STRUCTURE OF COMPLEXITY IN THE WEAK MONADIC
SECOND-ORDER THEORIES OF THE NATURAL NUMBERS

by
Edward L. Robertson
Research Report CS-73-31
Department of Applied Analysis and
Computer Science
University of Waterloo
Waterloo, Ontario, Canada

December, 1973

STRUCTURE OF COMPLEXITY IN THE WEAK MONADIC SECOND-ORDER

THEORIES OF THE NATURAL NUMBERS

Edward L. Robertson

ABSTRACT

The complexity of decision procedures for the Weak Monadic
Second-Order Theories of the Natural Numbers are considered. If only
successor is allowed as a primitive, then every alternation of second-

order quantifiers causes an exponential increase in the complexity of

deciding the validity of a formula. Thus a heirarchy simf]ar in
form to Kleene's arithmetic heirarchy may be shown to correspond to
the Ritchie functions. On the other hand, if first-order less-than
is allowed as a primitive, one existential quantifier suffices for
arbitrarily complex (in the Ritchie heirarchy) decision problems.
This leads to a normal form, in which every sentence in the theory

is equivalent in polynomial time to a sentence with less-than but

only one existential second-order quantifier.

KEY WORDS:
Weak Monadic Second-Order Theories, decision procedures,

computational complexity, Ritchie heirarchy.

ii

ACKNOWLEDGEMENTS

The majority of this research was conducted at the
University of Wisconsin wifh the Support of the N.S.F. Grant No.
GJ-33087. It was written up at the University of Waterloo with the
support of the University Research Committee and the N.R.C. Grant |
No. AB653.

The author wishes to express his gratitude and
appreciation to Prof. L. H. Landweber for many stimulating

conversations and discerning comments.

TABLE OF CONTENTS

I. INTRODUCTION .

II. THE WEAK MONADIC SECOND-ORDER THEORY .

ITI.THE SIMULATION OF A MACHINE COMPUTATION .

IV. MANIPULATION OF FORMULAS INTO SPECIAL FORMS.

V. CONCLUSION

BIBLIOGRAPHY .

15

20

41

49

I. INTRODUCTION

In [6], Meyer presents a method for reducing the decision
problem of any set whose characteristic function is elementary to the
problem of deciding whether a formula in weak monadic second-order
theory of one successor (WMST(')) is valid. The length of the
formula in WMST(') s only polynomial in the length of the input,
thus providing a reduction of any elementary computation to a sentence

which is polynomial in the]ength of the input.

Notation For any string o , |oa| denotes the length of a
This is used both for strings over an input alphabet and for formulas

in Togical languages.

Definition: Let Zf be a logical theory, and C a class of

sets. Then € is polynomial expressable in ST if, for every S ¢ C

there is some Turing-machine M such that

1) S 1is the set accepted by 9M .

2) for every input o there is a formula 2, (or qn’a) such that
o, is valid in % iff M accepts o

3) there is a polynomial p such that, given o , @u may be

constructed within p(|a|) time, and hence |o | < p(lal) .

The relevant time and space bounds are the well-know "Ritchie

functions" [8] fi > defined inductively by

f'i+] (n) =2 3

so that fk(n) is the kth exponential of n , that is
oN
{ k times

2 l

A

We use 'gk to denote the class of all sets S, such that S is
accepted by some (possibly non-deterministic) Turing machine

which operates within space and time bounded by fk(C°n) , where ¢ s
an arbitrary constant and n 1is the length of the input. This defini-
tion varies from Ritchie's on several technical details: time as well
as space is bounded, the classes are of sets (acceptance problems)
rather than functions. However, the basic feature of Ritchie's defini-
tion - that fﬁk+] is a class which is exponentially harder than *'k
- remains unchanged. Also unchanged is Ritchie's result that the union
of all the classes Z#k is the class computable in space and time
bounded by the elementary functions [8]. It is eaSy to see that any
function computed within time bounded by a polynomial in fk is in

vy
"k o for k > 1

The proof that WMST 1is not decidable in elementary time
involves showing that each class ?;k is expressable in WMST . If
the set of true sentences of WMST were indeed elementary, then by
Ritchie's result it would belong to '?k for some k . But then
1;k+] would be reducible to fﬁk » contradicting the strict heirarchy

of the ~?k's .

Meyer's construction employs the extremely elegant but
opaque device of "y-expressions". In reading Meyer's proof, one suspects
there is an intimate relation between the structure of WMST formulas
and the Ritchie functions.

In this paper we exhibit that relationship directly. Given
any set S in éﬁk and any input o , we construct the formula @u
Moreover, @a may be seen to be in a standard form, with all second
order quantifiers out front, with k-1 alternations of second order
quantifiers, and beginning with a second-order existential quantifier -
i.e. ¢, 1s in the second-order analogue of Z -form of the Kleene heirarchy.

There are three major sections to this paper. Section II
formally introduces WMST 1in several variations. The main result of
Section II is an important tool, which essentially allows the expression of
congruence modulo fk(n) in a formula whose Tength is merely polyno-
mial in n . Section III puts this tool to work, describing the
construction the formulas @u which simulate the computation of
on input o . The construction of %ﬁ;a will be done in a direct
manner, using a method similar to that of Cook [2] for describing the
computation of “i: on o . This section therfore provides a direct
proof of Meyer's result.

Section IV examines the results of the previous two, mani-
pulating the formulas to relate their structure to the computational
complexity of the machine described. 1In particular, a heirarchy
similar to the Kleene-heirarchy is shown to exist in WMST with only
successor as a primitive. If < 1is also allowed as a primitive, the

heirarchy disappears entirely.

The concluding section briefly mentions the complexity of
specific algorithms for deciding various theories. With a slight
modification, the heirarchy of section IV is claimed to be one-gone.
Finally, these and previous results are used to achieve normal form
for sentences of the language of WMST plus the primitive relation
less-than such that any formula can be transformed into this normal
form within time and space bounded by a polynomial in the length of

the formula.

[I. THE WEAK MONADIC SECOND-ORDER THEORY

A monadic second-order language includes the usual logical
connectives, first and second order variables and quantifiers for these
variables, and monadic (unary) applications of second-order variables
to first-order ones. In addition, the language may be augmented with
other non-Togical symbols representing first-order constants or fixed
functions or predicates on first-order variables.

