TOWARDS AN APL COMPILER
by
E.A. Ashcroft
Research Report CS-74-01

Department of Applied Analysis and
Computer Science

University of Waterloo
Waterloo, Ontario, Canada
January, 1974

TOWARDS AN APL, COMPILER

E. A. Ashcroft
Camputer Science
University of Waterloo
Waterloo, Ontario
Canada

Keywords: Compilers, Interactive Systems

Introduction

In this paper we show that a modification of the APL
function calling mechanism allows compilation of defined function in
many cases. Familiarity with the APL language is assumed; suitable
references for the language are the APL/360 Users Manual (IBM, GI 20-
0683-1) and APL/360 Reference Manual (S. Pakin, Science Research
Associates Inc.).

There are several features of APL which make it difficult

to design a compiler for the language. Among these are:

i) Identifiers are typeless; not only the values but also the types of
values associated with an identifier can change during execution.

ii) Arrays can be created, at any time during execution, whose numbers
of dimensions depend on run-time values.

iii) The language is interactive; there is no such self-contained thing

as a program.

We will quickly consider the effect of (iii). Because there
are no programs to campile, we must limit ourselves to campiling user-de-
fined functions. However not all user-defined functions should have to be
compiled. Typically, the user takes advantage of the interactive nature
of APL and fuilds up his functions by stages. Each function will go
through successive modifications until it reaches a stable state of,
hopefully, correctness. Only then would it be worthwhile compiling it.

We can thus envisage an APL compiler which is invoked by
the user (with a built-in APL function or by a system command) to campile
specified defined functions. A typical piece of computation will then
consist of alternately interpreting some APL statements and executing
same machine code.

Since the campiler is going to be applied selectively, it is
not unreasonable to impose restrictions on the sorts of defined functions
to which it can be applied. Of course we shall endeavour to make the
set of 'campilable' functions as large as possible, but will not be

overly concerned if same functions are not compilable (especially if, in

some cases, this is a result of poor programming style).

We shall now consider the more substantial problems result-
ing from properties (i) and (ii) above. We shall find that many of the
difficulties are resolved by a modification of the APL function-calling
mechanism. Not only does this make compilation feasible in many cases,
but it also significantly improves the power and expressibility of the

language.

Type—~determination at compile-time

The major difficulty resulting from points (i) and (i1)
above is that it is not possible in general to determine, at 'compile-
time', the types of values that identifiers will possess at run—-time.
In this paper we will take the view that once this difficulty is removed,
defined functions can be compiled relatively straightforwardly : type-
determination is the main problem we will consider. Moreover, we shall
take 'type' to be synonamous with ‘'rank', i.e. 'mumber of dimensions':
a scalar value is of type 0 , a vector is of type 1, and an n-dimensional
array is of type n .

It would clearly be advantageous to a compiler to be able also
to determine the shape of the values to be possessed by identifiers, i.e.
the lengths of the dimensions as well as the number of dimensions. This
would require even more restrictions to obtain compilable functions than
we give here, so we will not consider it further. Here, a function is
'‘campilable' if and only if it is possible to determine the rank or type
of the values associated with each identifier-occurrence in the function.
(We will allow the same identifier to have different types of values at
different points within the function-definition. Provided each
occurrence of an identifier, at a particular syntactic position in the
function—definition, is associated with values of a single type, then we
will say that we can determine types.)

To determine types we must associate a unique type with every
expression in the function definition. We ensure this by requiring two

properties. Firstly, the expression must be type-transparent, i.e. the

type of its result must deperd only on the types of its arguments; given
the types of the values for the identifiers in the expression we must be
able to specify the type of the result of the expression (if any).
Secondly, the types of values that these identifier-occurrences

can possess must be fixed, to ensure that the result is of fixed
type. This argument may sound circular: for type determination we need

type determination. In fact, it is just a sort of consistency, which

Type-transparency

Type—transparency of expressions is ensured if all the basic
operations and defined functions are type-transparent.

The problem of making defined functions type-transparent
will be considered later.

Most APL basic operations are type-transparent, but there
are two exceptions.
1. Dyadic-p: A p B is an array with shape A , and rank pA . The

type of the result depends on the length of vector A .

2. Dyadic transpose & : the rank of A Q B depends on the number of

different elements in the vector A .

To avoid these cases we must impose our first restriction on

'campilable' functions:

Restriction 1.

