;éatisfying ro + 8¢
n(r0 + Ge) = nro + Te = 1. Therefore SH(r
GH(rO) t’e = b and GH(rO% e b~ecb~s. Then

eH(xO) + s = b, that is ro + 65

¢ T(H, b) and

04 58 =

e T(H, b). Therefore

~

0 , s 0 0
n{r + &) Tr  + L > 1 = nr + Te s i.e. e > Te
Hence (5.1.12) holds.
Let e, e ¢ H and e be a b-complementor of e.

Since e + e = b we have myF M. 2w =1 by (5.1.11)

b
e
and (5.1.9). In order to ‘'show that L + 7. <1, let
_ e
ro, rl elNE satisfy ro + Ge, r1 + 8% ¢ T(H, b) and
nro + Ty = wrl +ou_ =1 (they exist by lemma (5.1.4)).
e

Since e 1is a b-complementor of e and OH(rO) e =

H+

- ’

‘ 1 - 0 1, _ 0 1, _
uH(r ) + e b we have GH(r )_t GH(?_) = OH(r + r) b,

chat is r0 + rl e T(H, b). Therefore Tr(r0 + rl)'z 1

hecause 7w € EB(H, b). Therefore nro + wrl 21 = wro + L

that is nrl 2T . Then 1 = nrl +'n_ 2T+ m_.
- e p e :
Thus (5.1.13) holds.O



5.2. Master Semigroup Programs

(5.2.1) A Master Semigroup Program (H, b, c) 1is

a semigroup program (H, b, ¢) over (S, t) where H

. N
is the whole §S. Thereafter we will denote a master
semigroup program by (S, b, c) understanding that it is

over (S, +).

Assumptions‘(4.2.4) and (4.2.6) can be kept without
loss of generality. When b is a loop element the master
semigroup program (Sl; b, ¢) 1is equivalent to the master

b ~g = pl,

semigroup program (S, b, c¢) where S = {s‘e S
that (S, +) 1is a semigroup was proved in corollary
(4.2.17). Moreover (S, b, ¢) satisfigs assumption
(4.2.5). Since (S, b, ¢) .is S~unbounded if and only if
b is a loop erement (by theorem (4.2.16)), we can assume
(4.2.4) to (4.2.6) to be satisfied by S-unbounded master
semigroup programs without loss of generality.

Let us consider the relation between the S-unbounded
master semigro&p program (S, b, ¢) and the semigroup
program (H; b;v(ch: h eij) where H 1is a subset of
S (we do not require H to be a generator of § , we
only require that the semiéroup generated by H to be a
~ubsemigroup of 'S). It is easy to see that T(H, b) is

S:

~quivalent to T(S, b) n XH where XH'= {x e R X, = 0

.or every 8 € S - H}. By theorem (4.1.12) E(H, b) 1is
e~uivalent to E(S, b) n XH. Therefore knowing a defining
system for E(S, b) we know a defining system for

E(H, b).



With this introduction we pass to obtain more
stronger characterizations for defining systems of
master semigroup programs.
For the rest of this section we will consider (S, b, c¢)
to be a fixed S-unbounded master semigroup program
satisfying assumptions (4.2.4) to (4.2.6) unless

specifically omitted.
4

(5.2.2) 1In order for the inequality X 2 0 to be
redundant in the defining system for E(S, b) given in

(4.2.11) it is necessary that min {t } > 0. Hence

' teT(S,b)
the only inequality .that may be redundant 1is Xy 2 0
because 6b € T(S, b) and then min {ts} < 62 = 0 for
teT(S,b)

all s € S - {b}.

(5.2.3) An S-unbounded master semigroup program
(S, b, ¢) is trivial when b ~ {s} = {b} for all

s € § - {b}.

(5.2.4) Lemma. Lét (s, by, ¢) Dbe trivial. Then

the system

Xy 21
X, 2 0 for all s € S - {b}.
is an irredundant defining system for E(S, b). ’

v

Proof: 1If we prove that t e T(S, b) implies tb z 1

then the only minimal element in T(S, b) is P . By

theorem (4.1.8) we have EB(S, b) is the sgolution set of



LB > 1,
T > 0 for all s e 8§ .
It 1s easy to see that the only extreme point of EB(S, b)

~

is Gb. Therefore the system of the lemma is an irredundant

defining system for E(S, b) by theorem (4,1.8) and
(5.2.2). |

Proof that t ¢ T(S, b) impliés t, 2 1.

Let T be the set {ﬁ e T(S, b): ty = 0},

Let ﬁo satisfied = to = minf{ % t _1}. to cannot

s€s s teT s€S
be 0 , otherwise 6s(t0) = 68(0) = 0o ®« b by assumption

(4.2.4).
Hence there is e € S - {b} such that tg >0,
Therefore o_(t%) = o_(t0 - 6%) + o (6% = o_(£% - &%)

e = b . Then és(to - 6% eb~e = {b}. This is absurd

because es(t0 - 6% =0bp implies to - 8% eT and
z (t0 - 8% = 1 to -'l < L to contradicting the
s, s
seS seS seS

choice of t%. Thus T 1is empty, that is if t ¢ T(S, b)

then tb > 0 .0

(5.2.5) Lemma. For any non-trivial S-unbounded

master semigroup program (S8, b, ¢) the system

vx 2 1, for all extreme point v of EB(S. b),
'

(5.2.6) .
x =20, for all s € S,

Is an irredundant defining system for E(S, b),

Proof: By (5.2.2) we only need to prove that amin {tb}=0
’ teT(S,b)



because then system (5.2.6) will be the same as (4.2.11).

Since (8, b, ¢) is noa~trivial there are s, h = D

satisfying § +h =0>b. Then &° + s ¢ T(S, b) and

‘min {tb} s (Gs‘+»6h)b = 0. Since vT(S, b)'S'Ri we
teT(S,b)
also have min (tb) 2 0. 0

teT(S,b)
Let (S, b, ¢) be an S-unbounded master semigroup
program. Then theorem (5.1.6) reads: When =m 1is a support

of E(S, b) , m satisfies:

(5.2.7) Ty = 1.

(5.2.8) Subadditivity: For all r, s € S we have

(5.2.9) Monotony: For all s, r ¢e S if b ~s ¢ b ~r

then #n_ s 71 .
s T

(5.2.10) Complementarity: For any s € S if s is
a b-complementor of s then T + n_ = 1.
s
Notice that (5.1.10) is a consequence of (5.2.7) and
(5.2.20) bécause o 1is always a b-complementor of h
since b+ o=b and r+b =3 + 0o =b implies s = b,

hence r t s =71 £ b ="b. Therefore =+ =1+ = 1.*

(5.2.11) Theorem. Let (S, b, ¢) be an S-unbounded .
master semigroup program. If = elRi satisfies (5.2.7)

and (5.2.8) then ® belongs to EB(S, b).

Proof: Let T e mi satisfied (5.2.7) and (5.2.8).

Let T = {t € T(S, b): =wt < 1}.



Let to be such that I to =min{ £ £} . If

. S8S€§ s teTl se$S
0 a |

i tg =1 then t = § for some e € S because
seS
to € mi . Moreover b = 6 (to) = es(ée) = e¢ because
s -
to e T(S, b). Hence to = 6b and nto = ﬂdb =T, = 1
by (5.2.7), contradicting that ﬂto < 1. Then we have
0 ,

£ t° 2 2. Therefore there are r, h ¢ § satisfying
seS '

T + 6% s t”. By the substitution lemma (2.5.11) we have
t1 = to - 6 - 6h + drth € T(S, b). But now
z tl = I to -2 +1< I to , and ntl = ﬂto -7n_ - w,_ +
s s T h
s€S seS seS
Toen S nt® < 1 (by subadditivity of =), and this

contradicts the choice of ‘to .

