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A. Lindenmayer introduced in [3] a mathematical model for
developmental systems in biology. The simp1ést of these models were the
so-called OL systems discussed in [4]. The properties which distinguish
OL systems (and their generalisations) from the more common grammars of
formal language theory are:

(i) Each symbol in the alphabet appears on the left-hand side

of some production in the system;

(i) A step in a derivation is accomplished by applying in parallel

a production to each symbol in a string.

OL systems were generalised in [I0] to the so-called TOL systems
in which there are a number of tables of productions and each step in a
derivation uses productions from only one of these tables, In both OL
and TOL systems, no auxiliary (non-terminal) symbols were allowed. These
systems were genera1ised to EOL and ETOL'systems in[11] by allowing non-
terminal symbols. An equivalent definition of EOL systems, the so-called
FMOL systems, appeared independently in [2]. |

At the same time, the more classic parts of formal Tanguage
theory were being extended in [5)6,7] to define context-free and indexed
sets of terms (expressions) and to show that the derivation trees of a set
of context-free terms is always a recognizable (regular) set of terms over
a so-called derived alphabet. This resulted in the definition of a
hierarchy of string languages with regular, conteXt—free, and indexed sets

of strings as the first three steps.



The obvious questions to ask are:
(i) Can we generalise OL, TOL, EOL and ETOL systems to terms
(expressions)?
(ii) Can we then apply methods similar to those in [5:6,7] to obtain
hierarchies of string languages based on these biologically
motivated systems?
(i) What would be the relationship of these hierarchies to each

other and to the more classic hierarchy described in [5,6,7.1?

Thus we begin in section 1 by defining EOL systems (and OL
systems as a special case) over string alphabets. We then introduce many-
sorted alphabets (a generalisation of ranked alphabets) and many-sorted
algebras (a generalisation of algebras) as a setting for our generalisation.
Regular and cbntext—free grammars on many-sorted alphabets are introduced
and a theorem connecting them is stated. The classical hierarchy is then
introduced.

In section 2 we define EOL systems (and OL systems as a special
case) over many-sorted alphabets. We then state a series of results
which describe our hierarchies. In section 3 we summarise our results
and note possible extensions.

Note that we can define an automaton which accepts exactly the
language generated by an EOL system over a many-sorted alphabet. Unfortunately,
this automaton is not very illuminating for the purposes of this study and

a discussion of it {s thus omitted.



An EOL system G is a 4-tuple <Z,N,P,Z> where
(i) V=ZuNand £ n N = ¢;

(ii) Z is called the terminal alphabet;

(i11) N is called the non-terminal alphabet;
(iv) PcVxV"is called the set of Qroductions of G. P is a total
relation in V;
(v) Z is the axiom.
We define the relation T < V¥x V¥, called direct derivation,
as follows for w, w' ¢ V*: If w = Xg -+ X7 With X5 € V for 0 < j < n-1
and there exists Xj > V5 o€ P for 0 <j <n-1and w' =vg...v, 4, then
wE> w'. Let %> be the reflexive, transitive closure of - (We will
often omit the G from (g when the grammar intended is obvious). Define

the language generated by the EOL system G to be the set .

L(G) = {w € T*|Z = w}. L(G) is said to be an EOL language over 3. If N = ¢
we call G an OL grammar and L(G) an OL language. It is well known that the
class of OL languages over some alphabet £ is a proper subclass of the class
of EOL languages over Z. Also, the classes of OL and CF languages over I

are incomparable (as classes). On the other hand, the class of CF languages
over Z is a proper subclass of the class of EOL languages over I.

Let I be any set, called the set of sorts. A many-sorted alphabet Z

sorted by I is an indexed family of sets indexed by 1" x 1. That is

} Z is said to be finite if both I and the disjoint

=1z

<w,i> <w, 1> e I*x 1°

union of I are finite. (Note that string alphabets and the more common ranked



- alphabets are special cases of many-sorted alphabets). f ¢ L. i> is said

to be of type <w,i> argument sort (arity) w, (target) sort i, and rank £(w).

