Department of Applied Analysis and
Computer Science

Research Report CS-74-07
May 1974
Local vs Global Strategies for

Adaptive Quadrature

by
Michael A. Malcolm
R. Bruce Simpson

This work was partially supported by the National Research
Council of Canada.

ABSTRACT

A study has been made of two alternative subinterval selection
strategies for adaptive quadrature. The more commonly used is termed a
local acceptance criterion (as in SQUANK or CADRE), and the other is termed
a global acceptance criterion (as in AIND). An efficient programming
technique for the global alternative is given, and an analytic model for
predicting the subinterval distributions selected by classes of adaptive
~ algorithms is developed. To test the predictions of the model, the well
known algorithm, SQUANK was reprogrammed to make it operate under the
global criterion. Experiments with these routines were carried out
comparing their actual performance with the predicted performance‘and with

the performance of CADRE and AIND, and some conclusions are drawn.

Keywords: - adaptive quadrature, Simpson's rule, SQUANK, AIND, CADRE.

Introduction

In the past five years there have been a number of significant
developments in adaptive quadrature methods for automatic numerical
integration. Following a 1ull after McKeeman's original paper in 1963
[6], several algorithms have been published [1], [4], [7], [8] which
differ in their local quadrature rules, strategies for subdividing the
interval of integration, and criteria for termination. Some of these
algorithms have special features for detecting round-off error [4],

[8], for detecting singular integrand behavior [1], or for returning an
indication of the validity of results [1], [9]. Compared with one another
empirically, these subroutines are found to require considerably different
numbers of functions evaluations for the same integrands [7], [8], [9].

In general, there appears to have been little analysis of the performance
of these algorithms with the notable exception of [11].

In this paper we attempt to understand some of these differences,
focussing on the effects of the interval subdivision strategy and

termination criterion.

1. Interval subdivision strategies

In order to focus on the interval subdivision process, we
shall regard an adaptive quadrature scheme as an algorithm for processing
a sequence of subintervals {In}. The main components of an adaptive

quadrature algorithm are:

-2 -

i) a local quadrature procedure for eVa]uating

Q1) = f £(x)dx

In

ii) ~ a method for calculating E(In), an estimate for

la(1,) - J f(x)dx|

In

iii) criteria for &eciding which subinterval in the sequence {In}

to subdivide at each stage, and for deciding when to terminate.

Using a user-specified absolute error tolerance, €, the objective is to

produce a number, res, for wich

b
(1.1) |res - f f(x)dx| =< e.

a
We shall be particularly interested in adaptive Simpson's
rules with components i) and ii) as used in SQUANK [4]. Using S(m)(In)

to denote Simpson's rule applied m times to In’ these can be expressed as

o(r,) = s (1) and £(1) = (51) - @1).

In this section, we will concentrate on compdnent ifii).

The intervals of the sequence In fall into three categories:
In has already been subdivided and discarded (n e Dis), or has been
accepted by the algorithm (n ¢ Acc), or is pending further examination

(n ¢ Pen). A program implementing an adaptive quadrature algorithm must

store the data associated with‘{Inln e Pen} using some data structure,
and can accumulate the contributions to res from I, for n e Acc as soon
as the acceptance is recognized. A discussion of the relationships
between subdivision strategies and data structures for storing the Pen
set has been published by Rice [10].

A common interval acceptance criterion, using Z(In) to denote

the length of In’ is
(1.2) E(In) < Z(In)e /(b-a).

An interval I is accepted if and only if it satisfies (1.2) (e.g.,
CADRE [1] and SQUANK [4]).'. Algorithms using (1.2) generally use a
stack to store Pen and start with I, = [a,b] e Pen; at each stage, I (the
top of the stack) either satisfies (1.2) and is accepted, or is bisected
and its right and left halves (in that order) dre placed on the stack.
Criterion (1.2) has the features that:
i) The decision is based entirely on information available from In.
ii) If the error estimate E(In) is in fact a bound for the error
in Q(In) for every n e Acc when the algorithm terminates,
then the user's tolerance is guaranteed to be met (assuming exact
arithmetic).
On the other hand, the local error criterion (1.2) decreases linearly with
the interval length, and hence is most stringent as a tolerance, in

regions where the adaptive process is working at subdivision the hardest.

Clearly feature ii) is a crucial one; however, i) may be
relaxed. One alternative, then, is to retain as pending, all the intervals
in {In} which haven't been discarded, so that

(1.3) U I = {x|a < x < b}.
mePen

Then we can use

(1.4)] E(1)sce
mePen

- |
|
as an acceptance criterion for the entire pending set. If at some
stage of the process, (1.4) is not satisfied, we can determine M ¢ Pen

such that
(1.5) E(IM) 2 E(Im), for all m e Pen,

and bisect IM’ adding its left and right halves to the pending set and
rechecking (1.4). We shall refer to criterion (1.4) as a global acceptance
criterion; (1.4) and (1.5) form the strategy of the subroutine SQUAGE
discussed in Section 3. The subroutine AIND [8], [9] uses this strategy
except for a s1ight modification of (1.4) to account for an additional
user-specified relative tolerance.

The intention of the global strategy (1.4) and (1.5) is to
select subintervals so that the local errors are roughly equal in magnitude,
rather than scaled by the length of the subintervals. Thus, algorithms
using global strategies should work no harder on subintervals where the

integrand is difficult to integrate, than on subintervals where it is

easy. Hence, a global criterion has the potential both for reducing

the number of subintervals used and for generating a large list of data
associated with the pending set. In this sense, it appears to be a space-
time trade off. In the next section, we shall outline an analytic

predictive technique for helping to quantify this trade off.