Thus 1wt 2 1 for all t € T(S, b) and elRi .
By theorem (4.2.9) 1 € EB(S, b). O ' ;
The next four theorems characterizing defining systems
for E(S, b)_.ére a consequence of the one above and
(5.2.7) to (5.2.10). They are the main results of this

chapter.

(5.2.12) Subadditivity Theorem. Let (S, b, c) be

. .

an S-unbounded master semigroup prégram. Let PS(S, b)

be the-polyhedron of solutions 1w of the system

Lo =1,
(5.2.13) T + L 2 "rts for all r, s € S,
."s 2 0 ' for all s € S.

Then the system

.11



) v 2 1 for all extreme points v of PS(S,b),
(5.2.14)

xg z 0 for all =8 ¢ 8.

is a defining system for E(S, b).

Proof: Since E(S, b) e P( mi)_ we have EB(S, b) € P(lRi).

Therefore EB(S, b) < lRi .
Let 7 be an extreme point of EB(S, b). Then =
is a support of E(S, b) (by definmition (5.1.2) and

lemma (3.3.28)).

(5.2.15) Therefore m satisfies: T, o= 1 (by (5.2.7)),

wr + L 2 "rts for all r, s ¢ S (by (5.2.8)); T 20
for all 8 € § (because 71 € EB(S, b) < lRi). Hence
T € PS(S, b). ‘ - )
Thus the set of extreme points of EB(S, b) 1is
‘.
contained in PS(S, b). 2

That PS(S, b) ¢ EB(S, b) 1is a conSequencevof theorem
(5.2.12).
Hence the theorem is a special case of theorem

(3.3.29) when P = E(S, b) and Q = PS(S, b). O .

(5.2.16) Monotony Theorem. Let (S, b, ¢) be'an

S-unbounded master semigroup prbgram. Let PM(S, b) be

the polyhedron of solutions # - of the system

T = 1, ‘
T + LE% 2 ﬁsth for all s, h € S,
(5.2.17) e 7T <7 . for all s, r € S satisfying
s r '
. b ~ s c b~1¢r,
T 2 0 for all s € S.
\. .



Then the system

vk 2 1 for all extrede points v of PM(B;b),
(35.2.18) .
' _xs.z 0 for all s € S.

is a defining system for E(S, b).

(Same proof that (5.2.12) using PM(S, b) instead PS(S,b)
and adding '"w satisfies LA < T for all s, r € S

satisfying b ~s ¢ b ~r (by (5.2.9))" in (5.2.15)). U

(5.2.19) Complementarity Theorem. Lét (s, b, ¢)

be an S-unbounded master semigroup prdgram. Let PC(S, b)

be the polyhedron of solutions m of the systen,

v e
L + Ty 2 nsth for all s, h € §, ¢
(5'2'20) 1 LI S 1 for all s € S when s is
s a b-complementor of s , .
T z 0 for all s e S. v
§ .

Then the system

vx 2 1 for all extreme points v of PC(S,b),
(5.2.21) :
X 2 0 for all s € S . :
is a éefining system for E(S, b). .

(Same proof as (5.2.12) using PC(S, b) instead of

PS(S, b) and adding "m satisfies L + 7 =1 for all

s
s € S when s 1is a b-complementor of s (by (5.2.10))"

in (5.2.15)). 0O

(5.2.22). Let (S, +) be a semigroup and b an:

element of S . The semigroup is called b-complementary
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when every element in S has a b-complementor and

unigue b=complementary when it is b-complemantary and

there is only one complementor for each element in S.

(5.2.23) Lemma. Let (H, b, ¢) be a semigroup
program over the b-complementary semigroup' (s, ) .

Then (H, b, ¢) 1is H-unbounded.

.Proof: We will show a stronger result:

(5.2.24) b is a loop element if and only if

b ~ (e(b) * b) = P.

If (5.2.24) holds then the lemma is proved because
when the'sémigroup is b-éomplementéry we have b ~ s = §
for all s € S (since the b-complementor of s belgkgs o
to b ~ s) in particular b ~ (e{(b) - b) = § and by
(5.2.24): b is a loop element. Now (H, b, ¢) is '

H-unbounded by theorem (4.2.16).

Proof of (5.2.24): Let p * b = o(b) = b, p < o(b) (such

a 'p exists by definition (2.5.7) of o(b)). Denoting by

q = °§b)>"p we have p *« b = (p + q) * b.

Let b be a loop element. Then there is k ;(b) > p

v

such that k « b = b , therefore b = (k - p) * b+ p * b =
2
(k - p) » b+ o(b) *+ b, hence b~(e(b) * b) is not empty

because it contains (k - p) * b.

Let s € b ~ (e(b) » b) = §. Since o(b) * b =1p = b
we have s + p ° b =b . Hence we have ‘

b=s%tp+b=st(p+q) +b=2{(stp*bdtaqa - b=btyg- b.

.14



| S

Thereafter b 1is a loop element. 0

(5:2.25) sStrong G6mpléementarity Theorem: Lét

(S, b, ¢) be a non-trivial master semigroup program with
(8§, +) b-complementary. Then the system (5.2.21) is an

. irredundant defining sysfem for E(S, b).

Proof: By lemma (5.2.23) we have (S, b, c) is S-unbounded.
Hence (5.2.21) is a defining system for E(S, b) by the

Complementary Theorem (5.2.19).

By lemma (5.2.5) we have for all s € S the inequality
X, 2 0 is'irfedundant in (5.2.21) because (S, b, c) 1is
non-trivial.

In order to show that for all extreme points v of

PC(S, b) , the inequality wvx 2 1 1is irredundant in

(5.2.21) would be enough to show that:

(5.2.26) All the points .of PC(S, b) are minimal in
PC(S, b), and apply theorem (3.3.29) with P = E(S, b)

and Q = PC(S, b) .

Proof ofﬂ(5.2.26): Let 1w and ﬂl in PC(S, b) éatisfy

‘1 t - . .
", < Wy - Let s be a b-complementor of s (there is

such an ‘s because (S, +) is b-complementary).

&
1 1 , 1
Then we have w_ 4+ 7_ = 7" + 7_ =1 . Since w_ < 7w
s s s 3 s s
we obtain ﬂ§ > ni . Therefore all the points in PC(S, b).
s
c(s, b). O

are minimal in P

(5.2.27) Let (S, +) be a semigroup. We denote by

m the number of b-complementors of s € S in (S, +).

—
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(5.2.28) Lemma. Let (S, b, ¢) be an S-unbounded
master semigroup program with (S, *) being b-eomplementary.

Let w be a support of P(S, b). Then I m_m -1 Im .
s s 2 s
s€S seS

Proof: By (5.2.10) L + 7. =1 for eéch s which is
8

a b-complementor of s. If we add all these equations

né will appear m times as first term and m, times

as second term (by (5.1.7)). Hence the sum of all these

equations would add to I 2m_m_ . Clearly there are
se€S _
I m of these equations. Therefore I 2mv_ = I m_. O
s . s s s
seS , seS s€S

(5.2.29) Corollary. 1In the conditions of the lemma

above, if (S, *) 1is uniquerb—complementary then

In = i%l . 0 o - G

s
seS

(5.2.30) Constant Sum Theorem. Let (S, b, c) be 5

a non-trivial master semigroup program with (S, %)

b-complementary. Let PCS(S, b) be the polyhedron of.

solutions ® to the system,

Ty T 1, .
o T + LI 2 "sth for all s, h € §
(5.2.31) 1. Smon - 1 . n -
sesS seS
&
T =20 for all s ¢ S .
\ S
Then the system )
» vk 2 1 for all extreme points v of PCS(S,b),‘
(5.2.32)
X 2 0 for all s € S.

is an irredundant defining system for E(S, b).

