DEPT. OF COMPUTER SCIENCE,
UNIVERSITY OF WATERLOO,
WATERLOO, ONTARIO N2L 3GY

Department of Applied Analysis
and Computer Science

Research Report CS-74-05
April 1974

RENAMINGS IN
PARALLEL PROGRAM SCHEMAS

by
Luigi Logrippo

P — - -

Faculty of Mathematics

University of Waterloo
Waterloo, Ontario
Canada

Department of Applied Analysis
&

Computer Science

Department of Applied Analysis
and Computer Science

Research Report CS-74-05
April 1974

RENAMINGS IN
PARALLEL PROGRAM SCHEMAS

by
Luigi Logrippo

RENAMINGS
IN

PARALLEL PROGRAM SCHEMAS

by

Luigi Logrippo

A thesis
presented to
the
University of Waterloo
in partial fulfillment
of the reguirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Applied Analysis & Computer Science
Faculty of Mathematics

February 1974

The University of Waterloo requires
the signature of all persons using
this thesis. Please sign below and

give address and date.

@2} Luigi Logrippo, 1974

I hereby declare that I am the sole
adthor of this thesis.

I authorize the University of Waterloo
to lend it to other institutions or
individuals for the purpose of scholarly
research.

Signature A

ABSTRACT

In this thesis, we study the effects of changing
the names of the variables (i.e., performing renamings) in
parallel program schemas (hereafter‘simply éalled "schemas") .
First, we give a method for perfdrming renamings in such a
way that the resulting schema computes step by step the same
values as the original one. We call "proper renamings" the
renamings that are performed according to this method. We
show that there exists a class of schemas such that any two
schemas in the class for which one is not a proper renaming of
the other do not compute step by step the same values. In
this sense our method of renaming is the only one that is
generally valid.

Some applications of this technique are then studied.
First, we show that, given any schema S, there exists a
procedure for obtaining another schema §S' that is a proper
renaming of S and uses no more variables than any proper
renaming of S. Furthermore, we show that, by changing the
control structure of S, it is possible to obtain a schema
S", with computations identical to those of S, which can
be renamed to use the smallest possible number of variables.
The number of variables in the resulting schema is less than or
equal to the number of variables in the original schema.

Finally, we study the effects of renamings on
parallelism. It is shown that the amount of parallelism

present in a schema can be enhanced by a procedure that

ii

involves both proper renamings and transformation of control
structure. Iteration of this procedure tends towards a limit
that can be thought of as thé maximally parallel version of

the original schema.

iii
ACKNOWLEDGEMENT

I wish to express my gratitude to my thesis advisors,
Professor J.A. Brzozowski and Professor E.A. Ashcroft, for
their very helpful suggestions and criticism. These are too
many to be individually acknowledged. However, I am particularly
indebted to Professor Brzozowski for his contributions to the
definition of the model and to Professor Ashcroft for providing
the idea of the proofs of theorems 3.6.4 and 5.2.9.

I am indebted to Drs. D.P. Bovet, R.M. Keller,
R.E. Miller for stimulating discussions, and to the members
of the examining committee, Drs. R.E. Miller, E.L. Robertson
and H.S. Shank for their useful comments.

I wish to thank Mrs. Claudette Henderson and
Mrs. Teresa Miao for the skilful typing of the manuscript.

This research was supported in part by the Consiglio
Nazionale delle Ricerche, Comitato per la Matematica (Italy),
and in part by the National Research Council of Canada under

Grant No. A-1617.

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION

§1.1
§1.2
§1.3

§1.4

Generalities
The Model
Overview of problems and results

Previous research

CHAPTER 2 - NOTATION AND TERMINOLOGY

§2.1

§2.2

§2.3

CHAPTER 3 - RENAMINGS IN TERMINATOR STRINGS

§3.1
§3.2
§3.3
§3.4
§3.5

§3.6

Basic notation and terminology
List of definitions

Numbering system

iv

Terminator strings, ihterpretations, histories..... 34

Equivalence and similarity

Segments

Renamings

Proper renamings and values computed

The converse results

CHAPTER 4 - RENAMINGS IN SCHEMAS

§4.1
§4.2
§4.3

§4.4

Schemas
Areas in schemas
Renamings in schemas

Computations and renamings in schémas

ceon. 47

§4.5

§4.6

A converse of #3.4. Tree schemas

A converse of #4.4.

CHAPTER 5 - MEMORY ECONOMY

§5.1

§5.2

§5.3

Minimum memory requirements for schemas
Schemas with minimum memory in a set of

L-equivalent schemas

It is decidable whether two finite, consistent

schemas have the same language up to renaming

Dynamic memory allocation

CHAPTER 6 - PARALLELISM

§6.1

§6.2

§6.3

Enhancing parallelism in schemas: the first
step

Enhancing parallelism in schemas: the further
steps

Maximal parallelism

DIRECTIONS OF FURTHER RESEARCH

BIBLIOGRAPHY

CHAPTER 1

INTRODUCTION

§1.1 Generalities.

Among the transformations that are known to preserve
the results of programs, an important place is occupied by
transformations that affect the names of the variables, i.e.
require a renaming. For example, such transformations are
used in the optimization phase of some compilers [Gxril. The
aim of this thesis is to develop a theory 6f rehamings in the
framework of a theory of program schemas inspired by the work
of Karp and Miller [K&M].

First, we shall consider properties of renamings,
and then their two main applications: we may want to rename
in order to decrease the amount of workinq‘storage used by a
program; or we may want to rename in o6rder to increase the
parallelism of a program, by eliminating bottlenecks caused
by the fact that two instructions or two procedures share
some storage space unnecessarily.

In this chapter, we shall introduce informally the

concepts discussed in the thesis.

§1.2 The Model.
The development of the theory of program schemas
has produced a considerable number of models and formalisms.

Some of the most notable differences have concerned the

1.2

representation of parallelism. We have decided, not without
regret, to produce yet another model, a variation of those
studied in [K&M] and [Kell. 1In the following chapters we
shall explain why the departures from those models were deemed
necessary.

A parallel program schema, or simply a schema, can
be seen in two different ways: as a control mechanism for
parallel processing, or as an acceptor of computations. The
first interpretation is discussed in [Kell and we refer the
reader to that source for further explanations. We shall
only note that the concepts of "enabling operations" and
"controlling automaton" introduced in that work are compatible
with our model, and that the reader who prefers that inter-
pretation may certainly adopt it. For a formal treatment, it
is not necessary to refer to the concepts above, and a schema
can be viewed simply as an acceptor of computations, as we
shall now show.

'Cdnsider the program of Fig. 1, where parallelism
is represented in terms of the well-known operations of "fork"
and "join" [Con] and the integers represent memory addresses
(we call this kind of representation "flow-chart representa-
tion"). First of all, since we are studying programs from
the point of view of control flow, rather than from the point
of view of functions computed, we replace functions with func-
tion variables. This opération of abstraction yields the
schema of the program, represented in F}g, 2. We say that

(£(0)~1,2), (k(0,1)~>0), (g(3,2)+4), (h(0,3)) are the operations

3:254 |

start
| 0+1,2
fork
- i |
b
‘ 0+1+0 |
s B
,//L\\\\\
F -
u...«.*——._\\\ 0 2 3 // .
~ . / R
T | join
. stop
\

Fig. 1. A parallel flow-chart

i i s

o m " - - e 'f

(g(3,2)~4)

| k0,10 |

‘-“TT:,"/\"*'

- .

o .

.
>

----- - ne,3)
N —— -

1 - join Wi)

Fig. 2. A schema for the flow-chart of Fig. 1.

1.2
of the schema. Theése operations have the following ordered
sets of domain variables: (0), (0,1), (3,2), (0,3) .and the
following ordered sets of range variables: (1,2), (0), (4),
g. In our model, every operation embodies a test, possibly
a‘trivial one that always gives the same result. The result
of a test is called its outcome. In our example, all opera-
tions have just onhe outcome, except (h(0,3)) which has two:
0 and 1.

Given a schema, we go back to a program by means of

an interpretation, i.e. by replacing function variables with

actual furnctions and teésts. For convenience, we shall also
include in the interpretation the specification of the initial
memory values.
Let us now consider the set of all possiblé instruc-
tion sequences of programs whose schema is that of Fig. 2.
1f we 8enote with al the execution of opération a with
outcome i, and assume that 6perations with only one outcome
always have outcome 0, we see that some of these instruction
sequences are:
(£(0-1,2° (33,20 k0,1-0% ®wo,nh
(£00)+1,2)% (x(0,1)+01% (n(o,3 7t (g(3,2)+8)°
ete.
One can verify that the set of all finite instruction seguences
allowed by S is the language of the finite aﬁtomaton of
’Fig. 3. This is an incompletely specified Moore automaton:
the vertices of the graph of Fig. 3 represént its states,

while for clarity we have enclosed the labels of the edges in

{
(>
N

(f(0)+l 2)

T R O e —

s ‘(g(3 2)+4)
l(k(0,1)>0)" |

_;’\ \>__,.._ e e e e)<)
Y . f‘_ﬂ_" %

(g3, 2)+4> o1 [0, 3] |'—“‘Lw“U

o
!
i

(k (0,1)~0)

'w\’ | /L:M : ; mww*_“I;

. IR ! K ! i
{ NS I N i y
1
|
{
i
i

IR T S Lo ¥ 1
womY Jeem? TwE2am® 1 mes® LE0Y

‘V, ‘.' : \\ K \\‘

(1<:3)> 0]

Fig. 3. Representation of the schema in Fig. 2 as an

automaton.

1.2 7
boxes (graphs with such long labels might otherwise be diffi-
cult to read). Every state of the automaton is taken to be

an accepting state.

In this thesis, we shall define schemas as such
automata, rather than as flow-charts, mainly because in this
way we can consider schemas as acceptors of instruction
sequences, and can use the terminology and some of the results
of automata theory. Furthermore, the automaton representation
is more general than the flow-chart representation: Ashcroft
and Manna [Man] [A&M] give a procedure for transforming
every schema in the latter representation into a schema in
the former, while one easily verifies that the converse is
not always possible.

To be capable of computing, a schema must be inter-
preted: we have already seen that an interpreted schema is a
program. An interpretation consists of three elements:

a domain, i.e. a set of possible'variablevValues;

the initial content of each memory variable;

an assigned meaning for each function variable.

The assigned meaning consists of two functions: a function
taking its arguments and results in the domain, and a func-
tion taking its arguments in the domain and its results in
the set {0,1,...}. This second function is the one that
computes the outcome.

Concerning the schema just considered, a possible
internretation I0 for it is the following.

The domain is the set of nonnegative integers.

The initial variable values are fixed as follows:
the initial value of 0 is '2', the initial
value of 3 is '6', and the initial value
of the remaining variables is '0'.

The function variables are interpreted as in Fig. 1l:
f is the identity function, k 1is an addition,
g is a division, and h is a test. The out-
come for each operation has value 0, except
for the function h, which has outcomes 0
and 1l; h{(m,n) has outcome 1 iff the value
of m 1is greater or equal than the value of
n.

A possible instruction sequence for this interpre-

tation is:

(£(0)1,2)° i.e. 01,2
(k(0,1)-0)° 0410
(h(0,3))° 0<3
(k (0,1)+0)° 0+1-0
(h(0,3))1 023
(g(3,2)+4)0 3: 254

In this sequence, (g(3,2)+4) is executed last;
however, this instruction could have been executed at any
time after the execution of (£(0)-1,2).

We see that the successive memory values for this

sequence are as follows:

variables
0 1 2 3 4 v

initial wvalue 2 0 0 6 0 0

successive 4 2 2 6 0 0
values {

If only the changes in memory values are shown, we

get

This is what we call history of the seguence. It
is interesting to note that this concept of history is inde-
pendent of the concept of schema, in that a history is uniquely
defined by an instruction sequence and an interpretation. We
say that an instruction sequence, finite or infinite, is an
I-computation for an interpretation I if a history is defined
for the sequence under I. For examrle, the string

(£(0)+1,2)% (x(0,1)-00° (n(o,30)*
is not an Ig- computation since the test h(0,3) at that
point can only have outcome 0, 1i.e. <.

We say that an instruction seguence is a computation

1.2 10
for a given schema S under a given interpretation I 1if
the sequence is an I-computation and is either
i) finite and it ends in a state of the schema where
no further transition is defined
or ii) infinite and all its prefixes are accepted by
the schema.
We take the results of a computation to be its whole history.
This makes it possible to consider infinite computations, thus
allowing modeling of systems, such as operating systems or
real-time systems, that have legitimate infinite computations.
Returning to our example, we note that all Io—com—
putations have the same history, i.e. are equivalent with
respect to IO. This concept of equivalence can be generalized
as follows. We say that two computations are I-similar for a
given interpretation I if their histories for that interpre-
tation contain the same values, not necessarily in the same order.’
Two computations are similar if they are I-similar for all TI.

A computation is repetition-free if it never computes

the same value or the same test twice by applying the same
functions in the same order. Thus in a certain sense, repeti-
tion-free computations are reduced. A repetition-free schema
has only repetition-free computations.

Concerning the adequacy of this model for describing
the complexities of real-life computational systems, we refer
the reader to [P&H]. These authors show that models of the
type described above are inadequate to express recursion.

However, while in a model allowing recursion many of our

1.3 11
reéults would not hold, there are areas where our model is
meaningful. One of these is the modeling of internal computer
operations and microprogramming, where everything is done by
using absolute addresses. Another is the modeling of large
systems, such as operating systems, where each operation can

be taken as a subsystem.

§1.3 Overview of problems and results

Renamings in computations and schemas

We have found it convenient to attack the problem of
renaming by first considefing computations, then schemas. As
regards computations, we want to find a renaming rule with the
following properties:

i) By renaming a computation x according to such

a rule, we obtain a computation x' such that,
for the same interpretation, x and x' compute
step by step the same values.

ii) There exists a computation x such that, for any
renaming violating the renaming rule, the renamed
computation x' does not always compute step by
step the same values.

We first show how our renaming rule works by means

of example., Consider the following computation:

(£(2,3)-0° (g(3)-1)% (1(0,1)50,3)? (g(3)>3)°

It is clear that, if we replace variable 0 in the substring
within square bracket with some other variable (say 4) that

is not "occupied" in that substring, then the resulting compu-

1.3 | 12

tation computes step by step the same values as the original
computation:

(£(2,3)-6)° (g(3)-1)° (h(4,1)+0,3)° (g(3)+-3)°

We say that the substring above is a segment of the

variable 0. In general, a segment of a variable m 1in a
computation x is a substring M in x such that:
i) at the beginning of M, m is assigned a new value;
ii) the wvalue assigned to m at the beginning of the
segment is not changed within the segment; and
iii) at the end of M, this value is used for the last
time in x.
A simple store of a new value in m that will never
be used again in x 1is also a (trivial) segment.
The desired renaming rule for computations is found
to be the following:
A variable m can be renamed as n in any
segment M of m in the computétion, provided
that M does not intersect any segment of n.
n must replace m uniformly throughout M.
Renamings abiding by this rule will be called proper. Further-
more, we shall show that if a computation x' 1is obtained by
renaming a repetition-free computation x without following
the rule above, then x and x' do not compute step by step
the same values.

As regards schemas, we say that two schemas S and

1.3 13

S' compute step by step the same values if for any computa-

tion x of S there exists a computation of §' that for
all interpretations computes step by step the same values as
x, and vice versa. We want to find a renamino rule with the
following properties:
i) By renaming a schema S according to the rule,
we obtain a schema S' that computes step by
step the same values as S.

ii) There exists a class of schemas such that any
two schemas in the class that cannot be obtained
the one from the other by the rule do not compute
step by step the same values.

To do this, we first notice that if any computation
follows a.particular path through a schema then the computa-
tion is simply the sequence of instructions labeling the edges
of that path. For a schema S, we define the areas of a
variable m to be particular subgraph-like objects, corres-
ponding to segments of m in computations of . S. The desired
renaming rule is found to be:

A variable m can be renémed as n in any
area M of m in the schema, as long as M
does not intersect any area of n and as long
as the renaming is performed uniformly in M.

Renamings abiding by this rule are called proper.

Mirst application: memory economy

It is easy to find two schemas for which one is a proper

1.3 14
renaming of the other but which use different numbers of variables.
This phenomenon is studied in Chapter 5 as the most obvious

application of renamings.

We define the incompatibility graph of a schema S

to be a graph having as many vertices as there are areas in

S and where two vertices are joined by an edge if the corres-
ponding two areas intersect. A proper renaming of S can be
obtained by associating variables with vertices of the graph
in such a way that no two vertices connected by an edge are
associated with the same variable, and then correspondingly
renaming the areas of S. Thus, it is seen that the problem
of renaming a schema in such a way that a minimum amount of
memory is used reduces to the well-known problem of coloring
a graph with a minimum number of colors.

It is also interesting to note that two schemas
that accept the same language may have minimum renamings that
use different amounts of memory. This problem is connected
to a problem that in compiler theory is known as "register
mismatch" problem. We show that, given a finite schema &5,
it is possible to construct a schema S' that accepts the
same language and can be properly renamed with the smallest
possible number of variables. The construction is of a kind
that could be included in an optimizing compiler.

The above provides a theory of static storage allo-
cation. Dynamic storage allocation is also briefly considered,
and it is shown that it makes possible an even better utili-

zation of memory.

1.3 15

Second application: parallelism.

Renamings c¢an also be used in order to ihcrease the
amount of potential parallelism of a schema. A trivial
example of this fact is shown in Fig. 4. Assume that a schema
contains the sequence of operations shown in A. The two
operations could not be executed in parallel, nor could the
second one be executed before the first, without changing the
results of the program. However, there is no intrinsic reason
why the second operation should wait for the first one, since
the second operation does not use any value computed by the
first one. We have here a bottleneck caused by the fact that
the second operation happens to store its results in the same
memory locations from which the first one fetches. This
bottleneck can be eliminated by renaming, as in B, and then
- the two operations can be executed in either order, as in C.
The last part of this work (Chapter 6) deals with these
problems.

Two schemas are similar if for every computation of
one there exists a similar computation of the other. A schema

S is more parallel than a schema S' if S and S' are

similar and for every computation of S' there is a computa-
tion of S that is a renaming of the computation of 5' but
not vice versa: in an intuitive way, this amounts to saying

that S has more freedom in choosinhg the order of the opera-

tions than 8'. A schema S is hyperclosed (i.e. maximally

parallel) if there is ho schema S' that is more parallel

than S. Another "natural" definition of maximal parallelism

A

A B {
| ¥ Y
(£(0)-1)° | (£(0)-1)°
e ®)
(£(2)~0)° <f<2>+3)

\,__/

-
L(£(0)~1) l

) N
{(fg2)+3) i (f(0)+l)

J\ - V>

A

I =
4 UURINS. N,

Fig. 4. Renaming to enhance parallelism.

-
(£2)+)°

i
{

0]

16

1.3

17

is compared with this one and found to be equivalent, under

reasonable assumptions.

The following properties are found to be true for

a large class of schemas, called restricted schemas:

i)

ii)

iii)

iv)

For finite schemas, the property of being
hyperclosed is decidable.

If a schema S is not hyperclosed, then it
is possible to transform S into a schema
S' that is more parallel than S; further-
more, if S 1is finite, so is §'.

For every schema S there is a similar

hyperclosed schema S called hyperclosure

of S, that is usually not finite, even if
S is. S can be thought of as the limit
of the iterated application of ii). No
algorithm is known for obtaining § from

S even in the case where § is finite.
However, S can be simulated by a sort of

"look~ahead" interpreter.

'If S and S' are similar schemas, then S

accepts the same language as some proper

renaming of S'.

A result related to the one of Paterson [Pat] about the decida-

bility of the equivalence problem for progressive schemas is

shown to follow easily from the results above.

Concerning the interpretation of these results, note

that the fact that schemas usually do not have finite hyper-

1.3 18

closures (that may at first seem disappointing) lends itself
to the following interesting interpretation. Given any pro-
gram that is not maximally parallel, it is possible to enhance
its parallelism by generating a larger, more parallel program.
This process can be continued, until all available memory is
used. This method of approximating hyperclosures could be
called "static" and is suitable for use in a compiler.

Another way of approximating a hyperclosure is to
"simulate" it dynamically by means of an instruction look-ahead
interpreter. Such an interpreter works as follows: at the
beginning of the program, and after executing each instruction,
it looks ahead in the instruction stream to see whether there
are any instructions that have become executable, i.e. instruc-
tions that only depend on data and tests that have already
been computed. All these instructions are automatically "moved
up" in the instruction stream, so that they can actually be
executed at the earliest point where this is possible without
losing similarity. To perform this correctly, renaming may
be necessary (refer again to the example in Fig. 4). Such an
interpreter may also run out of memory, either working memory
or memory for tebles needed during the simulation process.
However, its use of working memory would in general be better
than the use of memory in the static method, and here too,
the larger the computer the higher the amount of parallelism
that can be achieved. Interpreters using this sort of idea,
but without facilities for renaming, are implemented in the

hardware of a number of high-performance computers. 2An inter-

1.4 19

preter using renamings has been proposed by Stone [Stol].

§1.4 Previous research

The amount of work that has been done in the subjects
touched by this thesis is very large, and relates to such
different areas as program schema theory, hardware design,
software design, and programming languages. This section will
limit itself to mentioning the work that Has most directly
influenced this thesis.

As we have already stated, we have been influeéenced
mainly by the papers of Karp %nd Miller [K&M] and Keller
[Kel]l. These authors proposed a model for parallel comnuting
systems that has shown itself suitable for considering many
properties of these systems that had escaped formal treatment
before. We have tried to carry this investigation somewhat
further.

The ideas of areas of a variable in a schema and of

proper renamings were, to the knowledge of the author, first
introduced by S. S. Lavrov in [Lav] (see also [Yell]).

These works remained unnoticed in the West for a decéde, while
instead Russian authors widely acknowledged them and further
exploited their implications (for an account of several related
- papers see [Y&L]). Lavrov defined prdper renamings and

showed that they are the only ones that preserve the area
structure of a schema. We apply theée ideas to parallel .
schemas and further extend them. We prove that a properly

renamed schema computes the same values as the original schema,

1.4 20

and that in some sense proper renamings are the only ones
having this property.

Chapter 6 bears some analogy with the works of Kotov
[Kot] and Slutz [Slu]. However, the models used by these
authors are very different from ours. The material of Chapter
6 is instead closely related to the work of Keller [Kell, and
is a generalization of that work, in that we have introduced
renamings into his theory of parallelism and generalized many
of his results. 1In particular, it is interesting to note that
both Keller and the author have found what can be considered
a theoretical model of ;hstruction look~ahead: however, while
Keller's look-ahead interpreter is of the conventional type,
similar to the ones implemented in the IBM 7030 [Bucl, CDC
6600 [Lor] or IBM 360/91 [A,S&T], the author's look-ahead

interpreter has dynamic storage allocation facilities, like

that of [Stol.