A symbol of type <A,i> (A is the empty string) is said to be a constant
(or nullary) symbol of sort i.

Example 1
A Z-algebra AZ (or just A if the a]phabet is obvious from the context)

is an indexed family of sets A = {Ai}ieI together with an indexed family of

assignments
) W
%, i> Tew,i> (A" > A)
. . W o_ v
from symbols in Z<w,i> to functions from A" = Awo XX Awn;] to Ai'

((AY Ai) is the set of functions from A¥ to Ai)' We commonly denote the

image of f ¢ L under o by f itself, unless the context is not

<w,i> <w,i>

obvious, in which case we use fA’ A is called the carrier of the algebra AZ‘

Let A and B be Z-algebras. A homomorphism y:A - B is an indexed

set of functions”{wi:Ai -> Bi}ieI which "preserve the structure" of the

algebra A. That is, for any f € I and (ao,...,an_1) e AY (i.e.

<w,i>

3y e ij for 0 < § < n-1),u:(fylag....0a, ) = fB(wwo(ao),...,wwn_](an_1))-
Monomorphisms, epimorphisms, isomorphisms, and endomorphisms are defined

in the obvious way.
Let X = {Xi}iel be any indexed family of sets. The indexed family

of sets of terms (or expressions or words) on the alphabet I and generators

X, denoted by WZ(X) = {(WZ(X))i}ieI’ is the least family of sets satisfying:



(00 X; vy 4 Mp00);s

. . w
(i) For each f « Z<w,i> and (tO""’tn—l) € (wz(x)) .

ftg.. .ty 1 € (M (X))s.

If each X; = ¢, we denote WZ({¢}ieI) by Ws. We can make Wy into a Z-algebra

(called the word algebra or algebra of expressions or totally free algebra)

by the assignment of operations to f ¢ Z<w i> @S follows:

fwz(x)(to,...,tn_]) = fto...tn_l.

Example 2

Let w = wb...wn_1 e I*. Consider the set {yO,wo"" }

’yn—1,wn_]

where Yi w. ¢ I and Yiw ¢ 2 forany 0 < i < n-1.

i 27

- - *
Let Yw = {yO,wo""’yn—l,wn_l} for some w = Woe oWy q € I™.

We say Yw is indexed by w. We can sdrt.Yw by I in the following way

(Yw)i ='{yj;i € lej < n}. We shall denote wz({(yw)i} ) by wz(vw).

iel
Theorem 1 (Fundamental Theorem of Algebra)

Let A be any Z-algebra, X any family of generators, and
Y o= {1111.}1.€I any indexed family of assignments'{wizxi > Ai}' Then ¥ extends

in a unique way to a homomorphism @:WZ(X) + A. In particular, there is a

unique homomorphism from wZ to A. D

We now proceed to define derived algebras and derived
alphabets. Suppose we are given t(sorted by I). Let D(I) ={<w,i>|w is the

arity of some f ¢« L and ¥ ¢ I}. That is, the set D(I) is just the subset



of I¥ x I with the first argument an arity of a symbol in . We use D(I)
to sort an alphabet D(X), called the derived alphabet of £, which is

defined in the following way:

(i) If fex then f «(D(Z)) That is, f is a nullary

<w,i> KN ,<W,i>>"
of type <A,<w,i>> in D(I);
(ii) For each w an arity of some symbol in I, &(w) = n > 0, let
J o -
&, E(D(Z)lx,<w,w 5> for w=wy...w. 5 and 1 < j=n. These

j-1
symbols are called projection symbols;

(iii) For each <w,v,i> ¢ 1¥ x I* x I, let

: . D(Z . sl
C<W,V,1> « (0 )L<W,1><v,wo>...<v,wn_]>,<v,1>>

These are called composition symbols. We define an algebra

D(wz), called the derijved algebra of I, as follows:

(i) The carrier of D(wz) of sort <w,i> ¢ D(I) is the set (WZ(XW))i.