2. Prediction of subinterval distributions

In this section, we develop a technique for predictihg the

subinterval distributions resulting from the strategies of Section 1.

We then examine a simple example to illustrate the expected reduction

in the number of subintervals resulting from the global acceptance
criterion, (1.4) instead of the local one (1.2). We conclude with a
discussion of the difference in performance between these strategies when
applied to functions with endpoint singularities.

Our discussion is based on the specific quadrature rules and
estimates employed in SQUANK [4], and a modification of SQUANK (discussed
in Section 3) to use the global acceptance criterion. However, it will
be apparent that the technique has more general applicability. As

mentioned in the preceding section, SQUANK uses

) a) =s@Pa),
and

(2.2) E(1)

s)-sB) (1)) 1.

This estimate is based on the first term of the asymptotic

expansion of the error in a power series in h [5]. In fact
_ 5 v 4,
(2.3) E(In) = R(In) £ " (c)|/(47:180), c « In'

Moreover, 15E(In) is known to be a (sharp) bound on the error if fiv(x)
has constant sign for x ¢ In [12].

SQUANK employs the local interval acceptance criterion

(2.4) E(1) < &(1)e/(b-a)

((1.2) of Section 1). Suppose that for a given integrand, f(x), SQUANK
selects intervals with endpoints x,:
a = X5 < Xp <Xy < ... <X g <X = Db

Since each subinterval is acceptable under (2.4), we can conclude that

for i = 0,1,...,L-1,
(2.5) (xgyqx3)° 11V (c,) (4%4180) = 6, (x,,;-x,)e/ (b-a),

where Xx; < €5 < X;i4 and 0 < 6, < 1. Assuming that f(1v)(ci) 0,

this can be written

(2.6) xyyq = x; + 08080V [FV(e)V 5 = a,

for h; = (eie/(b-a))]/4, i=20,...,L-1. We can regard (2.6) as a rather

crude single-step method for solving the initial-value problem

(2.7) ax(s)/ds = 4180) 174711V (x(s))| /%5 x(0) = a,

using step sizes hi‘ The variability of hi due to the unknown fraction
0, complicates the connection between (2.7) and (2.6). We shall assume

for i = 0,...,L-1,

(i) that 1/16 < 6i< 1 on the hypothesis that if 6, < 1/16, a
parent interval of [Xi’xi+1] would have been accepted, and
(i) that ei can be replaced by the mean of a uniform distribution

over its range, i.e. 17/32.
Hence, we replace hi by

(2.8) h = (17732)%(e/ (b-a)) /¥,

If x{s) is the solution of (2.7), then we might expect the

approximation
(2.9) X; R x(ih), i = 0,1,...,L,

to improve as € approaches zero, subject to the validity of assumptions (i)
and (i)' above. In particular, defining s¥ to be the parameter

value for which x(s7) = b, we will use
(2.10) Lpred(fsa,b,e) = Ls*/h] = [(32(b-a)/17)/4s*/e!/4

as a prediction for the number of subintervals selected by SQUANK. The
predicted number of function evaluations required by SQUANK is given
by 4 Lpred(fia,bse)+l.

For example, consider f(x) = (1+c-x)~! for positive parameter c

and a-= 0, b=1. 1In this case, (2.7) is

-8 -

(2.11) dji‘gs): 4(15/2) V4 (1+c=x(5))%/%; x(0) = o,

with solution
(2.12) (1+c-x(s)) " 4-(14¢) 174 = (1572)1/ %,
Substituting x(ss) =b =1 gives

s* = (2715) (VA (14c) Yy,

and

(2.13) Lpred(£30,1,e) = [(64/255)1/4(c™1/4-(14c) 1/ 4y 114 .

Experiments with this example are discussed in Section 4.

We now turn to predicting the subinterval distributions produced
by the global acceptance criterion of Section 1. Consider the modifica-
tion of SQUANK to be an algorithm using (2.1) and (2.2) and which accepts

the entire pending set of subintervals if

(2.14) X E(Im) <€
mePen

(using (1.4) and (1.5) of Section 1). Suppose for a given integrand f(x),

this algorithm selects subintervals with endpoints Yyt
R A S R /- I 7 b.

Then, from (2.3), we can see that the error estimate for [yi,yi+]] can be

expressed as

5 1 5
(.y-|+'|’.y.l) lf]v(d1)l/(4 '45)s y1 < d'l < ‘y'i+]’

and we can define 6, > 0 (i =0,...,6-1) by

(2.15) gy vy 0167V, 17(4°-05) = oe.

Using (2.14), we can conclude that
G-1

(2.16) I e, <.
i=0

As previously, if fiV(di) # 0, we can rewrite (2.15) as

o]

1/5, 61 1/5
(2.17) Yiap = ¥ithy 4837 £V @ V05 y, -

where hy = (615)1/5, (i = 0,1,...,6-1). Equation (2.17) can be interpreted

as a numerical method for solving

(2.18) dy(t)/dt = 4(a5)V /571 ¢V (y(£))11/5; y(0) = a,

using variable step sizes hi' We shall again make the crude assumption that
|
(iii) 6; can be replaced by some constant (average) value and,

from (2.16), we select 1/G for this constant.
Hence, we replace h.i by

(2.19) h = (e/6)"/°.