CHAPTER 2

NOTATION AND TERMINOLOGY

§2.1 Basic notation and terminblogy.

The reader is assumed to be familar with the basic
results of the theory of computino. Most of our basic nota-
tion and terminology is standard in that field. Some addi-
tional notation is derived from [K&M] and [Kell.

A review of the basic notation follows.

"iff! if and only if
{a,b,c,...} is the set containing exactly the elements
a,b,c,...

{acA : P(a)} is the subset of A containing exactly those
elements for which P(a) 1is true
W set of nonnegative integers

set membership and its negation

m
™

¢ set inclusion and its negation

In

proper inclusion

" W

empty set
U union
n intersection

- relative complement

x “cartesian product

(A where A 1s a set, is the number of elements
in A

A

2 is the set of all subsets of a set A

Sets consisting of couples of elements are also called
relations.
If R 1is such a set, the two notations
(a,b) ¢ R and aRb are equivalent. We also
write a¥b for (a,b) ¢ R.

If two expressions have an equal sign =' in the middle
then the right-hand side is defined iff the
left-hand side is defined and then they are
equal.

f: A > B means that £ 1is a (total or partial) function
from a set A to a set B. A and B are
respectively the domain and range of f£f.

f is an identity function if for all a in the domain of
£, f(a) = a.

(f(a)? means: f(a) is defined

f =g is true iff f and o are two functions with
the same domain A and, for all a ¢ A,

f(a) = g(a).

fcg is true iff f and g are two functions such
that the domain and range of f are included
in respectively the domain and rancge of g
and for all a that are in the domain of £,
f(a) = g(a).

f for all a in the range of function £,
£l@) = {b: £ = a)

an injection is a function that is one-to-one

a bijection is an injection that is onto

2.1 23

BA is the set of all total functions from A to
B.

(al,...,an) ordered set of elements Ayrecesdy

AlTI] where A is an ordered set taking indexes in
w, and I = (il,...,in) is an ordered sub-
set of w, is the ordered set (A, ,...,A,).

11 th

AlI] is defined iff all its elements are
defined.

strings we take the definition current in automata and

language theory.
L* for a set %, called alphabet, I* is the

set of all finite strings over I.

i is the set of all countably-infinite strings
over 1.

g is r* y zv

| x| (where x ¢ g) is the length of x (undefined
iff x ¢ ¥).

A is the string of 1ength 0.

Xy Or . X*Y where x ¢ L* and vy ¢ g is the concatenation
of strings x and vy, as usually defined in
automata and language theory.

X <Y (where x ¢ I*, y ¢ g) is true iff there
exists z ¢ 7 such that vy = xz. In such a
case, X 1is said to be a prefix of vy.

X <y where x ¢ I* and vy ¢ g, is true iff x <y

and x # y. In this case, x 1is said to be

a proper prefix of vy.

2.1 24

For L c g, x 1is called minimal (maximal) in L if for
any y € L, y £ x (x <£vy) implies x = y.
x 1is shortest (longest) if for any y ¢ L,
lyl = |x[(y] = [x]).
n* where x ¢ I and |x| 2 n, denotes the vy
such that y < x and |y| = n; is undefined
otherwise.
x[n] where x ¢ g and |x| =2z n, is the n-th
element of x; is undefined otherwise.
a ¢ x is true if there exists n such that a = x[nl.

Ordering, well-ordering and lexicographic ordering are as in

[Knul p. 20.

A graph is a pair G = (V,E), where V 1is a set of elements
called vertices and E 1is a subset of V x V
called the set of edges. For any two a,b ¢ V
whenever we say that (a,b) ¢ E we imply
(b,a) ¢ E. A graph is finite if V is finite.
A path is an ordered set of vertices
(VO,...,Vn) such that for each i (0 < i < n)

(v, ,v) ¢ E. A cycle is a path where the

i77i+1
first and last vertex coincide. A graph is
acyclic if it does not contain any cycles. A
self-loop is a cycle of one vertex. A graph
is connected if for any two vertices v,v'
there exists a path (v,...,v'). For a graph
G = (V,E), a subgraph of G is a G' = (V',E')

where V! Y and E! < En (V' x V'). A tree

§2.2

A)

25

is a connected, acyclic graph.

List of definitions

Terminology

affect ... 136

area ... 719

area map --- 81

assignment ... 36

canonical renaming function ... 120
characteristic ... 39

closed area ... 81

closed segment ... 49

coloring ... 110

computation ... 37
compute step by step the same values (strings) ... 58
compute step by étep the same values (schemas) ... 93

consistency ... 103
corresponding element ... 55
critical set ... 145
decision~free ... 106
determinate schema ... 94
domain variables ... 34
equivalence of strings ... 44
equivalence of schemas ... 44
fetches from ... 35

finite schema ... 76

finitely-branching schema ... 75

finitely-branching language ... 78
free schema ... 103

function symbol ... 34

head of segment ... 49

head of route ... 98

head of area ... 118
h~interpretation ... 40

history ... 39

history permutation ... 45
hyperclosed schema ... 155
hyperclosure ... 156
incompatibility graph ... 110
initial memory state ... 37
interpretation ... 36

language of interpretation ... 37
language of schema ... 75
language-equivalence ... 79
liberality .., 65

losslessness ... 65
memory~-reduced schema ... 111
memory requirements ;.. 111
memory state transition function ... 37
memory states ... 36

minimal coloring ... 110

minimal renaming ... 111

minimum memory ... 111

number of arguments ... 34

26

2

2

number of outcomes of function ..

number of outcomes of operation
number of results ... 34
occupied variable ... 118

open area ... 81

open segment ,.. 49

operation ... 34

parallel program schema ... 75
prefix-closed ... 78

program ,,. 91

progressive schema ,., 159
prompt schema ... 155

proper renamings of strings ...
proper renamings of schemas ...
quasi-determinate schema ... 94
range variables ... 35

rénaming ... 51

renaming function of string ...
renaming function of schema ...
repetition~free string ... 65
repetition-free schema ... 103
restricted schema ,,, 133
route ., 79

schema |, ., 75

schema states ., 75

schema state transition function

scope ... 48

54
84

54

84

34

35

75

27

segment ,,. 49

segment of a route ,,, 79
segment map ,.,. 54

set of variables of schema _,, 111
similarity of strings .. 45
similarity of schemas ... 93
simple test ... 65

stores in _,,. 35

string ... 35

terminator ,,. 35

terminator string ,.,. 35

term ... 40

totally-defined schema ... 133

tree schema of language .,,. 78

tree schema of schema .. 79
tree schema ,,. 98
values ... 36

values fetched, stored _ ., 37
value of variable _ , 37
Notation

a) Latin notation

A «a 8 o 35
Advl ... 136
Adv 145

Amap .., 81
Ar ... 83

Area ... 80

c ..
H

c

Char

Comp

Crit
D

D

Mem
Min

Pref

Rut

. 37

41
... 59
... 91
... 145

. 34

.. 34

.. 35

.. 118
111
85

.. 84
84

59

.. 37

75‘

.. 35

34
ee. 111
111
91

75

75

34

34

29

b)

c)

S, ... 124

c

Scr ... 128
Seg ... 49

Var ... 111
Greek notation
r ... 36

Y ... 39

§ ... 75

U ... 37

v ... 118

o ... 137

2 ... 39

oft ... a1

Special characters

= (as applied to strings)

= (as applied to schemas)

44

93

30

~ (as applied to strings) ... 45

~ (as applied to schemas) ... 93

Vv ... 54

v ... 84

<+ (as applied to strings) ... 58
<+ (as applied to schemas) ... 91
+«+ (as applied to languages) ... 85
~ (as applied to strings) ... 58
~ (as applied to schemas) ... 93
= 79

/a/ ... 58

/9(q)/ ... 136

> ... 118

0 ... 134

2, > (as applied to schemas) ... 134

§2.3 Numbering system.

We refer to definitions, lemmas, properties and
theorems as follows. Every reference is preceded by the
symbol #. If the reference contains three numbers, these
represent in order the chapter, section, number within the
section. If the reference contains two numbers, these are
the section number and the number within the section, while
it is understood that the chapter is the current chapter.
If the reference contains only one number, this is a number

within the current section.

For figures we use a similar system, except for the

2:3 32

fact that figures are numbered consecutively within a chapter.
For example, Definition 3.2.1 will be referred to

as #3.2.1 outside Chapter 3, as #2.1 within Chapter 3, as #1

within Section 3.2.

CHAPTER 3

RENAMINGS IN TERMINATOR STRINGS

Introduction

Even though our main concerns are properties of
schemas, a number of results on schemas can be conveniently
approached by first considering the behaviour of computations
under some interpretation, and then extending the reasoning
to schemas. This chapter is dedicated to such results.

The first section introduces the basic concepts of
terminators, strings, interpretations, computations, and
histories. The second section introduces the concepts of
equivalence and similarity. Section 3 introduces segments,
the basic units in which renamings are performed in terminator
strings. Section 4 defines proper renamings and introduces
some of their "syntactic" properties, i.e. properties that can
be detected without any consideration of interpretations. The
most important of these properties is the fact that proper
renamings preserve the segment structure of the string.

Sections 5 and 6 are the core of the chapter. In
section 5 we show that, by properly renaming a computation, we
obtain another computation that has the property of
computing step by step the same values as the original computa-
tion. 1In section 6 we derive a partial converse of this
result, by showing that if two repetition-free computations
compute step by step the same values then one is a proper

renaming of the other. In other words, if two repetition-free

3.1 34

computations are such that one is an improper renaming of the other,
then the two computations do not compute step by step the same
values. Thus, in some sense, proper renamings are the only

class of renamings in which we are interested.

§3.1 Terminator strings, interpretations, histories.

The idea of an instruction sequence, as used in the
introduction, can be approached by thinking of a recording of
the sequence of operations executed during a run of a progran.
Each element in the sequence tells which operation has been
executed, and the outcome of its execution. We call these

elements "terminators".

1. Definition. A function symbol is a label f or fi 5,k
r.J

together with three integers:

D(f) = i, a nonnegative integer, is the number of arguments

of £,
R(f) = j, a nonnegative integer, is the number of results of £,
K(f) = k, a positive integer, is the number of outcomes of f,
where the following holds: R(f) = 0 implies K(f) > 1 ("do

nothing" operations not allowed).

2. Definition. An operation is a triple
a = (f, (dl"'°’di)’ (rl,...,rj)) where: F(a) = fi,j,k is a
function symbol; D(a) = (dl,...,di) is an ordered set of

i distinct elements of «, the domain variables of a;

R(a) = (rl,...,rj) is an ordered set of j distinct elements

of w, the range variables of a.

With the operation a are associated:

an integer K(a) = k, the number of outcomes
of a,
_ 0 k-1
a set I(a) = {a ,...,a } of symbols called

terminators of a.

An operation a will be written

(f(dl,...,di) - (rl,...,rj)). We say that a fetches from

(a ’di) and stores in (rl,...,r.).

]
The condition that for all a any two elements of

AR

D(a) must be distinct is rather inessential, and is only
introduced because it allows some simplifications. in the
proofs.

In the following we assume that F is a finite set
of function symbols and A(F) (simply written A, where F
is understood) is the set of all operations whose function
symbols are in F. Let also ZI(A(F)) (or simply 1) be
{ai: ai ¢ L(a) for some a ¢ A}. Any finite or infinite string

over I 1is called a terminator string, or simply a string.

In this chapter, terminator strings will be con-
sidered in relation to a special kind of automaton, called
"interpretation". TFor most authors, an interpretation simply
fixes the set of possible values of the memory variables, and
associates functions on these values with function symbols.
We have found it convenient to define an interpretation as an

infinite automaton, whose states are all possible memory con-

3.1 36

tents, and which operates as an acceptor of terminator strings.
This automaton also incorporates an interpretation in the
previously mentioned sense, that we call "assignment".

An interpretation starts with a certain designated
memory contents, and for each terminator
(f(dl,...,di) > (rl,...,rj))k in a string it performs the
following: it fetches from memory the values contained in
dl,...,di; it computes the outcome according to an assigned
function Tf and, if this computed outcome is not k, it
rejects the string (this will be expressed by saying that the
next memory state is not defined). If instead the computed
outcome is k, an assigned function Wf is computed on the
values fetched, and the resulting values are stored in memory
locations rl,...,rj , thus causing a change in the memory
state.

This is now made more precise.

3. Definition. For f ¢ F, an assignment for a function

symbol f in a set of values U consists of two total functions:

v . P B, GR(E)
f
S0 ()

T.:

£ {0,..., K(£)~-1}

Given a set of values U and an assignment in U for each

f ¢ F, an interpretation of F 1is a triple I = (Uw,co,u)
where:
Uw, the set of all infinite sequences of elements of U

indexed by w, is the set of memory states;

3.1 37

c. ¢ 0¥ is the initial memory state;

0
p is a partial function wu: U

Yox g o> Uw, the memory

state transition function.

Let F(a) = f. Then ru(c,ak)\ iff Ff(c[D(a)]) = k
and in this case it is defined to be c¢' as follows:

for all m ¢ w

clm]l if m ¢ R(a) (a does not store in m)

c'[ml
Wf(c[D(a)])[s] if m = R(a)ls] (a stores
in m).
We extend y to a partial function u: ¥ x gx > ¥
in the obvious way, i.e.
p(c,r) = c
uiu(c,x),a%) if this is defined
and, for x ¢ I¥, u(c,xak) =
undefined otherwise
For x ¢ %, let C, = u(co,x); cx[m] is the value

(or content) of variable m after x. Note that Cy is not

defined for x ¢ Zw. When we talk of the (ordered set) of

values fetched by x[i], we take this to mean c¢ X[D(x[i])],
i-1
while the (ordered set of) values stored by x[i] means

c x[R(x[i])] (thus even if x[i]l = y[j] it does not neces-

i
sarily follow that the values fetched (or stored) by x[i]

and vyl[i1] are the same).

The language LI of the interpretation I 1is the

~

set {x ¢ IL*: (cx\}. X ¢ £ 1is an I-computation if for all

3.1 38

N

y £ x, vy ¢L x ¢ LI 1s a computation if it is an I-computa--

T°

tion for some T.

Wherever we use a symbol such as U, Cor My etc.,
it is understood that we refer to the set of values, initial
state, next state function, etc., of the interpretation under
consideration at that point. Wherever more than one interpre-
tation is being considered, we shall use subscripts and super-
scripts to indicate the interpretation to which we are referring:
for example, U? will be the set of states of the interpreta-
tion I, ci = uI(cé,x), and so on. Other similar conventions
will be introduced tacitly later.

The reader will have noticed that, while our model
can be considered a variety of Karp and Miller's model [K&M],
the introduction of function variables in the definition of
operations is a step towards models of the kind studied by
Paterson [Pat]. This variation of Karp and Miller's model
has been introduced to provide a way of interpreting consis-
tently an operation and its renaming with the same function.
In Karp and Miller's model, any two distinct operations can
be interpreted with distinct functions. In our model, we are
able to express the constraint that two operations that are
distinct as concerns domain and range variables are required
to compute the same function under any interpretation.

The next concept is the "history" of a computation.
Following [K&M]1, in our model we take the results of a com-

putation to be all the values stored by the computation into

memory at each step (rather than just the final results as in

3.1 39

[Pat]l). The set of values stored by a computation is called
the "history" of the computation.

In the following definition, for a given interpreta-
tion, take Yo to be a function Yom! n* > U u {A} as follows:
Ym(” = A

i f 1
A if m ¢ R(a) and Cral

Jy = [m] if m e R(a) and fc__j}

Ym (xa Xa

Cxal
undefined otherwise
In other words, ym(x) gives the value stored in
m by the last terminator of string x. Note that ym(x) is
not defined for x ¢ I'. However for x ¢ L¥, rym(x)\ iff
(cx[m]\.

We now define the "history" of a variable in a compu-
tation to be a vector where all the successive values stored
in the variable are recorded, while the "history" of a compu-
tation .is a two-dimensional array, whose columns are the
histories of the variables.

For X e g, take ﬁﬁ(x) = (cyml, Ym(lx),
ym(zx),...). Qﬁ(x) is defined iff each one of its elements
is defined. If defined, Qﬁ(x) is of the same length as x
if x is finite, it is infinite otherwise.

~

4, Definition. For an interpretation I, m ¢ w, X € L, we

define:

Qm(x), the history of m in computation x as the
sequence obtained by eliminating from ﬁa(x)

all the X elements. Qm(x) is defined iff

ﬁﬁ(x) is defined.

2(x), the history of x as the infinite sequence

(Qo(x),ﬂl(x),ﬂz(x), ...) that is defined iff

each one of its elements is defined.

Observe that Q(x) is defined iff for each vy =< x,
cy is defined. Thus x is an I-computation iff Q(x) 1is
defined for I.

We represent Q(x) as a two-dimensional array,
whose columns are the Qm(x). By an element of Q(x) we
mean any element in the array, and the element Qm(x)[n] is
denoted Q(x)[n,ml].

Among the interpretations, a special role is played
by that class of interpretations that have been called "one-
to-one" in [K&M], "free" in [Pat], "Herbrand interpretations"
in [A,M&P]; we shall call them "h-interpretations".
h-interpretations are constructed in such a way that each value
stored tells how the value itself has been computed, i.e.
values are formulas that specify the sequence of functions

that has been computed.

5. Definition. An h-interpretation for a set F of functions

is an interpretation H = (Uw,co,u) where:

U is a set of strings of symbols called terms defined

as follows:
i) each 'm' for m ¢ w, is a term;

ii) if £ ¢ F and tlf“"tD(f) are terms, then

‘fn(tl,...,tv(f))' is also a term, for
ne {1,...,R(£)}.

for all f ¢ F:

- v gh '
Wf(tl,...,tp(f))[n] = 'f (tl""’tD(f)) .

Ff is arbitrary.

Cy is the infinite sequence ('0','1','2',...).

Note that quotes have been used to stress the fact
that terms are literally strings of symbols.
Note also that two- h~interpretations can only differ

in the choice of Ff. From this observation, we get the

following: for all x ¢ £* and h-interpretations H,H', reh
(HYY : H _ _H . .
and Cy implies Cy = Cy - We then can uniquely define:
for x ¢ L%, ci = ci for an h-interpretation such that
reth,
X
for x ¢ I, QH(X) = QH(x) for an h-interpretation such

that 2% (x)).
The importance of these definitions is due to the

following:

6. Proposition. For all x,y € L and all interpretations

I, the following hold:
A) There exists an h-interpretation H, depending only
on I, such that x is an H-computation iff x is an
I-computation, and cg[m] = c?[n] implies

I _ T
cx[m] = cy[n].

I

B) 1f fc
X

then (ci\ and if rQI(x)\ then fQH(x)\.

3.1 42

Iy r Iy H _ H . I I
C) Cy c and cx[m] = cy[n] imply cx[m] = cy[n].
D) 2 (x)In,m1Y, f2l(y)r§,i1" anda o x)tn,m1 = of(y)rs,13

imply QY (x)[n,ml = @Y(y)C3,i].

Proof. The proof of A) is well-known (see [Patl, [K&M1),

and the reader may refer to #7 for an example showing how

for any interpretation I it is possible to construct an

h-interpretation that "simulates" 1I. B), C), and D) follow.
7. Example. Consider a set of functions F = {f,qg,h}, where:
D(f) = 2 R(f) =0 K(£) = 2
D(g) = 2 R(g) =1 K(g) =1
D(h) =1 R(h) =1 K(h) =1
Let

x = (£(1,2)°(g(1,2)+1)" (1 (0)-0)®(£(1,2)) * (g(2,2)»1) (h(0)>0) O (£ (152
Let I be an interpretation as follows:
U 1is the set of the integers
is defined as follows:
co[l] = 6, c0[2] = 3, co[i] =0 for i =21,2
Wf is the function with empty result;

1l ifm<n

Ff(m,n)
0 otherwise

Wg(m,n) = m~-n, and Fg is constantly O,

Wh(m) = m+l, and Fh is constantly 0.

Then Q(x) can be represented as follows:

variables 0 1 2 l 3| 4 l

successive 1 3
values S

We see that Q(x) is defined or, equivalently, that x 1is
accepted by the interpretation I. x would not have been
accepted if its first terminator had been (f(1,2))1, as
can be seen from the definition of Ff. We now give an
h-interpretation H for F. The only thing that we are
free to choose is Ff, and we choose it as follows:
1L if v(ty) < vit,)
Feltyrty) =
0 otherwise
where, if t,tl,t2 are terms, v(t) is defined as follows:
v('l') =6, v('2') =3, v('i') =0 for i = 1,2
V(g (et ") = vt = v(t,)
vO'hle)) = vit) + 1

Then Q(x) is:

0 1 2
e — e
nl(0) gl (1,2)
nt b)) | gtgt(,2),2)

The reader will note that we have chosen H so that LH = L

1°

3.2 44

Before closing, we want to attract the attention of
the reader to the fact that, if a computation x has a prefix
y that is in the language of an interpretation I, and a
prefix =z > y that is not in that language, then of course x
is not an I-computation and the history of x is undefined,

even though the history of y is defined.

§3.2 FEquivalence and similarity.

We have already noted that in our model we take the
results of a computation to be what we have called the history
of the computation. Equivalence is defined accordingly: two
computations are equivalent if they have the same histories.

~

1. Definition. For an interpretation I, we say that x,y ¢ I
I
are I-equivalent, written x =z vy, if Q(x) = Q(y)., x,y are

equivalent, written x =y, if they are I-equivalent for all

interpretations 1I.

This very strict concept of equivalence, requiring
that the two computations compute the same intermediate values
and store them in the same memory variables in the same order,
can be generalized in a number of ways. In our work, we shall
concentrate on a generalization obtained by relaxing the con-
straint that the two computations must store the same values
in the same variables. Two computations are said to be similar
if they compute the same values, independently of where they

store them. This amounts to saying that the history array of

3.2 45

one computation is a permutation of the history array of the

other. Clearly, equivalence implies similarity.

2. Definition. For an interpretation I, we say that x and
~ I
y in ¥ are I-similar, written x ~ y, if neither of them is

an I-computation or they are both I-computations and there

exists a bijection gQ: w X w > w X w (called history permu-

tation) such that
2(x)[m,nl = Q(y) g™ (m,n) 1.
x and y 1in I are similar (written x ~ y) if they are

I-similar for all I,

3. Example. Consider the string x and the interpretation
I introduced in #1.7. The following string y 1is I-similar
to x:
- 0 0 0
y = (h(0)-0)" " (h(0)~»0) " (h(0)-0)".