In a campilable function, every occurrence of dyadic-p or
dyadic-Q@ must have a left argument consisting of a constant expression,

i.e. an integer or a sequence of integers.

The effect of this restriction can be minimised by limiting
other uses of dyadic-p and dyadic-Q@ to relatively small functions,
possibly calling other, larger, campilable functions. Hopefully, in this
way we can keep the interpretive phase of execution as short as possible
(as noted previously, we expect to have mixtures of campiled and non-

canpiled functions anyway) .

Type—-consistency

Once all expressions in a defined function are type-trans-
parent, the results of these expressions will have fixed types if the
identifiers in the expressions have fixed types. If the types of the
parameters of the function, and the types of the global variables, are
fixed, then it is straightforward to derive the types of identifier-
occurrences at subsequent positions in the definition text, by essential-
ly following all possible execution—paths, up to repetitions of statements,
keeping track of the types possessed by identifiers. When statements
are repeated, if the types of any (subsequently used) identifiers have
changed, then we have type-inconsistency. Otherwise the definition will

be type consistent, for the given initial typing of parameters and

globals, i.e. for parameters and globals of these types, the type of
every expression is fixed for all computations. This will be one of

our requirements for compilability:

Restriction 2.

In a campilable function, we must have type consistency for
same initial typing of parameters and globals. (We can assume type

transparency fram the rest of the Restrictions, so type-consistency is

checkable.) (The initial typing is given by other restrictions.)

This is not a drastic restriction. Type inconsistency
usually results fram poor programming style - using the same variable

for two purposes simply because it is possible to write one piece of
code to take care of both cases.

All that remains for type-determination in a defined function
is to satisfy the following requirements:
a) ensure that all defined functions used within the function are type~
transparent.
b) ensure that the type of the functions parameters and globals are
fixed.

One way to do both (a) and (b) is to allow type declarations

in function headings, as in Algol, specifying the types of the parameters

and the type of the result of the function. A function called with the
wrong types of arguments would produce an error.

This solution is unnecessarily restrictive. A better solu-
tion will be given after we look at the current function-calling

mechanism in APL, and one of its desirable side effects.

Typeless—parameter-passing

Since the formal parameters of defined functions are type-
less, it is possible to call the same function for arguments of arbitrary
types. This is a very useful feature, and one of the distinguishing
features of APL.

There seem to be three main ways in which this feature is
used:

A. The function may decide what type of argument it has been given, and
do campletely different calculations depending on the decision. The

function is essentially the union of a finite number of other
functions.

B. The function may have been designed to work on some simple types of
arguments, but continues to work for higher types because the basic
APL operations often work for higher types. The result of the
function will usually be same array containing the results that
would have been obtained if the function had been applied to the

simpler-type components of the arguments. This use will be discussed
further below.

C. The function may have been designed for all types of arguments, but
the result of the function is not simply an array of the results for
the simpler subarrays of the arguments; i.e. not case (B). (For
example, the following function REV , for array argument A ,
returns an array B identical to A except that each dimension is
reversed:

VB < REV A; N
[1] N<0
2] B<A
[3] + ((ppA) < N « N+1) /0
[4] B« ¢[NIB
5] =+ 3
(6] Vv

Of these three uses, case A seams least essential; we will
assume that such functions are replaced by their component functions.
(If a function containing such a case A function is to be canpilable then
the types of the arguments to the case A function will be determined, and
we can call the appropriate camponent function instead.) Case C is
trickier. We will not be able to campile case C functions, but they may
be found to be type-transparent, and thus may be used within other
carmpilable functions. This point will be returned to later; for the

moment we will forget case C functions.

This leaves us withthe case B functions. They constitute a

feature of APL Mﬁéhis particularly appealing. Suppose we write the

\

following function AT to give the percentage increase on a sum invested

for N years at I percent:

VINC « N AT I; Il
[1] INC«M<« 0
21 I1 < 1+ I+ 100
[3] > (N <M+ M1)/0
[4] INC « I + Il x INC
[51 -3
61 V

It is very gratifying to find that, if it is given a vector I of
interest rates it will return the vector of corresponding percentages
increases. On the other hand, it is annoying when one then tries
suppiying a vector N of years instead and gets the result corresponding
to the smallest element of N . The reason why the function 'extends'
for one argument and not the other can be found by looking at the code
of the defined function. There is a logical reason why it does not extend
for N - the number of iterations of the loop gives the percentage
increase for that number of years, and the total number of iterations is
a single number. On the other hand, argument I does extend, not for
logical reasons, but because the basic APIL operations + and X , that
are applied to I , happen to work for both vectors and scalars. The
final result of the function cames fram these operations on vector I ,
giving a vector of values. In fact, our function effectively behaves
like a primitive operation as far as I is concerned - it extends in the
same way. This effect can be achieved deliberately, but it is remarkable
how often it occurs unintentionally; it might be termed the Serendipity
Effect.