If y(t) is the solution of (2.18) then, we might expect the approximation

¥; ~ y(ih), i = 0,1,...,G,

to improve as e approaches zero, and be subject to assumption .

particular, if we define t¥ to be the parameter value for which y(t*) = b,

-10 -

then we can determine the predicted number of subintervals Gpred(f;a,b,e)

using

tf = Gpred h = Gpred e]/s/Gpred1/5.

This gives

(2.20) Gpred(f;a,b,e) = LtfsAQ/EIA%]-

i

(Note that we have chosen the notation "L" and "Lpred" to.indicate local
strategy; "G" and "Gpred" indicates global étrategy.)

Returning to the example f(x) = (1+c—x)'], a=0,b=1,
we have, for (2.18)

dy(t)/dt = 4(15/8)"/3(1+c-y(t)); y(0) = 0,
with solution
(2.21) Tog((1+c)/(1+c-y(t)) = 4(15/8)1/5¢

and
t" = (8/15)1/2Togy((14c)/c) /4.

Using (2.20), we predict for the number of subinterva]$

(2.22) Gpred(f30,1,¢) = 12777415714 (109, ((14c)/c)) >4/ /4).

Comparing this with (2.13), we see that the local acceptance criterion
yields a predicted number of subintervals which is O(c']/4) as ¢ approaches
zero, whereas the global one yields a predicted number of subintervals

which is 0(]log c|5/4).

- 11 -

These techniques predict a sharp difference between the results
of using the local and global acceptance criteria on integrands with
endpoint singularities. If we consider f(x) = (1-x)*; a=0;b =1,
we find for the local acceptance criterion (2.4) that a finite number of
subintervals is predicted only if o > 0. That is, using

pa(a) =lala-1)(a-2)(a-3)],
(2.23) Lpred(f;0,1,e) = L(p,(a)/180)/%/al.

However, the global strategy predicts a finite number of subintervals for

a> -1, i.e.,
(2.24) apred(£;0,1,¢) = L(5/8(1+)f"(py(a)/85¢)1/%).

Experiments confirming this difference are discussed in Section 4. The
ability of adaptive schemes using the local acceptance criterion to handle
f(x) = (1-x)* for a > 0 has also been observed by Rice [4], in which a

convergence theorem for an adaptive tfapezoida] rule is given.

3. Programming the global strategy

Thé global acceptance strategy (1.4) and (1.5) has been
implemented in a program written in ANSI Standard Fortran. The technique
used to store information associated with the pending set of intervals
will be discussed in this section. The Fortran program is presented at the

end of this section.

-12 -

As discussed in Section 1, the global strategy requires that all
intervals be kept in the pending set until the acceptance criterion

3.1 E(I) <
(3:1) megen (m))

is satisfied. At each stage of the process prior to satisfying condition

(3.1), the program must determine an M e Pen such that

(3.2) E(IM) > E(I), for all m e Pen.

m

This could be accomplished by searching the entire list of subintervals
~in Pen at each stage. However, this would require n-1-floating-point.
comparisons at each stage, where n is the number of subintervals currently
in the list. If the list is kept sorted in decreasing order of the error
estimates, then no comparisons are required for determining M, but more
work is required for inserting new subintervals into the list. A bubble

sort at each stage would require up to n floating-point comparisons for

each new subinterval added to the list. (This is the technique used by
AIND [8], [9].) If a binary search is used to determine where to insert
the new subintervals, then only r10g2 n] comparisons are needed for each
new subinterval, but up to n items in the list will need to be moved
to different memory locations. Using N to denote the value of n when
(3.1) is satisfied, we have a total of

N-1

T (n-1) = N%/2 - 3N/2 + 1
n=1

- 13 -

comparisons required for the first of the above methods. The other
techniques require similar (i.e. 0(N2)) amounts to work. (An estimate
for N was given in (2.20).) For integrands for which N becomes large
(say greater than 103), these comparisons -(or memory~fetche§ and. stores)
may require:a majer-portion of the computation time.

Fortunately, a completely ordered list is not necessary for
determining M in (3.2). It is sufficient to store the subintervals in a
partially-ordered binary tree, sometimes called a "heap". Each node of the
binary-, tree (illustrated in Figure 3.1) contains the information for one

of the subintervals. The nodes are partia]ly ordered in the sense that

the error estimate E for each node is no less than that for each of its sub-

nodes: i.e.,

t.) > E(I

), and
i t21

E(It_) > E(It), i =1,2,... .

i 2i+1

Hence, at each stage M is simply t;, the root node . (see Fig.3.1).

The interval subdivision process consists of removing and bisect-
ing the root node subinterval and inserting the data for the two resulting
subintervals into nodes of the tree. It is important that the new data
be inserted into the tree so as to keep it balanced, i.e. the only vacant
nodes occur at the Towest level. This is achieved by inserting the data
for the newly created left-hand subinterval in the (just vacated)
root node; and the data for the other new subinterval is placed in the left-

most vacant node in the lowest level of the tree. (In Fig.3.1, this would

-14 -

¢l

U 40j 9343 AueuLq psouejeq y

el

L' 6L

ol

-]55"‘1_

be t 3.) After each insertion, the new node must be repositioned in the

1
tree (if necessary) to maintain partial ordering of the tree. Each new node

may be moved up to L]og2 ni! levels in the tree during this repositioning.
The new root node may require up to 2L1092 n] comparisons as it moves
down the tree; and the new node inserted at the lowest level in the tree
may require at most L]og2 n] comparisons. This gives at most

N-1

L

(2L10g, 11 + Llog, (i+1)1)

i=2

A

2 1092(N-1)! + logz(N!/Z)

IA

3N 1092N

total comparisons. The use of a partially-ordered binary tree has reduced
the number of comparisons and memory references from O(Nz) to 0(N<log N).
Using this technique, the global strategy requires 1ittle computational over-

head for very large values of N.