In fact, Q(y) is as follows:

We now show that for similar computations a history
permutation gQ can be chosen independently of the inter-

pretation.

3.2 46

4., Proposition. If two computations x,y are similar then

there exists a bijection gQ: w X w > w X w such that for
all interpretations I,

(*) Q(x)[m,nl = 2(y)Lg"(m,n) 1,
whenever both histories are defined.

Proof. If x and y are I-computations for some I, then

by #1.6.A) there exists an h-interpretation H such that

X,y are H-computations. By definition QH(x) = QH(x) and
o(y) = aff(y). Take a bijection off which satisfies (¥)

for H. Consider any interpretation I for which x and vy
are I-computations. Then (el (x)! and (QI(y)‘. By #1.6.D),
the bijection gg satisfies (*) for I énd is therefore

the desired bijection. 1

The following proposition states that in some sense
|
we only need to consider the behaviour of strings under h-inter-

pretations.

5. Proposition. X,y € I are similar iff they are H-similar

for all h-interpretations H.

Proof. Suppose that x and y are H-similar for all h-inter-
pretations H. If neither X nor vy are H-computations for
any h-interpretation H then by #1.6.A) they cannot be I-com-
putations for any interpretation I, hence they are similar.
Otherwise there exists an h-interpretation J such that both

Q2

x and y are J-computations. Therefore a bijection g

exists between QJ(X) = QH(X) and QJ(y) = QH(y). If I is

3.3 47

any interpretation such that (QI(X)\ and (QI(y)\ then by
#1.6.D) x E y. Finally suppose (o7 (x)) but not (aT(y)).
By #1.6.A) there exists an h-interpretation G such that
(QG(x)\ but not (QG(y)\. But this contradicts the fact

that x and y are G-similar.

As a consequence of these results, in order to find
out whether x and y are similar, it is sufficient to
consider the sets of h-interpretations for which x and vy

are computations, and the arrays QH(X), QH(y).

6. Corollary. Two computations x,y are similar iff for all
h-interpretations H, x 1is an H-computation iff y 1is an
H-computation, and a history permutation gQ as in #2 exists

for QH(x) and QH(y).

One verifies that similarity and equivalence are

equivalence relations.

§3.3 Segments

In this section, we shall introduce the concept of
a seqment of a variable in a terminator string. This corres-
ponds to two related concepts:
the concept of a variable being "occupied" at a certain
point in a computation, since the value contained
in it is to be fetched by some successive computa-

tion step;

3.3 48

the concept of two variable names being "bound together"
in a computation, in the sense that if one of them
is changed, the other must be changed in the same

way .

Examples of the latter are a store on a memory variable and a
fetch from the same variable such that between the store and
the fetch no new value is stored in the variable; or two
fetches from the same variable that are not separated by any
store on the variable.

Before introducing an example, we agree that in this
chapter we shall omit the indication of outcomes in terminator
strings when they are not necessary.

Consider the following string:

X = (fl(O) +'l,3)(f2(2,l) > 2)(f3(2,3) > 2)(f4(3,l)'+ 5,6)

0 1 2 3 4

We see that variable 3 is occupied by a value in
the underlined portion of x, and that all occurrences of the
name 3 in the portion are bound together. The fact that
variable 3 is occupied from the end of the first operation
to the beginning of the fourth will be expressed by saying |
that 1I,2,3 are in the same segment of 3 in x, where I
can be thought as referring to the interval between terminator
i and terminator i+l. We call scope the set {f : 1 1is a
nonnegative integer}.

We shall now define these concepts formally. First,

we extend the functions D,R,F to symbols in I in the

following natural way: for at ¢ I, D(a') = D(a) etc. Also,

3.3 49

~

1. Definition. For x ¢ I, a segment M of me¢ w in x 1is

a maximal (finite or infinite) set of consecutive scope
elements: M = {i,if1,i+2,...} such that:
A) m ¢ R(x[j1) for j >1i, J € M and
either
B) i >0, me¢ R(x[i]) and for each h ¢ M, h > i,
there exists k = h, kK ¢ M such that m ¢ D(x[k+1]).
Such a segment is called closed.
or
C) i =0 and for each h ¢ M there exists k > h, k e M
such that m ¢ D(x[k+1]). Such a segqment is called
open.
i is the head of segment M.
Segm(x) is the set of all segments of m in x.
The reader will verify that, for each m < w, i
Segm(x) is either empty, or a set of nonintersecting subsecs
of the scope. Each set M in Segm(x) belonags to one of
the following types:
A) Trivial segments, where some value is stored in the
variable m, and is never subsequently fetched.
These segments consist of a single element of the
scope. As an example, consider the segment (3) of
2 in x above.

B) Segments in which m is assigned a value with the

3.3 50

initial memory assignment and which contain a finite
number of fetches from m up to a final fetch. The
latter is a fetch that either is the last appearance
of m in the string, or is such that the next
appearance of m 1in the string is in a store. These
segments consist of a prefix of the scope. An
example is the segment (0,I) of 2 in x.

C) Segments where m is initialized as in B, but where
there is no last fetch, since the same value is
fetched from m an infinite number of times. These
segments consist of the whole scope of the string.

It is clear that they can only occur in infinite
strings, and thus there is no example of them in x.

D) Segments where m is initialized by a store, and
contain a finite number of fetches from m up to a
final fetch. These segments consist of a finite,
proper subset of the scope. An example is the seg-
ment (I,2,3) of 3 or 1 in x.

E) Segments where m is initialized as in D, but there
is no last fetch, since, as in C, we keep fetching
from m an infinite number of times. These segments

consist of a suffix of the scope.

Segments of the types B and C above, where the
variable is initialized with the initial memory assignment,
contain 0 and are open. Segments of the types A, D and

F. do not contain 0 and are closed.

3.4 51

A complete tabulation of the segments in x above

is:
Segments of 0 : (0) Type B
of 1 : (1,2,3) D
of 2 : (0,1I),(2),(3) B,D,A
of 3 : (1,2,3) D
of 5 : (4) A
of 6 : (%) A

§3.4 Renamings.

Let ai,bj be terminators: ai is a renaming of
bj if i =3j and F(a) = F(b). Let x,y ¢ g : x 1is a
renaming of y if |x| = |yl and for all 1 such that
fx[i1), x[il is a renaming of y[il. 1In general, the his-
tories of y may be totally different from those of x.
However, we shall show that, if the renaming is performed
according to certain rules, y computes step by step the
same results as x.

To understand these rules, consider again the string

x presented in #1.7:

x = (£(1,2))(g(1,2)31) (h(0)~>0) (£(1,2)~0) (g(1,2)~>1) ...

and consider the string y obtained by replacinaga 1 by 3
in the underlined segment of 1:

y = (£(1,2)) (g(1,2)>3) (h(0)~0) (£(3,2)~0) (g(3,2)~1) ...

The strings x,y perform the same sequence of functions on
the same data in the same order, and store the same values in

the same order: they only differ in their use of memory

3.4 52

variables. The same would not have been true if 1 had not
been replaced consistently in all its appearances in the
segment.

Also, consider what would have happened if 1 had
been replaced by, say, 0, giving =z:

z = (£(1,2))(g(1,2)~0) (h(0)~0) (£(0,2)~0) (g(0,2)~0) ...

The third terminator in 2z now fetches the value of 0 com-
puted by the second terminator, rather than fetching the value
of 0 fixed by the initial memory state, as in x. Under an
H-interpretation, that terminator would store 'hl(O)' in x,
'hl(gl(l,2))' in 2z, and thus in no possible sense could we
say that x and 2z compute step by step the same results,

as x and y do.

Similarly, we could not rename a variakle in an open
segment, since the values of variables in open segments are
fixed by the initial memory state, i.e. by the interpretation.

We are now ready to understand the three rules for
those renamings that we shall call "proper":

1) the renaming must be consistent over a seament;

2) the name of a variable m cannot be changed in an
open segment of m;

3) if a segment M of m intersects a segment N of
n, m and n cannot be identified in M,N by the
renaming.

Rule 2) deserves some further consideration.
Assume that a computation y is obtained from a computation

x by a renaming that abides by 1) and 3), but not 2)

3.4 53

y does not, in general, have the property of computing step
by step the same values as x. However, given any interpre-
tation I, one can find an interpretation I' such that vy
under I' computes step by step the same valﬁes as x under
I. Assume for example that y has been obtained from x by
renaming consistently some variable m as n in some open
segment of m in x that does not intersect any segment of
n. I' can be obtained by modifying I so that I' assigns
to n the same initial value as I assigns to m. This
example shows that, to handle such renamings, we would have

to separate the initial memory state from the other elements
of the interpretation, and introduce the concept of permuta-
tion of values in the initial memory state. However, for any
renaming y of a string x that satisfies 1) and 3) there
exists a string y' that can be obtained from x by a proper
renaming, and that can be obtained from y by a simple one-
to~one replacement of names over the whole string. Therefore,
there is no loss of generality if condition 2) is added.

In this section, we shall define proper renamings
and show some of their basic properties. It is especially
important to note that they preserve the segment structure of
the string.

We define a renaming as a global procedure that
operates on the whole string. A renaming is performed according
to a renaming function, that tells which variables get which
names in which segments. This function is defined on the list

of the segments of all the wvariables in the string, the seg-

3.4 54

"

ment map of the string: for x ¢ I, Smap(x), the segment map

of x is the set {(M,m) : M ¢ Segm(x)}.

1. Definition. A renaming function of x is a function

v: Smap(x) - w, satisfying the following conditions. For all
(M,m), (N,n) ¢ Smap(x):
A) v{M,m) = m for every open segment M of m in x;

BY v{(M,m) = v(N,n) whenever M AN z @ and m % n.
Given a renaming function, we use it to perform
renamings as follows: if v(M,m) = n then m 1is replaced by

n everywhere in M, as precisely specified by the following:

2. Definition. (Renaming rule) Let x,y € 5 be such that

y 1is a renaming of x. We say that y 1is the proper renaming

cf x for the renaming function Vv and we write x X vy 1if
the following is true for all i,j:
A) if R(x[i1)[j] =m and i is in a segment M of m
such that v(M,m) = n then R(y[il)[j]l = n.

B) if D(x[i]1)[j] = m and 1i-1 1is in a segment i1 of

m such that v(M,m) = n then D(y[il])[j] = n.

3. Example. We represent x and the scope as follows:
(£(1,2)) (g(1,2)»1) (h(0)~>0) (£(1,2)) (g(1,2)>1) (h(0)~>0) (£(1,2))

0 1 2 3 14 5 6 7
We proceed to compute Smap(x) and we define a renaming func-

tion as follows:

3.4 55

\)((6ITI—2‘)IO) =0 \)((§I‘4—I§)IO) = 3 V((g)lo) = 4

1
(-]
14
]

\)((alf)ll) \)((7'—3_121—) /1) \)((-S_Ig)ll) = 6

v((,1,2,3,4,5,6,),2) = 2
Following #2 we obtain the y such that x X y:
(£(1,2)) (g(1,2)»5) (h(0)~>3) (£(5,2)) (g(5,2)+6) (h(3)~+4) (£(6,2))
Note that in this renaming we have used as many
different names as possible.
A fact that is not shown in this example is that
some segments could well be segments of more than one variable.
The reader will easily verify that for all x € E
there exists a unique vy ¢ g such that x ¥ y. The only
thing that needs to be checked is that #1.2 cannot be violated
by identifying two distinct elements of the domain and/or range
locations of some operation: this is not possible because of
#1.B.
We shall now prove that, if y is obtained by
properly renaming x, then y has the same segment map as
X, up to renaming. For example, fhe segment map of y in
#3 is:
((0,1,2),0) ((3,4,5),3) ((6),4)
((0,1),1) ((2,3,%),5) ((5,6),6)

((0,1,2,3,4,5,6),2)

We introduce the following terminology: let a be
a renaming of b, D(a)lk] = m, D(b)[k] = n for some k:

then n 1is said to be the corresponding element in D(b) of

3.4 56

m in D(a). Similarly for range variables.

4. Proposition. (Proper renamings preserve segment maps) .

Let X,y ¢ g, x ¥ v. Then there exists a bijection
h: Smap(x) - Smap(y) such that for all (M,m) e Smap(x),
h(M,m) = (M,n) iff v(M,m) = n.
Proof. We first prove:
(*y if M e Segm(x), and v{(M,m) = n, then M ¢ Segn(y).

Suppose that M is closed, and let i be its head.
By the renaming rule, n ¢ R(y[i]) and also for each J ¢ M
such that m ¢ D(x[j+1]1), n e D(y[j+1]1). Suppose that for
some k ¢ M, k # i, n ¢ R(y[k]). Then if the corresponding
element in R(x[k]) is e, k 1is in some segment E of e
in x. Hence En M=z ¢, and v(E,e) = n = v(M,m), contra-
dicting #1.B). Now M satisfies #3.1.A) and B) with
respect to n and hence is contained in some closed segment
N of n in y whose head is 1.

Suppose that M is open. By the renaming rule for
each j ¢ M such that m ¢ D(x[(j+1l]1) we have n « D(y[j+11).
By the argument used previously n =« R(y[k]) is false for all
k € M. Hence M satisfies #3,1.A) and C) with respect to
n and is contained in some open segment N of n in vy.

Suppose in either case (M open or closed), that
Mg N: this implies that M is finite. Let M = {i,...,t}.
If 3 ¢ N - M then by #3.1.B) and C) there exists k 2 j
such that k ¢ N, n ¢ D(y[k+l]). Let the corresponding element

in D(xl[k+11) be e. Then k is in some seqment FE of e

3.4 57

in x and one of the following must be true:

i) There exists s such that t <s < k, e ¢ R(x[sl])
and s and k are in the same segment of e. Then
by #2.A) n ¢ R(y[s]) contradicting the fact that
M ; N.

ii) t e M n E in x. However, this is impossible by
#1.B) since we have: v(M,m) = v(E,e) = n.
This proves (¥*).
To prove the Proposition, for (M,m) ¢ Smap (x)
define h{M,m) = (M,n) iff v(M,m) = n. By (%) (M,n) ¢ Smap(y).
To show that h is a bijection we must only verify that if
m z k then h(M,m) = h(M,k) (since obviously h(M,m) = h(J,j)
if M # J). Suppose indeed h(M,m) = h(M,k). Since M n M = ¢

we must have v(M,m) # v{(M,k), a contradiction.

At this point, it is not difficult to prove two more

interesting properties of proper renamings.

5. Corollary.

A) (Proper renamings are closed under composition) For
X,Y,2 € g if there exist renaming functions v, V'
such that x ¥ Yy X'z then there exists a renaming
function v" such that xv: Z.

B) (Proper renamings have inverses) For x,y < g,

there exists v such that x ¥ y 1iff there exists

v~ such that vy ¥ x.

Proof.
A) If v(M,m) = n, v'(M,n) = r then take
v"(M,m) = r. By #4 one easily verifies that v"
is a renaming function such that x X"z.
B) For all (M,m) ¢ Smap(x), if v(M,m) = n, take

v‘(M,n) = m.

The latter result justifies the introduction of the
following notation: x <«» y 1iff there exists a renaming func-
tion v such that x ¥ y; x </ y otherwise. Note that the

relation <+ 1is an equivalence relation.

§3.5 Proper renamings and values computed.

In this section we shall prove that two computations
of which is a proper renaming of the other have the property

of computing step by step the same values.

1. Definition. We say that X,y ¢ I compute step by step

the same values for the interpretation I, written x ; Y

if for all i ¢ w, 1% I DL We say that x,y compute step

by step the same values, written x =~ vy, if they compute step

by step the same values for all interpretations I.

It is easily seen that x -~y implies x ~ y.

We now need some further notation. For an operation

one

a, let /a/ = (F(a),D(a)). If a = (f(dl,...,di) - (rl,...,rj)),

we write /a/ = f(dl,...,di).

3.5 59

2. Definition. Let x ¢ %, x[il = ak. The characteristic

of the i-th terminator in x, in symbols Char(x,i), is the

triple (F(a), cH X[D(a)], k). If F(a) = f and
i-1
c X[D(a)] = (tl""’tn)’ then we write

i-1

. k
Char(x,1) = f(tl,...,tn) .
We then have:

3. Proposition. Let x,y € I. If there exists a bijection

h*: w > w such that for all i e w, Char(x,i) = Char(y,h>(i))
then x ~ y.
Proof. We shall use the characterization of similarity in
terms of h-interpretations introduced in #2.6.

We first prove that if hZ exists then

(*) for all h-interpretations H, x is an H-computa-

tion iff y is an H-computation.
Assume that x 1is not an H-computation for H. This means
that there exists i such that Char(x,i) is f(tl,...,tn)k
but computation of the function Ff on (tl,...,tn) does
not give outcome k. However, by the existence of hz, there
must also exist y[jl such that Char(y,j) = f(tl,...,tn)k.
Hence, vy 1is not an H-computation. The same argument holds
in the direction from y to x, so (*) is true.

Next, we show the existence of the bijection qQ.
If hz(i) = J then x[i] and y[jl fetch the same values

under an h-interpretation, and then by #1.5 also store the

3.5 60

same values. Since hZ is a bijection, gQ clearly exists.
The following is then immediate:

4., Corollary. Let x,vy ¢ I. If for all i ¢ w,

Char(x,i) = Char(y,i) then x ~y (and x ~ y).

Hence, to prove that properly renamed strings compute
step by step the same values, we only need to prove that
corresponding terminators in the two strings have the same
characteristics. To do this, we use the following result.

If x 1is a proper renaming of vy, then the values that are
in the occupied variables of memory at a certain point of the
computation of x, are also in memory at the corresponding
point of the computation of y. Furthermore, corresponding

operations in x and y fetch the same ordered sets of

values.
5. Theorem. (Proper renamings preserve memory values and
values fetched). Let x,y ¢ I be such that x ¥ y. Then

for all j ¢ w the following hold:
A) For all k ¢ w such that Jj ¢ K, for some K ¢ Segy (x)

such that v(X,k) = k', ¢ <Lkl = ¢ [k'].
j b

B) c X[D(x[j+l])] = C y[D(y[j+l])].
] 3
Proof. By induction on j. We prove simultaneously A) and

B) .

Induction basis. If j = 0, co[k] = co[k‘] since

3.5 61

k = k' (the variable k cannot be renamed in an open segment
of k), and the interpretation is the same in both cases.

This proves A). Also, D(x[1]) = D(y[l]) and B) follows

by the same reasoning.

Induction hypothesis. Assume that 2) and B) hold for j.

Induction step. We first show that

(*) (C 3 iff fo 1
j+1% 3+1Y |
By the induction hypothesis, fc x\ iff fc y\' Thus we must
J J
show that

(**) fulc ., x03+1D)) iff fu(c - y[j+11) .
J]
Since x[j+11] X y[j+1], both terminators have the same func-

tion symbol f and the same outcome. Since Ff in any
interpretation depends only on the ordered sets of values
fetched and these are identical by induction hypothesis B),

the outcomes computed by Fe for x[j+1] and ylj+1] are

identical. Thus (**) follows by the definition of u , and
so (*) 1is proved.
Returning to the proof of the theorem, if c %
j+1
and c¢ are undefined the theorem holds. Otherwise they

j+1¥
are both defined. Consider any k ¢ w such that 3Jj+1 ¢ XK,

where K ¢ Segk(x). If x[j+1] does not store in k, then

c [kl =c k1] and 3 ¢ K. By the induction hypothesis,
J j+l

c k] c [k']. If ¢ (k'] = ¢ _[k'] then vy[j+l1]
. X . . .

J 3¥ j+1¥ 3Y

stores in k' showing that 3j+1 1is the head of a segment

I3

of k' in y. This contradicts #4.4, and y[j+1] does not

3.5 62

store in k'. If x[j+11 stores in k then Jj+1 is the
head of K and y[j+l] stores in k'. By induction hypothesis
B) x[j+1] and y[j+1l] fetch the same values. By definition
of Wf they both store the same values. This proves the
induction step of A).

Concerning the induction step of B), consider that
for any k e D(x[j+2]1), 3J+I ¢ K for some K ¢ Segy (x). If
k' is the corresponding element in D(y[j+2]) then

v(K,k) = k'. Hence, the result follows by the induction step

of A).

6. Example. Let us see what happens with the strings x,y

presented in #4.3:

X (£(1,2)) (g(1,2)->1) (h(0)~0) (£(1,2)) (g(1,2)~»1) (h(0)~0) (£(1,2))

(£(1,2)) (g(1,2)~5) (h(0)=+3) (£(5,2)) (g(5,2)>6) (h(3)~4) (£(6,2))

H

y

and consider the memory contents after the third terminator

under the interpretation presented in the first part of #1.7:

c3X = I 1 3 3 0 0 0 .
variables 0 5
= 0 6 3 0
c3y ' 1 3 .

Now, 3 is:
in a segment of 2 where 2 has been identically renamed,

and in fact c3x[2] = c3y[2]

3.5 63

in a segment of 0 where 0 has been renamed as 3,

and in fact c3x[0] = c3y[3]

in a segment of 1 where 1 has been renamed as 5,

and in fact 1] = ¢ 57.
c3x[] 3y[1

vValues of those variables such that 3 is not in any of their

segments may or may not be in ¢ v The whereabouts of those
3

values are not of interest to us, because they are not needed

at this point.

The following is a consequence of #5:

7. Proposition. (Proper renamings preserve characteristics)
Let x <> y. Then for all j € w, Char(x,3j) = Char(y,j).
Proof. Assume that Char(x,j) is not defined. Then for no

h-interpretation fc X[D(x[j])]\. Assume that, on the con-
j-1

trary, fChar(y,j)'. Then fc y[D(y[j])]‘ for some h-inter-
j-1

pretation, and by #5.B for the same h-interpretation

e X[D(x[j])]\, a contradiction. Therefore, Char(y,j) is
J-1
also not defined. By the same reasoning, if (Char(x,j)’

then (Char(y,j)’.
Assume that they are both defined, and let
. k . h .
Char (x,3j) = f(tl,...,tn) , Char(y,j) = g(ti,...,té) . Since
x[j] e y[lj]l] then £f =g, k = h, n = m. Now, by #5.B)

c [D(x[31)] = ¢ [D(y[j]1)] for any h-~interoretation
317 3-17

3.5 64

{ 3 { 3 _ 1 '
such that cj—lx and cj—ly , hence (tl,...,tn) = (tl,...,tm).

The main result of this section follows then without

difficulty:
8. Theorem. (Properly renamed strinas compute step by step
the same values). x <>y implies x =~y (and x ~ y).