We shall show that by modifying the function-calling
mechanism, we can make the uniform extension of functions a part of the
language, and at the same time satisfy our type-determination requirement

(a) and (b)

10

Typed—-parameter-passing

The idea is very simple. Consider the function AT . We
define the result of supplying a vector of interest rates I to be the
vector of results for the corresponding scalar camponents of I . We
can similarly define the result for a vector of years N . We can
realise this defined behaviour by a nbre camplicated function-calling
mechanism. Instead of simply passing over the vector actual parameter

N say, it passes over the scalar camponents of N , and the function is

re—evaluated each time. The calling mechanism then assembles these
results into a vector - the result of calling the function. All this
could be achieved by the generation, by the calling mechanism at run-
time, of a simple loop within which the actual call of the function is
embedded. It can also be made to work for arguments of higher types, by
the generation of several nested loops. Thus we can make the function
extend uniformly.

Of course, the calling mechanism must be told that the
function requires scalar arquments and returns a scalar result. This
can be achieved by declarations in the function heading: a function with
such declarations we shall say is 'typed'. We suggested parameter
declarations earlier, as a way of satisfying requirements (a) and (b).
Note, however, the crucial difference in the present case - if called
with parameters of higher type than those declared, the function will

still work.

11

Nevertheless, note that the function is only actually
executed for scalar parameters. This satisfies half of requirement (b)
for type-determination. The second half can be satisfied by declaring

or prohibiting globals in compilable functions:

Restriction 3.

A compilable function must be 'typed', by declarations of
its parameter and result types, and must also have declarations for the
types of all its global variables. The function may not change the type
of any global, and the result type must be correct (both can be checked
if the function is type consistent for the declared initial types).

All that remains for type—determination of a function is to
satisfy requirement (a) - type-~transparency of the functions used within
the given function. If these functions are typed, then for any ranks
of arguments we should be able to specify the ranks of the result from
the conventions we use in extending functions. There must be general
rules for defined functions of all types, and the next section suggests
suitable notation and conventions. This notation was settled on after

many discussions with D. M. Jackson, to wham the author is indebted.

The extension of typed functions

For typed function F , with heading VC <A F B, the 'type'
of the function will be (i, j, k) if A is declared as type i1, B

as type j and C as type k . Similarlyfornmxadicfmmctions;

12

In the simplest casés, type (0, 0, 0) , we should expect
functions to extend in the same way as scalar operations like addition.
In AB , if A and B are both scalars we get a scalar result: the
sum. If A is scalar but B is an array, we get an array as result:
the result of adding A to every element of B . If both A and B
are arrays of the same type, and corresponding dimensions are of the
same size, then the result is an array of the same type and size, in
which each element is the sum of the corresponding elements of A and
B. (If A and B do not satisfy the above conditions, the result is
undefined.)

There are really two extension mechanisms at work here. If
the first mechanism were used in the second case, we would expect a

result of higher type, containing the sum of all pairs of elements fram

A and B,
e.qg. : 0 2 7 3
1347 +09162 = [12 410 5
13 510 8
16 813 9

On the other hand, if the second meshanism were used in the
first case, the result would be undefined.

The first mechanism we shall call a 'free association', and
the second we shall call a 'paired association'. The example above is
the 'free' addition of (1 3 4 7) and (9 16 2) . Note that the type
of (the result of) a 'free' addition is equal to the sum of the types of
the arguments, whereas the type of a paired addition is equal to the

(identical) types of the arguments.

13

We introduce a notation to indicate the results of typed
functions (of all types), which agrees with the basic operator extension
mechanisms for type (0, 0, 0) functions. Even for (0, 0, 0) functions,
we introduce extra generality, for example allowing free association for
array arguments. (It is natural, in the percentage-increase example, to
give a vector of years N and a vector of interest rates I , and
expect to get back a TABLE of results.)