The idea of a partially-ordered binary tree was tsed.in a
well-known sorting algorithm due to Floyd [2]. (See Knuth [3] for a
discussion of Floyd's tree sort algorithm.) It is a useful data structure
for implementing other algorithms of numerical mathematics, e.g. Jacobi's
method and Gauss-Southwell relaxation..

The binary tree is implemented in the Fortran subroutine SQUAGE
(Simpson's quadrature used adaptively global error) using the integer
array T. Nodes are inserted in the tree by the subroutine INSERT. New
root nodes are moved down the tree (if necessary) for the subroutine BUBLDN;
other new nodes are positioned in the tree by the subroutine BUBLUP. Each

node in the tree contains the following information about its subinterval:

-16-

X1 left end point of the subinterval

L length of the subinterval

F1, F2, F3, F4, F5, F6 function values at equally-spaced
abcissas (left to right) throughout the interval

ERREST the (scaled) error estimate for the subinterval
}

As presently programmed, the array space reserved for the binary
tree and subinterval ihformation is 9000 memory cells. This is considerably
more storage than that required by subroutines using local termination criteria.
On some machines this could be a serious disadvantage of the giobal strategies.
However, many computing systems are now equipped with vast amounts of either
real or "virtual" memory. It is worth noting that the subroutine SQUAGE
together with the function subprogram which evaluates the integrand would
normally occupy only a few pages of virtual storage. Hence; during the
quadrature computation the working set is relatively small, thus satisfying
the hypotheses of many virtual memory page swapping algorithms. On
machines of this sort, the extra memory space required by the arrays in
SQUAGE would not be a significant disadvantage. Higher-order adaptive methods
using global strategies, such as AIND, require much less memory space than
SQUAGE -forsthe storage of. Reas

We are not presenting SQUAGE as a serious competitor of the
better quadrature subroutines in the literature. It is given here only as a
programming example, and was written to compute the experimental results
given in the next section. SQUAGE lacks many important attributes of serious
quadrature subroutines such as noise detection and a garbage collection

mechanism for the case of binary-tree overflow.

aooaoaooaonooaanoon0oan

oReNoNoNoNoNe RO RO NS

Anaaan

oReNe

[eNeReNe!

- 17 -

REAL FUNCTION SQULGE(Z, B, LPS, ERR, NC, FUN)
TNTEGER NO
PEAL 7., B, EPS, ERR, FUN

SQUZCL =-- SIIPSCN'S QUZ\:DRATURE USLD ADAPTIVELY WITH 7 BINAKY
TREE CF LEERCR LESTIMATES

23 FEBRUZLY 1974
MICHADLL MALCCLIT
BRUCL SILIPSOUI

SQUAGE - FIPTH~-ORDER ESTIMATE OF INTEGRAL OF FUN(X) FOR
ALT.X.LT.B

EPS - RENUESTED ?CCURACY (2BSCLUTE)

ERR - ESTIMATL CF ACHIEVED ERROR

NO —= NUMBER OF FUUTICON EVALUATIONS USED IN QUZDRPTURE
Ful ~ RLAL FUNCTICN OF ONE REAL VARIABLE TO BE INTEGRATED

LECLATE BINARY TREER,

REFL 31(1000) ,L(1000) ,F1(1000),F2(1000) ,F3(1000),
2 F4(1000),F5(1000) ,ERREST (1000)
IUTEGER T (1000)

X1 - LEFT LNWD POINT O INTEKVAL
L - LENGTH CF INTERVAL
F1-I'5 - FUNCTICN VALUES AT POINTS DELIMITING THE QUARTERSECTICHNS OF
THF INTERVAL ,
FRREST - SCALED ERROR ESTIMATE FOR INTEERVAL
T - USED FCR INDEXING THE OTHLk ARRAYS SUCH THAT THEY FORM I
BINARY TPEE

OTHER VZRIFBIES.
REAL 12, SEPS, SUM, ERRS5

L2 - HALF THE LENGTH OF THE RCOT INTERVAL

SCPS - EPS SCAILED BY 180. FOR ERRCR TEST

SUIZ - USLD FOR ACCUMULLTING TOTAL ESTINATE OF INTEGRAL

ERR5 - USLD FCR ACCUMULATING TOTAL FIFTH-ORDER CORRECTION TERM
INTLGER N, J, T1

N - THE CURRENT WUIBER OF INTERVALS
REAL PX1, PF1, PF3, PF5

PX1-PF5 USED TO SATISFY SILLY ANSI FOKTRAN RULES 7BCUT PARAMETEFR
PASSTIG. :

COMION /SQUA/ %1, L, F1, F2, F3, F4, F5, ERTEST, EFDP5, T, N
SEPS = 180, *EPS

H o= 1

T(1) = 1

100
101

C
C

150
C

- 18 -

ERR5 = 0.