Proof. #7 and #4.

9. FExample. Consider x and y presented in #4.3 and #6,
under the interpretation defined in the first part of #1.7.
We show the ordered sets of values fetched and stored by both

x and y at the varicus steps:

x = (£(1,2)) (g(1,2)~1) (h(0)>0) (£(1,2)) (g(1,2)~>1) (h(0)~0) (£(1,2)
y = (£(1,2))(g(1,2)+5) (h(0)~3) (£(5,2)) (g(5,2)+6) (h(3)~+4) (£(6,2)
fetch:

(6,3) (6,3) (0) (3,3) (3,3) (1) (0,3)
store:

g. (3) (1) g (0) (2) 4

It is also easily seen that x and y are similar,

as are all of their prefixes of equal lengths.

§3.6 The converse results.

We are now interested in finding out whether #5.8

3.6 \ 65

has a converse, that is, how far we can go towards a charac-
terization of proper renamings in terms of results computed.
We shall find that such a characterization can be obtained

~

for repetition-free strings, where x ¢ I 1is repetition-free

if x 1is a computation and Char(x,i) # Char(x,j) whenever
they are both defined and i # j. The reader will note that
this definition of repetition-freedom is equivalent to the
definitions of [K&M] [Kell. 1In other words, a repetition-
free computation never computes the same values or the same
test twice under an h-interpretation. Note also that x 1is
repetition-free iff all y such that y < X are repetition-
free, and that, by #5.8, x «» z for a repetition-free x
implies that =z 1is also repetitién—free.

In the following results, an important role will be
played by the fact that every repetition-free computation is
liberal, where a computation x is said to be liberal if no
two elements of QH(x) are equal.

For repetition-free computations it is possible to
obtain a converse of #5.3. We shall use the following termin-
ology: an operation a is lossless if R(a) = @; is a simple

test otherwise.

1. Proposition. If two repetition-free computations x,y

are similar then there exists a bijection hZ: w » w such
that Char(x,i) = Char(y,hz(i)) for all i e w.
Proof. Assume that Char(x,i) = f(tl,...,tn)k.

Let x[i] be a lossless operation and let

3.6 66

t = 'fr(tl,...,tn)' be any value stored by x[i] under an
h~interpretation. By the liberality of x, there is no other

t in QH(X). By the liberality of x and similarity of

X, Y, QH(y) must also contain a single occurrence of t. Let this
occurrence be stored by y[j]l: then we define hz(i) = j. The
characteristic of y[j]l] must also be f(tl,...,tn)S for

some s, and one verifies that Jj 1is unique and independent

of the choice of r. Assume now that k 2 s, and consider

any h-interpretation H such that x 1is an H-computation.

Since Ff(t .,tn) =k #s in H,y is not an H—computation,

17"
contradicting the similarity of x,y. Thus k = s and
Char (x,i) = Char(y,3j).

Let x[i]l be a simple test. We show that there
must exist a unique J such that Char(x,i) = Char(y,j).
Assume in fact that such j does not exist, and consider any
h-interpretation H such x,y are both H-computations (such
an interpretation must exist by the similarity of x,y).

Since by #1l.1 the number of outcomes of f 1is greater than

1, we can define an h-interpretation H' that is as H,
except for the fact that Ff(tl,...,tn) z k. H' can be chosen
in such a way that y 1is still an H'-computation, but cer-
tainly x 1is not an H'-~computation. This contradicts the
similarity of x,y. By the repetition-freedom of y we know
that j 1is unique.

We have then proved that for each i such that

fChar (x,1)! there exists a unique Jj such that

Char (x,i) = Char(y,j). The same argument holds in the direction

3.6 67

from 'y to x, and thus the desired bijection exists.

For repetition-free computations there exists a
simple characterization of the concept of computing step by

step the same values:

2. Proposition. If two repetition-free computations x,y

are such that x =y then for all i ¢ w Char(x,i) = Char(y,i).

Proof. Assume that x,y are repetition-free and such that

for all i ¢ w, i¥ ~ Y. We show that for all i ¢ w
Char(x,i) = Char(y,i) by induction on i. If i =0
Char(x,0) and Char(y,0) are both undefined. Let 101X T i41Y
but Char(x,i+l) # Char(y,i+l). By induction hypothesis, for
all j < i, Char(x,j) = Char(y,j). Also, by definition of

repetition-freedom for all j,k < i+l, J = k implies

Char (x,3j) = Char(x,k) and Char(y,j) = Char(y,k). Therefore,

the bijection n’ required by #1 does not exist for i41%

and _;v, and 141% # i41Yr @ contradiction.

3. Lemma. Let x,y € L, x be a renaming of y. X <+ y 1iff
V.

for all i ¢ w there exists vy such that x +ly' for some

] - ¥
vy such that 1Y = 4yt
Proof. If x 3 ¥y, just take v, = v for all 1i.

1

Conversely, assume that there exist the Vs defined

above. We agree that if a segment is called M in x, then

the corresponding segment or portion of segment in x' < x

3.6 68

(if there exists one) is also called M. For all i, let

Ri(X) be the subset of Smap(x) consisting of all the

couples (M,m) such that for some j < i, 3 € M, and let vi

be the restriction of vy to Ri(x) (note that vi is not
necessarily a renaming function of ;X since it may be defined
'

for some couples that are not in Smap(ix)). For each 1, vi
must be a restriction of Vi+l’ whenever the latter is defined
(in fact, iy' and i+ly' are both prefixes of y,

while no renaming is possible in open segments) .

Define now a function v: Smap(x) - w as follows: for each
(M,m) ¢ Smap(x), let v(M,m) = vé(M,m) where vé is any of
the above defined restrictions such that r\)j‘!(M,m)\.

We claim that Vv 1is a renaming function. Assume in
fact that it is not so. Then either v does not comply with
#4.1.37) or v does not comply with #4.1.B). As concerns 2),
assume that for some open segment M of m in x, Vv(M,m) # m.
0 ¢e M and vO(M,m) = vé(M,m) = v(M,m) by definition. Thus
vO(M,m) # m, a contradiction with the hypothesis that Vi is
a renaming function. Assume instead that for two segments M,N

such that M n N 2z § we have: v(M) = v(N). Take I ¢ M n N.

Again, by definition of vi,v’ we have:
vi(M,m) = vi(M,m) = v(M,m) and: vi(N,n) = vi(N,n) = v(N,n).
Thus, vi(M,m) = Vi(N,n), a contradiction with the hypothesis

that Vs is a renaming function.

As a consequence, V is a renaming function and

clearly x X Y.

The reader should be aware of the fact that the

following result holds for liberal strings, even though for

3.6 69

reasons of economy of exposition we only state it for repeti-

tion-free x,y.

4. Theorem. (Repetition-free computations that have the same
characteristics are one a proper renaming of the other). Let
X,y be repetition-free computations such that for all g ¢ w,
Char(x,s) = Char(y,s). Then x <> y.
Proof. We show that if x <4 y then there exists s such
that Char(x,s) =# Char(y,s).

Assume first that y 1is not a renaming of x. Then
either |x| # |yl|, or there exists s such that
F(x[s]) # F(y[sl) or K(x[sl) = K(y[sl). In the first case,
there exists s such that (Char(x,s)) but not (Char(y,s)’
or vice-versa, as desired. In the second
case, Char(x,s) = Char(y,s) by definition.

Assume instead that y 1is a renaming of x, but
not a proper one. We prove that there exists s such that

off (D(x[s1)] = oft

s-1 s-1
Char(x,s) # Char(y,s) by definition.

[D(y[s1)]l. This implies

By the contrapositive of #3, if x <A y then for
V.

some Jj there does not exist Vj and y' such that x >y

and jy = jy'. Consider the smallest Jj such that vj as

above does not exist, vj~l exists. Let 2z be such that

Since jz # jy, z[31 = y[j].

X «» z and j—lz j—ly‘

Under the assumption that y 1is a renaming of x, either it

is true that D(z[j]1) # D(y[jl), or this is false, and it is

3.6 70

true that R(z[jl1) # R(y[jl). These are our cases 1) and

2).

1) Assume that D(z[j]) = D(y[jl). By #5.5.B) we have
M p(zr3n1 = o D3N, i.e. 2031 and x[31 fetch
J-1 j-1
the same ordered sets of values. Now, ._12 = j—ly implies

]
cH = cH , i.e. after j__1z and j—ly the memory states

j-1% 3-1¥

are identical. Also, j—lz and j—ly are both repetition-

free and liberal, thus any two values in memory are distinct.
Hence, D(z[j]) = D(y[jl) implies cH [(D(y[3j1)]1 = cH
j-1¥ j-1

i.e. the ordered sets of values fetched by y and =z at the

LLD(zL31) 1,

j-th step are different. Thus Jj is the s that we wanted.
2) Assume instead that 1) is false, but
R(z[j]) # R(y[jl). Then there must exist n such that all
the following are true:
i) n ¢ R(y[3])
ii) the corresponding element in R(z[jl) is not nj;
assume it is m.
iii) 3J-1, jeN, for some N « seg_ (z).
In fact, i) and ii) must be trivially true. 1iii) must also be
true, otherwise there would be y' such that x «» y' and
jy = jy': such a y' could be obtained from X by the same
renaming function by which 2z is obtained from x, modified
in such a way that R(y'[j1) = R(y[3]).
Then by #3.1 there exists r > j such that

n € D(z[r+l]) and for no k such that r =2 k > j, n e R(z[k]).

Since x 1is a computation, by #5.8 =z is a computation, and

3.6 71

by #5.5.B) cHX[D(x[r+l])] and cHz[D(z[r+l])] are both

r r

defined and are the same, i.e. x[r+ll and z[r+l] fetch

the same ordered sets of values. If ylr+l] £fetches a
different ordered set of values, then r 1is the desired s.
Thus we assume that y[r+l] fetches the same ordered sets

of values as x[r+l] and z[r+l]l. In particular, let zl[r+l]
fetch value t from n. Since by #3.1 3-1I, § and r all
belong to the same segment of n in 2z, t must have been
stored in n by some z[h], where h '< j; since j-lz = j—ly'
£ must also have been stored in n by y[h]l. However, since
n ¢ R(y[j1), and y[jl stores the same values as x[jl, by

the liberality of x, t ¢ c i.e. t 1is not in memory after

J
y[j1. Therefore, there must be d such that j < d < r and

yl

y[d] stores t. ©Now, 2[d]l cannot store t, since 2z is
liberal by the liberality of x and #5.8. Therefore z[d]
and y[d] store different sets of values and, as a conse-
quence, also fetch different ordered sets of values. Since
by #5.5.B) x[d]l and z[d] fetch the same ordered sets of

values, d 1is the desired s.

Note that if x and y are also lossless, then
for some interpretation x actually stores in memory some
value that is different from the value stored by y at the
same step.

The desired converse of #5.8 follows then immediately:

3.6 72

5. Theorem. (If two repetition-free computations compute
step by step the same values then they are one a proper
renaming of the other). For repetition-free x and vy,

X =~y implies x <+ y.

Proof. #2, #4.

Together with #5.8, the result above providesg the
following characterization: For repetition-free x and vy,
x <>y 1iff x =~y.

To see that this result does not hold in general,
not even for liberal computations, consider the following x
and vy:

x = £M°% £0? £(0)°

y = % £ £y

We have: x =y but x <4 vy.

CHAPTER 4

RENAMINGS IN SCHEMAS

Introduction

In the previous chapter we have established the fact
that proper renamings (and only proper renamings) of terminator
strings have certain desirable properties. In this chapter,
we show that it is possible to extend the concept of proper
renamings to schemas, and to derive corresponding properties
for proper renamings of schemas.

In the first section, Qe introduce schemas as
acceptors of terminator strings. 1In the second section we
extend to schemas the concept of a segment, obtaining the con-
cept of "area" of a variable in a schema. 1In the third section,
we define proper renamings of schemas. This definition is
analogous to the definition of proper renamings in terminator
strings, and the same role that in that definition was played
by the concept of segment of a variable in a computation, is
played here by the concept of area of a variable in a schema.
We then show that if two schemas are one a proper
renaming of the other, the sets of strings accepted by them
are the same up to proper renaming. The fourth section extends
these concepts to sets of computations and shows that two
schemas that are one a proper renaming of the other have the
property of computing step by step the same results.

The second part of the chapter is dedicated to the
proof of a partial converse of the latter result. In the

fifth section we show that if two schemas whose state transition

4.1 74

diagram is a tree accept the same languages up to proper
renaming, then they are one a proper renaming of the other.
Finally, in section five, by imposing further restrictions

on the sets of schemas in consideration, we obtain increas-
ingly stronger converses of the results of section four. The
strongest result proved is that there exists a class of schemas
such that if two schemas in the class are one an improper
renaming of the other then for some interpretation the two
schemas actually store in memory some different values at some
computation step. Thus, for schemas as for strings, the only
generally acceptable procedure for renaming is the one that

we have called "proper".

§4.1 Schemas.

In this work, schemas are defined as incompletely
specified automata that accept terminator strings. This
approach enables us to deal with them by using the familiar
terminology of automata theory, and some automata-theoretical
results. The occurrence of a terminator in a string causes
either a state transition in the schema, or the rejection of
the string, if the next state is not defined for that terminator.
Each state in a schema is an accepting state.

Some readers may consider as more natural the
following point of view, which clearly shows the applications
of this theory to problems of systems design: in each state a
number of operations (those operations for which the next

state function is defined) are enabled for execution, and some

4.1 75

control device nondeterministically chooses which of these
operations is executed next. The execution of an operation causes
a state transition dependent upon the outcome of the operation.

We shall occasionally refer to this point of view for explanatory

remarks.

1. Definition. A parallel program schema over a function set

F, or simply a schema is a triple S = (Q,qo,é) where:

0 is a nonempty, countable set of schema states;

dg € Q 1is the initial schema state;

§ is a partial function &6: Q x & » Q, the schema

state transition function;

For g ¢ Q, we write ¢(q) = {ak: r(S(q,ak)\}. We assume that

the set ¢ (g) is finite for all gq (finitely branchinqA

property) .

We extend & to a partial function §&§: Q x * > Q
in the obvious way, i.e.
S(g,2) = g.
§(5(q,x),a%) if this is defined
and, for x € @*, G(q,xak) =
undefined otherwise
For x ¢ I*, let d, = 6(q0,x). We usually assume
that S is connected, i.e. that for all q ¢ Q, g = q, for
some X € L*.
The language Lg of a schema S 1is the set of all

those finite terminator strings that are accepted by S, i.e.

431 76
Lo = {x e I*: rqx\}.

We say that a schema is finite if Q 1is a finite
set. Clearly, if S 1is a finite schema, LS is a finite-
state (or regular) language.

Schemas will be represented as shown in Fig. 1,
according to a symbolism that is reminiscent of both automata
theory and flow-charts, and should be self-explanatory (see
§1.2).

The reader will note the main differences between this
model and other models that have been used in related research.
As opposed to Karp and Miller's model [K&M] and as in Keller
[Kell we do not consider queuing and we do not have the concepts
of initiators and terminators. The latter limitation means
that in our model all operations are assumed to have a null
execution time, and that the execution of two operations cannot
overlap in time. An earlier version of this work was written
by using a model with initiators and terminators (but not
queuing). The model was revised when it was found that the
same results could be obtained, with much simpler proofs, in
the present version.

Another major difference between our model and the
models of [K&M] and [Kell, is the fact that here a number of
axioms and conditions have been eliminated. Some of these
axioms and conditions, however, will have to be introduced
later in order to obtain certain results.

We are able to represent both tests (see for example

the branches exiting states d; and dy in Fig. 1), and

!
—4

IRk |

L

Fig. 1.

)

{ (£(0)~0)°

(£(1)~0) !

|
L1

| (£1)+0)°

iy
O
N

(k(2,1)+0)°

Example of a schema.

L

77

4.1 78

situations as represented in the two branches leaving state

dgr where either one of the two branches can be taken whenever
application of test f to the value of variable 0 gives
outcome 0. In a certain sense, we are here just one step away
from a nondeterministic model as defined in automata theory.

As concerns parallelism, the reader may consider that two oper-
ations a and b are allowed to be executed in parallel if
for some x, both xakbh and xbhak are in LS’ i.e. if a
and b can be executed in either order (see Fig. 1.4.C). This
notion will be developed in Chapter 6.

We say that P c I is prefix-closed if x ¢ P and

y £ x imply vy € P. A prefix-closed P is finitely-branching

if for all x ¢ P, there exists a finite number of ak e

such that xak e P. The following proposition characterizes

those sets of strings that are languages for some schema.

2. Proposition. P = LS for some schema S iff P 1is a non-

empty, prefix-closed, finitely-branching subset of I.

Proof. The direct direction immediately follows from the defini-

tions. Conversely, we define a schema S such that P = LS
as follows: Q = {<x>: X e P}; qp = <)x>; for all <«<x> ¢ O and
ak e L, 6(<x>, ak) = <xak> if xak e P, &(<x>, ak) is unde-

fined otherwise. Clearly, O is nonempty since P is non-

empty, and is countable since P 1is finitely-branching and

thus countable.

For a language P, the schema S defined above is

called the tree schema of P.

4.2 - 79

3. Definition. (Language equivalence) Let S = (Q,q,,6)
and S' = (Q',qb,é') be schemas. We say that S and S'
are L-equivalent, written S = S', if LS = LS" We say

that g € Q, @' ¢ Q' are L-equivalent, written g =~ g', 1iff

Lgn = Lgu., where S" = (Q,q,8), s"' = (Q',q',8").
For any schema S, let Lg be the language of S
and let T be the tree schema of L_,: <clearly S = T. We

S

say that T is the tree schema of S. Tree schemas will have

an important role in this research.

§4.2 Areas in schemas.

Areas of variables in schemas play the same role in
the theory of renamings of schemas as segments of variables
play in the theory of renamings of terminator strings. It is
convenient to introduce areas by using the notion of route,
that provides a link between the concept of segment and the

concept of area.

1. Definition. Let § = (Q,qoré) be a schema. We say that

RcQ is a route of me w in S if there exists x « Lg

and M ¢ Seg (x) such that R = {qg < i ¢ M}. In this case,
i

M is said to be a segment of R, and R is the route of M.

Rutm(S) is the set of all routes of m in 8.
We say that M is an area of m in S if M is
a minimal subset of Q having the following properties:

A) M contains a route of m in S.

4.2 80

B) for any route R of m in S, if M n R =# @ then
R c M.

Aream(s) is the set of all areas of m in §S.

For each m and finite schema S, Aream(S) is
clearly computable. Aream(S) z @ 1iff there exists g and
ak such that (G(q,ak)\ and m ¢ D(a) v R(a). We now give

an algorithm for £finding Aream(S) for such m and a finite

2. Algorithm. for finding Aream(s).

i) Take A; to be the set of those singleton subsets {q}
of Q such that m e D(ak) for some ak such that
(§(q,a™)).

ii) Given {g} « Ai, let M9 be the set of all those p such

that 6(p,x) = g for an x such that for all bl ¢ x,
m ¢ R(bJ). Take Ai to be the set of all such Ma.

iii)Given Ai, take Ai = Ai v {{q}: 6(p,ak) = q for some
ak such that m ¢ R(ak) and some p}.

iv) Given Ai, take g,p ¢ Q to belong to the same element

of Area (S) iff there exist M,,...,M_ ¢ A3 such that
m 1 n m

q e Ml’ P € Mn and Mi n Mi+l z @ for all

i e {1,...,n=11}.

Since Q 1is a finite set, the procedure clearly

terminates.

4.2 81

3. Example. We compute the areas in schema S presented in

@ for

L]

Fig 2. - First of all, we know that Aream(s)

m¢ {0,1,2,3}. Let us compute Area,(s). Step i) yields:

Al = {{g,}}. Step ii) yields: A2 = {{gq,,9,}}. Step 1iii)
0 2 0 1722

yields: Ag = {{ql’qZ}’ {ql}, {qz}, {q4}}. Finally by iv)

Area,(S) = {ayray b, {a,ltl.

Similarly, we find:

Area, (s) = {{qz,q3}}

Area, (S) {{qo,ql,qz,q3}}
Area3(S) = {{qo,ql,qz,q3}, {q4}}

In Fig. 2 we have drawn the areas of Q0 1in a way .
that we shall find useful to understand the following develop-
ments on renamings, i.e. by including in an area containing a
stat? qg the second half of those terminators that lead to
gq aﬁd the first half of those terminators that lead away from
g. The correlation between the concept of segment and the
concept of area is readily understood. Roughly speaking,

states play for areas the same role that elements of the scope

play for segments.

The concept of area map corresponds exactly to the
concept of segment map: for a schema S, Amap(s), the area
map of S is the set {(M,m): M ¢ Aream(s)}. The following
proposition states the relation existing between segment maps
and area maps. MNote that an area or a route is open if it
contains Qg closed otherwise.

For a schema S, X e LS and (M,m) ¢ Smap(x) we

L q0 I
\ : | d
| (£(2,3)40)° (g(3)»1)° |
/q ‘
> i
(g(3)+1) i (£(2,3)40) 1
1 wes?
\ | /|

N

Fig. 2. Schema

S and areas of 0 in S.

82

4.3 83

take Ar(M,m) = (M,m) iff M is the area of m that contains

the route of M. The followinag is then immediate:

4. Proposition. Let S be a schema, x ¢ LS' Then for all

(M,m), (N,n) e Smap(x), (M,m),(N,n) ¢ Amap(S) the following
hold:
A) If M is an open segment of m in x and

Ar (M,m) (M,m), then M is an open area of m in

B) If MnN=z/0 for two segments M of m, N of n
in x, and ArM,m) = (M,m), Ar(N,n) = (N,n) then
MnN=Gg.

As an example, consider the schema S of Fig. 2,
and let x = (£(2,3) » 0)%(g(3) » 1% (0,1) » 0,3%: one

verifies that Ar((I,2),0) = ({ql,qz}, 0).

§4.3 Renamings in schemas.

This section is devoted to the definition of proper
renamings in schemas and to the proof of some of their basic
properties. The most important of these is stated in #5: if one

schema is a proper renaming of another, then there is a one-
to-one correspondence between the languages of the two schemas
such that corresponding strings are one a proper renaming of
the other: in other words, the two languages are the same up
to proper renamings. Using this fact, we derive for proper

renamings of schemas several properties corresponding to

4.3 -84
properties of proper renamings of terminator strings: most
important, the facts that proper renamings of schemas are
closed under composition, and have inverses.

The definition of proper renamings in schemas follows
closely the model of the definition of proper renamings in

terminator strings.