.16
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Proof: The proof that (5.2.32) is a defining system for
E(8, b) 18 the same as (5.2.12) using also (5.2.28) in
(5.2.15).
That the system is irredundant follows from theorem
(3.3.29) because the equation Imnw = L Im insures
s s 2
seS s€S
minimality of the solutions of (5.2.31) since all the
coefficients are greater than zero. [J
Notice that this theorem is tighter than (4.2.25) since
any solutipn to (5.2.21) satisfies (5.2.31).
The examples below show that systems (5.2.14) and
(5.2.18) can be redundant:
(5.2.33) Example of PS(S, b) with vertex not “
minimal. -
A .
The semigroup is over {1, 2, 3, 4} with + defined -
by s + h = min{s + h, 4} and b = 4.
We claim that vo = (%, %, %, 1) and vl = %, 1, %, 1)
are vertices of (5.2.14). Therefore vl is not.minimall
It is easy to verify that w0 and vl satisfy.
(5.2.14), moreover v0 satisfies as equalities: .
4 4
T, =1 m, =1
4 4 &
Ty + My =M, LY + Ty = T, = 0
‘ 1.e. 1
T, + T, = ﬂ4 2w3 - My = '
Ty + T, =T, 3ﬂ3 - T, = 0
. 8
0 0 :0 1
since 1 0 1.-1 is not singular v0 is a vertex
0 2 0 -1 .
0o o0 2 -1



v1 satisfies as equalities
(
T, ™ 1
{ ZTr1 =Ty = 0 and is not singular.
LB + Ty = T, = 0
2n3 - T, =
\

(5.2.34) Example of PM(S, b) with vertex not
minimal. Consider the same program aé in (5.2.33). We

have 4 ~ 1 = {3, 4}, 4 ~ 2 = {2, 3, 4}, 4~ 3 = {1, 2, 3, 4}

and 4 ~ 4 =.{0, 1, 2, 3, 4}, Therefore TS My, S Wy S,
for any w 1in PM(S, b).

Clearly - vO = (%, %, %, 1) 1is an extreme point of
PM(S, b) and vl = (1, 1, 1, 1) € PM(S, b) 1is not pinimala.

1 . . ey s
\'2 satisfies as equalities

r 2
Ty T T, = 0 -1 &
Ty = Mg = 0 1

< and is not singular.

Ty T M, = 0 0
w4’= 1 0
S

This leaves us only system (5.2.20) in the
Complementarity Theorem. We have not been able to find
an example with redundant inequalities in (5.2.20),

furthermore trying to find each example we arrived at the

following conjecture: ‘

(5.2.35) Conjecture. Let (S, b, ¢) be a non-trivial

S-unbounded master semigroup program and PC(S, b) be

defined as in (5.2.;9). Then the system



vx 2 1 for all extreme points v of PC(S, b),

X, 2 0 for all s ¢ § .

is an irredundant defining system for (S, b).

Notice that conjecture (5.2.35) and theorem (5.2.25)
are‘equivalent.when the semigroup 1s b-complementary.
Sinée a group is always b-complementary for any b in
the group, the conjecture doesn't have any effect in group
'prograhs. The situation changes when we consider covering
programs because, although a covering semigroup (A(b), +)
is b-complementary, a subsemigroup of (A(b), #) containing
bv may be not. |

The next example shows a subsemigroup of a covering

semigroup which contains b and is not b-complementary. e

(5.2.36) Let b = (1, 1, 1), = (0, 1, 1),

83
s, = (1, 0, 1), dg = (1, 1, 0), 0 = (0, 0, 0) and let
‘H = {b, §35 ss, 56’ 0} . It is easy to check that (E, +)

is a subsemigroup of the covering semigroup (A({1, 1, 1)),%).

has no b-complementor becduse

84 , ' '
b ~ 85 = {b., S5 s6} and .
b 1is not abb—complementor of S4 ‘since 84 t sy = 0O +b="»
and SS.t 0 =385, 2b . ’ : u
Sg is not a b-complementor of S3 since
3 % S6 = %6 t s, = b and s, % s, = s¢ * b .
S6 is not a b-complementor of 84 since
84 % 85 = s, £ s, = b and 8 i_ss = 85g * b .

Thus (H, +) >is not B—complementary.
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Chapter 6

b-COMPLEMENTARY SEMIGROUPS

We have shown in the introduction ehapter that
groups are uniquely b-complementary for any element b
in the group and that any covering semigroup (A(b), %)
is uniquely b-complementary.

We will present in this chapter a large family of
uﬁiquely b-complementary sémigroups; This family
includes groups and covering semigroups.

We also show that given any unboundéd semigroup
program there is an equivalgnt semigroup program over

a semigroup with unique complementors.

6.1. Sum of Semigroups

P &de
(6.1.1) Let K be a finite set and for each
k € K, let (Sk, +) be a semigroup: The semigroup *
(s, +), where § = X Sk and where for any s, h € §,
' kekK
(s + h)k - (sk + hk)’ is called the sum of (Sk, +xk ¢ K.

(6.1.2) Lemma. Let (S, +) be the sum of

1

(Sk, +):'k ¢ K and b € S. Then b 1is a loop element

in (S, +) if and only if bk is .a loop element in
(Sk, +) for all k e K.

Proof: From definition (6.1.1) if b = q+b then

bk = q'bk: k € K. Therefore bk is a loop element in
(Sk, +) for all k € K when b is a loop element in

(s, +).

~

Let bk be a loop element in (Sk, +) for all
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A(6.l.4)hk = and r, =

k ¢ K. Then there is a véctor (qk 2 1: k € K) such
that by = (1L + qk)'bk: k ¢ Ko Clearly bks(l + Aqu)bk

for all A, € IN,: k ¢ K. Let q = 1 9y and’

k + kekK
A, = J - = . H
Kk a4, Therefore bk (1 + q) bk k ¢ K, that is

b=(l+q)b, since q 2 1 (q 21: k € K) b is a

loop element in (S, +). [

We recall that the semigroup program (H, b, c¢)
over (S, +) 1is H-unbounded if and only if b 1is a

loop element in (S, +), by theorem (4.2.16).

(6.1.3) Lémma. Let (S, *+) be the sum of

(Sk, +): k ¢ K and let b € S. For any s € § , s is

a b-complementor of s 1in (S, *) if and only if .S

is a bk-complementor of Sy for all k e K.

Proof: Let 8 be a b-complementor of s in (S, +).

Let e € K and let he, r, e s®. Cconsider the

vectors h, r € § defined by

S

t

if k = e lsk if k = e

' ’ h “if k = e lr if k = e.
e e

o+
@l
il
o

Since s + s = b we have se Let

e e’

= b.

0}
=¥
]
"
it
+
Y]

s = be then s + h = r

+
e ~ e e e

Therefore h + r = b because s is a b-complementor of

s. Hence h + r = b . Therefore s is a
e ~ e e e

be#complementor of S, in (Se, +). Thus ;k is a
b, ~complementor of s in (Sk, +) for all k € K

k k

L3

+



since the choice of e was arbitrary.

Let LM be a bkecomplementar of LN for all
k e K. Then s +5 =b and if s +h=1r +5s =b

. then we have 8 +h =1 + s, = b for all k € K .

k k k k k

‘Therefore for all k € K we have hk tr = bk because

that is h + r = b.

8y is a bk-complementor of 8y

Thus s 1s a b-complementor of s in (S, +). O

~

(6.1.5) Corollary. Let (S, +) be the sum of

(Sk, +): k € K and let b € S. Then (S, +) is

b-complementafy if and only ifv (Sk; +) is bk-complementéry

for all k € K. [

(6.1.6) Corollary. Let (S, +) be the sum of
(Sk, +): k € K and let b € S. Then (S, +#) 1is uniquely

b-complementary if and.only if (Sk, +) 1is uniquely

o

bk-complementary for all k e K.