CALL INSERT(1,A,B-A,FUlL(A),FUN(0,5%(A+B)) ,FUN(B), FUN)
GC TC 101

IF (ERR5.LF,SEPS) GC TC 200

T1 = T(1)

ERR5 = ERR5 - DABS (ERREST(T1))

L2 = 0.5*L(7T1)

PL1 = X1(T1)
PF1 = F1(7T1)
PF3 = F2(71)
PF5 = F3(T1)
N = N+1

T(N) = N

CALL INSLRT(ii, PX1, L2, PF1, Pr3, PF5, FUN)
CALL BUBLUP

T1 = T(1)

PX1 = X1(T1) + L2
PF1 = F3(T1)

PF3 = F4(T1)

PF5 = F5(T1)

CALL INSERT(1, PX1, L2, PF1, PP3, PF5, FUN
CALL BUBLDN
IF (1I.LT.1000) GC TO 100

C NO CONVERGLNCE, WRITE ERRCR MESSZGE

WLITE (6,150)
FORMAT (26H MEMORY OVERFLCW IN SQUAGE)

C THI LERROR TEST IS NOW SATISFIED, AND THE ESTIMATE CAN INCW BE SUMMLIS,

C
200

oEoNo RO NS

sSUM = 0,
ERR5 = 0,
DG 300 J=1,NH
SUM = SUM + L(J)*¥(F1(J) + 4.*%F2(J) + 2.%F3(J) + 4.*F4(J)
2 ' + F5(J))
ERL5 = LRR5 + ERREST (J)
CONTINUE
SQUAGE = SUN/12, + ERR5/180,
EPR = DABS(ERR5/180.)
no = U4*n + 1
RLTURN
ELD
SUBRCUTINE INSERT(I, PX1, PL, PF1, PF3, PF5, FUN)
INTEGER I
REAL ' PX1, PL, PP1, PF3, PF5, FUN

THIS SUBRCUTTNL SUBLIVILCLS THE INTEFVAL TASSED 2AS LIl ZRGUMENT TC
OBTATILI AN LRECR ESTIMNATE, AND THEN INSERTS IT 2S THE I-TH IICDE IN
THL. BINZPY TFLE. TWC FUNCTICN LVALUATIONS ARE PLRFCIMED DURING
EACH CALL CF THIS SUBRCUTIINE.

REAL X1(1000),L(1000),F1(1000),F2(1000) ,F3(1000),
2 F4(1000),F5(1000) ,ERREST (1000) ,ERD5
INTEGER T(1000), N, TI

-19 -

coMon /soua/ X1, L, F1, ¥2, F3, F4, F5, ERREST, ERR5, T, i

TI = T(I)

T1(TI) = PX1

L(TI) = PL

"F1(TI) = PF1

F2(TI) = FUN(PX1 + 0.25%PL)

F3(TI) = PF3

F4 (7I) = FUM(PX1 + 0.,75%PL)

F5(TI) = PF5 ;

ERREST (TI) = ~PL* (PF1 - 4,*F2(TI) + 6.*PF3 - 4, *FU4(TI)

[

+ PF5)
ERR5 = ERE5 + DABS (ERREST (TI))
RETURN
BLHL
SUBROUTINE BUBLUPD
C
C THE ITEM IN NODE N OF THL TREE IS BUBBLEL UP THE TREE TC
C MAINTAIIl PAPTIAL ORDERING OF THE TREL.
C |
REAL 31(1000),L(1000),F1(1000),F2(1000),F3(1000),
2 F4(1000),F5(1000) ,ERRLST(1000) ,ERR5
INTEGER T(1000), W
COMMON /SQUR/ X1, L, F1, F2, F3, F4, F5, ERREST, ERR5, T, u
INTLGER T, J, ITEMP, TI, TJ
I =N
10 J = 1/2
IF (J.FE0Q.1) GO TCO 100
TI = T(I)
™I = T(TJ)
TF (D2BS (ERREST(TI)).LE.DABS (CRREST(TJ))) GC TC 100
ITEMD = T(I)

T(T) = T(J)
T(J) = ITEMP
I =2J
GO TC 10

100 RETUKIY
END

SUBTOUTINE DBUBLDN
C
C THI ITEM IN THE ROCT NODE IS BUBBLELD DCWN THE TREE TC
C IAINTZIN PARTIAL CRDERING CF THE TREE.

c

REAL X1(1000),L(1000),F1(1000),F2(1000),F3(1000),
2 F4(1000) ,F5(1000) ,ERREST (1000) ,ERRS
INTEGER T(1000), N, TI, TJ, TJ1
coriiow /sqQuan/ %1, L, F1, F2, F3, F4, F5, ERREST, ERR5, T, N
TUTEGEF I, J, ITEMP
I =1
10 J = 2*I

Ir' (J.G7.N) GO TO 100

IF (J.EQ.II) GG TO 20

™ = T(LT)

TT1 = T(T+1)

IF (CABS (CRREST(TJ)).GE.DABS (ERREST(TJ1))) GG TC 20
g o= J+1

- 20 -

20 TI = T(I)
™T = T(J)
I (LABS(ERRFST(TI)).GE.DZBS (ERREST(TJ))) GC TC 100
ITEI'P = T(I)
T(I) = T(J)

T(T) ITEMP
I =J
GC TO 10

100 ROCTURN

- 2] =

4, Experimental computations

In this section, we give the results of three computational
experiments which test the model given in Section 2. We also compare
the performance of SQUANK and SQUAGE with two related subroutines: CADRE
and AIND. These computations were all performed on the University of
Waterloo's Honeywell 6050 computer.