1. Definition. Let S be a schema. A renaming function of

S is a function V: Amap(S) -+ w satisfying the following
conditions: for all (M,m), (N,n) e Amap(S)
A) V(M,m) = m for every open area M of m in S.

B) V(M,m) # V(N,n) whenever M n N =2 g and m # n.
Now, for each state g we rename the second half of
those terminators that lead to g and the first half of those

terminators that lead away from g.

2. Definition. (Renaming rule). Let S = (Q,qO,S),

g' = (Q',qé,a') be schemas. We say that S' 1is the proper

renaming of S for a renaming function Vv and we write

Ay

S + S8' 4if there exists a bijection n?: Q » Q' and bijections
ne. o (q) ~- ¢(hQ(q)) for all g ¢ Q such that the following
hold for all g ¢ Q and ak e ¢(q):

n) 1%qg) = qf

B) 19%s(q,a)) = 6 %@ ,n%@&"5))

C) hq(ak) is the renaming of ak that satisfies the

following:

if R(a)[i] = m, S(q,ak) ¢ M for some M ¢ Area_(S),

and V(M,m) = n then R(hF(a%))ri]

H
o

if D(a)lil = m and g ¢ M for some m ¢ Area (S)
then D(h%(a))[il = V(H,m).

Note that for each S and renaming function Vv
either there exists exactly one S' such that S § 8', or
there does not exist any such §S'. Fig. 3 shows an example
where such an S' exists, while Fig. 4 shows an example where
such an S' does not exist.

We now introduce a notation for an important relation
between two sets of strings, a relation that holds iff the sets

are the same up to proper renaming.

3. Definition. Let P,P' c I. We write P <> P' iff there

exists a bijection hL: P > P' such that:
for all x ¢ P, hL(x) +> X

X, ;X € P implies hL(ix) = ﬁhL(x)).

From this point on, whenever we shall use the nota-
tion P «» P' defined above, we shall also use the notation
hL to denote the bijection existing between P and P'.

Thus we can state the fundamental property of proper

renamings of schemas as follows:

4. Proposition. (Properly renamed schemas have the same

languages up to proper renaming). If S ¥ s' then LS - LS"

g

(£(2,3)+0)° (g(3)+4)°]
J fd
(g(3)+4)° ‘ } (£(2,3)-00° |
: | 0T
L .]
v ; v
(g(3)+3)1 (h(0,4)51,5°

! \

|

Fig. 3. Renaming of schema S in Fig. 2 according to the

following renaming function:

G({ql,qz}, 0) =0 v({q4}, 0) = 1
U({qz,q3}, 1) = 4

v{ag,d; rdy,933, 2) = 2

v({ay,qys9y.93}, 3) = 3 vi{g,}l, 3) =5

4.3 87

!

C (g(0-1)° \ \ (£(0)>2)°

| |
|
® Go

-

Fig. 4. Any renaming function vV such that

3({ql}, 1) = 3({q2}, 2) would identify the two terminators.

Therefore, for no schema s', S ¥ g,

4.3 88

Proof. We define the bijection n® required by #3 as follows:

w0 =

for xaF ¢ Ly h(xa¥) = (hl(x) - h9a*)) where h¥ is

the bijection defined in #2 for g = d,-

Clearly, if x ¢ L then hL(x) e L Also, hL is a bijec-

S s'’
tion since h9 is a bijection. hL satisfies the second
condition of #3 by definition. We shall now show that it
satisfies the first one.

For any x € L, , consider a renaming function Vo

S
defined as follows: for all (M,m) ¢ Smap(x),

vX(M,m) = v(Ar (M,m)) . Vo is a function since both Ar and
v are functions. To see that Vg is a renaming function,
assume VX(M,m) # m for some open segment M of m. Then
V(Ar(M,m)) = m, a contradiction with the fact that by #2.4.A)
if Ar(M,m) = (M,m) then M is open, and with the fact that

Vv 1is a renaming function. Assume vx(M,m) = vx(N,n) where

MnN=#2@ @, m=n. Then Vv(Ar(M,m)) = v(Ar(N,n)), a contra-

diction with the fact that by #2.4.B) if Ar(M,m) = (M,m) and
Ar(N,n) = (N,n) then M n N = §.
v
We now show that for all x « LS , X +XhL(x). By

definition of hL above and by definition of h? it is
immediate that for all i ¢ w, x[i] is a renaming of hL(x)[i].
For any j e {1,...,ID(x[i]1)|} assume D(x[i])[j] = m,
D(hL(X)[i])[j] = n. By definition of h9 this is only possible
if q x € M, where Vv(M,m) = n. Let 1i-1 ¢ M,

i-1
where M ¢ Seg (x). Ar(M,m) = (M,m) and v, (M,m) = n as

desired. A similar argument holds for any element in R(x[i1]).

4.3 89
vx L
Thus x > h (x) as desired.

The following is now obvious:

5. Corollary. Let S ¥ s', x e L, , hL(x) = y: then

s

e

hQ(q_) ='q;y (the mappings hL, are here those defined
i

X
1

for S,S' in #3, #2).

6. FExample. Consider the two schemas of Fig. 2 and Fig. 3.
We show the correspondence between some of the strings in the

two languages:

A A

(£(2,3)+0)° (£(2,3)+0)°

(g(3)+1)° (g(3)+4)°

(£(2,3)-0) % (g(3)-1t (£(2,3)+0) % (g(3)-0t
(g(3)-1)%(£(2,3)-0)° (g(3)-0)%(£(2,3)-0)°
(£(2,3)-0)2(g(3)-1) L (g(3)-3)? (£(2,3)-0)%(g(3)-0) L (g (31>t
etc.

Also of interest is the property corresponding to
#3.4.4 for renamings in schemas, that will enable us to easily

obtain the correspondent of #3.4.5.

7. Proposition. (Proper renamings preserve area maps). Let

v . —
S + S8'. Then the relation h such that for all (M,m) e Amap(S),
h(M,m) = (M',n) iff v(M,m) = n and M' = {g e Q':q = hQ(p) for

some p ¢ M} is a bijection mapping Amap(S) - Amap(S').

4.3 90
Proof. We show that, for all . p,q € Q, we have: p,q ¢ R,

for some R ¢ Rutm(s) in M iff hQ(p), hQ(q) e P for

some P « Rutn(S') (so that the one-to-one correspondence is in
fact between routes). From this, the proposition follows with-

out difficulty, by the definition of areas.

Consider any segment M of R and assume that
M e Segm(x) for some x. Then p,q ¢ R 1iff there exist

i,7 such that p = g x ' 9=4d9, ,and 1,3 € M. Let
i J
hL(x) = y. By #4 and #3.4.4 the above is true iff 1,3 ¢ N,

for N ¢ Segn(y). By #2.1 again this is true iff g y !
i

= hQ(q X)I
i

P for some P ¢ Rut_(S'). B 5,
qjy € € m() y # qiy

Q
q = h~“(g _).
. X
Jy J
By a reasoning similar to the one used to prove
#3.4.5 it is now easy to see that proper renamings of schemas

are closed under composition, and that every proper renaming

has an inverse:

8. Corollary.
A) If there exist renaming functions V,v' such that
S § s’ ilS" then there exists a renaming function
v" such that S Si_"S".
B) For all schemas S,S', there exists Vv such that

s ¥ s' iff there exists VvV such that S' ¥ §.

In view of #8.B, we can extend to schemas the nota-

4.4 921

tion used for strings: S <> S' iff there exists a proper
renaming function Vv such that S ¥ g'. <> is then an

equivalence relation.

§4.4 Computations and renamings in schemas.

Up to this point, we have discussed schemas as
automata, i.e. as recognizers of finite strings. This has
allowed us to derive a number of results that will make it
straightforward to deal with schemas as recognizers of compu-
tations.

We define a program as the parallel connection of
two automata: a schema and an interpretation. The application-
oriented reader may consider that the schema represents the
control element of a computing system, while the interpretation
represents the arithmetic unit and the memory.

For a schema S, we say that x ¢ £ 1is an S-string

if for all y €%, Y € Lg, and ¢(qx) = § whenever x ¢ IL¥*.

1. Definition. Given a finite set of function symbols F, a

schema S over F, and an interpretation I of F, a program

is a couple (S,I). For a program (S,I) we define:
Comp(S,I) = {x € g: x is an S-string and an I-computation}
Pref(S,I) = {x ¢ *: x <y for some y ¢ Comp (S,I)}
Comp (S) = {x ¢ g: x ¢ Comp(S,I) for some interpretation 1}
Pref (S) = {x € *: x ¢ Pref(S,I) for some interpretation I}

Note that for any program (S,I), Pref (S,I) < Lg n LI

4.4 92

(equality holds for totally defined schemas, as
will be shown in Chapter 6).
#3.4 can now be extended to sets of computations

and prefixes.

2. Lemma. (Properly renamed schemas have properly renamed
computations and prefixes). Let S <> S': then

comp(S,I) <> Comp(S',I) and Pref(S,I) <> Pref(S',I).

L

Proof. 1In this proof, we call h the bijection that in #3.4

we have shown to exist between LS and LS' ' hC the bijec-
tion that we now want to prove to exist between Comp(S,I)

and Comp(S',I), and hP the bijection that we want to prove
to exists between Pref(S,I) and Pref(s',6I).

To see that hC exists, for x € Comp(S,I) define

h®(x) to be the x' such that for all i ¢ w, h"(;x) = ,x'.
hC is a bijection as a consequence of the fact that hL is a
bijection. To see that x' is-an S-string, consider that, by

L
definition of h , for all y < x', vy ¢ L Furthermore,

gt

if x' € Z* then x ¢ I* and ¢(qx) = @; by #3.5 and #3.2

¢(qx.) = #. Finally, for any x ¢ g, by #3.6.3 x «> x'

and then by #3.5.8 and #3.2.2 x' 1is an I-computation.
Next, for x ¢ Pref(S,I), take hP(x) = hL(x).

Since x ¢ Pref(S,I), there exists y e Comp(S,I)

such that x < y. x ¢ LS » and by definition of hC

hL(x) < hc(y), where hc(y) € Comp(S',I). Thus

hL(x) ¢ Pref(s',I) as desired.

The same reasoning holds from S' to S, thus h

4.4 93

and n? are bijections.

We shall extend to schemas some concepts that were

first introduced for strings.

3. Definition. Schemas S,S' are equivalent, written S = S'

(similar, written S ~ S') [compute step by step the same

values, written S =~ S§'] if for all x e Comp(S) there exists
y ¢ Comp(S') such that x =y (x ~y) [x = yl and vice

versa.

Karp and Miller [K&M] use a weaker definition of
equivalence, where S and S' are said to be equivalent if
for all interpretations I and x ¢ Comp(S,I) there exists
y ¢ Comp(S',I) such that x ; y, and vice versa. Results
44 and #6.4 below are still true if such a definition, together
with analogous definitions of similarity and computing step
by step the same results, are used. However, in Chapter 6 we
shall need the stronger definition presented above. Similar

remarks hold for our definition of determinacy, to be intro-

duced later in this section.

It is now not difficult to obtain the correspondent

of #3.5.8 for schemas.

4. Theorem. (Properly renamed schemas compute step by step

the same values). If S «» S8' then S = S' (which implies

S ~8").

4.4 94
Proof. By #3 for each x ¢ Comp(S,I) there exists

nC(x) « Comp(S',I) such that =x <- n® (x) . By #3.5.8

X = hc(x). The same argument holds in the direction from §S'

to S.

We conclude this section by proving another property
of proper renamings.

A schema will be said to be determinate if any two
of its computations under any given interpretation are the
same up to equivalence, quasi-determinate if any two such
computations are the same up to similarity. Previous research
[K&M] [KRel] has stressed the concept of determinacy, while in
our work the concept of quasi-determinacy will be more impor+

tant.

5. Definition. A schema is determinate [quasi-determinatel

if for all interpretations I, x,y ¢ Comp(S,I) implies x = y

[x ~ yl,
Clearly, determinacy implies quasi-determinacy.
We shall now show that proper renamings preserve

quasi-determinacy, but not necessarily determinacy.

6. Proposition. Let S «» S'; then S 1is guasi-determinate

iff S8' 1is quasi-determinate.

Proof. Consider x,y ¢ Comp(S',I) for some I. By the quasi-

determinacy of S, for hc(x), hc(y) ¢ Comp(S,I) we have:

4.4 93

and nf are bijections.

We shall extend to schemas some concepts that were

first introduced for strings.

3. Definition. Schemas §S,S' are equivalent, written S = s'

(similar, written S ~ S') [compute step by step the same

values, written S = 8'] if for all x ¢ Comp(S8) there exists
y € Comp(S') such that x =y (x~y) [x = y]l and vice

versa.

Karp and Miller [K&M] use a weaker definition of
equivalence, where S and S' are said to be equivalent if
for all interpretations I and x ¢ Comp(S,I) there exists
y ¢ Comp(S',I) such that x g y, and vice versa. Results
44 and #6.4 below are still true if such a definition, together
with analogous definitions of similarity and computing step
by step the same results, are used. However, in Chapter 6 we
shall need the stronger definition presented above. Similar

remarks hold for our definition of determinacy, to be intro-

duced later in this section.

It is now not difficult to obtain the correspondent

of #3.5.8 for schemas.

4. Theorem. (Properly renamed schemas compute step by step

the same values). If S «» S' then S = S' (which implies

S ~S').

4.4 94
Proof. By #3 for each x ¢ Comp(S,I) there exists

hc(x) e Comp(S',I) such that x <-» hc(x). By #3.5.8

X =~ hc(x). The same argument holds in the direction from S'

to S.

We conclude this section by proving another property
of proper renamings.

A schema will be said to be determinate if any two
of its computations under any given interpretation are the
same up to equivalence, quasi-determinate if any two such
computations are the same up to similarity. Previous research
[K&M] '[Kell]l has stressed the concept of determinacy, while in
our work the concept of quasi-determinacy will be more impor+

tant.

5. Definition. A schema is determinate [quasi-determinate]

if for all interpretations I, X,y € Comp(S,I) implies x = y

[x ~yl.
Clearly, determinacy implies quasi-determinacy.
We shall now show that proper renamings preserve

guasi-determinacy, but not necessarily determinacy.

6. Proposition. Let S «> S'; then S is quasi-determinate

iff 8' 1is quasi-determinate.
Proof. Consider x,y ¢ Comp(S',I) for some 1I. By the quasi-

determinacy of S, for hc(x), hc(y) ¢ Comp(S,I) we have:

4.5 95
C C c . . .

h (x) ~ h (y) (where h is as defined in #3). By the fact
that x <> hC(x)v and y <> hc(y) and by #3.5.8 we have:

X ~ hc(x) and y ~ hc(y). Thus X ~ Y.

On the contrary, Fig. 5 presents two schemas s,s'
such that S <+ S8' but such that S is determinate, while

g' is not determinate (in fact, S' is quasi—determinate).

§4.5 A converse of #3.4. Tree schemas.

In order to obtain a converse of #4.4 we shall first
derive the following partial converse of #3.4: if two tree
schemas have the same language up to proper renaming then they
are one a proper renaming of the other.

A full converse of #3.4 does not hold. Consider in
fact the two schemas S and 8' in Fig. 6. Clearly, there
exists the desired one-to-one correspondence, but no renaming
of S could possibly yield S': in fact, two independent
areas of 0,1 in S are merged in a single area of 0 in &',

The other purpose of this section is to introduce
the concept of tree schema. A tree schema is a schema whose
state transition diagram is a tree: we have already considered
such schemas in §1. We shall have several occasions of using
properties of tree schemas in this thesis, the most important
of these properties being the fact that any schema has an L-
equivalent tree schema.

The proof of #4, the converse of #3.4, requires a

number of preliminary results and definitions. We start by

O—

. y
i (£(0)~0)° o)
O '
- @w-n° |
é
Schema S
]
) |
_/ L
(£(0)+0)° | (g(lrl)o
Q
| \ N
(g~ | (£(0)-1)° |
v ‘/\
Schema S'

Fig. 5. Showing that proper renamings do not necessarily

preserve determinacy.

| €0)° \ E@pnT | /
7 ‘ L

0 1
Schema S
v
g
Ceof0° |
//
ge
.‘ N7
P

h (0) #3)

3¢ |
M
_/

Schema S'

Fig. 6. A counterexample to a full converse of #3.4.

97

proving some properties of tree schemas.

1. Definition. We say that a schiema T is a tree schema if

for all 4. d, € Q, q, = qy implies x = y.

In a tree schema, let R be a route of m:

q . € R is said to be the head of the route if for all g x €

1 J

we have: j z i (in other words, the head is the first state of the

route, and ¢ x is the head of the route of segment M of m
J

iff J is the head of M).

R

2. Lemma. Let T be a tree schema. Then the following hold:

A) Two routes R,R' in T are such that R n R' =z @
iff the head of R is in R' or vice versa.

B) For two (M,m), (N,n) ¢ Amap(T) such that M,N are
not both open and M n N # @ there exists x « Lo

and (M,m), (N,n) ¢ Smap(x) such that

Ar (M,m) = (M,m), Ar(N,n) = (N,n) and M n N = f.

C) Let R,R' be two routes of m in T, g be the head

of R, q' be the head of R'; Rn R' = g iff
q=q' (in other words, all routes in an area have
a common head).

D) Let x,y ¢ LT , M ¢ Segm(x), M' € Segm(y),

Ar (M, m) Ar(M',m) = (M,m). Then there exists

I

Kk e M n M' such that k is the head of M and M'

and kX = kY-

in

X

4.5
E)
Proof.
A)
B)
C)

99

Let x € Ly M« Segm(x), Ar(M,m) = (M,m): then

M is open iff M is.

Assume that g = q , is the head of R, q' =g v
i]
is the head of R' and g ¢ X' , q' ¢ R. Let p ¢ R n R':

then p = g = q where k > i, h > j. By #1 this

implies k¥ = Y thus 4y = q - Now, either
] J

j £i or 1< j: it is easily seen that in both

cases q . r 9 4 and g < all belong to the same

i j k
route, opposite to the assumption.

If Mn N = § then there are routes R < M, R' ¢ N
such that R n R' = §. By A) either R contains
the head of R' or vice versa, and either only R
is open, or only R' 1is, or neither is. - This makes
six cases, but they all reduce to the following:
assume that R contains the head of R', R is
open or closed and R' is closed. Assume that M
is a segment of R, where M ¢ Segm(x). If g |is
the head of R then q = g , where i ¢ M. Since
i

q ¢ R', also g = ay and j ¢ N for some

J
N ¢ Segn(y) and some y. Yowever, by #1 i¥ = jy,
so T ¢Maqan N, where M and N are segments of m
and n in x (or, equivalently, in y).
Assume R n R' # ¢, but q # g'. By A) either R

contains q', or R contains g; the two cases

can obviously be treated in the same way, SO we assume

4.5 100

that q' ¢ R. If M e Seg_(x) is a segment of R,

then qg' q ieM, g=g % ! 3 eM and j < i.

i j
Since ¢ % is the head of R' we must have
i
m ¢ R(x[il), a contradiction with the fact that
1,3 € M.
D) The routes of M and M' both belong to M and

thus by C) have a common head g x - g v* By #1,
k k

k* T kY-
E) Assume that dq, € M: by C) each route in M contains

Qg+ therefore for each route, any segment of that

route contains 0. The converse is #2.4.A).

The last preliminary step is the proof of a property

of the bijection hL.

3. Lemma. Let P,P' Dbe two countable, prefix-closed subsets

~

of I such that P <> P', and let x,y ¢ P be such that

L ot L R - . v '
h (x) = x', hi(y) =y and kX T RYi then XE ky .

L L L
Proof. By #3.3 k(hL(y)) = nl(y) = WP (x) = () < BTG

The following is the desired partial converse of

NS

#3.4:

4. DProposition. (If two tree schemas have the same language

up to proper renaming then they are one a proper renaming of

4.5 : 101

the other). If LT “«> LT' for tree schemas T and T' then

T «> T'.

Proof. We claim that T ¥ T' where V is defined as follows:
V(M,m) = n iff there exists x ¢ L, and M ¢ Segm(x) such
that Ar(M,m) = (M,m) in T, x ¥ hL(x) and v(M,m) = n.

We shall now check that Vv is well-defined as a function,

that Vv is a renaming function, and that in fact T ¥ T'.

1) To verify that VvV is well-defined as a function, we

must verify that if there exist X,y ¢ Lq and

M e Seg (x), M' e seg_(y) such that Ar(M,m) = Ar (M',m) =
(M,m), and x ¥ hL(x) for some Vv such that v(M,m) = n,

[]
v ¥ hL(y) for some v' such that v'(M',m) = r, thenn = r.

We have two cases: M is an open area, Or M is a closed
area. If M 1is an open area then by #2.E) M and
M' are both open and n = r = m by #3.4.1.7A). If
instead M 1is closed then by #2.E) M and M' are

also closed. By #2.D) there exists k ¢ M n M' such

that ¥ is the head of M and M' and
kX = kY- Thus m = R(x[k1)[j] = R(y[k1)[Jj] for some
j. By #3 L, ("(0) =, (W"(y)); this implies

R(Y(x) (k1031 = ROM(YIIKIICIT and v(,m) = v' (' ,m),
2) We must now check that v 1is a renaming function.

The fact that #3.1.A) is true follows by the fact

that, by #2.E), for any open area M of m in T

and for any (M,m) such that Ar(M,m) = (M,m), M

is an open segment. It remains to verify #3.1.B).

Assume that M n N # § where M ¢ Aream(T),

4.5 192

N ¢ Arean(T'). By #2.B) there exists x ¢ L; and
(M,m), (N,n) € Smap(x) such that Ar(M,m) = (M,m),
Ar(N,n) = (N,n) and M n N # @g. Thus by #3.4.1.B)
v(M,m) # v(N,n) for any renaming function v of x,
and by 1) above VvV (M,m) = V(N,n).

3) The last thing that we must check is that in fact
T § T', i.e. that the bijections hQ and h%
defined in #3.2 exist. For each q, € 0, we define

naq,) = g, iff hP(x) = x'. For each a* ¢ ¢ (q),

kK oifr nP(xa®) = x'p5. a)

q
we define h X(ak) = b
and B) in #3.2 follow immediately. To see C), assume

R(a)[il =m, q 4 e M for some x and M «¢ Area (T)
xa

such that V(M,m) = n. Let Ixakl e M, where

M ¢ Seg (x). Then Ar(M,m) = (M,m) and by definition
of v, V(M,m) = n. Hence, if hL(xak) = x'bk then
g

R(bX)[1i] = n. But b = h ¥(a¥). Thus

d
R(h X(ak))[i] = n as desired. Similarly for D(a).