Proof: Let (S, +) be b-complementary.

Let 8 € S. If r, h are b-complementors of s

rkiz hk'

and r 2 h then there is k € K such that
By'(6.1.3) rk and h are b, ~complementors of SK'

k k

Hence (Sk, +) is not uniquely b 4complementary.

k

Let s € S, let r , h be b -compleﬁentors of "
e e e e
k

S, and let .re # h . Let s, € S for all k € K - {e}.

e k

Since (S, +) 1s b-complementary, there is a b-complementor

s of s = (sk: k ¢ K). By (6.1.3) we have

r=(r 3 s : k € K - {el) and h = (he; s,: k e K - {el)

e k k

are b-complementors of s . Thus (S, +) 1is not umiquely
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b-compleméntary because r = h. [

6.2. Cyeclic Semigroups

(6.2.1) A cyclic semigroup is a semigroup generated
by one element. If x 1is the generator then its elements
are

ILO'x, l'x,.;.,c'x, (¢ + 1)*X,e0e,(c + d)ex = C*Kyeue

Where c+x is the first element in the loop of X
and d 4is the number of elements in the loop of x. - This
semigroup is denoted by <c; d> and the loop of x (see

(2.5.7)) is called the loop of <c; d>.

(6.2;2) It is easy to see that <c¢; d> 1is a group
if and only if c = 0. And that <¢c; d> 1is a covering

semigroﬁp if and only if d = 1.

- (6.2.3) Clearly any cyclic semigroup <cj; d> can be
represented by the semigroup ({0, 1,...,c,...,c+d=-1}, i)

where for all non-negative integers s, h we define

s +h if s + h < ¢ :

' ’ s < + - is
s+ h = r (where ¢ T c d and r c

L3

congruent to s + h - ¢ module d)

if s + h 2 c.

Thereafter we will consider this represeantation for <c; d>.

(6.2.4) Proposition. Let b be in the loop of

<g; d> and let s, h be two elements of <¢; d>. Then

. we have s i'h'- b if and only if there is a non-negative



integer 'k such that s + h = b + kd.

Prooft Let s + h = b. 6ince .b 2 ¢ (because b 1is

a loop elemeht) then s + h - ¢ 1is congruent to b - ¢
module d (by (6.2.3)). Therefore there is a non-negative
~integer k such that b - ¢ + kd = s + h - ¢, that is

5 + kd = s + h, | |

Let ‘k be a non-negative integer and let

b+ kd = s + he. Then b - ¢ 1is congruent to s + h - ¢
module d and s + h 2 b 2 c. Thus we have s + h =D

by (6.2.3). O

(6.2.5) Lemma. Let (s, +) be a subsemigroup of

<cy d> and let b ¢ § belong to the loop of <ec; d>.
. -
‘For any s € S the element 8 = min {h} is a
: heb~s

b-complementor of 8 im (S, +). _ s

~

?')

Proof: Let s € S.
b ~ s is non-empty because b + d*s = b, by (6.2.4),

and b + (d - 1)*s € S since b, s € S. Hence

l)s ¢ b ~ s. ‘

b + (d

~

.Let .8 = min {h}. Therefore s + s = b. To prove
' heb~s '

that s ié a b-complementor of s in (S, +) we only
need to show that for any h, r ¢ § satisfying R

s +h=1r+3s=>b we have 'h + r = b,

By,(6.2;4) we have:

s +5 =Db iff s + 58 = b + k d where k € IN,.
~ . s s +
s +h=b iff 8 + h =b + k d where k € IN, .
~ n n +

iff r +

w
i+
Y
]
o

b + k d where k €IN,.
T r +
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Hence 8 + h +r + s = 2b + (kh + kr)d’ that is
| h +r = 2b + (kh + kr)d - (s + 8) = b + (?h +.kr -
ka)d. | |
By (6.2.4) we have h + r = b because k_ < ky

s
by choice of s. [

(6.2.6) Corollary. Let (S, +) be a subsemigroup
of <c3; d> and let b ¢ S belong to the loop of

<e¢; d>. Then (S, +) is b—complementary.lﬂ

Combining corollaries (6.1.5) and (6.2.6) we obtain
the following family of b-complementary semigroups.
(6.2.7) Let (S, +) be a sum of subsemigroups of
’ » oA
<ck;.dk>: k € K gyd let b.- (bk elN+: k € K) satisfy
Cr < bk < Cr + dk for all k e K. Tﬁen (s, +) 1is

b-complementary.

In the next section we will extend this family.

6.3. Reduction of Semigroups.

§6.3L1) Let (S, +) be a semigroup and let b e S
be a loop element. Let the relation w in 82 be
defined by swh if b ~ s = b ~ h. Let R be the

family of equivalence classes of w. We denote by

R(S, b) the family R - {{s ¢ S: b ~s = 9}}.

(6.3.2) Proposition. {b} belongs to R(S, b),

because o ¢ b ~b and o ¢ b ~ s for anyt s # b.

Hence the only elemént in the eqﬁivalence class of b



is b iditself. [

(6.3.3) For any two elements rl, rz iﬁ' R(S, b)
we define ‘rl * r2 to be r 1f there arc sl, 32 « S
such that sl € rl, s2 € r2 and s1 + 52.€ r.

(6.3.4) Lemma. Let (S, +) be a semigroup and let
b €S be a loop element. Then (R(S, b), +) 1is a

semigroup.

Proof: To prove the lemma we only need to show that for

any rl, rz in R(S, b) there is one and only one

r € R(S, b) satisfying r = rl + rz. Because the other

conditions_of a semigroup are trivially satisfied.

1 1 2 2 1 - L

"Let s € r and s e r . Thenmn b ~ s and
b ~ s2, are non-empty. Hence (by (4.2.17)) b ~ (sl+sz)
is non-empty. Therefore there is r ¢ R(S, b) such

that st + 82 € r« Thus r = r1 + rz.

To show that r 1is unique is enough to show that
b~s =5b~ sl and b ~h =b ~ hl imply

b~ (s £h)=b~ (s £ nl). :

Let b ~s8 =5b ~ sl and let b ~h = b ~ hl. Then

x eb ~ (s +th) 1iff s +h +x=D>b 1iff h + x e b ~ s

iff h+xeb~sgt iff h+ x + st =b iff *
st +xeb~n iff s+ xeb~ht iff s’ +hl & x =0
iff x € b ~ (sl_t hl).

Thus b ~ (s + h) equals b~ (s +h7) . O

(6.3.5) We call (R(S, b), +) the b-reduction of
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(S, +). We say that (S, +) 1s b-reduced if (S, %)

is isomorphic to (R(S, b), *).

(6.3.6) Proposition. Let (S, +) be a semigroup

and let b € S. Let s, e, h belong to S. If e, h

are b-complementors of s them b ~ e = b ~ h.

Proof: Let e, h be b-complementors of s. Let

X € b~ e. Then we have s + h = x + e = b. Since e

is a b-complementor of s . we have h # X = b. Therefore
X € b ~h. Similarly we obtain 1f x ¢ b ~ h then

x ¢ b~e. Thus b ~e =b ~ h. [J

The next two statements are an immediate consequence

Of (6.3-6). Py U“

(6.3.7) If (S, +) 1is b-reduced then the

»

b-complementors are unique.

(6.3.8) "(s, +) 1is b-complementary and b-reduced"

is equivalent to " (S, +) 1is uniquely complementary".