The first experiment involves the integrand f(x) = (1+c-x)']
for a fixed error tolerance and various positive values of c. The second
studies the same integrand for c = .01 while varing the absolute error
tolerance €. The third experiment uses the integrand f(x) = (1-x)%,
as o varies. All integrations are over the interval 0 < x < 1.

Both CADRE and AIND use higher-order local quadrature pro-
cedures (on each subinterval) than SQUANK or SQUAGE. CADRE [1] uses
a dynamic extrapolation process for its local quadrature procedure;
when it senses that the extrapolation may not be working, it stops
to make an adaptive subdivision of the interval. In this sense, it
is based on a high (variable) order local quadrature rule. It uses a
local interval acceptance criterion. The local quadrature rule for
AIND is the 21-point Kronrod formula obtained by adding 11 points to
the 10-point Gaussian formula [8]. Hence, AIND uses a very high-order
local quadrature rule. It is the only published algorithm known to
the authors which uses a global interval acceptance criterion.

For fhe study of f(x) = (1+c-x)'], an absolute error tolerance
of ¢ = 10'6 was used. CADRE and AIND have both absolute and relative

error tolerances appearing in their calling sequences, and they attempt

- 22 -

to meet the least stringent of the two requirements. Hence, for purposes
of comparison, we set the relative tolerances to zero for these tests.
The predicted number of function evaluations for SQUANK was developed

in Section 2 and is

(4.1) 4 Lpred(f;0,1,e)+1 = 4L(64/255) /4 (c"V/4 - (1ec)y Ve V4

For SQUAGE it is

-1))5/8,-1/8 1,y

(4.2) 4 Gpred(f;0,1,e)+1 4L2'7/415']/4(1oge(1+c

Plots of -£0g1q C versus 209, N are given in Figures 4.1 and 4.2 to
show the comparison beéween predicted and actual numbers of function
evaluations for SQUANK and SQUAGE. (here, N denotes the number of
function evaluations.)

In these Figures, the predicted growth rates of N with c
appear to be borne out; however, the actual numbers of function
evaluations tend to be greater than predicted by a factor of about
1.3 for SQUANK, and 1.1 for SQUAGE. This probably represents a minor
failing of assumptions (i) and (iii) of Section 2. In Figure 4.3,
we show the actual numbers of function evaluations used as they vary
with ¢ for all four subroutines mentioned. In Table 4.1, we tabulate
the actual errors made. The performances of CADRE and AIND for that
integrand are also listed in Table 4.1, for comparison.

Turning now to the second experiment, we fix the integrand
at f(x) = (1.01-x)"1 and look at the effects of varying €. Table 4.2

lists the numbers of function evaluations predicted and used by SQUAGE

- 23 -

T'h 3¥N914
3”907

gs°e a&“m

am“N

ma“N

Bs°1

1

22°1

J

g5°8

ANVNOS Aq pasn
SuojlenieAas uojjouny j0 sudaqunu

{

lenioe —gz

paiotpaud

4

o -

4

|

@

—

A/ pa e p8°1 g9°1

N"907

Bpy2

S T T TR R e e e

gs's 83°S Es’y gy gs°¢c

1 i H | 1

)
&)
[y

¢'h 3UN9I4

3"907-
£2'c 05°2

852

1

- 24 -

e\
Q\.\

mo<:cm>nvmm: _msuum
. SUOJ3IBN|BAD UO}3DUN, JO SJaqunu

paiojpaad

ga°1

pe°e a1 g1 By°1

pee

el

N"907

€% 3MN9I Y

J 901- o
32

£l

- 25 -

amwm g3°s I8y muwv. BS°€ mm“m

o 4 1 L

-—

v -V Al 34aVI

+ + + GNIV

— - n} &3 3IovVNDS
@ o ® XNYNDS

: Aq pasn

SuO|3eN|BAd UOI3DOUNS JO J3quNnu

pee £2°€ 08*e g3°¢ av-z

By 'E

()]

N 9071

- 26 -

LOG]O(C) SQUANK SQUAGE CADRE AIND
A B A B A B A B
- .5 -1.5 E-8 45 -1.5 E-8 37 4.2 E-9 48 4.8 E-9 21
-1.0 -3.0 E-8 93 -6.0 E-8 65 7.8 E-9 80 8.8 E-8 63
-1.5 0 157 0 105 9.9 E-9 9% 1.8 E-8 147
-2.0 6.0 E-8 241 0 145 1.8 E-8 128 4.7 E-7 189
-2.5 -6.0 E-8 361 -1.2 E-7 189 1.7 E-8 160 9.0 E-8 273
-3.0 0 513 -6.0 E-8 241 2.1 E-8 176 -9.9 E-9. 357
-3.5 -1.2 E-7 733 -2.4 E-7 289 - 3.0 E-8 208 3.9 E-7 399
~-4.0 0 957 -3.6 E-7 341 3.0 E-8 240 9.8 E-8 483
-4.5 0 1153 2.4 E-7 405 3.3 E-8 256 3.2 E-8 567
-5.0 0 1381 3.6 E-7 457 4.2 E-8 288 3.4 E-7 609

Column A - error v
Column B - number of function evaluations used

] - -
A Comparison of Performance on',jo(]+c—x)]dx for € =10 6

Table 1

- 27 -

€L¢

9°¢lL-

A%

xwpuﬁxnpo._v

0

L

pajoLpaad suoLjenjeas

pasn suolrjenpeas

% UO BJURUMOJUDd 4O uOSLURdWO) ¥ 2'p Ilqe]

uoL3ouny 4o Jaquny - 9 uwnjo)

uoL3ouny 4o Jaquny - g uunjo?