If the first-order variables are interpreted as members of
N (the natural numbers), a second-order variable then clearly corres-
ponds to a subset of N - that particular subset for which the predicate
is true. This interpretation of a monadic second-order language 1is
denoted by MST(N, P> wos pm) » Where the p. are interpretations
for the non-logical symbols. If the interpretation is further restricted
so that second-order variables are quantified only over finite subsets
of N (predicates true for only finitely many individuals), the resulting

theory is the weak monadic second-order theory of natural, numbers with

primitives 2} TR denoted WMST(N, Pps v pm) .

Conventions: Upper-case Roman letters will be used for second-

order variables, and will be called sets or set variables, while lower-

case Roman letters will be used for first-order or individual variables.
Since individuals will always be interpreted as elements of N and sets
as finite subsets of N , we drop "N" from the designation of any
particular theory. Also, with this interpretation in mind, the appli-
cation of a set variable (say X) to an individual variable (y) will.
be denoted by set-theoretic notation ("y € X"). The distinction between

a theory and its language is often ignored.

The additional functions and predicates which we shall
consider are the successor function (the successor of x is x+1 ,
written "x'"), equality, less-than, and congruence modulo a cgnstant
(congruence modulo a variable yields an unsolvable theory). The
symbols ', =, <, and = will be used both as non-logical symbols of
the language and in denoting particular theories. Informally arbitrary
numerical constants will be used, but the constant ¢ will be
expressed in the formalism by 0 followed by ¢ successors. Thus,
since some designation of successor will always be available, "0" is
the only numerical constant formally required.

Formulas involving = will often be additionally restricted
to require that only one modulus be used (or that there is one
modulus divisible by all other moduli). Although this restriction is
not on the primitives of the language, we will use "r=" in denoting
theories whose languages obey this restriction (such as "WMST{rz)")
and "restricted congruence" to refer to this restriction.

Previous investigations have concentrated on WMST(') , since
any formula true in WMST(O,',=,=,<) is equivalent to one in WMST(').

For example, "x < y" may be expressed as
(VI)[{((vz)[z2' e Z=>2 c 1] &y ¢ 1) = x ¢ 7] .

As may be seen, expressing < in terms of ' requires a second-order

quantifier, as is also true of = and

Definition: A primitive B 1is directly expressible in terms of
a primitive vy if every formula in B may be translated into an

equivalent formula in Y but not B without introducing additional

set variables. Then ' and = are directly expressible in terms of
<
- TN
(< =
R \\ 4
o \
o
= ; T
? / N ‘
; / :
o .
’ ’ I/‘_~ \‘
s 0 | r= ’j

Direct expressibility relations between
non-]o%ical primatives indicated by downward

lines (dashed relations discussed in subsequent
sections).

\

Within the language of any particular theory, we will use
many informal abbreviations. In particular, we will use as an abbre-
viation any relation directly expressible in the primatives of the
' in WMST(<) , or "tk" and

theory, for example using < , =, and

. . . +
"-k" (k constant) as abbreviations involving successor.

+ In order to avoid exponential growth in de-abbreviation, we must by
cautious and interpret any expression involving y-1 as false for
y = 0 unless it is explicity in the form

[y =0&P(y)]vIy>08&Q(y-1)]
as its negation.

For the moment we restrict ourselves to WMST(<, =) and
show how to define congruence for very large constants with quite short
and structurally simple formulas. Rather than using the functions fi’

we define slight variations 9; such that
g, (M) = n (= f (n)
91+](n) = gi(n) 2

As with the functions fi , a function g May be thought of as k
applications of 9y - The functions g, are introduced for notational
and conceptual convenience, and obiously delimit the same complexity

classes, as is shown by the following.

Lemma 2.1 For n>0, any i, fi(n)_g gi(n) §_f1(4n)
Proof: Obviously fi <95 -

The other inequality is shown by induction on i for the
stronger condition 4gi(n) 5_f1(4-n) . For i =0, equality holds by

definition. Now assume, for some i , that 4gi(n)_§ fi(4 n) and show

the same for i+1 . But
gi(n)
4959 (n) = 2:2+g;(n)-2
gi(n)
and each of these factors is less than or equal to 2 Hence
g;(n) 4 4g;(n) f.(4n)
49541(n) < (2) =2 <2 = fi.q(4n) .

g

Congruence Representation Lemma (2.2): The relation x = y

mod gk(n)*rcan be expressed in WMST(<, =) by a formula whose length

is linear in n but exponential in i

Proof: The remainder of this section is devoted to the con-

struction of the required formula. This is done by inducting on k

for each fixed constant n .

I. Basis

"X =y mod go(n)"
is simply an instance of primitives.

ITI. Induction

Given "x =y mod m ", define the relation "x = y mod
me2™ v Repeated application of this inductive step k times clearly
gives congruence modulo gk(n) .

First we construct certain important relationships, which
will be ébbreviated by the indicated expressions.

a) "x=y+m
X>y&xzy md m & (Vt)[x<t<y=tZy modm].

b) from (a) and constants obtain "x = m", "x < m", etc.

c) "y = Lx", signifying that y is the greatest value < x which
m

is congruent to 0 mod m .

¥ In this and all future cases, the modulus of a congruence relation is
a constant, in this case a constant in n . The other arguments are
usually variables.

10

y<x & y=0 mdm & (t)[x>t>y=1t%0 mod m]

We will sometimes further'abbreviate, omitting individual quantifiers

and writing "x+n" and "*x" as functions. Similarly, we define

[x = kx +m (the least y great than but not equal to x such that
m

y =0 modm).

The construction used in the induction step, and also many
other constructions in this paper, involve encoding binary sequences
in sets such that the set X represents a binary seugnece which is 1
in the yth position iff y ¢ X . A reference to "sequence" thus
means a set interpreted in this manner. Such sequences are technically
infinite, but since the sets encoding them are finite, they become only
zero after a certain point.

