A HIGH-LEVEL, VARIABLE-FREE CALCULUS
FOR RECURSIVE PROGRAMMING

by
Bui-Ngoc Duong
Research Report CS-74-03

Department of Applied Analysis and
Computer Science

University of Waterloo
Waterloo, Ontario, Canada

March, 1974

ii

Acknowledgements

The Author wishes to thank Prof, Edward A. Ashcroft for the
constant encouragements and guidance. He wishes also to thank
Dr. T.S.E. Maibaum, Prof, Herbert Egli and Prof. Garrett Birkhoff
for the helpfull discussions and critics,

The material support for this research comes from The Canada
Council., The splendid typing of the report is done by Mrs. M. Wang
and Mrs., E. Huang.

II.

ITI.

IV.

VI.

CONTENTS

ABSTRACT AND INTRODUCTION

THE CALCULUS

CONSTRUCTION OF A MODEL FOR THE CALCULUS

CHURCH-ROSSER PROPERTY AND NORMAL REDUCTION METHOD

AN EXTENSION OF THE CALCULUS

AN EXPERIMENT WITH MACRO-DEFINITIONS

CONCLUSION.

58

69

73

0. ABSTRACT AND INTRODUCTION

A typeless calculus together with its model is presented
which we claim gives us the ability:
i) to specify fhe semantics of Algol-Tike languages in a way

that unifies Scott's method and interpreter methods.

i1) to formalize proofs of assertions about programs and make such
proofs manageable, not only for machine checking but also for
humans to understand and to devise them.

iii) to make algebraic correctness proofs of compilers for languages
allowing recursive procedures and features such as call by name.

Until now, rigorous correctness proofs for compilers are avail-

able only for simple languages (F. Lockwood Morris).

The calculus originates from the recent analysis of derived
operations of universal algebras by T. S. E. Maibaum, but is reformu-
lated to take advantage of Scott's theory of computation. The result
is a calculus whose well formed expressions (w.f.e.) can behave both as
a function and as a scalar. In the formulation of functions no use is
made of the usual notion of variables. Hence there is no need for the
machinery of A-abstraction, variable-binding, renaming and argument
substitution as happens in Church's XA-calculus. Yet, unlike Curry's
“low Tevel" combinatory logic, the w.f.e!s of our "high level" calculus
Took like direct transliterations of Algol-like programs. The calculus
appears to combine the advantages of A-calculus and combinatory logic.

A model for the calculus is exhibited in which all well
formed expressions have meaning and all reduction rules preserve the

meaning of the w.f.e.'s on which they operate. The calculus is then

proved to have the so-called Church-Rosser property, thus its consistency
as a symbol-manipulation system is ensured. Also exhibited is a "safest"
reduction method which corresponds intuitively to passing parameters

by name.

I. THE CALCULUS

Introduction:

Our calculus can be viewed as an intermediate language between
machines languages and Algol-like ones. Compared to the lasts, it has
the same ability to express recursive programs, yet can also be used to
formulate proofs of assertions about programs. Compared to machines
languages, our calculus is more precise (i.e. more mathematical), yet

still 1is mechanically interpretable.

Basic symbols:

1) The integer numerals: 0, 1, -1, 2, -2, ...
2) Truth value symbols: true, false.
3) Arithmetic operators and predicates: add, sub, mult, div, eq,
greater, less, ...
4) Selector operators: S1s Sps Sz -
Conditional operator: if
Fix point operator: Y
Composition operator: C
Application operator: eval

Constant operator: K.

Well formed expressions:

1) Each basic symbol is a w.f.e.

2) If Ay, A s A (n=2) are w.f.e.'s then A]HAZ, veos Ad

12 722 e n
is a w.f.e.

3) There are no other kinds of w.f.e.'s.

Axiom schemas:

Let A], A2, cees B], BZ’ ... bew.f.e.'s and
N], N2, ... be integer numerals.
1) For 1=1,2,3,... and p =i
51[A1,---,Apﬂ = A1
2) C[A1’Az""’ApE[Bl’BZ""’BqB
= A][AZ[B],Bz,...,Bq],..,Ap[B1,Bz,...,Bq]] p=2,3,...3 9=1,2,...

3) Y[A]]] = A][Y[A]]]Il

4) if [true, A1, Azﬂ = A]

if [false, Ays Azﬂ = A,

5) eval EA],AZ,...,Ap] = A]EAZ,...,A 1 p=2,3,...

p

1,2,...

O
]

6) KIA;J[By.Bys... B0 = A,

q
7) add [N;,N,] = Ny

whenever N3 is the sum numeral of the numerals N] and N2.

(plus similar axiom schemas for sub, mult, div).

8) eq [N],NZB = true whenever N] is the same numeral as N2.
eq [N],Nzﬂ = false whenever N; s not the same numeral as N,.

(plus similar axiom schemas for greater, Tess, ved).

9) N][A],AZ,...,AP]=N] p =1,2,...
true [A1’A2""’Ap] = true

false [A],Az,...,Apﬂ = false

Abbreviation:

For any w.f.e. A
A stands for K[A]

Inference rules:

Let A], A2, cees B], BZ’ ... bew.f.e.'s.

1) From Ay = A, infer

A]EB],BZ,...,BP] = A2[31’BZ""’Bp]' r =1
2) From Ay = A, infer
B'III..., .o]=B-I[[..o,A2’.-.]Io

A
12"
T—-(same p]ace)-:T

3) From Ay = A, and A, = Ag infer Ay = A; .

From A] A2 infer A2 = A] .

Reduction rules:

1) A reduction rule is obtained by replacing the equality

sign "=" in each axiom by an arrow "-".

2) There are no other kinds of reduction rules.

Examples of w.f.e.'s and reductions:

1) The function f of two variables,where

f(x, y) = (x = y)/{x - y)

2)

3)

can be denoted by the w.f.e.:
Cldiv, mult, sub].

Let's compute f(5,3):

Cldiv,mult,sub][5,3] = div[mult[5,3],sub[5,3]] - A2
= div[15,2] - A7
=7 . 0 - A7

The functional T of the binary function variable F, where:

T{F)(x,y) = F(xxy,x)
can be denoted by the w.f.e.:
clc, s> mult, EHB .

Now t(f), for f 1in the previous example, can be computed

as follows:

clc, Sy» muTt, EH]ECKdiv, mult, subj]

= C[C[div,mult, sub], mult, 51].] - A2,A4

The Tast w.f.e. is a reasonably compact denotation for the
resulting function <t(f) (which would otherwise have to be
found by cumbersome substitution) i.e.

T(F)(X,y) = ((xxy)xx)/{({xxy)-y) .

Consider the well known recursive definition:

F(x) <= if x =1 then 1 else x x F(x-1).

The second member, considered as a functional of the variable
F, can be denoted by the w.f.e.:
C[[C,'IT'F,C[C,E-CI,S_-I,]],-I 9C|IC3mu-lts-s-'| 9Cl[CaS'| acﬂcsmsqs]:ﬂ]:ﬂ]'

Let's call this w.f.e. .

The w.f.e. Y[t] then represents the function g denoted by

the above recursive definition.

Now consider the Algol-like program:
begin F(x) <=if x =1 then 1 else x = F(x-1); F(2)
end.

This program can be denoted by the following w.f.e.:
Cleval,Y,2][]

Let's "run" the program:

Cleval,Y,2][t]
= eval[Y[z],2] - A2,A9
= Y[<][2] - A5
= t[v[<]1[2] - A3
= C[if,C[eq,s],1],1,C[mu1t,s1,CEYET],
Clsub,s,11111[2] - A2,A9,A6
= ifleql2,11,1,mult[2,Y[t][subl2,1111] - A2
= if [false,1,mult[2,Y[t1[11]] - A7,A8
= muTt[2,<[Y[<]101]] - A4,A3
= mu1tﬂ2,C[if,CEeq,s],1],1,CEmu]t,s],
CLY[t],Clsub,s;, 111111111 - A2,A9
= mult[2,ifleq[1,1],1,multf1,Y[c][sub[-1,1]1111] - A2,A9,A6
= mult[2,if[true,1,mult [1,Y[t][subf-1,1]}]111] - A8
= mult[2,1] - A4
=2. - A7

a

This is a reasonably short completely formal proof that the

running of the program yields 2 as the result.