~Loxxm_o—mo— ~ Y uwnjo)

| §'el- 80y 100v 8°Gl- 8219 888, §'9l- 21-

ez 9zi- || osy 6°21- 8622 (€52 €£'Gl- 9v¥e 6vzvy 8'Gl- L-

€2 92l- | 8 L"2l- 62l 62pl 8cl- 8€6L £z £'pl- ot-
€2 L6 - 952 6°0L- 92L 508 £°el- 680L szeL 8'zl- 6-
ez 16 - orz 0ot~ 80¥ £sY L'01- 219 1St £ LL- 8-
l€2= 1'6 - 9/1 L'8 - 622 €52 £°6 - e 52t 8°6 - L-
68L €9 - 821 L'l - 621 Sl 8L - €61 Lv2 £°8 - 9-
68l €9 - 0zL 'L - 2L 68 9 - 801 Lel 8'9 - §-
L ey - 08 6°G - ov 6v L'y - 19 Lt LS - b=
AN A 95 6t - 22 62 '€ - ve A3 L't - €=

f ¥ g ¥ 2 g ¥ 2 f 7
NIV ERA) ! 39vN0S INVNDS 200

- 28 -

and SQUANK. Again, the predictions for SQUANK and SQUAGE are low by
factors of about 1.3 and 1.1, respectively. However, the actual numbers

'1/4, as predicted. The performances of CADRE

used seem to grow like €
and AIND are also listed in Table 4.2. The much slower growth rate of N
with ¢ for CADRE and AIND demonstrates an advantage of using high-order
local quadrature procedures.

It should be noted from Tables 4.1 and 4.2 that SQUAGE shows
a tendency to meet the prescribed error tolerance more closely (from
below) than SQUANK.

Our third experiment involves integrands f(x) = (1-x)* for
various values of a. The model in Section 2 predicts that the subinterval
selection process using the Tocal acceptance criterion (1.2) does not
terminate if o < 0. Although SQUANK uses (1.2), it has a limited storage
space for the stack used to store the subintervals in Pen. Thus, after
a maximum number of bisections (when the stack is full), the current
subinterval is accepted without reference to (1.2). In the version of
SQUANK given in [4], the maximum number of bisections (maximum stack
length) is set at 30. However, for this experiment, the maximum was
reset to 500 to avoid the effect of default acceptance of subintervals
not accounted for in the model of Section 2. (For these integrands,
the default acceptance of subintervals is benign in the sense that

the error tolerance is always met using the unchanged version of

SQUANK.)

- 29 -

Using pyla) = la(a=1)(a=2)(0=3)|, of Section 2, the predicted
numbers of function evaluations as given in Section 2 are, for SQUANK

1/4

(4.3) 4 Lpred(f;0,1,a)+1 = 4L(p4(a)/180€) Jog+l , ifa =20,

and for SQUAGE,

(4.4) 4 Gpred(f;0,1,¢) = 4L(5/4(]+a))5/4(p4(a)/458)]/4J+1, if o> -l

?redictions (4.3) and (4.4) were tested using error tolerance e = 1076.
The results for SQUANK are given in Figure 4.4; those for SQUAGE are
given in Figure 4.5,

In addition to these three computations, a general comparison
between SQUANK and SQUAGE was made by testing them using a quadrature
testing program written by Professor P. Keast of the University of
Toronto (Department of Mathematfcs). Keast's program uses 131 test
functions divided into seven groups, each group exhibiting a specific
behavior (e.g., oscillation, end-point singularity, etc.). The quadra-
ture subroutine is tested on each of these functions at 10 different
absolute tolerance levels: e = 10"", n = 1(1)10. The observations
made from the results of Keast's tests on SQUANK and SQUAGE are similar
for all groups except groups 5 and 6. With the exception of groups 5
and 6, SQUAGE always took fewer function evaluations, typically by
a factor of 2 or 3 at the smaller values of . SQUAGE also tended
to come closer to the prescribed tolerance, in general. Group 5 is
composed of functions with singularities, like f(x) = lx-c]a for ¢

in the range of integration, and -1 < a < 0. For this group, SQUANK's

A | CRET 1 T(1) F AT .

+BIx BHAGE
221 A@l e3s 828 @@L g@'s @@'S €27y @8E g@z 287

- 30 ~

@z'z o8’z @8l

(L4

N 907

Suollen|eAd uollduny jO siaqunu

ANVNDS Aq pasn (eniose —<p—
ﬁ o

O 4«

po3dpaad

83°¢

- 31 -

LA 2" P8¢ 83-@

t 1) 1

@yl

J S

31

i4nvid

gHd Y

623 mm.ml

wwc&v.&n
i 1

nw.mc

28" ¢~

62°1-
1

gz 1-

39vVN0S Aq pasn
suojlen|eAs uojldouny jo suaqunu

A

tenyoe

pajojpaad

& <l

a

832
N 907

504

ga‘e

.Im_.v :
(2]

8

sy myy

BeS

P
G

-t

AR e

- 32 -

performance is markedly inferior to SQUAGE's, as our previous discussion
would lead us to expect. Group 6 is comprised of various step functions.
For these, SQUANK generally took about 20 to 40 function evaluatiouns
and gave up, appérent]y interpreting the discontinuities as noise in the
function evaluations. Since SQUAGE doesn't attempt to recognize roundoff
error, or other noise, it continued on and met the tolerance for about
half of the functions in Group 6. Of course; for this group, SQUAGE
generally used substantially more function evaluations.