A m-interval is a portion of a sequence which has indicies
cm, cmtl, ..., cmtm-1 , for some c - that is, it is m bits long
and begins at a position congruent to zero modulo m . An m-interval-
sequence is a sequence in which successive intervals encode, in order,
‘the binary representations of the numbers 0 thru 2M-1 » Or some
number of repetitions of this pattern. Observe that encoding 0 thru
2M_1 requires me2™ bits, whence the definition of the functions 9y -

Given arbitrary x and y , it is possible to determine
whether x = y mod me2" by looking at those m-intervals of a suffi-
ciently large m-interval sequence which contains the xth and yth bits.

In particular, x is congruent to y modulo me2™ if the m-intervals

11

Figure 1 The use of m-intervals to determine x = y mod me2™

la) an m-interval-sequence:

<~ M>< M>< M=>=<m > < m-=>=<m - < m >« m ~> <~ m -
00...0{10...0{01-..0411-..0 eoe/11-..1/00---0feeef11---1{00---0leee|lT--.]
- m-2m

1b) slicing up the m-interval-sequence and laying rows in parallel:

< m >
jfoo...o0
1 10-..0 (g} and (y: indicate the x-th
2™ rows (/ o1..-0 y-th positions of the sequence
respectively

, .

11 .. .1
00...0 x =y mod m2™ iff

i) (x) and) are in same

_ columns
11 - . .7

ii) rows containing 'x) and
00...0

(y) have same pattern

]] e s .]
00...0

11 .. .1

12

represent the same binary number and x and y have the same position

y mod m). Figure 1 indicates

1l

in their respective m-intervals (1fe. X

the idea of the construction.

It is now necessary to make a short aside in order to clarity
notation. Since we will Tater wish to distinguish between various
formal representations of the same relationship, we will designate a
relationship with script letters, while the same name in Roman will
designate formulas representing the relationship, with subscripts to
distinguish different formal representations. For example, the relation
m-J5:(X) , which is true iff X is an m-interval sequence, will be
repraéented by formulas m—ISeq](X) and m-ISeqz(X) . It should be
noted that m 1is a constant involved in the construction of m—ISeq] s
and hence this notation is more appropriate than listing m as if it
were a parameter of the formula in the same way as free variables. -

The formulas expressing m—\DS‘;(X) , denoted m-ISer(X) ,

is a conjunction of four clauses:

cl) X starts with 0" :
Wy)ly <m=y ¢ Xx]
c2) 0 and 1 alternate in positions congruent to 0 mod m :
(ww)ly =0 mdm & y+m <-max(X) = (y ¢ X <=>ky+m ¢ X)]

c3) carry propigates correctly:

(vy) {ry <max(X) & (y e X <> y+m ¢ X) }

<= (Vz)[y >z > |y =z ¢ X]
m - m

13

c4) X ends with 1M :

max(X) = m-1 mod m & (Vy)[max(X) >y > (max(X) = y e X]
m ‘

Finally, we construct (X, x, y) which is a predicate
such that x = y mod m-2™ iff (HX)[mﬁi)&ﬁ(X) & me2™ —;ﬁﬁﬁ(x, X, ¥)].
That is, if X 1is an mesequence, m-2" - H(X, x, y) will hold iff
x and y are less than max(X) and x = y mod m-2™ . We take this
approach rather than directly defining congruence modulo m-2™ since

we will later wish to use the same m-sequence in expressing a number

of specific congruence relations. We define m-2" - ModO(X, X, Z)

y <max(X) & z <max(X) & y=z modm &

(Yu)(vv) [usv mdm & Ty>u>Lly & [z>v>|z }
m m m m

= (UeX<=vVelX)

The formal definition of gi(n)—-ISeq] and gi+]-Mod]
is done inductively such that go(n)-ISeq] and g](n)-Mod] are
exactly as given above with congruence as a primitive. For i >0 ,

gi(n)-ISeq] and g., ,-Mod

i+1°

1 are defined by substituting

(HX)[gi_](n)—-ISeq](X) & gi(n)-—Mod{X, X, 2)]

.(n)-ISeqO and

for each occurance of y = z mod gi(n) in 9;

giﬂ(n)—ModO respectively.

14

Thus we complete defining congruence modulo gk(n) for any
fixed k and n . The above expressions are cumbersome but not
difficult, and the reader may easily verify that they express the
desired relations. Furthermore, simple substitution for abbreviations
shows that 9 uses of congruence modulo m are required to define
m-ISeq] and 12 to define m-2m—Mod] (with minor cleverness these may
be reduced to 7 and 8). Hence, if congruence modulo n requires d-n
symbols to define for fixed n , and =mod m 2" is definable from
=mod m using c + 21{size of defi of = mod m} symbols, and we may

define x =y mod gk(n) using

k=1 .
7 21
i=0

(2]kd)n + Ce

symbols - linear in n but exponential in k .

It is clear that only congruence modulo n is required to
express congruence modulo gk(n) » and if the only modulus of a parti-
cular sentence is gk(n) (or gk](n), gkz(n), -++), then that sentence

is expressible with restricted congruence via this lemma.

15
IIT. THE SIMULATION OF A MACHINE COMPUTATION

As in Cook [2], we use logical expressions to describe the
valid computations of Turing Machines, and existential quantifiers
to assert that a valid computation exists. Because of the length
constraint, we are not able to code each tape-square time-instance by
specific expressions, but instead we must encode this information in

set variables.

Theorem 3.1 For any k >0, fﬁk+] is polynomial expressible

in WMST(<, =) .

Proof: Pick any S ¢ iFk+] » and a machine C)ﬂ which decides

aeS in time f ,(cela|) , for some constant c . We fix the input

a and construct Qm,a . Let n=ce|a] . For rea;o?;)noted in the
previous section, we will simulate a time bound of 2 k - without
significant chanae in the situation.

Say I operates on vocabulary £ and has states Q . We
then write the state of “/MN on the tape cell which M's head is
currently scanning (assuming % n (Q x) = ® and denoting

ru{(Qxz) by £). With this well-known modification, we represent

the coTpgtation of 9] as a sequence of transformations on strings over
g n
(i)2 . The initial and accept states of “M are 9, and g 3

and N is assumed to begin on the left most square of the input, and
never to move left of that square. Thus the initial string on input

G._OC'I "'OLn 1S

16

LB B

g, (n)

Ggaqy> Gy - . O B .