(6.3.9) Lemma. Let (S, +) be a b-complementary
semigroup.. Then (R(S, b), t) is a uniquely

{b}-complementary semigroup.

Proof: Let r, rl belong to R(S, b) and let s € r

, 1 1
and s € r .

First we will prove,

(6.3.10)' rl is a {b}-complementor of r inm
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(R(S, b), +) if and only if s1 is a b-complementor of

s 1ian (S, #).

Let s + s! # b. Then r + el = {b}, that is rl

is not a b-complementor of r.
1 1

Let s + 8 = b, Then r + r = {b}.

Let p, pl € R(S, b) and let h ¢ p, hl € p1 .

Let s + h = st + hl = b. Then r +p = et + pl = {b}.
if s1 is a b-compleméntor of s then we have

h + hl = b. Hence p * p1 = {b}. Therefore rl is a

{b}-complementor of r.

If sl is not a b-complementor of s then there

are  h, hl, as defined above, satisfying h + hl z b,

Then p + p1 # {b}. Thus ! is not a {b}-complementor

o
of r. This completes the proof of (6.3.10).
Let (S, +) be b-complementary. Then (R(S, b), %) z
is {b}~-complementary by (6.3.10). Therefore (R(S, b),%)
is uniquely {bl}-complementary by (6.3.6). [
(6.3.11) Let (S, b, ¢) be an S-unbounded master
semigroup program. For any r € R(S, b) we denote by
z = min{és} and we denote by r a fixed element in r
ser
satisfying cz = z_. We say that the vector t in INi
&

is equivalent to the vector n = (nr elN+: r ¢ R(S, b))

if t satisfieé

n_ if s = r for some r € R(S, b)
for all seS: t.= r

0 otherwvise.

(6.3.12) Theorem. Let (S, b, ¢) be an S-unbounded



master semigroup program. If n0 is an optimal solution

of (R(S, b), {b)[ z) then the vector tQ equivalent to

n0 is an optimal solution of (S, b, c).

Proof: VLet no be an optimal solutiom of (R(S, b), {b}, 2z)

and let to be equivalent to no. Let R = {r: r € R(S, b)}.

Then I tg's = I tg°f = _g ng'; =.b because I € T
seS FeR reR
for all r € R(S, b) and I no'r = {b} (by choice
' reR(S,b) r

0 0
of n ). Therefore t e T(S, b).

Clearly we have zn0 = I c;n0 = I c_tg = I cstg=ct0.

: reR T TerR T s€S
1 h

(6.3.13) Let t + 8 € T(S, b) and let

h e r € R(S, b). Then L ti-s + h = b. Therefore v v
: ses ‘ _

z tl's e b~h=b~71. Thus t1 + 6% ¢ T(s, b). .
ses °© *

For any t e.T(S, b) we define

tt. if s =1r ,
her-h

rti
0

0 otherwise.

Iterating (6.3.13) we obtain t e T(S, b).

Moreover we obtain ct € ct by iterating

1 1 1 1 h

c(t™ + Sr) = ct” + s < et” +c,. = c(t” + 8§7).

h

| Let n = (nr? n_ = tf for all r € R(S, b)).
Clearly n ¢ T(R(S, b), {b}) and cto = zno < zn = ct £ ct.

Hence to is an optimal solution of (S, b, ¢).0

Theorem (6.3.12) is the main motivation to study



reductions of semigroup. Now we pause to epnsider some

more properties of reductions.

(6.3.14) Proposition. Let (S, +) be a subsemigroup

of the cyclic semigroup <c¢; d> and let b be a loop.
element in (S, +). Then the b-reduction of (S, +) 1is

- uniquely {bl}-complementary.

Proof: If b .belongs to the loop of <cj; d> then
(S, +) 1is b-complementary by (6.2.6). Therefore the

b-reduction of (S, +) 1is uniquely b-complementary by

(6.3.9).

If b 1is a loop element of (S, +) and b does
not belong to the loop of <c; d> then the only posgibili€;
ié b = o and c.> 0.

In this case we have o ~ o = {0} and o ~s = ¢ :
for all s € S - {o}. Hence R(S, o) = {{o}}. Trivially
(R(S, 0), +) 1is uniquely {ol-complementary.[ |

(6.3.15) Theorem; Let (S, +) be a semigroup and
b e S be a loop>element. Let (S, +) be a sum of:
bk-reauced‘subsemigroﬁps of <€y dk>:'k € K. Then *

(s, +) 1is uniquely b-complementary.
Proof:- Immediate from (6.1.6) and (6.3.14). [

Theorem (6.3.15) provides a large family of uniquely
b-complementary semigroups. That this family is larger
than thekdﬁe obtained usingronly sums of ﬁniquely
bk-complementary subsemigroup of cyclic groupé is shown

by the next example.
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Consider the cyclie éemigroup <6; 2> and the

sub-semigroup generated by {2, 3} and its 7=reducction,

call (S, +) this 7-reduced semigroup. It is easy to
check that s = {{0}, {2}, {3}, {5}, {4, 6}, {7}} and

for all s € S, s = {0} we have 2<s = {4, 61}.

(6.3.16) We ﬁill show that (S, +) 1is not a
sub-semigroup of a sum of cyclic sémigroups. We know

(s, tj is 7-¢bmp1ementary by (6.3.14).

Assume (S, +) = ({x% elNE: s € S}, +) 1is a

sub-semigroup of the sum of <Cps dk>: k € K.

Notice that {5} 4is not a loop element of (S, *)

but {4, 6} 41is one. By lemma (6.1.2) we have

[ 4

(6.3.17) There is e € K such that X,

and

(6.3.18) For all k € K 2.x5‘2} > ¢, and 2

k k

{2} 3} _ %k . Sk _
k T X 23 t3 ¢

for all k € K contradicting (6.3.17). !

From (6.3.18) we obtain x

commutative group is a sum of cyclic groups. This is not

true for b-complementary semigroups. We will show in the

next example that also reductions of subsemigroups of
cyclic semigroups are not enough to describe

b-complementary semigroups.'

2y | {31,

A well known theorem of algebra says that any finite

(6.3.19) There are unique b-complementary semigroups



but the semigroups generated by s and s in

that are no sum of bk-reductiona of subsemigroups of

cyclic semigroups.

Consider the sum of <1; 2> and <1; 1> and the

elements o = (0, 0), s1 = (0, 1), s2 ='(l, L, 53 = (2, 0),

b= (2, 1). It is easy to see that

(H = {o, sl, sz, 33, b}, +). 1is a subsemigroup of the sum
of <1; 2> and <1; 1>,

We have in (H, +)

b ~o0o={b} , b-is b-complementqr of o,
b ~ sl =‘{s3, b}, s3 is b-complementor of sl,
b~ s2 = {82} , s2 is b;complementor of sz,
b ~ 83 = {sl, b}, sl is b-complementor of 93,
1. 3 . v v
b~b=4{o, 87, 87, b} , o is b-complementor of b.
Hence (H, +) 1is uniquely b-complementary. .
If (H,»i)' is a sum of Sk—reduction of subsemigroups
of cyclic the ﬁumber of summand has to bé 1 because the
order of the sume is the'product of the orders of the
summands and |H| = 5 is prime. But this is impossible
because in any linear group <c; d>, for any two ele;ents
s, h - o 1in <c; d> the semigroups generated by s' and
h- meet in a non—zerd'element (since h*s = s+*h and
. : 2

h*s 1is generated by s and s*h is generated by h)
1 3

~

(B, £) are (lo, s'}, ) and ({o, s3}, +).
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Chapter 7

MASTER PACKING PROGRAMS

In this chapter we develop results for packing
programs similar to that obtained for cdvéring programs.
The extension of this results to semigroups is still in
the research stage although we have some definitions of
papking over-qemigroups which are compatible with
packing programs. These results wili appear elsewhere

when completed.