That is, (D(W)) = (W (X))

<W,i>
(ii) The assignment of operations to D(Z) is done as foliows:

(a) Assign to c an operation of composition with first

<W,V,i»
argument of sort <w,i>, n arguments of sort <V,Wj> for 0 < j < n-1

and result of sort <v,i>;

(b) Assign to f ¢ (D(z)) ,» Where f e T the constant

<A, <w,i> <w,i>?

fx ceuX H
O,WO n':‘] ,wn_]
(c) Assign to da € (D(Z))<A WoW. 5> the operation of projection.
H] H '_]

That is, givenc, . jandt, « (D{W:)) oy . > TOT
2V J‘_] ] k
0 < k < n-1, then
Jj -
c<w,v,i>(6w’t0""’tn—1) - tj-]'



Example 3
Denote the unique homomorphism from wD(Z) to D(wz) by

YIELD:wD(Z) > D(NZ).
A context free grammar G over a many-sorted alphabet I
is a 4-tuple <Z,N,P,Z> such that:
(i) V=2uNand Z n N = ¢;

(i) 2 is called the terminal alphabet;

(iig) N is called the non-terminal alphabet;

(iv) P is a set of productions of the form A(XO’WO""’Xn-1’Wn_1) >t

where A ¢ N and t « (wv(xw))i;

<W,1>
(v) Z is the axiom.
Now we define the relation of direct derivation for a CFG G.
Let Subw(_;to,...,tn_]):WV(XW) > Wy be the(unique) homomorphism generated

by the assignments xpwj:xj’wj > tj for 0 < j < n-1. Intuitively, s TS
if s has a subterm of the form At,...t , and s' has a subterm of the form

Subw(t;to,...,tn_1) in its place.

Formally, < wv X WV as follows, for s,s' ¢ (wz)j, some j e I:
sz s' if and only if there exists a production in P, S ¢ (wv(xi))j
(with i being considered as the string of length one consisting of the

symbol 1), and (tps...st. o) e (W,)" such that
0 n-1 v

(i) Subi(s; Subw(Ax0 e Xo ] L tO""’tn—l)) =5
,WO n"]

and (ii) Subi(s; Subw(t; tO""’tn-1)) =35',



Let %» be the reflexive, transitive closure of T (We will
often omit the G if it is obvious from the context). The language generated
by a context-free grammar G = <Z,V,P,Z> is the indexed family of sets
} Such an L(G) is said to be context-free.

= ¢

» *
L(6) = {{t e (W;).|Z= t};}; 1

A context-free grammar G is said to be regular if N<w,1>

for w # A. That 1is, only constant (or nullary) non-terminals are allowed.

The set generated by a regular grammar is said to be a regular language.
It is well known that the class of regular languages over %

is a proper subclass of the class of context-free sets over I.

Example 4

The following fundamental theoren is proved in [6,7]:
Theorem 2

Let G be a context-free grammar over I. We can effectively find
a regular grammar G' over D(x) sdch that YIELD<}\,1.> (L(G')) = L(G)
(assuming L(G) = (W;),). Conversely, suppose G is a regular grammar over
D(z) and L(G) ¢ (WD(i))<A,i>’ some i € I, then we can effectively find a

context-free grammar G' over I such that YIELD (L(c)) = L(G"). 0

<A,i>
kExamE]e 5

We will usually omit the subscript <i,i> from YIELD , . for

convenience of notation. Let I be a string alphabet and let pD"(z) (the

n-th derived alphabet of Z) be defined recursively by DO(Z) = I

and D”+](z) = D(d"(z)). Let REG" be the class of recognizable sets over



-9 -

p"(z) and let YIELDn:Nn - D“(wz) be the unique homomorphism from the

D(x)
word algebra over D"(z) to the n-th derived algebra of wz (defined

recursively hy DO( WZ) = Wy and D"+](wz) = D(Dn(wz))). We define the
operator Y as a map from any class of languages over D"(Z) (for any
n > 0) to the class of languages over I as follows: Given U, a class of
languages over D"(z), Y(U) = {YIELD"(L)IL e U}. Thus Y(U) is always a
class of string languages.

ok In [6] and [9] it is shown that the language
{azl;j/ n-times |k = Q} is in Y(REG"+]) but not in Y(REG") for n > 1.
Using this fact and Theorem 2, we can prove the following important result:
Theorem 3 (Hierarchy)

n+T) forn 2> 1.