II. CONSTRUCTION OF A MODEL FOR THE CALCULUS

Introduction:

We construct a complete lattice D_ such that D is isomorphic
to the lattice of all continuous functions with value in D_ and having

an arbitrary number of arguments in D_. Then, using a simple interpreta-

tion rule, we assign an element (i.e. a "meaning") of D_ to each w.f.e.
of our calculus. This interpretation is such that every reduction rule of
the calculus preserves the meanings of the w.f.e's on which it operates.
When compared to known constructions of models for the
Lambda-calculus (by D. Scott), our construction differs only in the
fact that we consider functions of an arbitrary number of arguments,
instead of functions of only one argument.
Yet the resulting lattice D_ 1is shown to possess a much richer
algebraic structure, useful for specifying the semantics of programming
languages.

Most of the terminology is borrowed and many of the proofs are

adapted from [JR]. (i.e. the proofs marked with)%

Definition 1:

Let D be any complete lattice. We define p* to be the

Tattice

where D' is the usual 1Eb cartesian power of D (D1 is a complete
lattice: [JR] p.69). A1l elements (vectors) of D+, except T . and

D

L, » will be denoted by
D

Ay eees A

It must be understood that Qps eees 2, belongs to the sublattice

' of p'.

Definition 2:

Let D and D' be complete lattices. By D = D' we denote
the lattice of all continuous functions from D to D'. The partial

order of D - D' 1is defined to be the pointwise induced order.

Proposition 1:

Let D be any complete lattice then D¥ s a comp]eté’]attice.
Proof: See [JR] p.75.]

Proposition 2:

Let D and D' be complete lattices then D > D' (i.e. the
set of all continuous functions from D to D') is also a complete lattice.

Moreover, for all F < D > D'

(UF)(x) = IO{f(x) | f e F} .
Proof: See [JR] p.16. O

Definition 3:

Let feR > Q

geS >R

where Q, R, S are complete lattices, by f v g we mean a function
from S+ to Q@ such that

1) [f v glkap...oap) = fl<glag)s....9(ap)>)

for all <a1,...,ap> € S+.

2) [fv g](Ts+) = f(E+) and [fv 9](L5+) = f(LR+).

Proposition 3:

1) fvgeS s
2) fuv Ip=f (IR is the identity function on R).

3) If he T+ S where T is another complete lattice then:

[fvglvh=Ffv[goh]e T & Q.
4) If ke Q> P where P is another complete lattice then:
ko [fvgl=I[kof]lvag.

5) f vg is continuous in f and in q.

Proof:

1) Suppose X c S+ directed and contain two vectors of different

lengths,

<a1, veos ap> and <b],,..., bq>

with p # q, then X must contain T _ . Thus the set

S

{[f vgllv) | veX} must contain [fV g](TS+) = f(TR+).

Therefore:

f(TR+) ={[f v gllv) | veXt.

On the other hand we have:
[F v g1 = [F v g1(r) = £(r) .

Hence
[f v g](X)

I{[f v gl(v) | v eX}.

10

11

Suppose all elements of X (except possibly + and 1t +)
of same length: Obvious. S >
2), 3), 4), and 5): Obvious. O
Definition 4:
Let D and D' be complete lattices, and
¢ e D »D'
Y eD'>D.
We write D ¢%? D' whenever
Yoo =Ij
b o P E'ID..
Definition 5:
An infinite sequence of complete lattices DO’ D], ..., and

continuous functions g ¢], ... and wo, w], ... such that

D0 < D1 < Dz <

is called a retraction sequence.

Definition 6:

The completion of a retraction sequence

bty 109
Dp = Dy =

is the partially ordered set D_ of infinite sequences:

D,, = {<XgsXqse-e> | (¥n = 0)xn eD and x = wn(xn+])}

where x E y 1iff, for all n >0
D
the hEﬂ component of x E the nEb-component of y.

Dy

Proposition 4.

The completion of a retraction sequence is a complete lattice.

Proof: See [JR] p.93.

Definition 7:

bgoVp 970¥

Let Dy % Dy £ .. be a retraction sequence.

~

Let emn € Dm > Dn be the function such that:

m<n q)n_-l © 4o od)m
If m=n then emn = ID
m
m>n

i Yo e o U

Obviously @ . are continuous [JR] .

Proposition 5:

1) On ° Okm = Okn Whenever m > k or m=n.

o =
2) emn ekm ekn ' 5 .9
mn® >~ nm

3) When m=<n then D < D .

Proof: See [JR] p.92.

Definition 8:

Let aneDn-*D .
ewn € Doo > Dn and
6, €D, ~>D be the functions
such that

6 (x) = <en0(x), en](x), ce>

O

12

13

ewn(x) = The nE-I'l component of the vector x
6. (x)=x.
Proposition 6
enoo > emn and ©__ are continuous and the proposition 5

remains true when free occurrences of the subscripts are permitted to

take on « as well as integer values.

Proof: (For the continuity of Ope > Qoo @Nd O see [JR] p.96)

1)
i) Suppose m # =, k # o and n # «: OQObvious. - P5

ii) Suppose m =k or m = n: Obvious.
iii) Suppose m = « :

We have

On ° Oke = kn

because

ekm(x)==<ek0(x), ek](x), Vel > - D8
implies

(80 © Bgood (X) = B (%) .

jv) Suppose n=o, k#e, m#e and m> k:
We have
O ° Okm = Okeo
because

[0 © Opmd (X) = <B4 (0 (X)) €5 (8)(x))s .. > - D8

Mee

= <6k](x), ekZ(X)’ vl > - P5

= ekm(x) . - D8

2)

v)

ii)

iii)

Suppose k =, m# », n#w and m>n:

We have
Oon (X) = 0 (6, 1117 (X))
= 0y W (B (X))
= [0y © Yy © oo © Y18 (X))
= (6, ° O pl(X) .
Therefore
0 °c 9 =0

mn om oon °

Suppose m >h or m >k : Obvious by 1).

Suppose n =®, m#»«, k#o and m< k :

We have

o =
emw ekm —'ekw

because
(60 © Opd(X) = <6 4 (8 (x)5 8 5(8) (x), ...
2 <0 1(x)s 85(x), ... >
Eo0,(x) .

Suppose k =©, m# o, n# o and m<n :
We have
O (%) = ¥ (0, 1y (D)

= [Kbm ° wm,,] ° . ° wn_]](ewn(x))

6. (6 _(x)) .

nm' oo

- D8

- D7

- P5

- D8

- D8

- D7

14

<ewo(x), ew](x), cees ewn(x), el >

) .

Hence
% © O%m = %mn ° ®m ° O
=
=R
3) Obvious.
Proposition 7:
1) {84, ° 8oy | n=0,1,2...} is a directed sequence
(i.e. 800 ° Ooon 59n+1,m 0 em’n_l_] for n = 0,1,2...
2) 1I 6 o 8__ = the identity function on D
n=0 neo oof} [os)
Proof :
1) B ° Cean = Opeo ° enﬂ’n ° em’n+1
= Oni1,0 ° Fnontl © Optin O, nt1
= en+1,oo ° en+1,n+1 ° eoo,n+1
5 en+'| 4, ° eoo,n+'| .
2) [nI=10 enm oon} (x) = nI.;-IO [enw ’ ewnJ(X)
= 0 <Loyg * 01000, Topy 0,100,
ces [enn o emn](x), el >
= ngo <6°°0(x), 81 (X)s wees g (x)s 0 g e 8 (XD, Lo

P5

P6

P6

P6

P6

P2

D8

P6

because the 2.u.b is the 1imit of a directed squence (by P6).

15

Hence: [H 6. o8 _ J(x) =x . 0 - D8

Definition 9.

Let

B be the lattice true false

£ be the lattice

/7‘?\ \

+ + v =-1tWwo - 0One zero two vt

Define Dn , for n

then recursively:

o+
Dn+1 - Dn > Dy s (n=0).

16

Obviously Dn are complete lattices for n = 0,1,2,...

([JR] p.80 and P1).

Definition 10:

Define ¢n € Dn > Dn+]

Ypo€ Dpyp Dy

for n = 0,1,2,..., by:

¢0(x) = the constant function with value x of DE - Do
vp(F) = £)
Dg

then recursively:

¢n+'|(x) = d)n ° XV wn

U1 (F) =9y o F Vo, .

Proposition 8:

For n=0,1,2,... we have:

Byl

Proof: (by induction)
¢0 and wo are obviously continous.

Moreover:

¢0(¢0(X)) = X for x e Dy,

and

18

¢0(wo(f)) = the constant function from DS to D0

with value f(1)
Dy

I
—'1

for all f ¢ D].