The following restatement of #4 will be used in the

next chapter:

5. Corollary. Let §,S' be schemas such that LS <« LS' ’
and let T be the tree schema of S, T' be the tree schema

of S'. Then T <= T'.

The reader should be aware of the crucial importance

of the fact that the sets of strings in consideration are

4.6 1903

prefix-closed. Proposition 4 would not hold if the bijection
existed between non-prefix-closed sets.

For finite schemas, a related result will be pre-

sented in #5.3.2.

§4.6 A converse of #4.4.

The partial converse of #4.4 is the extension of
#5.4 to sets of computations and prefixes. This converse only
holds for tree, free schemas, where a schema S is said to be
free if Pref(S) = L. , i.e. every path in the schema corres-

S

ponds to a prefix for some computation.

First, we prove some intermediate results.

1. Proposition. (If two free, tree schemas have the same set

of prefixes up to proper renaming then they are one a proper
renaming of the other). If Pref(T) +- Pref (T') for free,
tree schemas T and T' then T <> T'.

Proof. Immediate by #5.4 and the definition of freedom.

Note that Pref(S) <- Pref(s') implies
Comp (S) <= Comp (S') (but not vice versa).

We say that a schema S 1is repetition-free if for

all x e« LS , X 1is repetition-free. Since any repetition-free

string is a computation, a repetition-free schema is free.

2. Definition. We say that a schema S 1is consistent if

the following holds: for all g ¢ Q and any two distinct

4.6 104

o

ak,bk e ¢(q) we have: /ak/ # /bk/ (or: if xak,xb e L

and ak z bk then /ak/ z /bk/). We say that P ¢ I is

S

consistent if for all x,y ¢ P, X <>y implies x = y.

For example, the schema in Fig. 1 is not consistent,
since both (£(0)~1)° and (£(0)+0)° are in ¢(qy).
The following Lemma shows that consistent schemas

have consistent languages and shows other related properties.

3. Lemma.

A) A schema S 1is consistent iff LS is consistent.

B) If a schema S is consistent then Comp(S) is con-
sistent.

C) Let P,P' c I be consistent, prefix-closed. If there

L

exists a bijection h™: P > P' such that for all

X e P, x <+~ hL(x) then P <= P',.

D) For consistent schemas S and S' Comp(S) <> Comp(S')

iff Pref(S) <«-» Pref(s').
Proof.
A) Let X,¥ « LS be such that x «» y. Consider the

smallest i such that X % Y and let 1X = x'a™,
iy = x'bk. We have: x'ak,x'bk € LS , ak # bk:
however, since x'ak > x'bk, /ak/ = /bk/, contra-
dicting the consistency of S.

Conversely, it is easily seen that if S 1is not

consistent then L

- contains two distinct strings

that are one a proper renaming of the-other.

#4.4:

B)

C)

D)

105

Follows by the same reasoning of A).

hL

satisfies by definition the first condition of
#3.3. To see that for consistent, prefix-closed sets
the second condition must also be satisfied, assume
that hL(x) = x' but for some 1i, hL(ix) = ;2 * ix'.

We must have 12 7 ix', a contradiction with the
consistency of P'.

Assfime that it is false that Pref(S) <+ Pref(s'),
and assume that for some x ¢ Pref(S) it is false
that there exists exactly one y ¢ Pref(S') such
that x <+ y. If no y exists then for no computa-
tion z of S having x as a prefix there can be
z' ¢ Comp(S') such that z <> z'. If more than one
y exists then all these y must be one a renaming
of the other, a contradiction with A). Hence for
each x ¢ Pref(S) there exists y ¢ Pref(S') such
that x <> y and vice versa, and a bijection

Ll

h Pref(S) -+ Pref(S') as required by C) above exists.

Therefore, Pref(S) <«- Pref(s').

The converse is true for any schema. For x < Comp (S)

define hc(x) to be the y such that for all IR

c

hP(ix) = .y ¢(h and hP are as defined in #4.2.).

1

We are now ready to prove the partial converse of

if two repetition-free, consistent, tree schemas compute

step by step the same values then they are one a proper

renaming of the other.

4.6 106

4, Theorem. Let T and T' be two repetition-free, tree,

consistent schemas. Then T ~ T' implies T <> T'.

Proof. Assume that T < T'. Then by the contrapositive of

#1 Pref(T) <» Pref(T'). By #3.D) Comp(T) < Comp(T'). Since
no computation of T (T') is a proper prefix of a computation
of T (T'), by #3.3 this is only possible if there does not
exist a bijection hC: Comp (T) =+ Comp(T') such that for all

X ¢ Comp(T), X <> hC(x). If T and T' are consistent then

for a given x ¢ Comp(T) there could not be more than one
y € Comp(T') such that x <> y: in fact, if there were more
than one, all such y would be one a proper renaming of the
other, a contradiction with #3.B). Assume then that x 1is
such that there is no y ¢ Comp(T') such that x <-» y, - but
there is z ¢ Comp(T') such that x = z. By #3.6.5 we have
X «> z, a contradiction. The same argument holds from T'

to T. Hence T ~ T' 1is false.

By combining the above with #4.4 we obtain the
following characterization result: for repetition-free, tree,
consistent schemas T and T' we have: T <> T' iff T =~ T'.

Finally, a stronger result can be obtained if one
further condition is added. We say that a schema is decision-
free if every function has just one outcome. If S is a
decision-free schema then every S-string is an I-computation

for any interpretation 1I.

5. Theorem. Let T and T' be repetition-free, tree, con-

4.6 107
sistent, decision-free schemas such that for all x ¢ Comp (T)
and all interpretations I there exists y ¢ Comp(T') such
that x i y. Then T <> T'.

Proof. Assume T <A T'. By #4 T =~ T' 1is false. Let

x ¢ Comp(T) be such that there exists no y e« Comp (T') such
that x ~ y, and assume that for some h-interpretation H

H
and z e Comp(T'), x = z. By #3.2.6 and the fact that x

and z are both computations for all interpretations we have

x =~ z, ~a contradiction.

Note also that by #3.1.1 a decision-free computation
is lossless. Thus by what we have noted after the proof of
#3.6.4 two schemas in this class that are not one a proper
renaming of the other actually store in memory some different

values at some step for some interpretation.

CHAPTER 5

MEMORY ECONOMY

Introduction

In this chapter, we shall consider a first applica-
tion of renamings: memory economy.

In Section 1 we shall study the problem of renaming
a schema in such a way that in the renamed schema the smallest
possible number of variables is used. We shall find that this
problem is equivalent to a well-known problem of graph theory.
In Section 2 we shall show that further memory economy can be
obtained by unwinding the loops of a schema. 1In the third
section, we apply the main result of Section 2 to show that
for a large class of schemas it is decidable whether two
schemas in the class have the same language up to proper
renaming. We conclude with some remarks on dynamic memory

allocation (Section 4).

§5.1 Minimum memory requirements for schemas

One of the implications of the ideas developed in
the previous chapter is that two distinct variables m,n in
two areas M o©of m and N of n in a schema can be iden-
tified if and only if M and N do not intersect. We shall
see in this section that this fact is relevant for the problem
of finding the minimum memory requirements for schemas (or

minimal renamings of schemas).

.1 109

The results of this section have been known in the
software literature for years, under the general heading of
static storage allocation principles [Ye2] ([Wil]. However,
it is useful to briefly revisit them in the framework of our
theory.

We shall show that the problem of finding the minimum
memory requirements for a schema reduces to the following well-
known problem of graph theory: given a graph without self-
loops, color its vertices in such a way that:

i) no two vertices connected by an edge are colored

by the same color;
ii) the total number of colors used is minimum .
For an account of work on the graph coloring problem, see (Rinl].

First of all, we want to make our model somewhat
more manageable, by limiting our consideration to a family of
schemas which is closed under arbitrary proper renamings (we
have pointed out in §4.3 that not e&ery family of schemas has
this property). The following result shows that such a family

is the family of consistent schemas, introduced in #4.6.2.

1. Proposition. For any consistent schema S and for any

renaming function V of S there exists a schema S' such
that S g s'.

Proof. We only need to verify that for any Vv a bijection
h? as defined in #4.3.2 exists, because then it follows that
S' is a schema. In fact, we show that for any two distinct

ak,bj e ¢(q), 1if ck and d? are obtained by renaming

5.1 110

respectively ak and bj according to #4.3.2.C), then

ck # dj. Since ak z bj then by the consistency of S
either F(a) # F(b), or k = j, or D(a) = D(b). If
F(a) = F(b) or k # j then by definition of renaming

® 2 al. 1If D(a) = D(b) then D(a){il = m = D(b)[i] = n
for some i,m,n. Thus g 1is in areas of both m and n

and D(c)[i] = D(d)[i] by #4.3.1.B).

The reduction of the problem of finding the minimum
memory requirements for a schema S to the problem of finding
the minimum coloring of a graph can now be performed by con-
structing a graph, that we shall call "incompatibility graph"
of S, having a vertex for each element of the area map of
S, and where two distinct vertices are joined by an edge iff
the corresponding areas intersect. -We shall now show the
details of the construction.

We first recall some graph-theoretical concgpts.

Let G = (V,E) be a graph, and C any set (called the set
of colors). A mapping c: V - C 1is called a coloring of G
by set C if for any two vertices v,w, c(v) = c(w) implies

(v,w) ¢ E. A coloring is a k-coloring if the number of colors

used is k. G 1is said to be k-colorable if there exists a

k-coloring of G. A coloring of G is minimal if it is a

k-coloring and for no i < k, 1is G i-colorable.

2. Definition. The incompatibility graph GS of schema S

is a graph (V,E) where:

5.1 111

<
"

Amap (S)

{(((M,m),(N,n)): Mo N=zg and m z n}

=
I

Fig. 1 presents a schema and its incompatibility
graph.
Next, we define the quantities that we want to

minimize:

3. Definition. For a schema S, Var(S), the set of variables

of § 1is defined as follows:

var(s) = {m ¢ w: Area_ (S) = g}
Mem(S), the memory requirements of S 1is [Var(S)|.
Min(S), the minimum memory of S is the smallest k such
that for some schema S', S «» S' and Mem(S') = k. A
schema S is memory-reduced if Mem(S) = Min(S). We say
that S' is a minimal renaming of § if S «» S' and S'

is memory-reduced.

It is then not difficult to see that the following
result, first proved in [Lav] and [Yel]l, holds for our
model. The proof involves simply the definition of a suitable

correspondence between the set of colors and a subset of w.

4. Theorem. Let S be a consistent schema. Then for every
k-coloring of GS there exists a proper renaming S' of S

having memory requirements k and vice versa.

1 112

2\15

[ma,2)-0°

\q1/ 7
(£(0)+0)° @)-1)° |
V
1

[Lam-2,0°]

Areas of O0: {ql}, {qz}
Areas of 1: {qqul,qzrq4}

Areas of 2: {qo}

({q,},0) ({a,},0)

({agray 9y, 931 (Hagh,2)

Fig. 1. A schema and its incompatibility graph.

5.2 113

As a consequence, for a consistent schema S the
problem of finding a minimal renaming of S 1is equivalent
to the problem of finding a minimal coloring of Gg- If the’
incompatibility graph of S is finite and can be constructed,
this problem can be solved with the algorithms for finding a
minimal coloring of a finite graph. Fig. 2 shows an example.

It is interesting to note that in [Mar]l it has
been proved that for any connected, finite graph G without
self-loops there exists a schema S such that G is the
incompatibility graph of S. That proof can be adapted to
our model. Therefore, the "minimal renaming problem" is of
the same degree of computational complexity as the "minimal

coloring problem".

§5.2 Schemas with minimum memory in a set of L-equivalent

schemas.

The following questions present themselves: do any two
L-equivalent schemas have the same minimum memory, and, if
not, can we find, given a finite schema, an L-equivalent finite
schema that has the smallest possible minimum memory? This
section provides a negative answer to the first guestion, and
a positive answer to the second one.

To see that two L-equivalent schemas do not need to
have the same minimum memory, consider schemas Sq and S,
presented in Fig. 3. The reader will note that in no computa-
tion of S more than two variables are ever simultaneously

1

occupied. Thus, the fact that 5 requires three variables

1

114

5.2
5 v({g,},0) = 2
e _
/'-»/,.r" V({qorqllq21q4}rl) = I
_.:-,-.~-,-.,.__~.2~ U({qo},Z) = 2

(h(1,2)+2)°

I —

(@()+1)° J

; (£(2)+2)° | __..jm

S

|_wen® | [went |
]

ewezn® |
L

Fig. 2.

A minimal coloring of the incompatibility graph of
Fig. 1 by the .set of colors {1,2}, the related

renaming function, and the renamed schema.

115

(£ (0, l)*2)

5.2 |
;—-“~~~~">¢qo ({ay,a,}.0)

| 1

) | (t(2,00-1)°

(;\qz (lay,a,7,2) ({ay.90}e1)
% [(£(1,2)0)°

.

e I
A

! i(f(o,1>+z) |

(%3@1 ({qolql}lo)

. Vv
(£(2,0-1)°

({qquz}rz) ({qslqo}ll)

et e ¢ AN i o ot B 8 2

¥
N /D {

(19,953 1) ({q,,a.},2)
L(;fms;_,_ 2)+0)? | 2'73 4775

5_1/_
(>
Lf_@*.y,-zz,, |

a,

L

g#
o lee.0en?)
\, q5
R S
<f(1,2)+0)°J

............ b

'q3 ({q3lq4}lo)

Fig. 3.A). Schema 5, (top) and schema 5, are L-equivalent, but
the incompatibility graph of 82 can be colored with two colors,

while the incompatibility graph of 5; can only be colored with

three.

5.2 122

by the previous observation that 5& is one-to-

one for all g.

Continuing Example 3, we define the canonical renaming
function of schema T as follows. Let (Ai,m) be the element

of Amap(T) such that Ai is the area of m whose head is

q; -
via,,1l) = 1; v(Ag,1) = 1.
U(Ao,z) = 2; U(A3,2) = 2; \T(As,z) = 1; ving,2) = 1.
G(AO,B) = 33 U(A2,3) = 2; U(A6,3) = 3
vi(ag,4) = 1; v(a,,4) = 2.

The result of the application of this renaming func-
tion to T is shown at the bottom of Fig. 4. For a tree
schema T, we shall denote by TC the schema obtained from
T by canonical renaming. A schema Tc exists for any con-
sistent T.

By the observation that in a canonical renaming the
s-th variable is first used only when all previous s-1 are

occupied, we obtain the following:

6. Proposition. For any consistent, tree schema T, TC is memory-

reduced.

Proof. We prove that Mem(Tc) = Min(T). Take w to be the
set w ordered under the relation < . If Mem(TC) = s
then there must exist g in the set of states of T and

m ¢ Var (T) such that Cé(m) = n, where n = wls]. Consider

a shortest x such that Gé (m) = n. If x =)X then in T
X

5.2 123

there must be s open areas. Otherwise x = yak for some

yak and n = Free(qyak)[i] where i = |R(a)|. It is easily

seen from #3.B) that this is only possible if ¢ ak is in

Yy
the intersection of s distinct areas in T. In both cases
there are s mutually intersecting areas in T and any

proper renaming of T requires at least s variables.

For example, the canonical renaming of the schema
in Fig. 4 requires 3 variables because state qg is in the
intersection of areas of 1,2,3.

T™wo technical Lemmas:

7. Lemma. Let p and g be states of T such that p = g
hQ

- Q ~ 1.9 .
and vp = Vg Then h”*(p) h=(g) in T, (where

is
the bijection defined for T and Tc in #4.3.2).

Proof. The two subschemas of T having respectively p and
q as initial states are identical. By the definition of
canonical renaming function it is then clear that a canonical
renaming function Vv such that Gb = Eé renames both sub-

schemas in the same way.

8. Lemma. Let T be the tree schema of a finite schema S.
Then for any state g of T
A) it is decidable whether g belongs to an area of m
in T for any m.

B) Ué is computable.

5.2 124

Proof.
A) Clearly, g belongs to an area of m in T 1iff the
following is true: d(p,ah) = q for some p and ah
such that m ¢ R(a) or there exists xbj such that
(é(q,xbj)\, m e D(b), and for no ck e X, m e R(c).
The existence of such p and ah is obviously
decidable. Furthermore, by elementary automata theory,
if x as above exists, there must exist one of length

less than the number of states in the state set of S.

B) Follows immediately.
We can finally conclude:

9. Theorem. ILet S be a finite, consistent schema, and let
T, be the canonical renaming of the tree schema of S. Then
there exists an effectively computable finite schema SC

such that Tc >~ Sc.
Proof. Let T be the tree schema of S. For all g in the
state set of T, Gé is a partial mapping from Var(S) into
Var(Tc). Since by #1 and #6 Var(Tc) < Var(S) and Var(S)
is a finite set, there is only a finite number, say n, of
such mappings. By #7 any two states hQ(p) and hQ(q) of
Tc such that p == g and Ub = Gé are L-equivalent. Hence,
the L-equivalence relation partitions the set of states of

Tc in at most nlQ| sets of mutually L-equivalent states
(where Q 1is the set of states of S) and, by elementary

P4

finite automata theory, TC is L-equivalent to a finite schema

5.2 125

S, with at most n|Q| states.
We shall now give an algorithm for computing Sc.

Note that the algorithm uses the decidability and computability

results of #8.

10. Algorithm for computing Sc’ The algorithm considers
three schemas: schema S, schema T, schema Sc' We assume
for simplicity that S is reduced, so for each state g of
T there exists exactly one state p of S such that p = qg:

such a state is called "the state of S corresponding to g

The states of S_ are of the form (p, 3§), where Gé is
one of the n mappings considered above, and p 1is the state
of S «corresponding to g. At the beginning, Sc is empty.
We proceed enumerating the states of T in such a way that

if |x| > |y|, then g is taken into consideration after g
For each state qy of T that is enumerated we place a state

in S called the "state of Sc corresponding to a," -

We start taking into consideration state q, of T,

and then we place in Sc a state (qo,Jé). For a state
A

qxak of T, such that the corresponding state in S 1is p,

and assume that the state of S

consider (p, quak)’ c
corresponding to q, is (p',3§). Take bk to be the
X
renaming of ak such that n = D(b)[i]l] (n = R(b)[1i1]) for
some i iff m = D(a)[i]l] (m = R(a)ril) and Gé (m) = n
X
(v' k(m) = n). If there is no state (p,\)q k) in S
xa xa

then such a state is placed in Se’ and we define

S((p',v),bk) = (p,Vv k)' Otherwise, (p,Vv k) is already

qX qxa qxa)

5.

3 126

in S, and we only need to define 6((p',3§ Y. b)) = (p,
X

N
Aya®

).

In the latter case, we do not need to take into consideration

any d, such that 2z > xak. By the proof of #9, the algorithm

will terminate before we take into consideration any state

a, , where |ul| = nlQ

Note that Sc does not need to be automata-theore-

tically reduced.

The algorithm could be included in a compiler, pr
viding a method for obtaining optimal memory assignments wi
out running into the difficulty of the "register mismatch"

noted at the beginning of the section.

11. Example. One verifies that schema S3 in Fig. 3 can
obtained from schema Sy by means of Algorithm 9. If we

represent the mappings vq as in Example 3, the states of

S are as follows:

3

01
ay = (ag, (5 1) aj = (a;, (g 1)) ay = (ay, (3
' 01 . . 1
ay = (qps (]) aj = (ag, (GO at = (a,,

§5.3 It is decidable whether two finite, consistent schema

o-

th-

be

S

have the same language up to renaming.

We shall now apply #9 to prove a decidability res

In the following proof, we shall use the notation

vq in a general sense, as follows: for any renaming functi

vV of a tree schema T, we write 5§(m) =n iff g 1is in

ult.

on

5.3 127

an area M of m such that V(M,m) = n.

1. Lemma. For consistent, tree schemas T and T', T <> T'

implies Tc = Té.

Proof. Let Vv be the renaming function such that T ¥ T',

v the renaming function such that T ¥ Tc , V' the renaming
T

function such that T' ¥ Té. For any X ¢ LT we write

h™(x) in Lo, as x'. Also, we take T = (Q,94,6),

T = (Q',qb,S'), q, = G(qo,x), q% = 6'(q6,x'). We show by

induction on the Jlength of x that

Il

(*) for all x ¢ L; and m, if v (m)
qx X X

From (*) it follows immediately that Tc Té.

First of all, we note that there exists an open area
of m in T iff such an open area exists in T' and vice

versa. Thus the ordering < of w 1is the same for both T

and T'.
If x = A, for all m, 3& (m) = m and
- — A
vV (m) =m=v_,(m) as desired.
g, a3
Assume that (*) is proved for some x ¢ L.
We prove it for xak € LT' Assume that both dy and qxak

are in the same area of some variable m, and let

— _ s . . .
vqx(m) = n. By definition of renaming 9. and qxak are
in the same area of n. By induction hypothesis

v (m) = Tq,(n) = s for some s, and thus by #2.2.3)
- % B
) (m) = v_, (n) = s. The reasoning is symmetrical, and
q..k k
xa xa
thus Free(qxak) = Free(qéak). Consider now any m such

that m = R(a)li]l] for some i. If §é g (m) = n then by
xa

n then ?q (m) = 7q.(n).

5.3 128

Free(q%ak)[i] = iq' k(n)

#2.2.B) vq ak(m) = Free(qxak)[i] '

X
as desired.

For a schema Sc , we denote by Scr the (automata-

theoretically) reduced version of Sc.

2. Lemma. Let S and S' be finite, consistent schemas
such that LS > LS" Then Scr = Sér‘

Proof. By #4.5.5, S =T <> T' = 8' for the tree schemas T
and T' of S8 and S'. By #1 the canonical renamings of

T and T' are the same schema, that we shall call Tc. By
#2.9 we have SC = Tc = Sé , and by elementary automata theory

- 1
Scr - Scr'

Our decidability result follows immediately:

3. Theorem. For finite, consistent schemas S and S' it
is decidable whether LS <> LS"

Proof. Clearly, Scr and Sér are effectively computable

from S and S'.

Note also that #2 holds if S and S' are finite,
free, consistent schemas such that Pref(S) <«-»> Pref(S'). For
such schemas it is therefore decidable whether

Pref(S) <> Pref(S').

5.4 129

§5.4 Dynamic memory allocation.