7.1. Packing Programs

(7.1.1) We call Packing Program (A,.b, c) the

program given by

maximize ct - el
over .t elNi satisfying A
. .
E taa < b 9’ /;-'
_a€A
L I I A ‘
with parameters b eIN+ » A SIN+ and ¢ € IR . Moreover
we can restrict ourselves to consider b > 0, 0 # a £ Db
“for all a € A and ¢ elRﬁ without loss of generality.
.(7.1.2)  We denote by F(A, b) the set
A . : :
{t e N_:- Z t oas b} and by C(A, b) the set CONV(F(A, b)).

acA

A
Some trivial properties of TF(A, b) and C(A, b) are:

b

(7.1.3) 0 s t_ s min (=X} for all t e F(a, b), ‘
O=a i :
i
ieI

therefore F(A, b) is finite and C(A, b) is a polytope.
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(7.1.4) We have that 0 ¢ F(A, b) and
6% ¢ F(A, b) for all a ¢ A. Therefore (A, b) s

a-closed (theorem (3.5.8)) and it is full-dimension.

(7.1.5) We have that 0 is an extreme point of

C(A, b), hence C(A, b) 1is pointed.

(7.1.6) Let us consider the polar CG(A, b). By

lemma (3.5.4) C%(A, b) = {m: mt < 1 for all t e F(A,b)},

. moreover Ca(A, b) 1s pointed and full dimension since

so 1is C(A, b) (by (3.5.9)), therefore the unique basis
for c¢%(A, b) 1is (V, R) where V = {v®: m e M} 1is the
set of extreme points of c*(A, b) and R = {r": n € N}

is the set of extreme rays of 'Ca(A, b) (by (2.4.16)).
. 3 w4
(7.1.7) Lemma. The cone RAY(Ca(A, b)) is the set
A} | . f

A _
fR_ = {r: -r € lg+

Proof: By (7.1.6) and the definition of RAY we have

that RAY(CG(A, b)) = {r: rt £ 0 for all t € F(A, b)}.
A

clearly R < RrAY(c®(a, b)).

Let- . rt s 0 for all t ¢ F(A, b). Hence
ré =r < 0 for all a € A since 62 e T(A, b) for

all a € A (by 7.1.4). Therefore r elRf. g

(7.1.8) Corollary. The set of extreme rays of

c“(A, b) is {-8%: a € A}. O | ‘

(7.1.9) Theorem: Let V = {(v®: m € M} be the set
of extreme points of Ca(A,»b). Then C(A, b) is the set

of solutions x of the system
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T € Ca(A, b) and 7 is maximal in. Ca(A, b).

vmx <1 , meM
(7.1.10) .
. : X, 20 , aeA.

Moreover this system 1s irredundant.

Proof: Clearly X 2 0 41is equivalent to -8%% < 0 , but
{-6%: a € A} 1is the set of extreme rays of Ca(A, b)
by (7.1.8){ Hence the theorem will be a consequence of
theorem (3.4.10) if we prove that O ¢ V. But 0 ¢ V
would imply that 0 1is a basic'solution:of

{m: 7t 1 3t e F(A, D)} but this is impossible because

_Ot,< 1 for all t ¢ F(A, b).0O

(7.1.11) We call a vector = proper whenever

' (7.1.12) Lemma. The extreme points of Ca(A, b)

are proper.

Proof: Let 7 € Ca(A, b) and T be not maximal, hence

there is a v ¢ Ca(A, b) such that v 2 7 £ v. Then
[ - v] 1is a ray of Ca(A, b) by (7.1.8). Therefore
LI -,“ € Ca(A, b). Therefore w 1is not an extreme

point of c®(A, b) because m = %(Zw -v) + %v. 0

(7.1.13) We call the packing program (A, b, ¢)

a Master Packing Program whem A 1is the set

{a elNi: 0 = a <b}.

For master packing programs we can obtain stronger
characterizations for irredundant defining systems as

we will show in the next section.

- e

woeo

[ 9]
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7.2. Super~additivity and Complementarity

We will give here a characterization ef irredundant
systems for Master Packing Programs similar to that of

Master Covering Progréms.

We keep in this section the notation and definitions

- of the preceding section.

(7.2.1) We define the function ¢ from INi into
1 '
lN+ by
¢p(t) = I t;a .
acA

(7.2.2) Lémma. Let r, t € lNA satisfy r < t and

+

t 1is an optimal solution to the packing program (A, b, c).

Then c¢r equals maximum of ch for all h elNi such
that ¢(h) < ¢(r).
Proof: Let h elNﬁ satisfy ¢(h) < ¢(r).

Since t - r + h 20 and ¢(t - r + h) = ¢(t) -

¢(r) + ¢(h) < ¢(t) < b , we have t -~ r + h ¢ F(A, b).

‘Hence c¢(t - r + h) = ct - cr + ch € ct because t 1is

optimal. Therefore we obtain c¢r 2 ch. [] .

(7.2.3) Lemma. Let (A, b, ¢) be a packing program

"and let % be proper. Then for all a ¢ A there exists

0 0 ' 0

t e F(A, b) satisfying 1wt = 1 and ta > 0.

Proof: Let a ¢ A and let = be proper.

We denote by F the.set F(A, b) n {t elNﬁ: t > 0}.

F 1is non-empty because §2 F(A, b) by (7.1.4).



Let k denote the maximum integer less tham or equal

b
to min (=%} . Clearly we have k 21 (since a € b).

O=ai ay
iel
Let £ = min{i=Tt} .

teF k

If we show that (n + £6%)r s 1 for all r e F(A, b)
then = + Eda € Ca(A, b). Ihus- & has to be 0 because
T +-gsa 2 LE (by choice of E) and g is proper. Hence
there ig _to ¢ F such that wto = ] and the lemma is
proved.

Let r ¢ F(A, b). Then (7 + £Ga)r = 1r + gra.

If r, = 0 then (7 + Eﬁa)r = gr £ 1 because T € Ca(A, b).

l-1r

If r > 0 then 1wr + €r < 7r + ——— r < 7wr + (l-71r) =1
a : a k a
because r ¢ F and then we have ¢ < L:%E and L <ek “ i

by choice of & and k.

In either case (m + £6%)r < 1. 0O

(7.2.4) Lemma. Let (A, b, ¢) be a packing program
and let m be proper. Then for all a € A, T is the

maximum of wh over h elNi .satisfying ¢(h) < a.

Proof; Let a € A and 7 be proper.

»

By (7.2.3) there exists to € %(A, b) such that

it =1 and ta > 0. Hence ﬂto is the optimum of 7t x
over F(A, b). Since 0 < 62 < to, we have

7 =152 a max {wh} by lemma (7.2.2). Thus the lemma )
a h20 '
$(h)<¢(83)

is proved because ¢(62) = a. O

(7.2.5) Theorem. Let (A, b, ¢) Dbe a packing program



and let 7 be proper. Then 7 satisfies the following

conditions.

(7.2.6) If b e A then L 1.