The induction step is
Upa1 (Gppq () = ¥ o [, ()] ¥ ¢

=V o Lo, e x vy 1V e

by oo ¢ e x V[, e 0]

I o XV 1
Dn Dn

X (for all x € Dn+1)

and

6 a1 (U iy () = 8 o To, (17 g

o © Loy o F Vo1V
=0y oy o F VLo, oyl

=1 o fvl
Dn+1

= f (for all f e Dn+2)'

Definition 11:

We have proved that

< D < D

Dp s DBy < Dy %

- D10
- P3

- induction
hypothesis

- P3

- D10

- D10

induction
hypothesis

- P3
0

19

is a retraction sequence. Let D_ be its completion.

Proposition 9:

The 8n satisfy the following equation:

em+],n+1(f) =0 ° fve, . for all f ¢ Doy -

% Proof:
Suppose m < n. Then, for all f ¢ Dm+1 :
8at 1 (F) = 90 (ue o (F))) - D7
=9 1 o Do, 10 (g, (FINT V4, - D10
= ¢p_1 ° Lo o o Lovelp (FNI Vw01 v 9, 4 - D10
=4 g 0 b o Loy (FNT 7 [y 5 o0 4] - p3
=dpq ° eee b0 FV [wm © v.. © wn_]] - P3
=6mn.°fvenm. - D7
Suppose m = n. Then, for all f ¢ Dm+1 :
8,1 (F) = F
= IDm o fV IDm - P3
“ O T Oy - - D7

Suppose m > n. Then, for all f ¢ Dm+1 :

Ot (F) = ¥y e (0 ()))) - D7
=y, o Do e (v ()] 9 0, - D10
=g Ly o Lol (FNI Vo, (1796, - D10
=¥y o Uy o Loen Qo (FNT v Doy g 2 9] - P3

R IR S I N R R I

Gmn o fV enm . il - D7

Definition 12:

let ¢ eD_»[D">D]

vel -0~ 0,

be the functions such that

(1) o(x) = 1

u o [em’n+](x)] V O

Nee

(2) w(f) = E 0 (e

n=0 n+l,e0 o f v en°°) ’

oof}

Proposition 10:

The 2.u.b's in the second member of (1) and (2) above are

limits of directed sequences.

% Proof:

For all x e D°° we have:

20

O © L0 e (X)] 7 B

= Ont,0 ° Onynel [8ns1 001 9 Doy © O]
= 41,0 ° en+1,n+2[eo<>,n+1(x):I V O, ntl

S0, ° [ew,n+2(x)] V O, 0t

and for all f ¢ D: +D_ we have:

0

nﬂ’w(ewn o V6.,
en+1,oo(en+1,n ° Beoyne1 ° TV [en+1,o° ° en,n+1])
en+1,oo(en+1,n ° [ew,n+1 o TV 8, 1 en,n+1)
) en+1,°°(6n+2,n+1(eoo,n+1 o f v en+1,w))
Brt2,0(Cw,nt1 T ¥ Ol -

iTl

Proposition 11:

¢ and ¢ are continuous.

% Proof:
Suppose X c D directed. We have:
¢(IX) = o o © lo, paq @A 7 8oy
= n1=10 Bpe © [0, niq(X) | x e XV O

[oe]

n=0|:I.I{emoo o em’nﬂ(x)]v Oy | X € X1

- P6

- P9,P3

P6

- D12

- continuity

- continuity

21

[o0]

22

=10{m o, o [o (x)]v e X e X} - continuit
n=g ™ <0l J7 Oy | and P10
=1{¢(x) | x e X} . - D12
The proof of the continuity of ¢ is similar. a
Proposition 12:
¢ and ¢ are inverses to each other.
% Proof:
As an anxiliary argument we show that
¢(em+1 ,oo(f)) = emoo o f v eoq-n
and
em’mﬂ (p(f)) = O ° TV 80
Infact, for all f ¢ D;-+ D, we have:
0041 ,w(f)) = O fne [0, a1 By, (FN1 70, - D12
But:
O e © [ew’nﬂ(emﬂ,w(f))]v O = Opeo © [em+1,n+1(f)] V O - P6
= 6o ® B © TV O8], - P9,P3
Hence:
5(8547 oo(F))
) emn o f v [enm o eoon] - P6

23

= U 08,°68),°F7 (enm ° ewn) - because we had a directed
n>m sequence (by P7)

= o ofve - P6
nop T oM

= e ° - . 13 l\‘
oo fv O * because the indexing is

independent of n

Similarly, for all f ¢ D: +D_ we have:

ew,m+1(w(f)) =0 ° TV 0. (End of the auxiliary argument).

We have (for all x e D_):

YO0 = I g {0 g 6 By 0 g (D) - 012,87
= mEO[nI;IO 8], ool Oum a1 (VL0047 (B, (47 (XD))D))] - continuity

[oe]

- property of double Timit
of directed sequences

o]

= mI;IO 8141, 00 Ooo,] (W (Opo o[B8 g ()1 ¥ 6,)))
- anxiliary argument

o]

= I OOy © O © Lo (01 7 Loy < 0)

- anxiliary argument + P3

[o0]

= mL=Io emﬂ’m(lDm ° [ew’mﬂ (x)1 v Iy) - P6

B b0 "
= % - P7
We also have (for all f ¢ D: ~D_):

o(v(f)) = <1>(mI=J0 8] o0 o, a7 (W(F)))) - P7
= mgb ¢(em+]’w(em’m+](w(f)))) - continuity
= mgb ¢(em+]’w(emm o f v emw)) - anxiliary argument
= mgb 0o [emm o f v emm] Ve, - auxiliary argument
=mI=IOemmoe°qmofv[emmoem]. - P3

o(wlf))(cays...,a>)

Hence for all <Ars sees ap> € D: we have:

P

I 6y (8 (<0,

o [ee]

O oe_ (6 (f(O <

m=0 " M =0

- P2

O (@))s -vs B (0,0 (20)5)))
6. (8 _(aq)), ... >))) - property of double
nw(wn(])) Timit of directed

sequences

24

o]

n=0

n=0

f(<a

Furthermore, we have:

SN)

[oe]

and

S (p(F) (1)

flo <6, (6,.(a7)), ...

Fl<T o (6, (a)))s ...

I e 27).

p

co

mI=JO emw(emm

f(TD+)

(rlr)

[ee]

Therefore, for all f ¢ D: - D°° , We have:

o(p(f)) = f

25

P7

D1

p7

D3

D7

D3

D7

26

Theorem 1:

D, and D: + D_ are isomorphic w.r.t. their lattice structure

by the pair of continuous functions ¢ , ¥ .

Proof:

Obvious (by Propositions 11 and 12). O

Definition 13:

For i=1, 2, ... let s% be the function from D: to D_
such that:
1-) For all @ps ...s B> € Dt .
p
a. if p>i
s%(<a1, - R !
P 15 otherwise

(o]

s%(¢D+) _

e

Proposition 13:

The functions s% are continuous.

Proof:

Suppose X E_D+ directed and contain two vectors of different lengths,
i.e. <aps .o ap> and <b], cees bq> with p# q , then X must

contain T + . Hence:

D

[e]

si(OX) = si(7,)
= * - D13

O{si(v) | v e X} - because T, e{si(v) | veX}

e}

27

Suppose X 5_D+ directed and its elements - (except possibly T +
D

and 1) of the same length, then trivially we have: ®

D

[e 0}

si(IX) = H{si(v) | v eX} . 0

Definition 14:

Let 'E} be the function from D: ~D_ to D_ such that:

Y(f) = oy (f)

where, for n=20,1, 2, ... 146 are functions from D: ~D_ to D
such that, for all f ¢ D: > D
’L}O' (f) = J-D

(22}

then recursively:

Y () = F(<Y (F)>)

Proposition 14:

11} is continuous.

% Proof:
We first prove that, for n=20,1, 2, ..., Wé}n is continuous.
11;0 is obviously continuous.
The inductive step is:

Let F E_D: -~ D_ be directed. MWe have:

xéh+1(IIF)

(LIF) (<Y, (IF)>) - D14
(IF)(<O{Y (F) | f e F1>)

Ig(<I{Y, (F) | feFI>) | geF}
= MIHg(<Y, (f)>) | feF} | geF}

inductive hypo-
thesis

P2

continuity of ¢

28

= W{f(<(F)>) | feFl - Timit of directed
set and continuity
of f

= II{%M+](f) | feF}. - D14

Secondly, we prove that, for all f : {Wén(f) | n=0,1,2, ...}
is a directed sequence (i.e. 'E}n(f) E;‘E}n+](f)) .