<+« 2 -n blanks -

For the remainder of this section we fix input o and assume that n
is sufficiently large so that £ may be represented by gk(n) bits,

that is

G is the bound on time and

We fix G = gk(n) ,» emphasizing that 2
space. The tape cells (equivalently, string positions) are numbered
from the left from 0 to 2G—1 » knowing that M will never move off
these cells.

We conceptualize the construction of the formula ¢ with the

aid of certain triples

G G

<0, S, t> € T x2°x2° ,

where we take <o, s, t> to be an assertion that the value of the s-th

symbol at step t is o . In the obvious manner, define
Net: Ex8x8 » §

from the transition table of Y| ¥ An accepting computation of 77} on
input x is thus described by a set of triples Cz such that
1) Cf is single valued in the first element of the triples:

<0, S, t> € Ci and <z, s, t> ¢ (j = 0=z

* For any permutation of <0ys Oos <qA,o3>>, g, € o, WlLﬂf is
the identity - i.e. M remains in 9a forever.

2)

ijinc]udes triples describina the initial configuration:

17

{<(ags 9g)s 0, 00} u {<a;, i, 0>[1 < i <n}ui<g, i, 0>|n <

< G

3) (G includes an accept state:

4) any triples in CS follow from previous (in the "t"-component)

triples:

<6, s, > & t#0 =

s#0 & s#2%1 &

3(<C], s=1, t-1>, <gy, s, t=1>, <gq, s+1, t-1>)

[a = Nolszy, 2y, c3)]

wn
1]

0 & 3(<C23 S, t—]>s <C3a S+]s t‘]> € G)

[0 = Ylexlis, Lo c3)]

= (250) & 3y, 51, te1o, <oy, s, 1 @ ()

[0 = Nudizy, B)]

[72]
|

<o, s, t> € Ci such that o= (6, qA) for some 0 ¢ I

fk(n)}

where the latter two disjuncts are special cases for the left and right

ends.

These conditions are obviously necessary and sufficient for

to describe an accepting computation. Observe that (i as defined is

unordered, but if it were ordered by the third and then second (time,

18

then space) component of the triples, then (j would closely resemble
the familiar sequence of instantions descriptions used to describe
Turing machine computations. The existentials in the fourth clause
replace the need for ordering (& .

Now it remains to show that the above predicates can be
coded into WMST and hence express the existence of (C . Three
sequences A, S, and T are used to encode » corresponding to
symbol, tape position, and time. A triple <o, s, t> ¢ (3 is encoded
in A, S, and T by parallel G-intervals in all three sequences. In

particular, there will be some t =0 and G such that
A(t+G-1) A(t+G-2) -+ A(t+1) At)
is a binary code for the symbol o and

S(t+G-1) S(t+G-2) ... S(t+1) S(t)
and

T(t+G-1) T(t+6-2) --- T(t+1) T(t)

are the binary representations of s and t respectively.
With this representation in mind it is not difficult to

construct a formula Fa such that

(3A)(38)(AT)[F]

is true iff W} accepts o . F, 1s simply a conjuction of clauses
F], F2, F3 and F4 expressing 1-4 above. Rather than subject the

reader to tedious and unenlightening coding of 1-4 at this point, we do

19

only F] as an example:

(¥x)(vy)

(Xx=0mdG & y=0mod G & x < max(S) & y < max(S) W

j mod G

11

& (Vi)vi) Ix>i>Lx & [y>j>Lly & i
()(J)G >k Ly ixLy

= ({eS<>jeS) & (ieT<=jeT)

Note that this states single-valuedness in a somewhat stronger manner,
requiring that there be only one code for a given combination of s
and t . The length of each of these terms in certainly polynomial
(and indeed linear) in n given ‘7ﬂ and k , and hence the reduction
is polynomial bound.

From Theorem 2.2 we know that x = y mod gk(n) can be
expressed in length polynomial in n , and substituting that expression
into F1 & F2 & F3 & F4 gives the required formula & . Since
only congruence modulo n is required as a primitive, @ is actually

in the Tanguage of restricted congruence.

20

IV. MANIPULATION OF FORMULAS INTO SPECIAL FORMS

The previous sections provided a polynomial reduction of the

problem of deciding acceptance by an fk—bounded Turing machine to that
of deciding the validity of a WMST(<, r=) sentence. In the course of
that reduction, however, there was no concern about the structure of
the second-order formu]as. In this section we refine the previous
constructions in order to investigate the relationships between the

structure of second-order formulas and computational complexity.

Definition A second-order formula & s in Zi j—form iff

1) & s in prenex form, with all set quantifiers followed by all
individual quantifiers, and all individual variables bound.

2) the first (outermost) quantifier of & s "3".

3) @& has i-1 alternations of set gquantifiers and j-1 alternations
of first-order quantifie)r‘s.Jr

A formula ¢ is in Z; w—form iff & 1is in Z; j—form for some j .

b 9

Zj j denotes the class of all relationships expressible by formulas

in Z; i-form, and similarly

b

The forms and classes I, . and TII. , are defined analogously.

7 In the general case one should also consider the leading individual

quantifier, but for monadic second-order formulas this notation is well

defined, since we may always find an equivalent formula with the same

on fewer individual quantifier alternations where the leading individual

quantifier is of different type then the last set quantifier. For example,
. (Yz)(Va)... M is convented to ...(vz)(vsa)(aa)... Sa(a) = M.

21

With these definitions we may now state the major results of

this section

Theorem 4.1 For any k >0, %f@ is polynomial expressible in

WMST(<, r=) by formulas in Z],w—form.

Theorem 4.2 For any k > 0 ,<§[k is polynomial éxpressib]e in

WMST(') by formulas in £, -form.

K,w
The remainder of this section will be devoted to the proofs

of these theorems, which involves manipulation of second-order sentences

and many intermediate representations. When finding a formula in special

form, we must insure that this formula not only expresses the correct

relationship, but that it is neither too long nor to difficult to arrive

at.