(7.2.7) Monotonic: For all a, a' ¢ A, if a 2 a'

thenm #_ 2w _,.
a a

(7.2.8) Superadditivity: If a, a', a" € A and a"=a+a'

then # + = <% .
a a' a+a'

(7.2.9) Complementarity: If a, b - a ¢ A then

Proof:
of (7.2.6)E The optimum of =t over ¢t elNﬁ satisfying v

p(t) < b is 1'(by (7.2.3)). Then, by (7.2.4), we have

1rb=l.
Of (7.2.7):by(7.2.3) there is t0 ¢ F(A, b) such that
. B ,
7t? =1 and t% 2 1. rpet t' =% - 6% + 5% . we
a
-obtain ¢(t') = ¢(to) - a+ a' < ¢(t0) < b and- t' € lNi.
Hence t' € F(A, b). Therefore we have rnt' = wto - na+na,=
1-n +71, 1, i.e. 7, S 7 . ~
a a a a’ -
of (7.2.8): By (7.2.4) we have L max{mh} over L]

h € lNi satisfying ¢(h) < a". Therefore

a a' ’
L m(8% + &7 ) = L + T because ¢(62

0f (7.2.9): Since a + (b - a) = b we have

§2 + 6°7® ¢ F(A, b). Thus (8% + 6°72) = R < 1.

b-a

]
+6%) =a + at=a",



Moreover by (7.2.3), there exists to e F(A, b)

satisfying wto = 1 and tg 2 1.

By lemma (7.2.4) we have n(to - Ga) S ﬂs-a because
0(t? - 63) = 4(t% - a < b - a.

o ‘ 0 a a 0 a, _
Thus L + To-a 2 L + 7(t - § ): 8% + w(t” - &%)
nto = 1.0

7.3. Master Packing Programs

Through this section we will consider (A, b, c)

be a master packihg program.

(7.3.1) Lemma. Let (A, b, ¢) be a master packing

program. If elRﬁ satisfies T, = 1 and

T + W, <7 ¢ for all a, a' € A such that a + a
a a ata

then 1m € CG(A, b).

to

'

Proof: Let 1w satisfy the conditions of the lemma and

™ * CG(A, b).. That is, there is t € F(A, b) such that

7t > 1. Take to satisfying

< B*

L to = min{ I ta}, where F = {t € F(A, b)i{ =t > 1}.

achA a teF acA !

a' ¢ A such that 6 + 6% < t°. Hence

a + a' = ¢(6a + éa') < ¢(c°) < b.

Case 1: éuppose z tg =1, i.e. to = 6% for some
acA )
a € A. But T Tp-a 2 0 and T + To-a S Ty = 1. Henceil
L 763 = nto < 1 contradicting the choice of to.
Case 2: Let I tg 2 2. Iﬁ-this case there exist a, '
aeA '
a a' 0
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Therefore wm_ + 7 , S 7 1o Let a’ = a + a
. a a a+a
'

11)
and consider the vecter ¢t' = ﬁo + 4% - 4° . 82,
: " L
We have 4(t') = ¢(t0) + ¢(62 ) - 4(6%) - (6% ) =
¢(to) + a" - a - a' = ¢(to).s b. Hence t' ¢ F(A, D)
and nt' = nto + T =T -T, 2 ﬂto > 1, again this
a a a
is absurd because I t' = I tg + 1 -2 < I tg. |
acA 8 aeA " a€A

We have now all the elements to prove the next three

theorems, they are the main results of this chapter.

(7.3.2) Theorem. Let V = {(v® elRA: m € M} be
the set of extreme points of the polyhedron
A

- . ! o . . !
P {7 € IRy : m Iy m + 7, < To4g? When ata' < b}.

Then C(A, b) 1is the set of solutions x of the system **

vBx < 1 s, me M

X, 2 0, a € A. : L

Proof: By lemma (7.3.1) P 4is contained in Ca(A, b).

Hence it is enough to show that the extreme points

<of CG(A, b) belong to V Dbecause then the theorem will

‘be a consequence of theorem (7.1.9).

(7.3.3) Let v be an extreme point of Ca(A, b)

since v 1is proper (Lemma (7.1.12)) v belongs to P 2

because by Theorem (7.2.5) vy = 1 (by (7.2.6)) and

v, + A < Voral when a + a' s b (by (7.2.8)). Therefore

v ¢ V otherwise v will be a convex combination of

other points.of P and these other points belong also

to Ca(A,_b).FD
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(7.3.4) Theorem. Let V = {v™® eIRA: m € M} be the

set of extreme points of the poelyhedron

A .
P {n eR,: mp =1, n + 7, sw  , when
a+ a' <b, LI when a 2 a'}. Then C(A, b) 1is

the set of solutions x of the system

vix s 1, me M

x =2 0, a € A .
a

The proof is the same as in theorem (7.3.2) using in
(7.3.3) theorem (7.2.5) and conditions (7.2.6), (7.2.7)

and (7.2.8). 0O

(7.3.5) Theorem. Let V = (v elRA: m € M} be the

set of extréme points of the polyhedron -

P = {7 elRi: ", =1, 7 + w7 , €7 . When a + a' s b,

b a a a+a

T+

a Thea = 1 fot all 8« A - {b}}. Then C(A, b) 1is

the set of solutions x of the system

1, me M

<
E
IA

v

X o, a e A .

a

,Moreover this system is irredundant.

?roof: If we prove that V 1is the set of extreme points
of CG(A, b) then this theorem is a consequence of
theorem (7.1.9).

The proof that the extreme points of Ca(A, b)
belong to V 1is the same as in theorem (7.3.2) using in
(7.3.3): Theorem (7.2.5) and conditions (7.2.6), (7.2.8)

and (7.2.9). It is easy to see that the elements of V

Al



@ ¢ M then 7 ¢ P and #, 2 Vv , T, 2V

e
are proper because if 7w 1is proper and nw = v for some

¢ for all

- . e e
ae€ A- (b}, but " + Mo = Va t v,

" o= yo for all a e€ A - {b}. Also we have w, = v o= 1.
a a , b b

e
b-a
1

hénce

Since v° € Ca(A, b), by (7.1.8) we have there are

vectors (Ak 2 0: k e K and (u_ 2 0: a € A) such that

a
IA =1 and X Aknk - £ u 6%, where {wk: k € K}
keK keK aeA 2 :

is the set of extreme points of Ca(A, b).:

Now I u_ equals zero, otherwise v® will not be
aeclA
maximal, moreover nk €¢ P (by theorem (7.2.5)) for all

e k

"k € K, hence the only possibility is that v =7 for

'some k € K because v° is an extreme point of P.[

[ 4



Chapter 8

SEMIGROUP PROGRAM ALGORITHMS

We ‘do not have good results in aigorithms for semigroup
programs; But even trivial properties have to bé stated
because semigroup programs have not beeq considered before.
This chapter only intends to give a bootstrap to the
study of algorithms for semigroup programs.

Algorithms to solve group programs have been given
in Gomory [pS],‘Shapiro [S1], Hu [S2], Yoseloff [Y1l] and
Johnsoh [J1] as well as in other papers.

Although it would seem easier to solve grouﬁ
programs than integer programs, the group programs have
shown the same :order of difficulty as integer programs.

The group program algérithms referenced above can be
modified to solve semigroup programs. The inefficiency
is not avoided by these modifications, but it is not |
increaéed;

Shapiro's Algorithm is based in‘dynamic programming.
The modifications for semigroup programs consist mainly
of replacing the use of the inverse element of an
element s in the group by all the elemgqts in b ~ s.
The validity of the modification is provided by the
Minimality Lemma.

Hu's algorithm only uses subadditivity. Then the
validation of tﬁe modification for semigroup programs
may be provided b; Theorem (5.2.11). The modification
consists in keeping a record of how the elements are
formed. That is, when an element 8 1is obtained by

adding p to q (i.e. 8 = p + q) it is necessary to



keep record of p and q because there may be more than
one solution to p + x = s, For a group program we need
to keep only one, say p , and then we recover q as

“s - p.

E. Johnson'has modified his algorithm to solve
semigroup programs derived from covering programs [J2].

Gomory [G5] shows how to ttansfdrm a group program
tb a shorte?t path problem. Hence any shortest path
algorithm, like Dijkstra [D2], may be used.