Obviously: %}o(f) EE-%}](f)

The inductive step is:

Assume: Y (f) = Y, (f)

The monotonicity of f gives:

F(<Y, (F)>) B F(<Ye o (F)>)

i.e. Wé}n+](f) ES‘E}h+2(f) . - D14
Now suppose F g;D: > D_ directed, then:
Y (UF) = L Y (ILF) - D14
n:

continuity of
Y

continuity of U

00 (0) | f e P

H{ngo%(f) | f e F}
O{Y(f) | feF}.

D14

Proposition 15:

For all f e DL >0 : f(<Y(f)>) = Y(f)

Proof:

For all f ¢ D: > D_, we have:

FYI) = Fle T Y (F))
n:

- LR (F))

) nng&n+](f)

= f
n1=_101}n()

Y(f)

Definition 15:

Let Y' be the function from D: to

1-) Y'(<ay>) = Ylola;))

2-) Y'(<a], cees ap>) = Y'(<a]>)
3-) Y (v,)=
D e
Y'(L) =1
p" s

Proposition 16:

Y' s continuous.
Proof: Trivial in view of P14.

Proposition 17:

For all a; € Doo

Yi(<ay>) = ¢(aqg)(<¥*(<ay>)>)

(recall that <a;> < D by definition).

29

D14
continuity of f
D14

{yh(f)ln=0, 1, 2, ...} is

a directed sequence (see
second part of proof of P14)
D14

DOo such that

30

Proof:

For all ay € D_ , we have:

V' (<a;>) = Wo(ay)) - D15
= 9lap) (< Ylo(a)) - P15
= ¢(a])(<Y'(<a1>)>) . - D15

O
Definition 16:
Let "true" denote eom(<ﬁfﬂﬁ?)

"false" denote eow(<f§l§§?)

"o" denote 0 e <2Er0>)

" denote 60w(<gg§?)

”2f denote 90w(<EE9?)

"—1f denote 60m(<:gng?)

VA denote 60w(<—2w9?)

(see D9 for the meaning of <true>, <false>, <zero>, <one>, ...)
Obviously: true, false, 0, 1, 2, ..., =1, =2, ... are elements of D, -

Proposition 18:

For all x eD_: [6

x iff there exists a unique

000" 000 (X)
Yy e D0 such that eOm(y) = x . (Or more generally: [enmoewn](x) = X

iff there exists a unique Yy « D, such that enw(y) =X .)

Proof:
Suppose [enwoewn](x) =X .
o (%)
Then y € Dn - D8

oo (Boopy (X))
e 06 _ 1(x)

nee oo

Take y = 6_

I
D

and enm(y) = oo

=X

If y' e Dn is such that y' # y then enw(y') # enm(y) , i.e.

Oply') # X .

Suppose enw(y) = x . Then

(B a0 1 (X) = [6,,°0 26, 1(¥)
= [8°0n 1 (¥) - P6
= [6,°1p 1(y) - D7
n
= 0, (¥)
= X

Definition 17:

Let 1if' be the function from D: ~ D_ such that:

1-) For all 75 89y 835 +..s A € D (with p > 3) :

p
) if 8,,(ay) = <true>
. a3 if eooo(va]) = <false>
if|(<a'l 332,83,...,ap>) = J TDOO -if eooo(a.l) = TB
N, A) T T

otherwise

2-) if'(<a], a2>) = if'(<a], 255 Ip >)

[oe]

3-) 1f'(<a]>) = 1f'(<a], LDw, ti>)

4-) if'(t)
D o
“ if' (L))
Dt o

[oe}

Proposition 19:

if' is continuous.
Proof: Similar to that of P13.

Definition 18:

Let K' be the function from D: to D such that:

1-) K'(<a;>) = 9(A)
where A 1is the constant function from D: to D

with value ay -
2-) K'(<a], cees ap>) = K‘(<a]>) if p>1

3-) K'(r,) =Ty

D°° o
K'(r,) = 1
pt Dy

Proposition 20:

K' 1is continuous.

Proof: Similar to that of P13.

33

Definition 19:

Let C' be the function from D: to D_ such that:
1-) For p>2:

C‘(<a1, cens ap>) = y(A)
where A is the function from D: to D
such that

a.) Af<by, ..., bp>) = ¢(a;)(<o(a,) (<bys +.vs bp>), cees

¢(ap)(<b]a cees bp>)>) for all <bys cevs B> e D: .

p
b.) A(r) =1
0., ol
Al) = 1
0t s

(Obviously A s continuous, the proof is similar to that of
P13.)

2-) C'(<ap) = 1

3-) C'(ry) =T

Proposition 21:

C' 1is continuous.
Proof: Similar to that of P13. O

Definition 20:

Let eval' be the function from D: to D_ such that:

1-) For all <@ps .. B> € D: » Wwith p > 2 :

P

eva1'(<a], cees ap>) = ¢(a1)(<a2, cees ap>)r

2-) eva]'(<a]>) = 1

3-) eval'(r ,)
Do° %

eval'(L)

pf o

o]

Proposition 22:

eval' 1is continuous.
Proof: Similar to that of P13.

Definition 2la:

Let sum be the function from DoxD0 to D0 such that, for
all ays2, € D0 :

1-) If a;, a, e {<zerg>; <oné> ,<-one>, <two>, <-two>, ...} then

sum(al, az) = a,

where ag is obtained by adding a, to a

2-) If (a] =77 Or ay = TDO) and (a2 =Tz Or a, = TDO) then

sum(a], a2) = TDO

3-) sum(a], az) = LDO otherwise.

Obviously sum is continuous.

(Plus similar definitions for substract, multiply, equal, greater , ...)

35

Definition 21b:

Let add' be the function from D: to Dw such that:

1-) For all 815 -ees ap e D with p>?2

add' (<aj, ...» a>)7= 0 (sun(8, (a)), 8, (@)

2-) add'(<a]>) = add'(<a1, ip >)

3-) add'(TD+) = TDOo
add' (v +) = 1

D, ®
(Similar definitions for sub', mult', div', eq', greater! less} ...)
Proposition 23:

add', sul', mult', div', eq', greater', less', ... are con-

tinuous.
Proof: Similar to that of P13. O

Definition 22: (Assignment of meaning to each of the symbols used in the

calculus)
Let
5 denote y(s:) for i=1, 2, ...
Y denote y(Y')
K denote yY(K')
C denote y(C')

eval denote y(eval')
if denote P(if')
add denote y(add')

36

sub denote y(sub')
mult denote P(mult')
div denote p(div')

eq denote v(eq')
greater denote y(greater')
less denote p(less')

Obviously the just defined elements belong all to D_ .

Definition 23: (Assignment of meaning to the w.f.e.'s of the calculus)

eD, (p>1) , let x[y1, cees ¥l

For x, ¥ Yos «ees ¥ b

p
denote

S0 (<yys -evs ¥p2)

Theorem 2: (Validity of axiom schema #1)

For i=1, 2, ...; 15 +ees ap e D

{ a; if p>i
L

si[a], ., a] =
otherwise . O

Theorem 3: (Validity of axiom schema #2)

For A .» A D (p > 2)

P oeees A
B> «-v» By e D,

C[A], cees Ap][B], cees Bq]

= A][AZEB], cees Bq], ces Ap[B], ..., B 1]

37

Proof:
o P Ap][B], cees Bq]
= ¢(¢(C)(<Ays +-ns Ap>))(<B], cens Bq>) - D23
= ¢(C' (<A +oos A))(<Bys oons B) - D22, P12

n

¢(A])(<¢(A2)(<B1, cees Bq>), cees ¢(AP)K<B1, cees Bq>)>)

- D19
= AMIABy, oo BT s ApLBys oo Bq]] : O

Theorem 4: (Validity of axiom schema #3)
1-) YIAL = AIVIA DD
2-) YIAp -5 A1 = YIA(]
Proof:
1-) YIAD = ¢(Y)(<Ay>) - D23

= o(w(Y'))(<A>) - D22

= V' (<Ap>) - P12

= oA (<Y (<A)>)>) - P17

= o(A)) (<o(Y)(<Ay>)>) - P12

=oALl . - D23
2-) Obvious. O

Theorem 5: (Yalidity of .axiom:schema :#4)
For aj,a, € D,
1-) if[true, ajs a2] = a
if[false, ay, a2] = 3,
2-) 1f[a], 355 Ags +ees ap] = if[a], 255 a3]

Proof:

1-) ifltrue, a;, ak’= ¢(if)(<true, a;, a,>)

o(p(if'))(<true, ays a2>)

if' (<true, ays a2>)
But: true = eow(<true>)
Hence:

emo(true) = emo(eow(<true>))

600(<true>)

= ID (<true>)

0
= <true>
Therefore:
ifftrue, aps azl = a
Similarly:
ifffalse, ars a2] =a, .
2-) Obvious.