Y(REG") is a proper subclass of Y(REG
Corollary Let CF" be the class of context-free sets over D"(Z).

Then Y(CF") is a proper subclass of Y(CF"+]) for n = 1. B

Let © be a many-sorted alphabet. We define an EOL system G to be
a 4-tuple <Z,N,P,Z> where:
(i) V=NuZI,NnZ-=d;

(ii) z is the terminal alphabet;
(iii) N is the non-terminal alphabet;

(iv) P is a set of productions of the form A(XO,wo""’xn—l,wn_]) >t
where A e N_ . and t e W,(X );. For each <w,i> ¢ I" x I and
each A ¢ V<w;i>’ there is (are) some pro?uction(s) in P with |
left-hand side A(XO,wo"“’xn§1,wn_]);
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(v) Z is the axiom.

Note that we defined an EOL system so that for every element of
the alphabet V, there is a production in P with that element on the left-
hand side. This property is called completeness and along with the
difference in the definition of derivation, it distinguishes EOL systems
from context-free grammars.

We define the relation of direct derivation T < wv x wv as
follows for t, t' e (Wz)i (some i € I):t Pt' if and only if t' = 5<x’1>(t)
where ¢ is the endomorphism on D(wz) generated by the following assign-

ments: For each symbol in t, say f ¢ V there is some

<y,j>

]) +s in P for s ¢ (wz(xw))j. Let o, (f) = s.

f(xo,wo""’xn—l,wn_ w,Jj>
The assignments to symbols not appearing in t can be chosen arbitrarily.
Intuitively, we are replacing each symbol in an expression t by
the corresponding right-hand side of a production in P. Moreover, as in
the string case, we are performing these replacements in parallel. That is,
all symbols in t are replaced at the same time.
Because the endomorphism is generated by certain assignments, it
is evaluated in a consfructive way. If we consider a tree corresponding
to some term, its image under é is found by first finding the image of
the leaves (from the assignments), then finding the images of the direct
ancestors of the leaves and attaching the images of the leaves to them and so

on. As a result, we can simulate the derivation by the following "bottom-

up" algorithm:
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Cbnsider a tree corresponding to the expression t, which we
will again call t. Mark each symbol with its level in the tree starting
with 0 for the root, 1 for the direct descendent of the root, etc. Thus
the highest Tabel which can appear at some node of the tree, say k, will

be exactly the depth of the tree. For m = k, k-1,...,0 perform the

following operation, starting at tk = t:

(o) For each node of t" at depth m, say f ¢ V<w > with subtrees

Ca X );to,...,t
n"] ,wn_]

"xn-1,w ) - s is in P.
n-1 0

Moreover, all nodes at depth m will be replaced in paraliel. Then t~ = t'.

1)

ty < (wv)WZ for 0 < & < n-1, replace SUbw(f(XO,w - n-

in t by Subw(s;to,...,tn_1) where f(XO,wo"'

Example 6

Let %> be the reflexive transitive closure of z>. (We will
again omit the G when the system we mean is obvious). The EOL language
generated by the system G = <Z,N,P,Z> is the indexed family of sets
L(G) = {{t « (wz)ilz = t}i}TeI' If N =¢, we call G an OL system and
L(G) an OL language. Note that, although we have defined EOL systems
requiring the property of completeness, this was not in fact necessary.
We used this definition so that OL systems would be a special case of EOL
systems. It can easily be shown that if we do not require comp]eteness
for OL systems, we get a class of OL languages which is not the same as that

defined above,
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Theorem 4

Let Z be a many-sorted alphabet. The class of OL languages
over I is incomparable to the class of CF languages over I.
Proof Consider the one-sorted alphabet & with one binary symbol x and
two nullary symbols a, b. Let L = {a,xab,xba}. Then any OL system |
G = <I,0,P,Z> will have to have one of a, xab, or xba as axiom. Suppose
the axiom is a. Then a - xab (or, symmetrically a - xba) must be in P.
But then a, xab, xxabb, xxxabbb, etc. are all in L, a contradiction
to our definition of L, Suppose xab is the axiom. Then the only way to
get a in L is to have xzy -~ z (applied to the axiom to give a) or a similar
production in P. In any case, applying this production to xba (which we
must be able to do because of the completeness condition) will give us b e L.
This again is a contradiction. Now L is obviously a context-free set (since
it is finite) but it is not an OL language.