Definition. A class of formulas él is polynomially expressible
byva class of formulas B if |
a) for each ¢ ¢ (L there is a logically equivalent
Ve -
b) there is some polynomial p such that ¢ may be
transformed into ¥ in fewer than p(|®|) steps (and
hence |¥| < p(|®|)) by some aigorithm which works

with this bound for all ¢ ¢ L

The same notion holds for a class of relationships, except that the
relevant bound is polynomial in the constant(s) of a relationship.
The manipulations are based on the following lemmas, which

are basic from logic but which provide extremely useful tools. In the

22

following discussion, it will be unnecessary to distinguish between
first- and second-order variables, although the main app11catioﬁ will

be techniques for moving certain set variables past individual ones.

Definition Let P be a predicate with free variables

Xs Y1 Yoo w0 Y - Then P(x, Yis +es yn) is uniquely satisfiable

in x for VA FERLETN if for each instance of Y1» ==+5 ¥, there

is a unique instance of x which satisfies P . The phrase "for

yT, e Yy is omitted unless it is necessary to make all free

variables explicit.

Lemma 4.3 Let P(x) be uniquely satisfiable in x . Then the
following two expressions are equivalent, for any 0 ,

(3 x)[P{x) & Q(x)]

(v x)[P(x) 0(x)]

Lemma 4.4 Let P(x) be uniquely satisfiable in x and let M be
an expression containing S = (3 x)[P(x) & Q(x)] , and such that M
does not contain x except in S , nor does M contain quantifiers for

the other free variables of P . Then M is equivalent to

jury

(3 X)[P(x) & W(x)] 40 3

ll

where M(x) is obtained from M by replacing S by Q(x) .

Proof. Let %o be that unique x satisfying P . Clearly S iff

Q(xo) and S iff ﬁ(xo) . Thus, substituting Q(xo) for S gives

M(xo) . and this expression is equivalent to M .

23

Lemma 4.5 Let P(x) be uniquely satisfiable, then
@x)@y)[P(x) & P(y) & O(x, y)]
is equiva]ent to
(3x)[P(x) & Q(x, x)]

We now return to second order theories with two Temmas of a

technical nature.

Lemma 4.6 Let ¢ = (A] z]) e (Ar zr)M(X], ces Xp, Yps oo yq,
Zys eees Zr) be a formula of WMST(', 0, <, r=) , where each Ai
is 3 or Y . Assume instances have been fixed for X], cees Xp
and Yio +ees yq . Then the quantification of Zys -ees 2, may
be restricted to integers less than or equal to &+re<2<c , where

2 = max(max(X.), max(y;)) and c¢ is the largest constant in M .
i<p i<q

Proof Let m be the unique constant with respect to which
congruence is taken (obviously m < ¢).

If i and j are such that z; > z;#2+.c > % , and the
instance of no other individual variable falls between Z; and zj .
then the instance of Zj may be decreased by m without changing the
truth value of any of the atoms of m . This process may be repeated
until there is no "gap" of more than 2c¢c between instances of individual

variables. Thus for any instantiation of Zys wees 2oy there is another

instantiation from the range bounded by f&+r<2.c such that each atomic

24

components of M has the same truth value for each instantiation.

[

Lemma 4.7 Let ¢ be a formula of WMST(', 0, rz) in Zy w—form,
for some k >0 . Then ¢ is polynomially equivalent to o' of

WMST('), and &' 4s also in Zy w—form.

Proof The expression of equality to a constant is easy, and
without loss of generality we consider congruence modulo one fixed
constant m .
Assume & is (A] X]) e (Ap Xp)(Ap+] y]) . (Ap+q yq)M .
where each A; is either 3 or V
First we translate congruence involving two variables to
that only involving one. For example, u = v mod m becomes
}v/[x =imdm & y = i mod m]
i<m
Next congruences of the form y = j mod m , j # 0, are changed to
y+(m-3)=0modm, so only equivalence to 0 modulo m remains.
By lemma 4.6, we may bound the quantification of individual
variables by 2 . Indeed, we add to M clauses which accomplish this.
Now add an additional set variable W , with quantifier
AW placed after A X . Also add clauses requiring max(W) > 2 and

p pp
zeW iff z=0modm . This latter is expressed by

25

0eW & Q.<1'€W & (VZ)[Z+meW=>ZeW]>
m

O<i<

The construction is completed by replacing "y = 0 mod m" by "y e W".

0

‘ With the\pure]y technical details completed, now we recon-
struct the formulas expressing congruence and simulating computations
in the required forms. Rather than directly giving the formulas and
becoming bogged down in the many details, we will, as much as possible,
attempt to give methods for transforming the formulas presented above
into the required forms. The goals are not necessarily elimination of
second-order quantifiers, but manipulation of them. The first goal is
to move all set quantifiers outside of individual quantifiers.

Since the expressions constructed for X = Y mod gk(n) in Lemma 2.2
required k Tevels of nesting of set quantifiers within individual
quantifiers, the standard procedure [3] for converting these expres-
sions to prenex form would result in many alternations of set quanti-
fiers. We therefore must develop new methods for manipulation, in the
following steps:

a) define a uniquely satisfiable form of m«%&&&{;

b) substitute the modified form for m—ISer,,using Lemma 4.6

c) using Lemmas 4.3-4.5, move the modified m—ﬂy,ﬁlig outside of the

scope of individual quantifiers.

26

d) replace the uniquely satisfiable form of méigjf. by a simpler
version. This step is not required for immediate application but
it will be convenient later.

a) the predicate m- Utﬁu%;(g, X) is defined to be true

iff X 1is the least m—interva1 sequence such that max(X) > ¢ . This

is true for an m-interval sequence X iff there is exactly one m-

interval containing all 1's which ends at % or above. Observe that

the Tast m-interval of all 1's need not end precisely at £ , nor does

£ even need to be in that m-interval. m—LLéﬁf is represented by

m—ISer(x) &

(vy) [y >% & yt1=0modm & (vz)[y > z 3_#y => 7 ¢ X]}

=>y = max(X)

denoted by m—USeqo(z, X) . For a fixed value of & , m—({SJ[is
uniquely satisfiable in X ; and this X is sufficient to determine
the congruence of any values less than & and necessary to verify any
congruence involving £ .

Steps b) and c) are provided by the following two Lemmas,

and Lemma 4.9 provides, in addition, step d).