Theorem 6a: (Validity of axiom schema #5)

FOY‘ B'], ceny BpﬁDoo (pzZ):

evalﬁB], cees BpI= 31[82, ..., B1

Proof:

For Bys «-.» By €D (p > 2) , we have:

p [e'd]

38

D23
D22
P12
D16

P6

D7

D17

eva]{Bl, cees Bp]

= ¢(eval)(<Bys ..., By>)

¢(v(eval'))(<Bys ...5 B>)

P
= eva]'(<B], cees Bp>)
= ¢(B1)(<BZ’ cees Bp>)
= B][BZ, vees Bp]
Theorem 6b: (Validity of axiom schema‘#6)
For A;s Bys Ays By, ... €D
1-) KIA 2B, ..o, Bq] = A ik
2-) KIAy, ..., Ap][B1, cees Bq] = A
Ppoof:
1-) KEA]]EB1, ceus Bq]
= ¢(¢(K)(<A]>))(<B1, cees Bq>)
= 6(6(u(K') (AP))(<Bys - B)
= ¢(K'(<A1>))(<B1, cees Bq>)
= A
2-) Ohvious.

Theorem 7: (Validity of axiom schemas #7 and #8)

For all Ay Aps -ee e D

s ap

a if q>1

if p>1,

q

D23

D22

P12

D20

D23

> 1

D23

D22

P12

D18

39

40

1-) addla;, a,] = 6 (sum(6, (a;), 0,,(a,)))

2-) add[a1, 8ps nns ap] = add[a1, a2]

(Plus similar equalities envolving other arithmetic operations or

predicates.)

Proof:

1-) add[a1, a2] = ¢(add)(<a], a2>) - D23
= ¢(¢(add')(<a1, a2>) - D22
= add'(<a], a2>) - P12
= By, (sum(e, (ay)s 6,,(ay))) - D21b

2-) Obvious. a

Proposition 24:

For n=0,1, 2, ... , if x = enw(y) for some y e D
then, for all m > n :
ew,m+1(x) = em’m+](em,m(x))
Proof:
We first prove that, for all m>n, ﬂemw(e“m(x)) = X
For m=n :
By hypothesis we have:
00 = 0 (8, (1)
= enn(y) - P6
=y - D7
Hence:
enw(ewn(x)) = en@(y) = X - hypothesis

Inductive step:

On one hand we have:

41

Ie. (6 (x)) = x - P7
m=0 " oM
On the other hand we have:
emm(Gmn(x)) = em+1’w(em,n+1(x)) - P7
But enw(ewn(x)) = X - above
Hence: for all m > n :
OB (X)) = X
Therefore,we have, for all m > n :
em’m+](x) = ew,m+](emm(emm(x))) - above
= 110, 170, B (X)
a
Theorem 8: (Validity of axiom schema #9)
If x = eOw(y) for some y ¢ Do then
x[al, cees ap] = x (for all 35 ees a, q”)
and ¢(x)(r) = ¢(X)(ib+) =X .
Proof:
We first show that, for all n >0, a;, ..., a, € D

[[ew’n+1(x)] % emn](<a1, -

> 357) = 8, (x)

42

For n =0 we have:

[l6, ()1 V6 p1(<ar. ... a>)

[[6,1 (6,4 (x))] ¥ 8 01(<ays -..s as>) - P24

= em’o(x) - property of 6,

Inductive step:

We have:

[[em’n_l_z(x)] v em,n+'|:|(<a'|9 tees ap>)

= [[en+1,n+2(ew,n+1(x))] v ew’n+]](<a], v ap>) - P24

= [[en3n+1°[ew,n+1(x)] v en+]’n] v em,n+]](<a], cees ap>) - P9

= 6 n41°000 ey (0T [84q 100, q1l(<ays ovs a>) - P3

= [6) pe1°l00 (T V 8, (J(<aps ..o ap>) _ g
en,n+1<emn(x)) -inductive hypothesis

= O pa1 (X) ' - P24

Similarly, we have:
(L6, p41 0)] ¥ (7)
I8, peq (X)]] v Oup] ()

Lo}

= 0 (x)

Therefore, for all Ays vees ap eD_, we have:

x[a1, cees ap] = ¢(x)(<a], oo ap>) - D23

L CHE CRRTER M O (O

.Qo,

n

- 000,00, 1)

Similarly: ¢(X)(Tb+) =¢(x)(1) = x .

Theorem 9: : e

If x

eOm(y) for some Yy e D, then

K[Ix] = «x

Proof:

We have:

¢ (K) (<x>)

K[x]li
= o(w(K'))(<x>)
= K'(<x>)

= ¢ (the constant function from D:
to D_ with value x)

= Y(o(x))

= X

Theorem 10: -

Y

C[Y,_s]]
CIK, s]]
C[if, S1» So» 53] = if

K

C[add, S¥ 52] = add

(Plus similar theorems for sub, mult, div, eq, greater, less ...

43

- D12

- above

- P7

D23

D22

P12

D18

T8

44

Theorem 11: (Consistency of the inference rules)

The inference rules of the calculus are consistent (i.e. from

true premisses we can only infer true conclusions).]

Theorem 12: (Extensionality)

Let A], A2 eD If
1-) For all Bys «evs Bp ed (p21):
A@[B1, cees Bp] = A2[B1, cees Bp]

2-) ¢(A])(TD+) = ¢(A2)(TD+)

o} <«

o)) = olR)a)

then A] = A2 .

Proof:

By hypothesis we have:

d(A))(<Bys +.vs B>) = 0(A)(<Bys -.s BY)

¢(A~|) (TD+) ¢(A2)(TD+)

¢(A2)(lDf>

0

ICHIEY

This means that ¢(A]) and ¢(A2) are a same function from D: to D_.

Therefore:

(o(A))
i.e. A

v(6(A,))
A, : O

1

45

Follows are some obvious but useful results:

Proposition 25:

For all A, A2, cees Ap e D with p>2:

O(CTAys oo ATI(T) = 0 (AR (7) oo oA (T 1))

o3 @ (o]

o(CIAys --vs Ap])(lD+) = ¢(A1)(<¢(A2)(lb+), <b(Ap)(LD+)>)
OKTA s os AD(T) = (KD s AIG) = Ay
[s.0] [e] D

Theorem 13:

For all Ay, Ay, ..t Ap e D with p>2:
CEA], Az,ﬁ.e.; Aﬁ] LE C[eval,gﬁi,.Az,ei.%,jAp]
c[c, A1, A2, cees Ap] = C[c, eval, ﬁﬁ, A2, cees Ap]
cfc, ;s Ays vt Ap] = C[c, eval, C[K, 51]’ Ays o Ap] . 0

III. CHURCH-ROSSER PROPERTY AND NORMAL REDUCTION METHOD

In this chapter we use the terminology of [BR].:

A. Church-Rosser property:

To make w.f.e.'s look like trees, let's rewrite each w.f.e.

as follows:
(Let o be a special symbol different from the basic symbols
of the calculus)
1) Each basic symbol is a w.f.e.
2) If A1,A2,..,,An (n >2) arew.f.e.'s then “(A]’AZ""’An)
is a w.f.e.

3) There are no other kinds of w.f.e.'s.

Thus the second (reduction) rule schema, for example, will

appear as follows:

a(u(C,A1,...,Ap),B1,...,B)

q
- u(A1, (AZ,B1,...,Bq),...,a(Ap,B],...,Bq))
or, if we prefer:
o Q
/\ -

B o

c/A/1.\Ap | Az]/B/u"\'B A//l\

B, ... B
P

q

46

The symbols Ai’ Bi must now be viewed as tree parameters
ranging over the set € of all w.f.e.'s, each w.f.e. being now viewed
as a tree.