On the other hand, we know from [7] that the YIELD of the OL
language of Example 6 is L' 5'{a§2n|n > 0}. We also know from [7] that
L' is not the YIELD of any CF language over any many-sorted alphabet
(although {aznln > 0} is). Thus the classes of CF and OL languages are
incomparable. . O
Theorem 5

The classes of OL languages and CF languages over I are both
proper subclasses of the class of EOL languages over I.
Proof ‘The fact that every OL Tanguage is an EOL Tanguage follows trivially

from the definition of OL systems.
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Let G = <Z,N,P,Z> be a CF grammar. Consider the EOL system
) >
n-1
for all <w,i> ¢ I* x I}. It can easily

G' = <z,N,P',Z> where P' = Pu {a(xo;wo,...,xn_]’w

a(Xg . seeesX J]a eV
O,WO n«],wn_1

<W,i>
be shown that L(G') = L(G). Thus every CF language is an EOL language.

The fact that the inclusions are proper follows from the previous
theorem, g

Consider some string alphabet £ and D"(Z) (the n-th derived alphabet
of ) for n > 0. Let EOL” and OL" be the class of EOL and OL languages,
respectively, over the alphabet Dn(Z). Using the definition of the
operator Y given after Theorem 2, we prove:
Theorem 6

The classes Y(CF") and Y{OL") are incomparable.

Proof Again, we have that there are some finite sets in Y(CFn) but not

in Y(oL") for any n. On the other hand, we know from [7] and [12].that
2 2

L = az;;f/ n times|k = 0} is 1in Y(CF") but L' = {az;;/ n+1 times‘k > 0}
is not. But L' is in Y(OL") because we can construct the appropriate'system
over D"(z) using a technique similar to that used in Example 6. This then
proves our theorem.
Corollary (o) Y(OL") is a proper subclass of Y(EOL");

(i) Y(CF") is a proper subclass of Y(EOL").

Proof Follows trivially from definitions and the above theorem. 0
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Before we prove our next (and final) result, we will introduce
the concept of indexed grammar on trees [8]. This is a simple generalisa-
tion of indexed grammars on strings [1]. The definition was motivated
by [9] where indexed grammars on strings were generalised to generate
any language in Y(REG") for any n > 0.

An indexed grammar G over a many-sorted alphabet I is a 5-tuple

<Z,N,F,P,Z> such that:
(i) NnZ=¢, V=Nu2I;

(i) I is the terminal alphabet;
(iii) N is the non-terminal alphabet; .
(iv) F is a finite set each element of which is a finite set of ordered

) >t for A e N
n-1

and t ¢ (WV(Xw))i’ An element f ¢ F is called an index or flag;

pairs of the form A(x0

ceesX .
,wo’ **n-1,w <W,i>

) >t

(v) P is a set of productions of the form A(x
: ' n-1

geeesX
0,wO n-1,w

where A ¢ N and t ¢ (NV;F(Xw))i;

<W,i>
(vi) Z is the axiom.
WV_F(XW) is the word algebra over the alphabet V;F which is
defined as follows:
(1) £ < V;F and
.. . *
(ii) For each <w,i> and A ¢ N<w,i>’ (F7,A) < (V;F)<W’1>.
(We will write (A,A) as A). So WV,F(XW) is Tike wv(xw) except that nodes
labelled by non-terminals are replaced by pairs which are made up of a

string of flags and a non-terminal. Elements of‘M;F have the type of the

corresponding symbol in V.
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Direct derivation = ¢ NV‘FXNV'F is defined as follows:
G s Y