Lemma 4.8 The relation "y = z mod gk(n)" is polynomial expressible

in WMST(<, r=) by the expression

27

ka)GXkJ) e GX])
L9y _1(n)-USeq, (max(y, z), X,) & g, _»(n)-USeq,(d, X, ;)
& ... & g](n)—USeq](d, X2) & go(n)-USeq](d, X1)

& gy (n)-Mod, (X, > v, z)]

where gi(n)—USeq] and giﬂ(n)-Mod2 are constructed inductively,

for i >1, replacing "y = z mod gi(n)" by ”gi(n)—Modz(Xi, y, z)"

in gi(n)-USeqo and giﬂ(n)-Mod0 respectively, and where

d = max(Xk) +c, C aconstant similar to r-2.c of Lemma 4.6.
Observe that X, ;, ..., X are also free variables of

USeq] and Mod2 , and that there are no other free variables, either

first- or second-order.

Proof The proof is by induction on k , for which no basis is
necessary since congruence modulo n 1is a primative.

We assume the result for some fixed k and express
y = z mod gk+1(n) as required. From Lemma 2.2 we know that this 15

represented by

(axk_ﬂ)[gk(n)"lseqo(xk_ﬂ) & gk+'|(n)"MOd (Xk"l‘]’ Y, Z)] H

1

which in turn contains occurrences of congruence moduio gk(n) . These
occurrences of congruence modulo gk(n) are of course replaced by

expressions of the form * using the induction assumtpion.

As was observed in the definition of ;(,ﬁiz;, ’

28

max(Xk+]) > max(y, z) 1s necessary and sufficient to verify
y = z mod gk+](n) , and hence gk(n)-ISeqo(Xk+1) may be replaced by
gy (n)-USeq (max(y, z), X ,q) -

Now observe that in all significant cases Xk+1 must be
greater than any values whose congruence is being considered, and hence
we may require max(Xk+]) +c z_max(Xi) , for all i <k and some
suitable ¢ . Hence, by Lemma 4.6, all individual variables may be
restricted to max(Xk+]) + ¢ (possibly a different c¢) and every
occurrence of gi(n)—USeq] » 0 < i< k-1, the first parameter may be
replaced by max(Xk+]) + ¢ . Each occurrence of gT.(n)—USeq1 is

therefore uniquely satisfiable in X dependent only on Xk+]

i+l
Using repeated applications of Lemma 4.4, all such occurrences may now
be moved out, along with the existential quantifier for their

associated X.

41 o tO just inside of (3Xk+]) . This procedure will

technically require renaming of many instances of Xi , and result

+1
in many distinct occurrences of gi(n)-USeq1 ; but these multiple
occurrences may be unified, by Lemma 4.5, into one occurrence of
gi(n)—USeq] and one of (3X1+]) .

With an appropriate ordering of terms, the modified formula
expressing "y = z mod 9k+](n)" is in *-form, completing the induction

step.

29

Lemma 4.9 Let ¢ be any formula of WMST(<) including, in addition,
congruence modulo gi(n) , for any number of i < k . Assume that the
set variables of & are W], e wq, all of which are free. Then

is equivalent to the following formula of WMST(<, r=) , where the

unique modulus in n :

(HXk)(EXk_]) e (3X1)[Pk(xk) & ... & Po(xo) & o'] ,

where &' s constructed by substituting "gi(n)'MOdZ(Xi’ y, z)"* for

each occurrence of "y = z mod gi(n)" and all P.(Xi) are either

i

gi_](n)—USeq](max(U wj) +c, Xi) [call this **-form] or all
i<q

91_](n)-ISeq2(xi) [call this xx%x-form].

Proof A proof similar to that of Lemma 4.8 shows that & is
equivalent to the *x-form expression.

To obtain the equivalence of the *x- and *xx-forms, first
observe that since any set satisfying m-LL‘iz%' satisfies m—;}fﬁf’
the *x-form implies the ***-form. The converse follows since any
X; satisfying max(Xi) > max(y, z) is sufficient to determine the
validity of y = z mod gi(n) , and all variables may be limited, by
4.6, to max(_u W.) + ¢ . On the other hand, if particular instances

J<q
of Xi's sati;%y the »*xx-form expression,any longer instance of Xi
which still satisfies gi_](n)—éigb?(xi) will do as well. Thus any
instances of Xi's satisfying the ***-form may be shortened (by the first

of the previous two sentences) or lengthened (by the second) to satisfy

the restrictions of the **-form.

30
Now we restate and prove:

Theorem 4.1 For any k >0 , jpk is polynomial expressible in

WMST(<, r=) by formulas in 2, ~form.

—
f

Proof From Theorem 3.1, we know that ;*k is polynomial expressible

by formulas

(31)(E3S)@N)[e]

where & has no other set variables and contains only congruence
modulo gk_](n) » where the input o is of length n . But by Lemma
4.9, we may replace these congruences by formulas involving congruence
modular, and only existential set quantifiers will be added immediately
insode of those three already present. Thus the resulting formula

would still be in Z] w-form.

0

Having completed the case of WMST(<, rz) , we now

eliminate "<" and work with WMST(', 0, rz) . By Lemma 4.7,
expressing a relation in terms of ', 0, and r= is equivalent to

expressing it in terms of ' alone.
We now define certain formulas and classes of formulas,

building up to the desired expression of congruence and ultimately

31

of bounded computations.

Lt(X, y) iff X=1{z : 2z <y}, expressed by
yeX & y' ¢X & (¥)[z' € X=>2z ¢ X] . Observe that Lt(X, y)

is uniquely satisfiable in X for y .

x =Y is expressed by (IX)[Lt(X, x) & y e X & y' &X], or
the eqdiva]ent for interchanging x and y . We will assume that
x is bound external to y , and thus specifically adopt the form
given above. Since Lt 1is uniquely satisfiable in X , the
quantifier for X may be moved out to that of x , and the same

quantifier form may be used for both.

x < max(S) asociate with every S appearing in such a clause

another second-order variable LS = {z : z < max(S)} , and observe
that x < max(S) iff Ls(x) . As an example, consider (3S)M,

where M contains x < max(S) . This is replaced by

(3S)(3L)<(Vz)[(zES=>ZEL) & (z2' eL=>2z¢L)] &)
(3z)[z S & z' ¢S & zel & z' ¢L] & M

where M' is obtained from M by substituting x ¢ L for

x < max(S) .