Given the set of all rules generated by the rule schemas, we
define the binary relation => over € as the usual extension of the
binary relation - defined by the set of all rules.

Let =>* be the reflexive transitive closure of =>. Consider

the Post-Brainerd System
G = {V’/gs =>’ +}

where V = {basic symbols} u {a} .

Theorem 1:
The Post-Brainerd System G has the Church-Rosser property,
namely:
If R, S, S' arew.f.e.'s and if we have R=* S and
R =>* S', then there exists a w.f.e. T such that S=* T and
S' =—* T. (Hence: if S were irreducible then every reduction

sequence starting from R can be prolonged to reach S).

Proof:

We use the theorem by B. Rosen ([BR] p.120) to the effect

that every unequivocal and closed Post-Brainerd System has the Church-

Rosser property.
We have:

1) G ds unequivocal: im fact the binary relation - 1is deter-

ministic by construction.

2) G 1is closed because:

+ A1l tree parameters Ai’ B. appearing in the rule schemas

j
are supposed to range over the set € of all w.f.e.'s
(intuitively this means that we have a "well furnished"
repertory of rules).

» The reduction of any w.f.e. always yields a w.f.e.

+ Let X0 > YO and X' >~ Y' be a rule and its corresponding
rule schema. Now take any other rule X - Y. By the
construction of the rule schemas, X can appear nowhere
(as a subtree) in Xg » except in the subtrees of X,
which are delimited by the tree parameters of Xb s but
then either X does’nt reappear at all in YO, or X
reappears (possibly at several occurrences) unaltered in
Yo

Conclusion: our calculus has the Church-Rosser property.

B. Normal reduction method:

Terminology:

Due to the particular construction of the rule schemas, it is
obvious that, in any reduction sequence,each reduction step can be com-

pletely identified by the Dewey number (abbreviation: D#) of the node

on the current tree where the reduction step was performed.
(For a definition of the Dewey numbering of nodes of a tree

please consult [BR], p. 118.)

Definition 1:

By up-shift of a D# vy = n1-n2-...-np (with p > 1) by the
D# B = n]-nz-...-nj (with j < p) we mean the following D# :

0enjyqee-ny (if J <p)
Wy, B) =

(if J = p)

By down-shift of a D# vy = "1'”2""'"p (with p > 1) by a

D# B = m]-mz-...-mj we mean the following D# :

My si® e e MyeNpec..on (if p>1)

p

My Mye ... om, (if y=1)

Dy, 8) = {
;

Definition 2:

By up-shift of a set T (resp. down-shift of a set I') of

D#'s by a D# B = npe...eny We mean the set W(r, B) (resp.
D (r, B)) of D#'s each obtained by up-shifting (resp. down-shifting) a

different element (among those which can be shifted) of T , by B8 .

49

50

Definition 3:

By pivot of a reduction sequence we mean the first reduction
step, if any,. which is performed at the top of the current tree (i.e.,
the reduction sequence being a list of D#'s , the first D# which is
equal to 0).

When such a pivot exists, we define the head and the tail of
a reduction sequence W as the following lists of D#'s :

Let W = (z], cees Zi_qs Zis Ziyqs eees Zn) where

z; = pivot(W) . Then

head(W) = (zq5 ... 25 q)

tail (W) = (Zi+1’ cees Zn)
Remark that head(S) or tail(S) , or both, can be nil.

Definition 4:

Let ¥ and B be two lists of D#'s such that:
Y = (21, cees zn) n>0

8= (tgs +os £) P20

We define the concatenation of ¥ and B as:

Yog = (z], oo Zps t], ooy t)

Proposition'1:

Let S be a w.f.e. (called the initial source tree). T be

an irreducible w.f.e. (called the initial target tree).

If there exists a reduction sequence from S to T (called

it the initial source sequence) then we can effectively find another

51

reduction sequence W = (21, cees zn) from S to T such that, for

any 1 <1 <n, if the reduction step z; were not performed at the

top of the current tree (i.e. z; # 0) then Z; must have been performed
at the left most among the topmost nodes (of the current tree) where
reductions were possible.

(Remark that, our calculus being deterministic by construction,

such a sequence W must be unique; Tlet's call it the initial target

sequence).

Proof:
The following procedure (written in an Algol-like terminology)

always halts and yields the initial target sequence when called with the

three actual parameters: initial source tree, initial target tree and

initial source sequence.

List Procedure FIND (SOURCE, TARGET, SEQUENCE);

if length of SEQUENCE < 1
then FIND: = SEQUENCE
else
if SEQUENCE has no pivot
then SOURCE must have the form

AN,

and TARGET must have the form

o
T] T2 . e Tn
with T1, TZ’ ces Tn irreducible. Therefore we can take:

FIND:

D (FIND(B1, T], W (SEQUENCE, 0.0)),0.0)

o]

® (FIND(B,, T,, W(SEQUENCE, 0.1)),0.1)
2

2,

» U (SEQUENCE, 0.n)),0.n)

o

S(FIND(Bn, Tn

else

if pivot(SEQUENCE) corresponds to the reduction of a conditional
to the true branch (for example)

then SOURCE must have the form

/N

B, EB,

Therefore we can take:

FIND: = E>(FIND(B], "true', W (head(SEQUENCE), 0.0)))
° (0)
° W (head (SEQUENCE), 0.1)
o tatd {SEQUENCE)

else SOURCE must have the form (for example):
. o
ST
o B1 ce Bm
/TN

c A A

1 A,

which could be reduced to:

AN
NN

Therefore we can take
FIND: =
(0)oFIND(Q, TARGET,
9 (u (head (SEQUENCE), 0.0.1), 0.0)
® (M (head(SEQUENCE), 0.0.2), 0.1.0)

<)

o

D (U(head(SEQUENCE), 0.1), 0.1.1)

o D (U(head(SEQUENCE), 0.1), 0.1.m)

[o}

B (U (head (SEQUENCE), 0.0.n), 0.[n-1].0)
P (‘U(head(SEQUENCE), 0.1), 0.[n-1].1)

[o]

D (W(head(SEQUENCE), 0.1), 0.[n-1].m)

o)

tail(SEQUENCE))

[o}

The convergence of the procedure is ensured by the fact that in any
recursive call of FIND from within its body we have as the third actual

parameter:

- either a reduction sequence which is shorter than (the reduction
sequence which is) the third actual parameter of the containing call
of FIND .

- or a reduction sequence whose eventual pivot is situated nearer to
the right end (of the sequence).

Therefore we must end up with a reduction sequence having no pivot.

The net result of the present section is that:

if, during the process of reduction, we always chose to reduce first
at the topmost node where reduction is possible and if such a
node doesn't exist, at the leftmost node among the topmost nodes
where reductions are possible,

then we can be sure that if this method of reduction, when applied to a
given w.f.e., gives a divergent reduction sequence then no other
methods of reduction can give a convergent reduction sequence (from

the same w.f.e.).

54

Example of normal reduction:

Consider the well known program:

begin
F(x, y) < if x=0 then 1 else F(x-1, F(x-y, y));
F(1, 0)
end
This program can be denoted be the w.f.e. Cfeval, , 01[t]

where
= c[c, if, c[C, eq, E}, 0], 1, C[C, sy, C[C, sub, 51, 11,
clc, S1» sub, s,111 .
Let's frunf this program by using the normal method. Let¢

w] ="C[C, eq, E}, o]"
="t[c, 5 , C[C, sub, s , 1], C[C, 54 , sub, 32]]".