It is perhaps worth noting that Group 5 represents an important
class of functions for which SQUAGE 1is successful but SQUANK fails, using

vastly more function evaluations. Group 6 is not as important since

neither of the subroutines is designed for integrands having discontinuities.
Using Group 6 for testing these particular quadrature subroutines is,

as Lyness has remarked, a little 1ike building a truck and then testing

it by driving it over a river.

There were no examples in which both subroutines met the error
tolerance with SQUANK requiring fewer function evaluations. However,
simple examples can be constructed in which both are successful, but
SQUANK requires fewer subintervals; so no simple statement concerning
re]atfve numbers of function evaluations seems proveable.

Keast's tests for SQUANK took .575 hours offbrocessor time
whereas the tests for SQUAGE took .205 hours. Thus, the number of function
evaluations appears to be a reasonable measure of complexity when comparing

the two subroutines.

- 33 -

5. Conclusions

The results of the preceding section suggest that the analytical
model of Section 2 works well enough to be a useful tool for studying
adaptive quadrature algorithms. This model indicates that the number
of subintervals selected may be regarded as the product of two factors:
one that summarizes the interaction between the algorithm and the
integrand; the other depends only on the absolute error tolerance.

For both SQUANK and SQUAGE this second factor is 5'1/4, and
it is clearly derived from the use of Simpson's rule as a Tocal quadrature
procedure. In this sense, then, we can call both SQUAGE and SQUANK
fourth-order a]gorithms; and note that the interval acceptance criterion
has no influence on the order.

The connection between the order of the local quadrature rule
and the global performance of an adaptive quadrature method has also
been observed by Rice [11] in the context of the rate of convergence
to zero of the quadrature error. These results seem to be consistent
with his, when the error estimate used is actually an error bound
for each subinterval.

While it may not influence the order of an adaptive quadrature
algorithm, the subinterval selection strategy appears to influence its
performance in at least three ways i) by affecting the number of function
evaluations required for an integral; ii) by changing the domain of
integrands which can be handled by the algorithm; iii) by affetting the

closeness with which the user's tolerance is achieved. Each of these

- 34 -

ways has been observea both in the experimental computations and the general
testing using Keast's program. The first is clearly evident in the
reduced number of function eVa]uations used by SQUAGE as compared with
SQUANK when applied to f(x) = (1+c—x)'], and in the 2.05/5.75 ratio of
running times for the general tests on these two routines. The second
influence is demonstrated by the difference in success between SQUAGE and
SQUANK when applied to (1-x)* for -1 < a < 0. This effect has also been
observed by Rice and given a more rigorous treatment in [10] and [11].
The third influence mentioned above of the subinterval selection process
can be seen in Tables 4.1 and 4.2, and was also evident in the general
testing.

The advantages of global strategies over local strategies
were seen to be in some sense a space-time tradeoff. The reduced
numbers of required function evaluations, and apparent increase in domain
of applicability using the global strategy comes at the expense of
additional memory requirements. However, the memory requirements of
SQUAGE are not unreasonable for many applications; and when a higher-order
local quadrature rule is used, such as in AIND, the additional memory
requirements are very small.

An adaptation of Floyd's tree sort algorithm has proven to be
an effective way of programming the g]oba] strategy when a large number
of subintervals are anticipated. Using this technique, the additional

overhead involved in the global strategy is negligible.

- 35 -

6. References

[1] deBoor, C., "CADRE: An algorithm for numerical quadrature", in
Mathematical Software (ed., J. Rice), pp.417-449, New York:
Academic Press, 19/1.

[2] Floyd, R.W., "Treesort 3", Algorithm 245, Comm. ACM, Vol.7, No.12,
Dec.1964, 701.

[3] Knuth, D.E., "Sorting and searching", The Art of Computer Programming,
Vol.3, Reading Mass: Addison Wesley.

[4] Lyness, J.N. "SQUANK (Simpson quadrature used adaptively - noise killed)",
Algorithm 379, Comm. ACM, Vol.13, No.1, April 1970, 260-262.

[5] Lyness, J.N., "Notes on the adaptive Simpson quadrature routine",
J. ACM, Vol.16, 1969, 483-495.

[6] McKeeman, W.M., "Adaptive numerical integration by Simpson's rule",
Algorithm 145, Comm. ACM, Vol.5, 1962, 604.

[7] Patterson, T.N.L., "Algorithm for automatic numerical integration
over a finite interval", Comm. ACM, Vol.16, No.11, Nov. 1973,
694-699.

[8] Piessens, R., "An algorithm for automatic integration", Angewandte
Informatik, Sept. 1973, 399-401.

[9] Piessens, R., "A quadrature routine with round-off error guard",
Report TW 17, March 1974, Appl. Math. and Programming Div.,
Katholieke Universiteit Leuven,

[10] Rice, J., "An educational adaptive quadrature algorithm", SIGNUM
Newsletter, Vol.8, No.2, April 1973, 27-41.

[11] Rice, J., "A metalgorithm for adaptive quadrature", to appear in
J. ACM.

[12] Rowland, J.H. and Y.L. Varol, "Exit criteria for Simpson's compound
rule", Math. Comp., Vol1.26, No.119, July 1972, 699-704.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