We can consider what we have done up to this point
as a model of mechanisms for allocating variable names in an
optimal way at the time of the compilation of a program. At
program run time, one of the following two memory allocation
strategies can be chosen. In the method known as static
memory allocation, one memory location is assigned to each
variable in the program as soon as the program is loaded into
memory. If such a method is chosen, the number of memory
locations used by a program is equal to Mem(S), where S
is the schema of the program. In the method known as dynamic
memory allocation, a memory location is assigned to a variable
only when the variable is actually assigned a value during
the computation. The location is taken from a pool of free
memory locations, is kept occupied as long as the value is
needed, and is returned to the pool after the value is refer-
enced for the last time in the computation.

In this thesis, we shall not attempt a theory of
dynamic memory allocation: however, we wish to consider briefly
how such a theory could be developed. A program could be run
under the control of a procedure that would both simulate the
program's behaviour, and implement the dynamic memory alloca-
tion mechanism. The latter function would be performed by
upkeeping the pool of free locations, and by looking ahead in
the program to see whether the various values in memory are
still needed. We have seen in #2.8 that this is decidable.

This process essentially corresponds to computing

5.4 130

the canonical renaming of the tree schema T of the schema
S of the program. Therefore, at no point in the computation,
a dynamic memory allocation mechanism will use more memory
than Min(T). However, dynamic memory allocation may well be
more economical than that, since only variables referenced
in computations that are computations for the given interpre-
tation need to be allocated memory.

We can conclude that dynamic memory allocation for
a program whose schema is S requires amounts of memory that
vary with the interpretation, but never exceed the amount of
memory needed for minimally renaming any schema L-equivalent

to S.

CHAPTER 6

PARALLELISM

Introduction.

In this chapter, we consider another major applica-
tion of renamings, by showing that they can be used to make a
schema more parallel. The theory developed here is a generali-
zation of the one presented by Keller [Kell. In that paper,
a criterion for comparing the amount of parallelism present
in equivalent schemas is given, and a schema S 1is said to
be "closed" if there is no schema S' equivalent to S , which
is more parallel than S. Keller then proves the following
to be true for a large class of schemas:
i) For finite schemas, the property of being closed is
decidable.
ii) If a schema S is not closed, then it is possible to
transform S into a schema S' that is more parallel
than S,
iii) For every schema S there is an equivalent closed
schema S. No procedure is known for obtaining S
from S even in the case when S is finite. However,
S can be "simulated" by a sort of "look-ahead" inter-
preter.
iv) If S and S' are two equivalent schemas, then S
and S' are L-equivalent.
We shall show that, by using the concept of renaming,

it becomes possible to extend Keller's criterion and compare

6.1 132

the amount of parallelism present in two similar schemas.
Accordingly, we define a schema to be "hyperclosed" if there
is no schema S' similar to S, which is more parallel than
S. It is interesting to note that all the facts established
by Keller for his definition of parallelism based on equivalence
have correspondents in our formulation.

In the first section of this chapter, we introduce
the class of the "restricted" schemas, a class of schemas that
are particularly well-behaved for parallelism. Whenever we
shall use the word "schema" in the rest of this introduction,
we shall mean "restricted schemas". We then introduce a
criterion for comparing the amount of parallelism present in
two similar schemas. Finally, we show that if in a schema S
there is an operation that can be advanced one step ahead of
some other operation, then there exists a schema S' where
this operation is in fact enabled one step ahead, and such
that 8' is more parallel than S. In the second section, we
show that this process can be extended to any finite number of
steps. In section three we introduce two "natural" definitions
of maximal parallelism in schemas, and we show their eguivalence.
We call "hyperclosed" a schema that is maximally parallel. We
derive several properties of hyperclosed schemas, the most
important of these being the fact that the hyperclosure of any

finite schema can be approximated by a "look-ahead" mechanism.

§6.1 Enhancing parallelism in restricted schemas: the first

step.

In this chapter we shall mainly be concerned with a

6.1 133

class of schemas that is considerably narrower than the class
considered up to this point. We obtain it by combining some
of the restrictions that we have already met with one more,
that we shall now introduce.

A restriction that is quite natural (and that in fact
is normally observed in programming systems) is to ask that
whenever the next state is defined for some outcome of an
operation, it is defined for all such outcomes. A schema is
totally defined if for all x « LS and ai,aj € Z, xai € LS

implies xal « Ly s in other words, for all g e Q, (8§ (q,a™))

implies (&(q,a?)).
We can now define the class of schemas that will be

studied in this chapter: a schema is restricted if it is

repetition-free, consistent, quasi-determinate and totally
defined.

Next, we introduce a notion that will be adequate
for a characterization of the idea of parallelism. Consider
two similar schemas S and S', such that for any computation
x of S there exists a computation x' of S' such that

x' «> x, but not vice versa. It is natural to think that S'

has more freedom in computing thah S , and that S' 1is more
parallel than S (for a formal justification of a similar
idea, see [Kell). From this, we get the following definition.

For P ¢ ¥ , let PO be the set {x: x <> vy, Far

some y € P}.

6.1 134

1. Definition. Let S and S' be consistent and similar

schemas. We write S > S8' if for all interpretations I,

Comp(S',I)O < Comp(S,I)o. We write S > S8' (S is more parallel

than S') if S =2 S' and there exists I such that

Comp (S',I)° = Comp(s,I)°.

The definition above is equivalent to a definition
in terms of prefixes. To see this, we need three preliminary

Lemmas.

2. Lemma. Let P,L c T, X € P° - 1.°. Then there exists u

such that u <> x, U e¢ P and u ¢ 1°.

Proof. If x ¢ P° - LO, then x ¢ PO, X ¢ LO. If x « P,

there must exist u such that u <+ x, u e P. Now, u e L

. . (o] . .
implies x ¢ L7, a contradiction.

3. Lemma. Let P,L ¢ I be prefix-closed and consistent.

p® ¢ LO iff there exists P’ c L such that P <> P'.

Proof. Assume that P° c LO, and consider any x ¢ P. Clearly,

there must exist x' ¢ I. such that x <> x'. Let P' be the

set of all those x' ¢ L such that for gsome x ¢ P, x «> xX': we

show that P' 1is prefix-closed. For x' ¢ P' as above,
consider ix' for any i. Since P and L are prefix-closed,
.X ¢ P and ,x' ¢ L. Since .x <«» .x', .x' < P'. DHNext, we

i i i i i

see that P' is consistent: in fact, since P' < L, the

inconsistency of P' implies the inconsistency of L. By the

above and #4.6.2 there exists a bijection h" between P and

6.1 135

P' as required by #4.6.3.C) and thus P <> P'.

Conversely, assume that there éxists P' < L such
that P <> P', and let x ¢ p°. Some y such that y < x
is in P, and some z such that 2z <>y isin P', i.e.

in L. But 2z <+ x, thus x € L°.

4. Lemma. Let S and S' be consistent schemas. Then
Comp (S,I)° < Comp(s',1)® iff Pref(s,I)° c Pref(s',I)°.
Proof. We prove that if there exists X ¢ Pref(s,I)® which

o]

is not in Pref(s',6I) then there exists y that is in

Comp(S,I)O but not in Comp(S',I)o. By #2,
X € Pref(S,I)O - Pref(S',I)O implies that there exists u

such that u <+ x, u ¢ Pref(S,I), and u ¢ Pref(s',I).
Consider any Yy € Comp(S,I) such that ;Y = u for some 1i.
Assume that vy e Comp(S',I)O, i.e. that there exists

y' € Comp(S',I) such that y <+ y'. Clearly iy' e Pref(S',I).

Since iy' > .Y = U, ue Pref(S',I)o, a contradiction.

Conversely, assume that Pref(S,I)o = Pref(S',I)o

’
i.e. by #3 assume that there exists P c Pref(S',I) such

that P «» Pref(S,I), and let hP be the correspondence
existing between P and Pref(S,I). Then for any x ¢ Comp(S,I)
there exists x' ¢ Comp(S',I) such that =x <> x' : just

define x' to be such that fo; all i, hP(ix) = ix' (where

hP is as defined in #4.4.2). Hence there exists a correspon-
dence between Comp(S,I) and a subset of Comp(S',I) such

that corresponding strings are one a proper renamino of the

other, and Comp(S,I)O < Comp(S',I)o.

6.1 136

We then immediately have:

5. Proposition. For consistent schemas S and S', S = S

iff for all interpretations I, Pref(S',I)o < Pref(S,I)o ;
S > 8" iff S =2 S' and there exists I such that

Pref(S',I)O 3 Pref(S,I)O.

We shall now see how it is possible to enhance the
parallelism of a schema that is not already maximally parallel.
We introduce the following notation: for a state g,

/6(q)/ = {/a/ : a¥

For some u ¢ Z* and a ¢ A, we say that u affects

e ¢(q) for some k}.

D(a) iff for some bj ¢ u, R(b) n D(a) = #.

We say that Ultl(/a/,x) is true in schema S if

x ¢ Pref(S) and for all y ¢ Comp(S) such that y = x there

exists c¢? such that vy > xcJ, /Ja/ ¢ /¢(qxcj)/ and ¢’

does not affect D(a). We say that Advl(/a/,x) is true in

s if Ultl(/a/,x) is true in 'S and /a/ ¢ /¢(qx)/.
If Advl(/a/,x) is true in a restricted S then

/a/ can be advanced by one step ahead of some other operations.
In fact, the following construction shows how this can be done
for the tree schema T of S (for which Advl(/a/,x) is also
true). In the resulting schema S', /a/ 1is enabled immediately
after x (the word "enable" will be used in the sense specified
at the beginning of §4.1 : /b/ , where /b/ = /a/ , or a, or

k

a are "enabled" immediately after x, or at Ay » iff

‘s (q,,a)).

6.1 137

6. Construction. (Desequencing) . Consider a restricted tree
schema T where Advl(/a/,x) is true. If [R(a)l = n then
take n arbitrary elements rl,...,rn from the set w = Var(S)

(we can clearly assume without less of generality that this
set is nonempty). Define a renaming function v of T as
follows: for each area M of m in T where state qxcjbk

is in ™, /b/ = /a/, and RX)[i] = m, let V(M,m) = r, ;

i
v(N,n) = n otherwise. It can be verified that, since T 1is
a tree schema, Vv satisfies #4.3.1.B), while clearly Vv

satisfies #4.3.1.A). Now, let " = (Q“,qa,ﬁ") be such that

T ¥ o, For all cj, all terminators bk (such that
/b/ = /a/) in ¢(qxcj) have been renamed in T" to be termina-
tors ak of the same operation a. Since T 1is consistent,

7" is a schema.

Finally, define &' = (Q',qb,é') from T" as follows:
Q" < Q', gy = 9g¢ §" < §'. Furthermore, Q' contains a new
state 6'(qx,ak) = qxak for each terminator ak of a, and

for each such gk and each c¢J such that fa_ 3',
, Jy o
8 (qxak,c) = qxcjak' S does not contain anything else.

The construction of schema §' from schema T" 1is
demonstrated in Fig. 1.
We shall now proceed to show that Construction 6

produces in fact the desired results. The following is immediate

from the definitions.

k

7. Lemma. Let T,S' and xcjb be as defined above. Then

Comp (S') contains exactly the following strings:

138

/ - .
H Q)] - O wln / G/”
,I\ﬂo S — g) ™ —_— N
i O ” [y} . \
[// ; N o
’ [0}
/.. | ————ry
\
/, 6
N NI
~ _ _l_ar
— —— -
fO. \\// — l —_—
,,f J o o}
f&///_
WO .
| o

Fig. 1 - Demonstrating part of Construction 6.

6.1 139

all z ¢ Comp(T) such that xcjbk < z 1is false

for each string xcjbky e Comp(T), a string xcjaky' and

a string xakcjy', where xc]aky‘ <> xcjbky.

From [K&M] we have the following definition. Let
a,c ¢ A. We write apc iff (D(a) n R(ec)) u (R(a) n D(c))
u ((Ra) n R(c)) # @#. As a direct consequence of results proved
in [K&M] and [Kel]l] we have:

8. Lemma. Let agc for any a,c ¢ A. Then xcjaky = xakcjy

for all x e Z*, vy e L, ak,cJ

€ L.
We can now prove that §' 1is actually more parallel

than T and S, and is restricted.

9. Theorem. If S is a restricted schema such that Advl(/a/,x)
is true and S' is defined from the tree schema of S by
Construction 6, then S' is restricted and S' > S.
Proof. We first check that S' is restricted. It is easily
seen that S' is repetition-free and consistent if S is so.

As concerns quasi-determinacy, note that by #4.4.6,
T" is quasi-determinate as a consequence of the fact that T
is quasi-determinate. If u is any string in

Comp (S') - Comp(T"), u = xakcjy', where xcjaky' ~ Comn (T") .
lHowever, by the definition of Advl we know that
R(c) n D(a) = g and since by Construction 6, R(a) contains

variables that do not appear in any other segment in u, we

6.1 140

have agc. Hence, by #8, xcjaky' = xakc]y' and S' 1is
quasi-determinate.

The facts that §' is totally defined and finitely
branching derive easily from Construction 6.

Finally, by definition we have § 2T s T", thus
by #4.4.4 S ~ T". By the argument above we know that for
each u ¢ Comp(S') -~ Comp(T") there exists u' ¢ Comp (T")
such that u' Z u. Hence T" = S8' and S ~ S8'. Clearly by

$#7 S' > S.

Construction 6 has the disadvantage of almost always
yielding an infinite schema, even in the case where S is
finite. Fortunately however, if S 1is finite the construction
can be replaced by an algorithm that produces a finite schema.
The algorithm uses an intermediate finite schema Sp in place
of the (normally infinite).tree schema T. SF is of the form
shown in Fig. 2 : S is expanded into a tree from the initial
state to each state qxcjbk. All the transitions that do not

lead to such states end into distinct copies of §.

10. Algorithm. Let Advl(/a/,x) be true in a finite schema
S. Construct SF from S as follows. For each vy such that

y < xcjbk for some xcjbk such that /b/ = /a/ and c) does

not affect bk, SF contains a state <y>. Furthermore, for

each minimal y such that y < xcjbk is false, Sp contains

a set of states {q¥ : g is a state of S}. The initial state

of SF is <A>. The state transition function of SF is as

Fig.

1

2 - Schema

1S

are copies of

w1

141

6.1 142
oo ey
(£(0)-0)° | (£(0)+0)*
Schema S ? *
| | (h(3 4)+3) j (h(3,4)+4)° l
ST o
e T 4
if
d
N |
(£0)+0)° | | -0l |
Schema SF * L ¢ r
e B N »]i S . — f
| (3, 4)43> N (n(3, 4)+4) o ‘
e _ ey - o
(. . < e , t : [2 __7]
e i s e e e o § ' e g - J— !
L0 | | o0l a0] [<f(,g)70)l il
. | I ')
. S i NI TSI 3 4 0
((3,9-9° [wE0-0" [0eo-3°] (3,06
Fig. 3.A) Demonstrating Algorithm 10,
Advl(h(3,4),k) is true in schema 8. At the first step, we

unwind the loops so that the appropriate renaming can be per-

formed. Subseqguently,

area,

and 4 as 5 in the right dotted area.

3 is renamed as 5 in the left dotted

In this case, the

renaming is used to identify two operations, rather than to

eliminate a memory conflict.

6.1 143

Schema S'

|

| (f(o>+0) (h(3,0)-5)°] | ‘0)*0)1—1

o |

w9’ e | [do-o! | | n3,0+5)°,

/ * C *wgé o \f“‘ “f" ——
U] (£(0)~0)" \ (f('O);o")”IW]
1 o
f 'f<h<5,4");5')oj i <h<5 4)+4) ,' (h(3,5) TUJ’ ""’<h'(‘3‘,5)'1'5”>”°"|

ANCIGIS SR r(f(0)+o> |

: [
; P

Fig. 3.B) Completing Algorithm 10, the last step.

(h(3,4)—>5)0 is now enabled at the initial state.

6.2 144

follows: 6(<y>,ak) = <yak> if <yak> is a state of SF'

Otherwise 6(<y>,ak) = py where p = qyak in 8. Finally,
for all states qy as above. S(qy,bj) = py iff 6(q,bj) = p
in S. It is easily seen that S = SF' Also, one verifies
that the rest of Construction 6 can be modified to apply to

SF instead of T, and that SF has all the properties
needed for the construction to be well-defined. We call the

resulting schema Sé.

The algorithm is demonstrated in Fig. 3.

Since #7 holds for S and S% , we get the

F

following result by the reasoning used to prove #9.

11. Proposition. If S 1is a finite, restricted schema such

that Advl(/a/,x) is true, and S% is constructed from S
by applying Algorithm 10, then S% is finite, restricted and

such that S% > S.

§6.2 Enhancing parallelism in schemas: the further steps.

The next question is whethef iteration of the con-
structions discussed in the previous section on a restricted
schema where an operation can be advancéd by more than just
one step eventually yields a schema where the operation ' is
actually enabled as early as possible. We shall answer this
question affirmatively. First of all, we need several prelim-
ary results.

We say that Ult(/a/,x) is true in schema S 1if

6.2 145

x ¢ Pref(S) and for all y e Comp(S) such that y 2 x there
exists u such that y > xu, /a/ € /¢(qxu)/ and u does
not affect D(a).

We say that Adv(/a/,x) -is true in S |if

Ult(/a/,x) 1is true and /a/ ¢ /¢(qx)/, i,e, /a/ cannot be
immediately executed after Xx.

In other words, Ult(/a/,x) 1is true if /a/ is
ultimately enabled after x and is not affected by intervening
operations. Adv(/a/,x) is true if Ult(/a/,x) is true, but
/a/ 1is not enabled immediately after x. We shall see that

in this case /a/ can be advanced to immediately after x.

1. Definition. TFor a schema S, a ¢ A, x e Pref(Ss), we

define the critical set of /a/ and x in S, Crit(/a/,x),

to be the set {y : y 2 x and for all z such that y 2 z 2z X,

Adv(/a/,z)}.

This means that the critical set is the set of all
those strings y 2 x such that Ult(/a/,x) is true but /a/
is not enabled at any point between x and y, nor immediately

after vy.

2. Proposition. For a repetition-free schema S, Crit(/a/,x)

is a nonempty, finite subset of I* iff Adv(/a/,x) is tnue.
Proof. If Crit(/a/,x) is nonempty then by definition
Adv(/a/,x) 1is true.

Conversely, assume that 2Adv(/a/,x) 1is true. Then

6.2 146

Crit(/a/,x) contains x and is nonempty. To show that
Crit(/a/,x) 1is finite we use an argument similar to the one
used in the proof of Konig's Lemma [Knu]. - Assume that
Crit(/a/,x) 1is infinite. Since S is finitely-branching
there exists b? such that xb? is in Crit(/a/,x) and is

the prefix of an infinite number of elements in Crit(/a/,x).
Again, there exists bg such that xb?b% is the prefix of

an infinite number of elements in Crit(/a/,x) and the process

does not terminate. By the repetition-freedom (and freedom)

k h
l"'bi

exists xw € Comp(S) such that for no u < w 1is /a/ an

of S, xb for all i ¢ w 1is in Pref(S) and there

element of /¢(qxu)/, a contradiction with the fact that
Ult(/a/,x) 1is true. It also follows that every vy ¢ Crit(/a/,x)

is in I¥*.

For finite schemas, we have the following decidability

result:

3. Proposition. For a repetition-free finite schema, and

for any a ¢ A and x ¢ L£* it is decidable whether

Adv (/a/,x) is true. Furthefmore, Crit(/a/,x) 1is computéble.
Proof. A repetition-free schema S 1is free, and thus

Pref (S) = LS where, if S is finite, LS is a regular
language. By elementary finite automata theory, x ¢ Pref(S)
is decidable. Furthermore, if for some y ¢ Comp(S) such

that y 2 X there exists u such that y > xu,

Ja/ < /¢(qxu)/ and u does not affect D{a), then there

6.2 147

exists such u of length not exceeding [Ql - 1. Therefore,
if S is a repetition-free and finite schema such that
Ult(/a/,x) is true, for all y e Comp(S) such that y 2z X
there must exist u of length not exceeding |0l - 1 such
that y > xu, /a/ ¢ /¢(qxu)/, and u does not affect D(a).
An algorithm to decide whether Adv(/a/,x) 1is true needs only
to enumerate, according to some lexicographic ordering, all
w ¢ I* such that xw ¢ Pref(S) but for all z such that

z <w, J/a/ ¢ /¢(qxz)/, and w does not affect D(a). If
during the enumeration process we obtain a string Ww such
that |w| = |Ql, or a string w that affects D(a), or we
reach a final state, then Ult(/a/,x) 1is false, and the
process is interrupted. Otherwise, if the process reaches
the end, the set of strings that has been enumerated is
crit(/a/,x), and if this set is nonempty Adv(/a/,x) is

true.

In practice, the computation can be performed by

constructing a tree as shown in Fig. 4.

An operation can be advanced iff it can be advanced

by just one step:

4. Proposition. Let S be a schema, y ¢ Pref(S).

Adv(/a/,y) is true iff Advl(/a/,x) is true for all maximal
x ¢ Crit(/a/,y).

proof. If Adv(/a/,y) is true and x ¢ Crit(/a/,y) then

6.2 148
| e3+0)° |
b ¥
[(f(o>)] (£(0))
e I }
L_‘h_if’)‘*” | (k(0)-5)°
]
! o d o
b .J.
* (£(5)) (£(5)) "
i 2|
| B
r o
(g(3)>0)°)"
,'"’/‘\\\ %
f“b - 1
(£(0)) (f(oz) Crit(h,X) contains:
t i G
0 0
(h(3)+3) (k (0)~5) (g(3)+0)°

.
® //' ~o

651 (g5t

vy

(h(3)+3)° (n(3)+4)°

o l

(g(3)+0) (£ (o)) ?

(g(3)-0) 2 (£(0)) L (x (0)+5)°

Fig. 4. A schema and the tree used in the comnutation of

Crit(h(3),A). It is then seen that Adv(h(3),X) is true.

6.2 149

adv(/a/,x) and Ult(/a/,x) are true, i.e. for all =z « Comp (S)
such that =z > x there exists a nonempty u such that
z > xu, J/a/ € /¢(qxu)/ and u does not affect D(a).
Suppose u = bkw for some bk, where /a/ ¢ /¢(qxbk)/ and
% is maximal in .Crit(/a/,y). Then Ult(/a/,xbk) and
Adv(/a/,xbk) are true and xbk ¢ Crit(/a/,x), contradicting
the maximality of x. Hence /a/ « /¢(qxbk)/ and Ultl(/a/,x),
Advl(/a/,x) are true.

Conversely, it is obvious that if Advl(/a/,y) is

true, so is Adv(/a/,y).

Referring to the example of Fig. 4, one verifies

that Advi(3), (g(3)»0°% (Nt -5 is true.

The next thing to be verified is the fact that by
iterating Construction 1.6 (or Algorithm 1.10), the number
of critical elements is in fact decreased. This is our #10

and its proof will require several preliminary results.