In the following, F is a function of type (i, j, k) , A
isof type n, B isof type m, U and V are vectors of positive
integers, permutations of subsets of the dimensions of A and B
respectively, i.e. pU < n and there are no repeated elements, and
similarly for V . We wish to specify the result X of ({u}A) F 4V3B .
The definition of F vV} B, for monadic function F of type (j, k)
is similar; simply ignore all references to A, U, n and i . If U
or V are empty, it is equivalent to omitting the brackets, so A F B
is a special case of this notation. The dimensions in brackets are

always left 'free'. Iet p=n- (pU+1i) and g=m~- (pV + j) .

i) If p<0 or <0 then X is undefined, otherwise X is of

rank pU + pV + k + (plg) .
ii) If U is non-empty, say U = oU' for same - o < n , then

X[igiie.eil = (:EU'J-A[;;;il;;;])F +V+ B

< - .
for all appropriate indices il .

14

iii) If U is empty and p > q then

X[il;;...;] = Ali 1 F % B

1iiee-
for all appropriate indices il .
iv) If U is empty and p < g then
a) if V is non-empty, say V = gV' for some B <m , then

X[iyi...7] = AF {V'} Blss...iiq507]
< B >
for all appropriate indices il .
b) if Vv is empty and p < g then
X[ll;;...;] = AFB[ll;...;]

for all appropriate indices il .
v) If V is empty and p =g then

P

X[llilz---lp;;;;] = A[11;127“';lp”7’] F B[ll;lz;...;l i iecei]
< j -

~k~> ~ i
for all appropriate i]_’iz’i3’ . ,ip . To be defined
in this case, the first p dimensions of A and B
must match in length, and all the rank-k results of F
(as expressed by the right-hand-side of the above

identity) must have the same shape.

This formal definition may be a little hard to follow. A
few examples should help. Consider scalar functions (i.e. type (0, 0, 0))
such as addition. If arrays A and B are the same shape, then A+B

is defined by case (ivc) , which is exactly the usual definition of array

15

addition. If A is a vector and B is a scalar, then A+B is defined
by case (iii), which again is the usual definition of addition. On the
other hand, if A is a two dimensional array and B is a vector of the
same length as the last dimension of A , then A+B is defined by add-
ing B to each row of A (case (iii) followed by case (ivc)).

13 4 7 7

+6 3 1 5 =15 6 2 9
11 12 10 11 .

e.dg.

Ul W
o w =
O H O
N £ N

If we want to add B to each colum of A , we simply leave

free the second dimension of A : ({21a) + B

e.g.
27 1 6 2 13 12 6

9 3 1 4)+ 63 1= 1 ©10

5 o 9 ¢ 12 4 10

8 7 7

The result is transposed because the free dimensions come before the
paired dimensions.
In general, for (0, 0, 0) functions, the dimensions U of
A and V of B are left free; as many dimensions as possible fram the right
are paired (of those not in U and V); and the remaining dimensions, either
all in A or all in B , are free. In the result, the free dimensions
of A come first (U preceding the rest), then came the free dimen-
sions of B (V preceding the rest) and then we have the paired dimen—
sions. For (i,j,k) functions, the last i and j dimensions of the
two arguments are the ones to which the functions are applied; the rest

are treated as above.

16

Using these rules, it can be seen that inner product A f£.g B
can be represented by £/A gflVipp B}B (matrix product is +/Ax$23B) ,
and outer product Ac.fB is ($ppAA)EfB (or equivalently A ffppBiB) .
The free addition of two vectors A and B is simply +13A + f1}B or
1t1tA + B or A + 1B (a special case of outer product).

Catenation is an example of a type (1, 1, 1) basic operation,
and the way it normally extends to arrays satisfies the rules given above.
The rules also allow the catenation of, for example, a rank 2 array and

a vector:
(1 2 5 4)’(2 1 6)=<1254216)
9 1 6 7 9 1 6 7 2 1 6
Catenation is one of a number of basic vector operations (catenation,
reduction, reversal, rotation, lamination, compression and expansion)
which allow a square bracket notation to indicate which dimension is to
be the one to which the operation is to be applied. This feature could
be combined with the + }+ notation, but we will not pursue this here.
The + + notation was chosen because it looks similar to the square
bracket notation, but it must be emphasised that the two notations pick
out dimensions for completely different purposes.
The notation introduced here seems flexible, powerful and
useable. For the purposes of this paper, its important feature is that

it makes it possible to determine the type of the result of a function

call in terms of the types of the arguments.