Cleval, Y, 1, 0][t]

= eval[Y[t], 1[t], o[<]] - A2
= Y[<101x], Of<]] - A5
= VLTI, O] - A3
(Let wy ="[YI1]")

= C[AT &35 wy o3> 1T wgs wy w3111, O[7]] - A2
(Let w, ='[1[x], OLTIT"s up =" Lugllu,T")

= T gLy bge 1 g Gy wg) - A2
= 7Ly wg, 1wgs b wg] Y
= - A2

if[Cleqwy, 577030 0wgllagds Trugs 6 wsl

= iffeqls; 05> 0 wgls Trug, wy wgl
= ifleals;I4,1, 0-&.1, 1-4g, By dic]
= ifleqll[t], 0-dg], 1+hg, &y d;]
= ifleqf1, 0-«&5] 1 d&s, @ <A5]

= if[eq[1, 0[0”).4]] 1 LAS, @ &5]

= if[eqf1, 0], 1 5, 2"@5]

= if[false, 1w, @, wg]

=W, dS,BI[dl4]

(Let . ="C[C, sub, 57, 11",

CLsy gy Mgy, 0ot][]

1 B3lhgugs dy-dgl

VIellog dg. bg-wgl

= T gfug ug, By -h]

(Let dg = [&6 We>s 7@.5])

= C[TF iy, Bythg, Tedg, wyw Tlig]
flLet Wy = “53[418”
= W"%W]“g’] Wy ‘*52 w‘_9]
T W

1’f|[u),1 Wy 9> u”)znwg]

ifl[eq][s][w\g], Owwlg], 1~w,_9, ‘*)2““3‘9]

ifl[eqvw?’l[s] ‘-uig, Ow‘wpg], 1wu&9, W, wg]

Ly ="c[c, S1s sub, 52]")

- A4,

A6
A6

Al

A9

A9

A9

A8

A4

A2

A2

Al

A3

A2

A2

Ad

A2

Al

56

57

= 1'1°[eq[w6 o;\5, O°w9}|, 1'w9, wszg]l - Al

= ifleqlClsubrdg, 57 w3, T-43l[8g], O-igls T ag, wphgl - A2

= if[eq][subl[s]J[wA], 1'41;\5], 0 aug]I, T'wgs &52*&19] - A6, Al
= if[eqf1, 1], 1 02\9, ‘”‘2“‘“9] - A7, A9
= if[true, 1 03‘9, w, u,‘\9] - A8
= .Iw.g - A4
=1 . - A9

The computation halts. a

Introduction:

We

chapter I (henceforth called the strict calculus).

version of the calculus will be referred to as the extended calculus.

IV. AN EXTENSION OF THE CALCULUS

present here a shorthand version of the calculus of

Part of the terminology comes from [VW].

Definition 1:

Let's introduce a new set V of symbols (called the set

of variables) such that

v

We

= {X55 Xi5 X5» Xy e | i=1,2,3, ...}

introduce also the symbol 1 (called bottom).

Forms and clauses:

Examples 1:

Every basic symbol is a form.

Every variable is a form.

L , true, false, 0, 1, -1, 2, -2, ... are clauses.
If A is a form then {A} is a clause.

Any clause is also a form.

., A (n 2 2) are forms then

2, oo
A1[A2, cees An] is a form.

If A], A n

There are no other kinds of forms or clauses.

Are forms: 1, 3, X0 addﬂx], 51, ...

This shorthand

Are clauses: {x5}, {add[x], mult]}, 3, i,
{div[x,, {sub[xz, x]]}]} R

{xy[%y5 X135 ...

Well formed expressions: (for the extended calculus)

+ Every clause is a w.f.e.

o If A], A2, eees A (n22) are w.f.e.'s

n
then A]EAZ, cees An] is a w.f.e.

+ There are no other kinds of w.f.e.'s.

Remark 1: Every w.f.e. of the strict calculus is a w.f.e. of the

extended calculus.

Definition 2:

The reach of a clause {A} is defined to be A but excluding
all clauses contained in A.
Example 2: The reach of the clause
{A} = {divlx,, {sub[x,, {xg}I}, x31}

is indicated by the following figure:

{divlx,, {sub[xz, {xg}ﬂ}, x3]}
s et

/t- reach of {A} ———mj\

59

60

Definition 3: (Argument Substitution)

Let {A} be a clause.

X, denote the vector Xys Xgs eees xmA> where my is

the highest among the subscripts of the non-underlined

A

variables occurring within the reach of {A}.

V denote the vector Vs Vos eees va> where mA is

defined as above and Vis Vos cees Vo are w.f.e.'s
A
(extended).

X
Then {A} | A denotes the clause which is obtained from {A}
v

by the following string manipulation:
Step 1: Replace every non-underlined variable X; (1 <1 < mA)

occurring within the reach of {A} by the w.f.e. v, .

Step 2: Replace every underlined variable (e.qg. ;é3) occurring
within the reach of {A} by a variable having the same
subscript but with a degree of underlining one less

(e.g. x, must be replaced by X,).
=3 =3

Examples 3:
<X.I >

{X'I II_)S_] :ézﬂ} = {addl[x-l ’éz]]}

<add>

SXpsXgsX3>

{divx,,{sub[x,,{xs}]1}:x,13
=2 2°°=8 3 <1,1,add[3,5]>

= {divﬁxz,{sub[xz,{ég}]},add[3,5ﬂ} .

61

Definition 4:

Let {A} be a clause containing variables within its reach.
Define degree (A) to be the number of underlines of the most
heavi]y underlined variables among the variables occurring within the

reach of the clause {A}.

Definition 5:

For any w.f.e. A Tlet's denote C[K,A] by A .

Propositon 1:

B B. (p=1) are w.f.e.'s then

If A, B

1> Bps ooes By
ALB;5...,B,] = AIBy,...E]
Proof: Obvious. O
Remark: We already have
AEB1,...,Bp] =A. - A6

Proposition 2:

If Bys «vvs Bp are w.f.e.'s and p =1 then:

Proof: Obvious. [l

62

Definition 6:

Consider the transformation rules:

(1) A1[BT,...,Bpﬂ - e[A],Bl,...,BpB
(2) eva][B1,...,Bp] > e[B1,BZ,...,Bp]
where

e s a special symbol.

R], BP’ cees Bp are forms with p > 1 and A] # eval.

Let A be any form containing no clauses (as subforms).
Define €(A) as the form obtained by applying recursively and exhaustively

the transformation rules (1) and (2) to A.

Example 4:
e(add[xz,x3] = e[add,x2,3]

e(xo[x15%01) = elx5,%75%,]

e(eva][add,3,x]]) = e[add,3,x]] .

Assignment of meaning to clauses:

To any clause {A} we assign an element of D_ by translating
{A} into a w.f.e. t({A}) of the strict calculus by the following

string manipulation:

Setp 1: Set SOURCE to be the clause {A}.

Step 2: If: SOURCE doesn't contain any clause
then: set t({A}) to be SOURCE and exit.

else:

63

take any innermost clause {B} contained in SOURCE,

and assign B to TEMP

if: TEMP contains no variables

then: go to step 2 with a new SOURCE obtained from
the old SOURCE by replacing the substring
{B} with K[TEMP].

else: Perform the following five substeps:

Substep 1:
Reset TEMP to e(TEMP).

Substep 2:
Reset TEMP to a new value which is obtained from TEMP

by replacing every occurrence w of . or basic
symbol by

o

1

€

Eil

if degree (TEMP) =

g
N

Substep 3:
Reset TEMP to a new value which is obtained from TEMP

by replacing every occurrence of "e[" by

‘"Cﬂeva]"] 0
nclC,eval" 1

[if degree (TEMP) =
"cfc,C,eval " 2

Substep 4:

Reset TEMP to a new value which is obtained from TEMP

by replacing every occurrence of
(- if degree (TEMP) = 0:)

le.ll by IIS

le . n 1t S.

i by i
1l u 1l n
X 3
(i=1,2,...)

(- if degree (TEMP) = 2:)

[0y, w nE
X'i S'i
w ™o
"_)_(_-i n by §1
My M " g_”
L= LT

(- if degree (TEMP) = 3:)

— _— FH% ||—
11 1l
LIPSO |
1] n -
X 3
by
1] n "; "
X S
1] n n=
X S5
(i=1,2,...)

64

Substep 5:

Reset SOURCE to a new value which is obtained from

SOURCE by replacing the substring {B} with TEMP,

and go to step 2. 0
t(L)=z 1

ff(@?::O; t(1)=1 }t(_1);_4 .

Example 5:

t({ifleqlx;, 10, T,multlx;,x; [sublxy,111113)

= C[C,eva],??iC[C,EVET,§?,§1,T],T,

C[C,eva],mu]t,E],CEC,eva],g],C[C,eva],?ﬁﬁiE],T]]]]

(then by T9 and TI3 of chapter II:)

= CEC,T?}C[C,EE}E],1],1,C[C,mu]t,§],C[C,S],

CIC, 50,5, 11111 . 0

Theorem 1:
The above assignment of meaning to clauses is consistent
with argument substitution, namely:

Let {A} be any clause, then:

X

t({A})[B;,...,B 1 = t({A} IVA)

P

where V 1is the vector:

65

66

<Bys..esB > szA

1 m
A if

<B],...,Bp,l,...,l> p < my
(p-mA) times

(for all w.f.e.'s (extended) B

1,...,Bp with p = 1).