5. Lemma. Let x and x' be repetition-free, similar

computations such that x = vuakz where u does not affect

D(a), and x' 2 v' where v <> v'. Then x' = v‘u'bkz'
where u' does not affect D(b) and vak <+~ v'bk.
Proof. If x and x' are repetition-free and similar then

there must exist the bijection h? required by #3.6.1. By

#3.5.7, hZ is the identity for v and v'. Now, let ak

be the i-th terminator in =x: there must exist J »>.[v']

6.2 150

such that Char(x,i) = Char(x',j), i.e. the set of values
fetched by x[i] and x'[j] are the same. Since the set
of values fetched by x[i] 1is in memory after v, by

#3.5.5 the set of values fetched by x'[j] must also be in

memory after v'. Hence by the liberality of x' no x'[n]
affects b(x'Cjl), for n e {lv] + 1,...,3 - 1}. 1If
x'[j] = bk then there must exist an identity bijection

between the sets of characteristics of vak and v'bk and

by #3.6.4, Vak > v'bk as desired.

6. Proposition. Let S be a totally defined schema. Then

for all interpretations I, Pref(S,I) = LS n LI.

Proof. Pref(s,I) < L, n L, is true for any schema by #4.4.1.

S
For the converse, we see that for all x « LS n LI either x
is an S=-string, in which case by #4.4.1 x ¢ Comp(S,I) and
x ¢ Pref(S,1I), or x 1is not an S-string. 1In the latter
case, there must exist bi € ¢(qx). If PF(b)(cX[D(b)]) = j
then by the fact that S 1is totally defined bj € ¢(qx),
hence xbj € LS n LI' By iterating this argument, we see
that either we eventually reach a final state, in which case
x 1is the prefix of a finite element of Comp(S,I), or we

always have a way to continue the computation, in which case

X 1is the prefix of an infinite element of Comp(S,I).

As a consequence, the class of restricted schemas

enjoys of a property that is similar to the "persistency" of

LK&M], [Kell: if a® becomes enabled at a certain point of

6.2 151

a computation y then some bk such that /b/ = /a/ 1is
ultimately executed. Part B) of the following proposition
further strengthens the result, by showing that ultimately

enabled implies ultimately executed.

7. Proposition. Let S be a repetition-free, quasi-deter-

minate, totally defined schema. Then the following hold:
A) If vai ¢ Pref(S) then for all y e Comp(S) such that
v £y, vubk <y for some u that does not affect D (b)
and some bk such that /b/ = /a/ (this implies the truth
of Ult(/a/,v)).

B) If Ult(/a/,v) is true then for all y e Comp(S) such
that y 2 v, y = vuck for some u that does not affect
D(c) and some ck such that /c¢/ = /a/.

Proof.

A) Assume y ¢ Comp(S,I) for some interpretation I, and
let y = vchw for some ch. If /c/ = /a/ then we are of
course finished. Otherwise, since vai ¢ Pref(S) and S 1is
totally defined, there must be ak such that vak € Ls n LI.

By #6, vak ¢ Pref(s,I) and vakz_e Comp (S,I) for some 2.
k h

By the quasi-determinacy of S, va z ~ vc'w = y. Thus
applying #5 with u = A» and v = v', vchu"bk < v for some
chu" = u' that does not affect D(b) and some fbk as

desired.
B) If Ult(/a/,v) is true then for all y « Comp(S) such
that y » v there exists u' such that y > vu',

/a/ = /¢(qvu.)/ and u' does not affect D{(a). Then

6.2 152

vu'bt ¢ Pref(S) for some b such that /b/ = /a/ and

k

since vu' <y, by A) we have wu'u"c’ <y for some u"

that does not affect D(c) or D(a) and some ck such

that /c¢/ = /a/, as desired.

As an immediate consequence of the definitions of

similarity and quasi-determinacy we have:

8. Proposition. For any two similar, quasi-determinate

schemas S and S' and all intefpretations I, if

x ¢ Comp(S,I) and y ¢ Comp(S',I) then x ~ y.

Proof. By the similarity of S and S' for all x ¢ Comp (S, I)
there must exist 2z ¢ Comp(S',I) such that x ~ z. By the

quasi-determinacy of S', 2z ~ y; hence x ~ y.
Lemma 5 can then be extended to schemas.

9. Proposition. Let S and S' be similar, repetition-

free, gquasi-determinate, totally defined schemas, and let

v ¢ Pref(s), ¥' ¢ Pref(s') and a, b ¢ A be such that
vak > v'bk. Then UltS(/a/,v) is true iff Ults'(/b/,vl)
is true.

Proof. Consider any x' such that x' > v', and X' ¢ Comp(S',I)
for some I. By #3.5.8 v ~ v', hence both v and v' are

in LI and (by #6) Vv ¢ Pref(S,I). Let x ¢ Comp(S,I) be

such that x > v. By #8, x ~ x'. 1If Ults(/a/,v) is true

then by #7.B) x = vuckz for some u that does not affect

6.2 153

D(c) and some ck such that /c¢/ = /a/. Hence by #5
x' = v'u'dkz' where u' does not affect D(d) and
vck <> v'dk. Clearly /d4/ = /b/. Since this is true for
any x' =2 v', UltS.(/b/,v') is true.
The same argument holds in the direction from S'

to S.

Finally, the following Lemma provides the induction

step for the main result of this section.

10. Lemma. Let Adv(/a/,y) be true in a restricted schema
s, and let x be a maximal element in Crits(/a/,y). Then
Advsl(/a/,x) is true and if S' 1is the schema defined
from S by Construction 1.6 (or Algorithm 1.10 if S is
finite), the following holds: Crits,(/a/,y) = Crits(/a/,y) - {x}.
Proof. Note that if Advs(/a/,y) is true then by #2
Crits(/a/,y) is a nonempty, finite subset of I* and contains
a maximal element x. By #4, Advé(/a/,x) is true. Thus
Construction 1.6 (or Algorithm 1.10) can be applied to schema
S.)

First of all, we prove that every element of
Crits(/a/,y), except x, 1is in Crits.(/a/,y) (the fact
that x ¢ Crits,(/a/,y) is obvious by #1.6). Since
y ¢ Pref(s'), (Crits.(/a/,y)\. Consider now any
u e CritS(/a/,y) - {x}. PFor all =z such that u =z z 2 y,
UltS,(/a/,z) is true by #9 and the fact that UltS(/a/,z)

is true. Next, assume that for some such 2z it is false

6.2 : 154

that Advs,(/a/,z). This means that /a/ « /¢(qz)/, il.e.
zbk ¢ Pref(s') for some bk such that /b/ = /a/. However,

since Advs(/a/,z) is true, for all ¢ such that /c/ = /a/,

zck ¢ Pref(S). Thus zbk ¢ Pref(S') contradicts #1.7. Hence
Advg, (/a/,2z) is true and u e Critg,(/a/,y). This proves
that Critg(/a/,y) - {x} < Critg, (/a/,y).

Next, we want to check that every element of
CritS.(/a/,y) is in Crits(/a/,y). Assume u ¢ Crits.(/a/,y).
By definition, u cannot be such that xcjak < u, or such
that xak < u (where cj and ak are as defined in Construc-
tion 1.6). Thus by #1.7, u ¢ Pref(S). Also, by #9 for all
z such that u =2z 2 vy, Ults(/a/,z) is true. Assume now
that for some such =z it is false that Advs(/a/,z). This
means that /a/ ¢ /¢(qz)/ i.e. zbk ¢ Pref(S) for some bk
such that /b/ = /a/. But then by #1.7 zbk ¢ Pref(s') also,
a contradiction.

The proof for Algorithm 1.10 follows by the same

reasoning since #1.7 holds for S and Sé.

By induction on the number of elements in Crits(/a/,y)

it is then not difficult to obtain the main result of this

section:
11. Theorem. (Long-distance desequencing) Let S be a
restricted schema such that Advs(/a/,x) is true. Then there

exists a restricted schema &' such that /a/ ¢ /¢(qx)/

and S' > 8. If 8 1is finite, then there exists a finite,

6.3 155

restricted schema S" that has the same properties, and

that can be effectively computed from S.

§6.3 Maximal parallelism.

We shall now introduce two "natural" definitions of
the notion of maximal parallelism in schemas, and we shall
show that for restricted schemas these definitions are equi-
valent.

We say that a restricted schema S 1is hyperclosed

if for all restricted S8' such that Ss' ~5S, § =2 5s'. S
is prompt if for all x « Pref(s) and a ¢ A, Adv(/a/,x)
is false.

Thus a restricted schema S is hyperclosed if no
restricted schema S' 1is more parallel than S, where "more
parallel" is taken in the sense of #1.1l. A schema is prompt

if it enables every operation as early as possible.

1. Theorem. A restricted schema is hyperclosed iff it is
prompt.

Proof. The forward direction follows immediately from #2.11,
where we have seen that if a restricted schema S is not
prompt then there exists a restricted schema S' such that
S' > S, thus implying that S 1is not hyperclosed.

For the converse, assume that S 1is not hyperclosed,

and for some restricted S such that 8' > S consider a
shortest x'bk ¢ Pref(s',I) - Pref(S,I)O for any I (there
k

must be such x'b by #1.5 and #1.2). Clearly

6.3 156

x' ¢ Pref(S',I) n Pref(S,I)O, i.e. there exists x ¢ Pref(S,I)
such that x <«» x'. By #2.7.34), Ults,(/b/,x') is true,

and by #2.9 UltS(/a/,x) is true for some a such that

xak > x'bk. However, by the way in which we have chosen x,
for all such a, we have /a/ ¢ /¢(qx)/ in 8. Thus

Ade(/a/,x) is true and S is not prompt.
The following is then immediate:

2. Proposition. It is decidable whether a finite, restricted

schema is prompt (and hence hyperclosed).

Proof. If q, = q, in a restricted schema S then for all
v € Comp(S), y =2x 1if y 2 z. Thus for all a, Ult(/a/,x)
iff Ult(/a/,z) and Adv{(/a/,x) 1iff adv{(/a/,z). As a.con-
sequence, if 4, = 4, Adv(/a/,x) iff aadv(/a/,z).

An algorithm for deciding whether a finite,
restricted schema is prompt is therefore the following. For
each state gq ¢ Q, if g = d, for some x, decide whether
there exists /a/ such that Aadv(/a/,x) 1is true. Only those
/a/ such that fé(q',ak)\ for some g' ¢ Q and some k
need to be considered. By #2.3 the predicate Adv is
decidable. By definition, a schema is prompt iff such a g

and /a/ cannot be found.

For a restricted schema S, we say that a restricted

schema S' 1is a hyperclosure of S if for all S" such that

s" ~ 8, S8' 2 8". The following result states that two similar

6.3 157

schemas must have the same hyperclosure, up to proper renaming.

3. Proposition. Let S and S' be restricted schemas such

that S ~ S', and let S be any hyperclosure of S, S' be
any hyperclosure of S'. Then:

A) Pref(g)O = Pref(g')o;

B) Pref(S) <> Pref(S');

Cc) T «» T' for the tree schemas T and T' of S

and S'.

Proof. S ~38 ~8' ~ 8" : thus S > 8" and S' » §, i.e.
by #1.5 Pref($)° c pref(§)° and Pref(8')° ¢ Pref(5)°. B)

follows by #1.3 and C) by #4.6.1.

The main result of this section will show in part
A) that any finite, restricted schema has a hyperclosure.
Part B) of the result can be interpreted in the following
sense: there exists a procedure that, fed with any such schema,
will behave in the same way as one of its hyperclosures. This

procedure realizes the look—-ahead mechanism that we have dis-

cussed in Chapter 1, in that operations are systematically "moved

up" as far as possible in the schema one at a time.

First of all, we need a Lemma, that can be proved
by a reasoning very similar to the one used in the proof of

#2.3:

4. Lemma. In a restricted, finite schema, for all x « Pref(S)
the set of those /a/ such that Ult(/a/,x) 1is true is a

finite and effectively computable set.

6.3 | 158

5. Theorem. Let S be a restricted, finite schema. Then:

A) A hyperclosure S of S exists.

B) For all x ¢ I*¥*, ¢(qx) in § is computable.
Proof. We shall show that there exists a tree schema S'
such that B) is true and then we shall show that S' is the
desired hyperclosure. For each x ¢ I* we define ¢(qx) in
s', that we shall write ¢'(qx), by induction on the lenéth
of x. Our definition yields an algorithm for computing
¢'(qx) for an x of arbitrary length.

To compute ¢'(qx) consider the set

AA = {/a/: Ult(/a/,)) is true in S}. By #4 this set is
finite and computable. By repeated use of #2.11 we know that
there exists an effectively computable finite schema S,
with initial state Qg such that SX ~ & and /Ja/ e /¢(q0)/
for all /a/ « Ax (note that by #2.9 Ult(/a/,)\) 1is true
for some /a/ 1in S iff it is true in SA and in all the
intermediate schemas obtained during the construction of SA).

Take then ¢'(qk) = ¢(qy), where q, is the initial state

of Sx.

Assume that for some x ¢ L* we have computed

¢'(qx) and a finite schema 8% such that s®¥ ~ s and for

all /a/ such that Ult(/a/,x) in s%, /a/ - /¢(qx)/.

qxbk for some bk is defined in S' iff SR ¢'(qx), i.e.
bk € ¢(qx) in s*. Assume then that ¢'(qxbk) is defined.
k

Again, the set AXb = {/a/: Ult(/a/,xbk) is true in S¥} is

k
finite, and it is possible to compute a finite schema SXb

xb¥ xbK
such that S ~ 8 and for all /a/ in A ;

6.3 159

k
/a/ € /¢(qxbk)/ in SXb . We then take ¢'(qxbk) = ¢(qxbk).

Finally, we shall show that if a hyperclosure S
of S exists, then Pref(s')° = Pref(S) %, thus implying, by
#1.5, that S' is also a hyperclosure of S. First of all,
note that x ¢ Pref(s')® iff there exists §Y such that
x <>y and X € Pref(sY)°. Since s¥ ~g~3, §=2 s?Y and
by #1.5 x ¢ Pref(S)°. Conversely, assume that
pref(5)° < Pref(S')? is false. By #1.2 there exists a
shortest X ¢ Pref(g) - Pref(s8')°. Then if x = za ,
z ¢ Pref(s')° and z « Pref(s’)® for some v <> z. By
$2.7.2), Ult(/a/,z) is true in S, while S' ~ s ~ §.

Hence, by #2.9, Ult(/b/,v) is true in sV for some b
such that vbk > zak and by definition of sV /b/ ¢ /¢(qv)/

. v N .
in S, a contradiction.

Before closing this section, we want to note an
application of #3 and #5.3.3. In [Pat]l it is shown, with
a rather long proof, that the equivalence problem is solvable
for the class of progressive schemas. We show that, with
the changes in definitions that are necessary in order to
adapt the problem to our model, this solvability result is a
corollary of #3.

We say that a restricted schema is progressive if

for all x ¢ Lg and all i e {1,...,Ix] - 1} the following

is true: R(x[il) n D(x[i+l11) # @. We then have immediately:

6. Lemma. A restricted, progressive schema is prompt and

6.3 160

hyperclosed.

7. Theorem. It is decidable whether two finite, progressive,

restricted schemas are similar.

Proof. If S and S' are progressive, similar and restricted
then by the preceding Lemma and #3 we have: LS +-> LS" By

#5.3.3 this is decidable for any two restricted, finite

schemas.

6.4 161

§6.4 Concluding remarks.

The procedure of approximating the hyperclosure 6f a
restricted schema, outlined in the proof of #3.5, does not need
to terminate. In fact, by extending an argument due to Keller [Kel]
it is possible to show that restricted, finite schemas that do not
have finite hyperclosures are not exceptional. Also, there are
restricted schemas such that the minimum memory of their hyper-
closure is infinite. Worse yet, if a finite schema has a finite
hyperclosure, our procedure will not necessarily yield it (this
can also be shown by extending an argument of Keller [Kell).

The problem of characterizing the class of restricted schemas

that have finite hyperclosures is open. Note that if this class
could be characterized, and an algorithm to obtain a finite
hyperclosure for the schemas in the class could be given, we would
also have characterized a class of schemas where the similarity
problem is decidable (this would hold by the same reasoning used
in #3.7).

However, the look-ahead procedure mentioned above gives
us a way of effectively "simulating" the hyperclosure of any
restricted schema, a result of some practical meaning. Note
that this result becomes true because of the fact that, for any
state of any finite restricted schema, there is only a finite
number of operations that can be advanced to that state (see

$#3.4).

162

DIRECTIONS OF FURTHER RESEARCH

We have studied certain classes of transformations
of parallel program schemas, in various ways related to the
concept of renaming. To do this, we have defined some
families of program schemas that were particularly suitable
for our investigation. The conditions under which our results
could be extended to other families of schemas remain to be
studied, and in many cases the extension is not straightforward.

Another area of study are the possible applications
of our theory. The most immediate application seems to be in
microprogramming. Most microprograms are made of register-to-
register transfers, together with computations of elementary
functions, and our schemas seem suitable to represent such
control structures. Application of our results on memory
economy to the design of microprograms could have some prac-
tical importance, since the number of registers available to
the microprogrammer is usually small. Similar remarks apply
to the techniques for increasing program parallelism.

Concerning research of longer range, the author
believes that the concepts of segment and area have applica-
tions that go far beyond the subjects investigated in this
thesis. Itkin [Itk] has recently shown the utility of these
concepts for solving a épecial case of the equivalence problem
of schemas, and one can expect further results in the same
general direction.

Finally, another application of the same concepts

163

can be seen in connection with a theory of data structures,
as presented by Rosenberg [Ros]. The whole subject of data
structures seems to be closely related to the subject of
renaming. One possible direction of research is the following.
In our thesis, we have considered a "one-state" memory, where
the values of all the variables are always accessible. It
seems possible to generalize such a concept to the concept of
a "memory automaton" in which each variable is capable of
several states, as: "accessible" (i.e. the variable's value
can be fetched), "available" (i.e. the variable is not
accessible, but holds some value and is capable of becoming
accessible), and "not available" (i.e., not holding any value).
In real-life computing systems, an accessible variable is a
variable in main memory, while an available variable is a
variable that is held in some kind of back-up memory (as drums,
disks, or similar). It is immediate that a variable m must
be accessible when an operation affecting m is executed,
and available when the control is in an area of m. In such
a theory, it would be possible to investigate properties of
structured memory systems, and such questions as whether a
given memory system is "adequate" for a certain program,
whether two memory systems are in some sense "equivalent",
and so on.

Another direction of further research has been
suggested in Section 5.4 and is a theory of dynamic memory
allocation. One could develop the kind of reasoning needed

for a formal treatment of the subject, and investigate the

164

amounts of memory needed by dynamic memory allocation

mechanisms under various conditions.

165
BIBLIOGRAPHY

[a&M] E.A. Ashcroft and Z. Manna, Formalization of
Properties of Parallel Programs, Machine Intelligence
6(1971), 17-41.

[A,M&P] E.A. Ashcroft, Z. Manna and A. Pnueli, Decidable
Properties of Monadic Functional Schemas, J. of the
Assoc. for Computing Machinery, 20(1973), 489-99.

[A,S&T] D.W. Anderson, F.J. Sparacio and R.M. Tomasulo,
Machine Philosophy and Instruction Handling, IBM

PO

Journal of Research and Development, 11(1967), 8-24.

[Buch] W. Buchholz, "Planning a Computer System", McGraw-
Hill, New York, 1962.

[Con] M.E. Conway, A Multiprocessor System Design,
Proceedings Fall Joint Computer Conf., 24(1963) ,139-46.

[Gri] D. Gries, "Compiler Construction for Digital Computers",
Wiley, New York, 1971.

[Itk] V.E. Itkin, Logiko-termal'naya Ekvivalentnost Schem
Programm, Kibernetika (1972), 5-28.

[Kell R.M. Keller, Parallel Program Schemata I and II,
J. of the Assoc. for Computing Machinery, 20(1973),
514-37 and 696-710.

[Knu] D.E. Knuth, "The Art of Computer Programming",
Vol.l, Addison Wesley, Reading, 1968.

[Kot] V.E. Kotov, Preobrazovaniye Operatornych Schem v
Asinchronnye Programmy, Akademiya Nauk SSSR,
Novosibirsk, 1971.

fR&M] R.M. Karp and R.E. Miller, Parallel Program Schemata .
J. of Computer and System Sciences, 2(1969), 147-95.

[Lav] Ss.S. Lavrov, Economy of Memory in Closed Operator
Schemes, U.S.S.R. Computational Mathematics and
Mathematical Physics 1 (1961), 810-28.

[Lor] H. Lorin, "Parallelism in Hardware and Software",
Prentice-Hall, Englewood Cliffs, 1972.

[Man] 7. Manna, The Correctness of Nondeterministic Programs,
Artificial Intelligence 1(1970), 1-26.

[Mar]

[Pat]

[P&H]

[Rin]

[Ros]

[S1u]

[Sto]

fwil]

[Yel]

[Ye2]

[Y&aL]

166

V.V. Martinyuk, On the Economical Distribution of
a Store, U.S.S.R. Computational Mathematics and Mathe-
matical Physics 2(1962), 469-81.

M.S. Paterson, Equivalence Problems in a Model of
Computation, MIT AI Lab. Memo N.211, 1970.

M.S. Paterson and C.E. Hewitt, Comparative
Schematology, MIT AI Lab. Memo No.201, 1970.

G. Ringel, Farbungsprobleme auf Flachen und Graphen,
Berlin, 1959.

A.L. Rosenberg, Data Graphs and Addressing Schemes,
J. of Computer and System Sciences 5(1971), 193-238.

D.R. Slutz, The Flow~Graph Schemata Model of Parallel
Computation, Project MAC, MIT, Doc. MAC-TR-53, 1968.

H.S. Stone, A Pipeline Push-down Stack Computer,
in: Hobbs (ed.), "Parallel Processor Systems,
Technologies and Applications", Spartan Books,
New York, 1970, 235-49.

T.C. Wilson, A Graph-Theoretical Approach to Some
Problems in Compiler Code Optimization, Report
CSRR 2069, University of Waterloo, 1972.

A.P. Yershov, Reduction of the Problem of Memory
Allocation in Programming to the Problem of Coloring
the Vertices of a Graph, Soviet Mathematics 3(1962),
163-65.

A.P. Yershov, "The Alpha Automatic Programming
System", Academic Press, New York, 1971.

A.P. Yershov and A.A. Lyapunov, Formalisation of
the Concept of Program, Cybernetics 3(1967), 35-49.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