17

Type—~transparency of defined functions

If a function F is typed, of type (i,j,k) say, then the
type of (Ut A)F V3 B is pU + oV + k + (plq) , where
Pp=n-(pU+1i) and g=m- (pV + j) . Provided the lengths of U

and V are fixed, the expression is then type-transparent.

Restriction 4.

In a campilable function, all calls of typed functions
10+ A F V¥ B nmust be such that U and V are constant expressions,

i.e. .literally integers or sequences of integers.

We could now ensure type transparency of all function calls
within a given function by requiring that all such called functions be
typed. In fact, we can be a little more general than this. It is
possible to have functions, particularly case C functions, which can
not be typed in the sense we have been considering but which are verifi-
ably type-transparent. Such functions will not be campilable, because
of Restriction 3, but could still be called from within other compilable
functions.

For such functions, we would require Geclarations which
express the type of the result as, say, an arithmetic expression in terms
of the types of the arguments and globals. The types of the arguments and
globals would not be fixed, but would be denoted by some conventional symbols,
say 'N', 'M' etc., meaning arbitrary types. The type of the (monadic) case

C function REV given earlier would be (N, N) for example; for any type of

18

argument, it returns an array of the same type. Functions with such
declarations we can say are p-typed, meaning the typing is parameterized.

Of course, it is not sufficient to simply give the p-typing,
we must also check that the p-typing is correct. To do this we need a
sort of parameterized type-consistency check; starting with the initial
typings N , M etc. we follow all executions, keeping track of the types
of identifiers as arithmetic expressions in N , M etc. (To do this we
need type-transparency of expressions.) If we repeat a statement during
the checking, with different parameterized typings of some (subsequently
used) identifier, or if we change the type of a global, then the type
consistency check fails. (Some limited deductive power will probably
have to be built into the checker to decide whether two expressions
denote the same types or not.) If the check does not fail, and the re-
sult type agrees with the one declared, then the p-typing is correct.
Thus for p~typing we need type transparency and a sort of type-consist-
ency. The p-typed functions therefore must satisfy all the restrictions
for campilable functions, except Restriction 3: we do not determine
types. Of course, if we call a p—typed function with fixed types of
parameters and globals we get a determined type of result, i.e. it is
type-transparent.

The final restriction on compilable functions is then

Restriction 5.

In a campilable function, all function calls must be of typed

or p~typed functions.

19

Surma

We can now see the overall picture. Defined functions will
be of three sorts, typed, p-typed and untyped. All typed or p-typed
functions can call only typed or p-typed functions,and to be campilable
a function must be typed. We can therefore ignore untyped functions.

To be campilable, a typed function must have a unique type
associated with every expression in its definition (and in particular,
any expressions that can denote the eventual result of the function
must have the type that was declared). To ensure this we must disallow
certain basic operations and also make a syntactic check that the types
resulting fram the original parameter (and global) types can never con-
flict. In doing this we use the typing or p~typing of the functions
used in the definition.

For a p—typed function (or a non-campiled typed function),
we still have to check that the declarations are correct. This involves
a type-consistency check that is a parameterized version of the one used
in type—determination, and once again we use the typing or p-typing of

the functions used in the definition.

Camments

1. It is difficult to estimate how much execution time would be saved
by the compilation of defined functions in the way suggested. Each
function call will, in general, result in several executions of the

function. This is offset by the fact that the arquments for which

20

the function is actually executed will be simpler, and presumably

the basic operations will be correspondingly faster. More important-
ly, since types will be determined, a great deal of 'overhead' can

be eliminated. By compiling the function we expect a net time saving,
but simulation studies should be performed to confirm this.

2. The modification to APL, itself, namely the function extension
mechanism, seems to have many advantages. As it stands, it is an
appealing extension to the language. It also opens up the possibili-
ty of further improvements, in particular, it appears possible to
remove the distinction between basic operations and typed functions,
so that typed functions could be used in reduction, for example. It
would be worth having simulation studies of the function-extension

feature just to see if the notation and conventions are well-designed.

Acknowledgement

I am indebted to D. M. Jackson, whose indignation at the
fickleness of the Serendipity Principle initiated many discussions on

function extension mechanisms and notation.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