In Section 8.1 we show how to transform a semigroup
program into a shortest path problem. Since Yoseloff's
algorithm only .uses the Minimality Lemma and the |
transformation into a shorteét path problem, the

modification to a semigroup algorithm is straightforward.

8.1 Shortest Paths

(8.1.1) A directed graph G 1is a pair (V, E) of

finite sets together with two functions tail and head from

E in V. The elements of V are called vertices and
the elements of E are called edges. An ‘edge e 1is

from v toward w when v 1is the tail of e and w

is the head of e.

(8.1.2) A path is a sequence (el,...,en) of edges

equals tail of e for i =1

satisfying hegd of e i+1

i
to n - 1. A path from v to w is a path (el,...,en)

satisfying tail of ey equals v and head of e, is w.

(8.1.3) A length function is a real function over




E. Given a length function 2z, we define the length of

n
a path p = (el"'f’en) as iEiz(ei). A shortest path

from v to w 1is a path from v to w with minimum

length,

(8.1.4) Let (H, b, ¢) be a semigroup program over
(S5, +). We associate Qith (H, b, ¢) the directed graph
G(s, E), where E = {e(s, h): 8 € S, h ¢ H} and for any
e(s, h) e ﬁ we h#ve tail of e(s, h) 1is s and head
of e(s, h) 1s s + h. We also associate the length
function z(e(s, h)j - ch for all h € H and for all
s €. .S. That is, we have an edge from s toward s + h,
for each s i; S and each h in H, with length

cp "We call .e(s, h) an h-edge.
(8.1.5) Let p be a path from o to b. We

eP

denote by tP the vector in NH whose components h

+
are the number of h-edges in p. Clearly t? e T(H, b)

and the length of p equals ctP.

(8.1.6) Given a path p = (el,...,en) from u to
v and a path q = (fl""’fm) from v to w, we denote

by pvq the path (el,...,en, fl,...,fm) from u to w,

(8.1.7) Let k be a non-negative integer. Let
8 €e S and h € H. We denote by p(s, h, k) the path

(e(s, h), e(s + h, h),...,e(s + (k = 1)+h, h)) from s

to s + keh.

(8.1.8) Let (hl,...,hm) be any indexing of H.



Let t ¢ T(H, b) and let p be the path

1

t, *h
1 hi m

m

il o

p(o, h,, t. )v p(t, *h,, h,, £t ) V...V p(
1l .h1 hl 1l 2 h2 i

Then p 1is a path from o to b and length of p

equals ct.
A consequence of (8.1.5) and (8.1.8) is the following

(8.1.9) Theorem. Let (H, B, c) be a semigroup
program ;ver (s, +). Let the directed graph G = (S, E)
and the length function 2z be defined as in (8.1.4).

Let p be a shortest path in G with respect to z.
Then tP is an optimal solution of (H, b, c), where tP

is defined.as in (8.1.5).0

Notice that Theorem (8.1.9) is valid for any
semigroup program because it does not depend on (H, b, c)

to be H~unbounded.

8.2. Group vs. Covering Approach

Given a covering pfogram we had pointed, in the

Introduction chapter, two ways to solve it)

(8.2.1) The group approach is to solve the linear
programming obtained by releasing the integrality condition.
Then obtain the group program associated to the optimal

-

solution of the linear program and solve this group program.

(8.2.2) »The covering semigroup approach is to solve

the semigroup program obtained directly from the covering

program.



Clearly, the efficiency of any shortest path
algorithm used to solve a semigroup program depends on
the orde; of the group or semigroup (and this is true
for all the known group program algorithms or its
extension to a semigroup algorithm). ‘

Since the order of the covering semigroup is always
not smaller.than the order of the group obtained from
the group_approaéh,.it could appear that this would be
true also for the order of the semigroup génerated by
the columns of the matrixvof the covering program.  We
can argue that the covering‘approach gives always a
s&lution to the 'covering program and the group approach
may give none. However, the order of the semigroup can
be significantly smaller than the order of the group.

We will show a family of covering programs whose
generated semigroups have order 5 and the order of the
generated group grows exponentially. ‘Moreover the group
approach gives no solution to the covering program.

Let us denote by

n n-1 b = 2n + 1

s =2" -1, n =2+ 2 -1,

The family of covering program is defined for any n 2 3

as minimize st_+ ht., over st_+ ht, 2 b where
, s h -8 h

ts’ th € N+ .

Covering approach: It is easy to see that the

semigroup has the five elements 0, s, h, 2°+*s = 2n+1_2’ b

with the following addition table



+ 0 s h 2+8 b
0 0 8 h 2+s b
s s 2°s b b b
h h b b b b
28] 28 b b b b
b b b b b b

It is élso‘b—complementary since it is a subsemigroup

of a cyclic one and b 4is in the loop of the cyclic

semigroup.

Group épproaéh: We first solve the linear program

min{ st8 + hth]

over 8t + ht, - x = b where t _, t x € IR
s h s

h?’ o+
This program has two optimal solutions.

b
Solution 1: t:s Pl th’ X 0.

.

(8.2.3) Hence t = 5
) s

oz

1
th+'s—x.

"The group program 1s then: minimize x over

n-1 .
2 — ¢ - —tx = —(hoa 1).
2.1 % 2t 271
: n-1 n
We have that 2 and 2 ~1 are relative primes

since any common divisor being a divisor of 2n—1 also

divides 2n and therefore ‘-l.
" n-1

Hence the order of the subgroup generated by a
' 2" -1
is  2"-1. 'This shows that the order of the group grows

exponentially and also that there exists k eIN+ such



2n-l _ 2

21 2™ |
zero, (th = k, x = 0) is an optimal solution. To obtain

mod 1. Since the cost of th is

that k-

a solution to the original problem we need

ts = % - %-k be greater than or equal to zero.
That 18 b = 2°*1 > nk = (2% + 2°71-1)k, hence k s 1
because 2(2n + 2n_1—l) = 2n+1 + 2% - 2 > 2n+1 for n 2 2.
. 2n-l '
But if — = o (mod 1) n 1is equal to 2 and we have
2 -1 2°-1

assumed n 2 3. Therefore the group program gives us

no solution.

Solution 2: ¢t

(8.2.4) Hence t, = % -

and the group program is minimize x over

n n-1
h 2n ln-l ts Y i-l x = ‘i nti (mod 1)
2°+2 -1 27°+2 -1 2°+2 -1
Again 2%-1 and »2n+2n-1_1 are relative primes because
a common divisor being a divisor of 2%-1 has to divide
Zn-l and we have shown that these are relative primes.

By the same argument as in solution 1, there exists

an optimal solution to the group program with ts = k,

x = 0. If % - 2k 2 0 we obtain 22l 5 (2™_1)k, and

k has to be less }han 3 because

32%-1) = (2 + 1)20 - 3 = 2%FL 4 o 35 o0 e a2 o2,
201 2n+1_

But neither a n-1 . hor a—— are congruent mod 1
2%4207 1 28420711



to —;Z;g:%lz , because the first would imply

2+

2% -1 = 2% 1 4 1, that 48 2 - 2"l . %l -1
221 . g,

Hence n = 2 and we assume n 2 3.
The second would imply

it SNSRI Lot £ SENRP Silttotes NN Yl

2%2™7 i 2Pl 2"l T MRl

(nod 1). Therefore 2% 1-1 = 27 141 absurd.

Clearly, there are covering programs for which the
order of the semigroup grows exponentially while the order
of the group is bounded.

For example: minimize t over t = 2©

and ¢t eIN+.
Here the semigroup generated by the covering approach

has order 2%+l1. However the group generated by the

group approach has order 1 and gives the optimal solution

since the linear programming optimal éolution is integer.

Thus it may be useful to use a combination of the

two approaches in heuristic algorithms.
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