(1) IF &= subyLsisub Ly A (xg V3tgen sty 1]

o Xn-w

: *

Yk
(0<ksn-l), te (WV;F)j and A(xo’wo, "’Xn-l,wn_]) + U ¢ P then
t__ !
a—>t

if and only if t' = Sub.[s;Sub [u';ty,...,t, 1] where u' is
obtained from u by left-concatenating y onto each first element

of the pairs V;F-I which appear in u;

(1) IF & = Suby[siSubLYFA) (xgy aeeeX gy Jitgereesty 1]

)

(symbols have meaning as above with f ¢ F) and A(xO W
’ n-1

oo 9X
,O, ’n-],W

-+ u is in f then

t =t
G

if and only if t' = Subi[s;Subw[(y,u');tO,...,tn_]]] where
u' e (WV;F(Xw))i is obtained from (wv(xw))i by replacing each
non-terminal B of u by (y,B).

%> is the reflexive, transitive closure of T The language generated by

an indexed grammar G = <I,N,F,P,Z> is the indexed family of sets

L(G) = {{t e (wz)ilz %9 t}i}iel' Such an L{G) is said to beﬁindexed.

Example 7

Lemma 1 (See [8]): Let G be an indexed grammar over L. We can effectively

find a context free grammar G' over D(I) such that YIELD(L(G')) = L(G).
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Conversely, suppose G is a context free grammar over D(Z) and
L(G) < {(WD(Z))<A,1>}161’ then we can effectively find an indexed grammar
G' over £ such that {YIELD<>\,1.>(L(G))}1.EI = L(G'). 0

Let IX" be the class of indexed languages over D"(Z). We then

have the following corollaries to Theorem 3:

Corollary  Y(IX") is a proper subclass of Y(IX"+]) forn > 1.
corollary  Y(IX") = Y(cF™") = Y(REG™?) for n 2 1. O

We are now ready to prove our final result:

Theorem 7.  Y(EOL") is a proper subclass of Y(CF"+]) for all n > 1.
(The fact that EOL is a proper subclass of Y(CF]) is proved in [1]]).‘
Proof- By the above corollaries,to prove inclusion it is Sufficieht
to show that, given any EoL" grammar G = <Dn(2),N,P,Z>, we can effectively
find an I1X" grammar 6' = <D"(z),N',F,P',Z'> such that L(G) = L(G').
So, given G, define G' as follows:

(i) N' = Nu {Z'} where Z' is of the same type(s) as Z;

(i) F = {f,g} where f is those productions in P which have some
non-terminal on the right (the so-called non-terminal productions)
and g is those productions in P which have no non-terminal on
the right (the so-called terminal productions);

(ii1) P' = {Z' » (g9,2),Z > (f,Z)}.

* *
Thus we get Z' ol (gfn,Z) E? t as a derivation in G'. The f is used
to simulate an n-step parallel derivation using only non-terminal productions

(since the ﬁn goes in front of each non-terminal appearing in any expression
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derived from Z). g is then used to simulate the final (parallel) switch
to terminal symbols. (Note that we are using the version of EOL grammars"
which do not require productions involving terminal symbols on the left of
productions). It should be clear that Z' %? t if and only if Z %» t and
that L(6) = L(&"). |

For the proof of proper inclusion, the reader is referred to [2].

The extensions of the above theory to TOL and ETOL systems over
many-sorted alphabets is stradghtforward. We can integrate these
extensions with the above results in the following diagram (where ToL"

and ETOL" have the obvious definitions):

.
»
‘

Y(ETOL?) -

Y(EOL]; FK\\\\\\\~ Y(%OLZ)
Y(CFTZ) \ Y(I)Lz)

Y(ETOL')

n

Y(EOL') y(toL")

1

Y(cF) voL

f

ETOL

/[\

EOL . 10L

TN

CF - oL
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In the diagram, a class L is a proper subclass of a class L'
if and only if there is a directed path from L to L'. Otherwise, L and L'
are incomparable. So, for instance, y(oL™) and Y(CF") are incomparable
but are both proper subclasses of Y(EOL"), for any n = 0. Similarly,
Y(ToL") and Y(EOL™) are incomparable but both proper subclasses of Y(ETOL"),
for any n =2 0,

Note that we need not have started with a string alphabet Z.
We could start with any (finite) many-sorted alphabet Z. In this case,
our diagram would represent a hierarchy of term ]anguéges.