Proof:

The proof is straightforward if we remark that the argument
substitution affects only the variables situated within the reach of

the clause {A}. d

Axioms schemas: (for the extended calculus)

We have the same mine axiom schemas as for the strict calculus
(naturally A1, A2’ cees B], BZ’ ... now denote arbitrary w.f.e.'s of

the extended calculus).

We add one more axiom schema: the one validated by Theorem 1:

Xp
10) {A}EB1,BZ,...,BPH = {A} |V

1)

—
O
v

for all clause {A} and all w.f.e.'s B], BZ’ .e.» B

where V 1is defined as in Theorem 1.

Inference rules: Same as for the strict calculus.

Reduction rule schemas: Same definition as for the strict calculus.

Naturally the extended calculus needsnot have the Church-Rosser

property, but this is an unimportant question.

Example 6:

1) The function f of two variables where

f(x,y) = (xxy)/(x-y)

2)

can be denoted by the clause:

{div[mu1t[x],x2],sub[x1,x2]]}
Let's compute - «f(5,3):

{divEmu1tEx],xz],sub[x],xzﬂ]}[5,3]

= {div[mu1t[5,3],sub[5,3]]} - T]

= {div[15,2]} | - A7

= {7} - A7

= K[7] - t({71)
=7.

The functional Tt of the binary function variable F, where:

T(F)(x,y) = F(x*y,x)

can be denoted by the clause:
{xy[muTtlxy5x505% 1}

Now t(f), for f of the previous example, can be computed as

follows:

{xq ImuTt[xy x50, % I {divImuTtlx; .x, 15 sublxy 5x,113]
= {{div[mu]tﬂx],xzﬂ,subﬂx],x2]]}ﬂmu1t[x1,x2],x]]}-

- T1

Let T denote the clause:
{ifleqlxy,11,1,multlx; ,x; [sublx;, 11111}

Then the Algol-1ike program of example 3 (chapter I) can be denoted

by the w.f.e.

67

68

YIx, 10213
Let's "run" this program:
(YIx, 2D]
= {Y[][2]} - A10
= {t[Y[]][2]} - A3
= {{if[eq[xl,1],Lmu1tﬂx],Y[T]Esub[x],1]]]]}[2]} - A10
= {{mu1t2,Y[<]J01]113} - A10,8,4
= {{muTt[2,<[Y[<II01]033 - A3
= {{muTt[2,{{1}}]}} - A10,8,4
= {{mu1t[2,1]}} - T9(II)
= {{2}} - A7
=2 . - T9(II)
0
This proof is v . more readable than that of example 3 (chapter I),

yet still is completely formal.

V. AN EXPERIMENT WITH MACRO DEFINITIONS
Consider the system of equation

{x

y

f(Xsy)

gix,y) .

We want to find the Teast solution vector <xg, ¥g> of this system.
Inspired by [BS]', let's consider the elements G], Y1 o
and Y2 o of D_ defined by:

6, = CIY,CIC,C,8,,5¢,5,1]

—<
|

1.2 = C[Y,CEC,S1,§1,G1]]

<
1]

C[eva],G],Y1_2] .

Let T1s Tp € D, » we want to prove:

(2)

Proof:

and: Y]

We have:

Yy oltyatpl = 1Yy ,lrya71sY5 Hleystyll

Yy oltyatd = oYy Hlrystol Yy Hlrstdl

We have: G1[T],T2] = YEC[C,%é,§1,s]]] .
ltysto] = YICITy 559,605,100

Let:
TEMP = C[T1,S],G[T],T2B].

69

Y, olryst,] = TEMPIYETEMP]]

v, [YITEMPT, 6, [ty 7, JIYITEMPI]]

= 1lYy olrys1pl 6yl rpllYy ol 7ol

On the other hand we have:

Y2.2[T],T2] = eva][G1ﬂT],T2],Y1.2[T1,12]]

G][T]’Tzl[Y].z[T]aTzﬂﬂo
Hence:
Yy 2lmysTol = LYy olrystols¥y Hlrystoll
This proves (1).
Let;: M= C[C,TZ,S],S]] .

Let's compute farther Y, 2[11,12]:

Yo oIty = MIVIMIIIY, olty57,1]

CETzss]’Y[M]EY].2[T]9T2]]
= Tz[Y].ZET]:TzﬂsYﬂM]EY1‘2uT]sT2]]]
= olYy oLty a1 Y oLy TRl

This proves (2).

Consider the Algol-Tike program:

begin |
F(x) <=if x =1 then 1 else x » G.(x, - 1);
G (x) <= if x =

(%) F(2)

1 then 1 else x = F (x, - 1)

71
We can now denote this program by the w.f.e. (extended):
{Y-I .2[X] sxz]ll[z]]}l[T] st]]

where

A
—h
{|

{1f[eqﬂ§q,1],1,mu]tﬂgJ,xzﬂsubﬂgq,1]]]]}
1, = {ifleqlx, 11,7, muTtlx;,x; [sublxy, 11110}
Let's "run" this program:

{Y-I .2[)(-' ,XZ]IEZ]}[[T'I 3T2]]

= {Y1‘2[T],T2][2]} - A10

= ¥y pltysmplsYp plmys w12l - (1)

= {{1fEqux1,1],1,mu]t[x1,Yz.z[%],rzlﬂsub[x1,1]]]]}[2]} - A10

= (ut[2,Y, L.t I3 - A7,08

= UmuTt[2, 5[V HlTy.15)5Y, HltysT, 111111 - (2)

= {{mu1t[2,1]}} - Similar
=2 . - Similar

a
The reasoning is very compact throughout. Naturally we can extend

this idea to a system of n recursive definitions of functions for an

arbitrary n.

If we had F(G(3) + 5) , for example, instead of F(2) at

(xx) then the corresponding program would be denoted by the w.f.e.
{YT,Z][X]’ Xz..”:addIYzz[X] ’ Xz][sjs 5]]}J[T]9 T2]

This w.f.e. is shorter than corresponding expressionsin [BS].

72

73

VI. CONCLUSION

The construction of the calculus is elaborate but the end
result is simple, as hopefully shown by the various examples. Our
calculus consists infact of two parts.

Part one is a formal deductive system whose w.f.e.'s can
be viewed as programs. This deductive system can be neatly merged
with the classical formal first order logic, elementary number theory,
second order logic or other theories of functions. For instance,. the
Scott induction principle can be neatly integrated into the formalism.

N-1a"%4x and the program-

Problems 1like proving equivalence of f? X
mer's recursive definition of factorial function can thus be conveniently
dealt with. Naturally all alledged proofs are machine checkable (this
is a necessity to win the programmer's belief).

Part two (reduction rutes) gives some insights to the process
of digital manipulation as happens inside the hardware of real computers.
For example, overflows may be mathematically explained by the fact that
real computers usually don't have a "well furnished" set of reduction
rules (e.g. the size of integer number is limited).

Naturally, there is no reason to include only B and #
into the set DO (from which we construct Dm). We could take addi-
tional primitive sets Tike: real numbers, complex numbers, matrix,
strings of symbols, Tists, trees, ..., and take additional primitive
operations 1ike: matrix operations, symbolic integration, cdr, car,

tree substitution, ... The axioms and rules can be enriched

accordingly.

Another possible use of our calculus is to serve as a basis
for a development of program optimization techniques. In.fact this
development could not go far without preestablishing a theory of
meanings for programs.

Every result of this report is believed by the author to
be original, except when otherwise mentioned. A more complete report

is in preparation.

/4

75

References:

[TM] T.S.E. Maibaum
Generalized grammars and homomorphic images of recognizable sets
Ph.D. Thesis, University of London, 1973.

[LM] F. Lockwood Morris
Correctness of translations of programming languages - an

algebraic approach
Stanford University, STAN-CS-72-303.

[JR] J.C. Reynolds
Notes on a lattice-theoretic approach to the theory of
computation
Syracuse University, Technical Report.

[BR] B.K. Rosen
Tree manipulating systems and Church-Rosser theorems
Second Annual ACM Symposium on Theory of Computing, 1970.

[BS] J.W. de Bakker, D. Scott
A theory of programs
Private paper.

[DS] D. Scott
Continuous Tlattices
Lecture Notes in Mathematics 274
Ed. F.W. Lawere (Springer, Berlin, 1972).

[VW] A. Van Wijngaarden, Editor
Report on the language Algol-68
Mathematish Centrum, Armsterdam.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