The predicate defining LS is uniquely satisfiable. Thus LS may
be quantified with S and causes no additional complexity of set
quantifiers, allowina us to think of x < max(S) as an entirely

first-order construction.

32

m-Str(X) which states that X contains one string of exactly m

members, and no other members. That is, for some vy ,
X=dy, y*1, ..., y*+(m-1)} . m-Str 1is defined in terms of

congruence modulo m , and is expressed by

(W)y € X1 &

(vy)([(wo 8 0eX)viyeX & y-1¢X)]=

} (vz2)[(z ¢ x = z' ¢Xvy=z') & /
| (z ¢ X => 7' e Xv y = zmodm &
(y=z'mdm=>y=2zvz {X)

Observe that equality as well as congruence is used in this state-
ment. As is seen above, equality corresponds to a single set
variable, which is bound at the most exterior level with Vyy and
may be taken to have a universal quantifier. Since the presence of
vy will require atleast one second-order quantifier in order to
move the quantifiers of mod m to a prenex form, the additional
second-order universal generated by equality will not add to the
complexity of the resulting expression.

Now assume that mod m 1is expressible in x. nll. . Then

i,w i,w

m-Str is expressible in Hi 0

2

m-Int(X) is true iff X 1is an m-interval. Using the above abbre-

viation, this is simply m-Str(X) & min(X) = 0 mod m . Expanding

the abbreviation, this becomes

33

m-Str(X) & (Vy)ly e X & y-14¢ X =>y = 0 mod m]

As with m-Str , m-Int 1is in Hi N

s

if modm 1is in . n I .
o i,w II1,w

m-Int0f (1, x) iff I 1is an m-interval containing x . This is

expressed by m-Int(I) & x e I . Since we know that if mod m
is Zi,w n Hi,w expressible, m-Str is Hi,w expressible, then

m-Int0f s also I, " expressible. Note also that m-IntOf(I, x)

is uniquely satisfiable in I .

Lemma 4.10 ?F} is polynomial expressible in WMST(', 0, r=) by
formulas in Z]’w—form.

Proof We need only show that the formulas F,, F,, Fs, and F,
of section III may be written, in this special case, so that no
universal set quantifiers are required to replace < .

Congruence modulo n , the length of the input, is available
as a primitive, and such relations as x < max(S) may be, as noted
above, expressed using only existential quantifiers. Other expressions
in n may be expressed, using ' , as conjunctions in disjuncts of
terms. For example, for any predicate P ,

P(Lx) iff [P(x -)] and
n 0<i<n

(vz)lytn >z >y => P(z)] iff & [P(x + 1)]

O<i<n

34

The number of terms generated in this way is always polynomial in n .

0
Similar reasoning may be used to show
Lemma 4.11 Congruence modulo g](n) is polynomial expressibie in
Z],w n H],w in WMST(', =) .

Lemma 4.12 gk+](n)-<?{lu} is polynomial expressible in Ly nll

»W k,w

in WMST(', r=) .

Proof The lemma is proved by induction on k . The basis of the
induction, that q] 7%1@{ is expressible without any second-order
quantifiers, follows in the same manner as Lemma 4.10. The definition
of q] ?ﬂgwl may be carefully re-written from section II, replacing
quantified constructions by ones involving n disjuncts or conjuncts,
and using constants 0 thru n .

Now assume 9; f?f[otf, is expressed by 9; (n)- Mod in

(n)-Mod3 in 1. rlﬂi,w . Define

I,
1,0

i-1,w i+]
1+](n) Mod by substituting g].(n)-Mod3 for all occurences of

n L, 0 and construct g

congruence modulo gi(n) (including those occurrences appearing in

gi(n)—IntOf) in the following:

35

y <max(X) & z <max(X) & y = z mod gi(n) &

(EIIy)(HIZ)[gi(n)—IntOf(Iy, y) & g;(n)-Int0f(1,, 2)

& Match(X, Iy’ IZ)] >

where Match is true if the binary sequence encoded by X in the
interval Iy_ matches that encoded in the interval I, . Match is
expressed by

(vu)(¢v)[u = v mod gi(n) & U e Iy & vel, => (ue X <=>ve X)]

This results in a Zi w—form for gi+](n)-ﬂﬂm. To obtain a

Hi ,,~form, observe that since gi(n)-IntOf is uniquely satisfiable, we
may replace (EIX)(HIy) by (VIX)(VIy) using Lemma 4.3. But this
also places gi(n)—IntOf as the antecedent of an implication,
effectively converting the ni_],w-forms into 21_1,w-f0rms, and

resulting in a I, ,-form for g1-+](n)-')'n.°d-

Lemma 4.13 gk(n)-é55§%.is polynomially expressible in WMST(', r=z)
\ by formulas in Hk,w
Proof We know that gk(n)-gﬁsgﬁ% is expressible in terms of
congruence modulo gk(n) and that, in the appropriate context (c.f.
Lemma 4.8), formulas expressing gk(n)—Tﬂgd,, in particular
gk(n)—Mod3 , may be used to express the congruence relations. By the

previous lemma, gk(n)—Mod3 is in Zglp " Hk-] N If we can

36

express gk(n)-é}f;y%. by embedding gk(n)-Mod3 in only one quantifier

alternation, of "y3" form, we will have the desired IIk , &xpression.

The following four clauses express Cl1 thru C4 of section

II. We use m to abbreviate gk(n) .
Cl: (VW)[m-Str(W) & 0 e W=> (Yy)[y e W=>y ¢ X]]

€2: (VI) [m-Int(I) & max(I) < max(X) =>
| [(min(I) € X <=> max(I) + 1 ¢ X]

C3: (VI1)(V12)(VW)

-m-Int(I]) & m-Int(IZ) & m-Str(W) & ‘
min(I;) = max(I,) + 1 & max(I;) < max(X) & min(W) ¢ I, i
=> ((max(W) + 1 e X <= min(W) ¢ X) <=>)

(vz)[min(W) > z z_min(Iz) = z ¢ X]

C4: (vI) rm-Int(I) & max(X) e I =>
[(maX(X) =max(I) & (wllyelI=>ye X])]

The situation in C3 may be visualized as
congruent to O

\(mod 9 (n) \\

1 X ‘ E

A P

&
order of increasing indicies

37

with W "sliding along" over I]-I2 measuring off an interval of
length gk(n) to insure the carry propigates correctly.