We conjecture that ) EOL" are closed under all the AFL

operations except inverse homomorphism.
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Example 1
Let I = 10,1}, 2, 4, = Al 2y 4, = fat, 299,05 = {x1,

Z<]1’1> = {+}. Then I is a many-sorted alphabet. A and a are nullaries
of sorts 0 and 1, respectively. * is of type <10,0>, arity (argument sort)
10, (target) sort 0, and rank 2(10) = 2. + is of type <11,1>, arity 11,
sort 1 and rank 2. i
Example 2
Given the alphabet of Example 1 and the family of generators XO = ¢

and X; = {x}, we have (WZ(X))0 = {\,*a),*x)\,*+aa) , *+axh , *+xad , *+xx\, *+ataakr,etc.}

and (WZ(X))I = {a,x,taa,+ax,+xa,+xx,+ataa,etc.}. 0

Example 3
Consider the alphabet I of Example 1. The derived algebra of W,

D(WZ), is obtained as follows:

(i)  The sorting set is D(I) = {<x,0>,<1,1>,<10,0>,<10,1>,<11,0>,<11,1>};

(i) The indexed set of operator symbols is
D£§2<A,o>> =4{A}’D£§Z<A,1>> = {al,
D£§Z<10,O>> ='{6$0’*}’D£§2<10,1>> = {6}0}’
P£§2<11,0>> = 02 001 155 = (875877540 and
ce DSE&,i><v,wo>...<v,wn_1>,<v,1>> for each (w,v,i) ¢

(z)
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(ii1) Let X, = {y]’o} and X] ={x0’],x]’],y0’]} be a family of

generators indexed by I. Then the element of the carrier of D(wz)
of sort <)\,0> is the set (wz)o, the element of sort <i,1>
is (WZ)T’ the element of sort <10,0> is wz({y0,1’y1,0})0’ the
element of sort <10,1> is wz({y0 127 o})y» the element of sort
<11,0> is w:({xo’],x]’]})o and the element of sort {11,1}

(iv) A, a, *, + name the constants X, a, *yo,]y]’o, * X0.199,1

. )
respectively. . ( . .
Spectively. Coyv,i> © D<<w,1><v,wo>...<v,wn_]>,<v,1>>

is assigned the operation of composition described previously.

Gi+] (0 < j < n-1) is assigned the following operation:

_ W
If (tgs...oty 1) e UL(X )" and C<w,v,wj> €
(x) j+l
D , then ¢ (627 sths. ot 1) = t.
<<w,wj><vtw0>...<v,wn_1>,<v,wj>> <w,v,wj> W 0 n-1 :
That is, 6a+] 'chooses' the (j+1)st element in the 1ist tgse ooty g O
Example 4
Consider the context-free grammar G = <Z,N,P,Z> where:
(i) I is as in Example 1;
(1) Ny g, = 1Z,LF, Npyqy = {ACH, Ng gy = {B,DY, Ngg o, = ()

(iidi) P={Z~>S(A,L), Z+S{C,L), C~» B(A), S(x,y) + *xy,

B(x) - B(D(x)), B(x) » +xx, D(x) » +xx, A+~ a, L > A}.
Then L(G) = {{*aX,*+aa),*++aataar,etc.},¢}. If we add Z to N<>\’]> and
Z~+a, Z~B(A) to P (and so get a new grammar G') we get

L(G') = {{*ax,*+aa),*++aataa\, etc.},{a,taa,++aataa,etc.}}. 0
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Example 5

Consider the grammar G = <I,N,P,Z> of Example 4. We will

<D(z),D(N),P',Z'> as follows:

n

construct the regular grammar G'
(i) D(I) = {<A,0>,<A,1>,<1,0>,<1,1>,<10,0>,<10,1>,<11,0>,<11,1>}.
(1) (O 0os = PHZNL'Ys |
(D(V))<A,<X,1>> = {a,A",C'h
(D(V))q’d,o>> = ¢3

— 1 1 i .
(D(V))<A,<1,]>> - {(3<]>’B D'};

(OO 10,005 = 18L1052%58' )5

(D(V))<A,<10,1>> = {6110>};

(D(v))<k,<]],0>> = 93

(D(V))<A,<1],1>> = {dl]]>’6311>’+};
(D(V))<<w,1><v,w > VW 2>,<V, 05> {C<stai>}

0 n-1"°?

for each {(w,v,i) ¢ {1,10,11} x {1,1,10,11} x I.
(i11)  P'is: Z' > cqqy 0xS'A'L"
Zl > C<-|0 A O>s|C|L|
Sl > C *a] 62
<10,10,0> “<10>"<10>
1 1
<]>6<]>
1 1
<]>6<]>

B' » + &

€a1,1,1>

D' >cqr,1,15 F 8

At -+ a

L' > A.
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An example of a derivation is:

yA E? C<1O,A,0>StAILl
=> C c *6] 62 AtL!
G* “<10,2,0>"<10,10,0> “<10><10>
z, c c *81 62 ar(= t)
G' <10,A,0>"<10,10,0> “<10>°<10> R
It can be seen that YIELD<X’O>(t) = *3), O

Example 6
Consider the alphabet I of Example 1. We define the EOL system

G = <z,N,P,Z> as follows:

(1) N<w,i> = ¢ for all <w,i> ¢ I* x I;
(i1) P is: *xy - *xy,
+Xy > HEXYHXY,
a~a,
A+
(ii1) The axiom is Z = *+aa).

Thus *+aax is in L(G) (by the reflexivity of %»). Consider the following
tree corresponding to *+aal (with the levels of nodes numbered as in the
algorithm:

* 0

//,z‘\\\\

+,1 A1

PN

‘a;2‘ a,2
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Applying the first step in our algorithm, using the production a + a,

we get:

(We drop the label indicating the level when a production has been applied
to that node). Now we use +xy - +xy+xy (with x =y = a) and A > X\ at

Tevel 1 to get: . pld

VAN
ONTON

Finally, we apply *xy -+ *xy to the root to get: (We have renumbered the nodes

in readiness for thg next step in ;reoderivation).
N
Al
/\
+,2 +,2
7NN\
a,3

a,3 a,3 ,

3
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Thus *+aax = *+taa+aal.

We start again and get at the first step:

\
N7

AN

+ f////Qi\} 1
SN/
N 7N N
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We then get: *,0

,,,//””’//”/” s\\\\\\\\\\“\\\~

+ +

/\ /\ /\

AVAY /\/\ /\\ /

a

|
\

a

A
\a

We leave out the last step, as it leayes the tree unchanged. Thus
*++aa+aal I *++++aat+aa+taataatt+taataattaataar. The YIELD of these
expressions (consfdering L to be the derived alphabet of the string alphabet
{a} (with X the empty string)) is the set'{azznln > 0}.

Note that G is actually an OL system. 0
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Example 7
Let G = <Z,N,F,P,Z> where

(i) V is a one-sorted (i.e. ranked) alphabet such that Zg = {a},
I, = {t}, N0;= {2}, Ny = {B};
(i1) F = {f,g} where
f = {B(x) - B(B(x))}
and g = {B(x) » +xx};

(i11) P = {s > (g,B)(a),B(x) » (f,B(x))}.
Z# (9,8)(a)

(gff,B)(a)

of *

e (gf,B)((gf,B)(a))

& (af,B)((g,B)((g,B)(a)))

%» (gf,B) (++aataa)

3 (9,8)((g,B)(++aa+aa))
& Qs

F> tHHraataattaataatttaataattaataa.
oN
Y(L(G)) is seen to be {a® [n = 0} which is not an indexed set of strings). [
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