The expression gk(n)—ISeq3 is the conjunction C1 & C2 &
C3 & C4, of course expressing gk(n)-éQf;Q% .

Since the terms involving "max", "min", etc. are abbrevia-
tions for certain first-order constructions, the only second-order
variables are those universal quantifiers occurring explicitly in CI
thru C4 and any quantifiers occurring in Str and Int. From Lemma
4.8 and the observations made when these relations were defined, it
follows that Str and Int are in IIk-],w . But since Str and
Int occur as antecedents of implications, the entire expression is

in Hk 0

At long last we restate our goal, replacing k in the
original statement by k+1 to simplify notation in the proof.
v’ 3 0
Theorem 4.2 For any k>0, :+k+1 is polynomial expressible in

WMST(') by formulas in Zk+]’w—f0rm.

Proof The case for k = 0 is handled in Lemma 4.10, hence we

consider only k > 1 . Again we abbreviate G = gk(n) .

38

By Lemma 4.7, it is sufficient to show that §;k+1 is
polynomial expressible in WMST(', 0, rz) .

Pick k , S e ng+] , and any input o , ol =n . In
Theorem 3.1, we constructed 2, such that (HA)(ES)(HT)[éa] is true
iff o s accepted by some machine 9N computing the characteristic
function of S . By Lemma 4.9, with substitutions provided by

Lemmas 4.12 and 4.13, this is equivalent to

(38)(35) (3T)(3X,) ... (3X;)

[g_1(n)-TSeqs(X,) & ... & gy(n)-ISeqs(x;) & 31,

where 6a is obtained from ¢, using gk(n)—Mod3 to express con-
gurence modulo gk(n) . From 4.13, gk_](n)-ISeq3 is in IIk-],w ,
and the other Ifkﬁ. expressions are in even simple classes. Thus
considering only the 'Iiﬁf terms the formula # s in Zk+],w It

remains to show that an expression equivalent to @& may be found in

Zk+'l,w)

Of the clauses F1-F4 (see section III) which make up & |,
F1 and F2 are only universal quantifiers bounding congruence modulo
gk(n) » and by Lemma 4.12, these are thus in Hk—],w . Similarly, F3
uses existential quantifiers outside of the congruence and thus is in
zk-1,w ’

The encoding of F4 requires greater care. As presented in
section III, F4 states, ignoring special cases, "for every triple
<0, s, t> , there exist three triples <Cq» s-1, t-1>, <Cps S, t-1>,

<Cq, St1, t-1> ...", This requires an alternation of quantifiers

39

which is unacceptable if we desire a zk+]’w-form. To avoid this
difficulty, we will add a fifth clause F5 (presented below). F5 will
require that, for every s,t<m, <o, s, t> ¢ (Z for some o
F1 already insures single-valuedness. Thus F4 may be revised to the
purely universal form: "For every triple <o, s, t> , and all
<gqs s-1, t-1>, <Cos S, t-1>, <C3» s+1, t-1>, ... ".

The actual quantification is done, of course, with individual
variables. For example, "for all <o, s, t> ..." is stated

v

"(¢¥i)[i = O mod => ...]" and the binary values Si4G-1 Sisgep -+ S S

i+] 7i

and Ti+G-1 T1+G—2 ... T. (where SX =1 if x ¢S and 0 otherwise,

i

etc.) correspond to s and t .
"Tuxk" is obviously finite]y‘defined, dependent only on M ;

and the relation s = 0 , for example, requires that a certain m-interval

be all zero's. In order to express s-1, s+1, and t-1, we require

the relation gk(n)—Incr(R, ¥, z) , which is true iff y and z = 0 mod G

Ry+]

741 RZ . This relation is expressed by

and the binary value Ry+G-1 R Ry is one less than the

V4G-2 T

binary value R R R

z+G-1 “z+G-2

y=0modG & z=0mod G & (y e R<=>2z ¢R) & (vY)(vZ)

1l

G-IntOf(Y, y) & G-IntOf(Z, z) =>

(Vu)(¥v) Fu=vmodG & ueY & veZ => :,
[.((U e Y<=>v ¢Z)<=> (yw)lweY & w<u=>we R])

By previous remarks, G-IntOf ds in IIk—] w and since it occurs as the

antecedent of an implication, it becomes, in effect, Zk-1., and causes

40

m-Incr to be at least Ilk,w . 'u=vmdmn" is in Zgl,w gt ,0
thru the substitution ofm—Mod3 , and thus does not require the
expression to be above IIk w "w < u" requires a single universal
'set quantifier associated with (yu) , and thus m-Incr is indeed in

I . Thus F4 4s in 1II

k,w k,w

Finally, we consider F5 , which will require that C
contain some triple <o, s, t> for all possible combinations of s
and t . Since there are ZG possibilities for each s and t , and
since both are represented simultaneously by sequences of length, the

total sequence representing all combinations will have length

G-(ZG)2 = G-ZG . Since it is easy, by doubling all occurrences of

successor, to double the length of all sets, we presume this done

(changing F1-F4 into F1'-F4' , also ISeq3 into ISeqé , etc.) and

require instead

29, (n)
F5) max(S) = ng(n) 2 -1.

This, in turn, may be easily expressed if ng(n)-ISeq is expressi-
.b1e. But 2m-ISeq is very similar to m-ISeq , and in fact comes

essentially free if the doubling convention is dropped. Of course,

this is in II

Koo ® so F5 is.

Hence the required @a , in IIk,w » 1S
F1' & F2' & F3' & FA' & F5 . Note that the expression # must be
modified, in obvious but trivial ways, to double certain occurrences

of the successor function as required by the construction of F5.

41

V. CONCLUSION

Thus far we have exhibited a correspondence between classes
of the (modified) Ritchie heirarchy and sentences of WMST in certain
forms. We will now briefly discuss the reverse correspondence - from
formulas to the complexity of their decision algorithms.

First consider WMST(') . It has Tong been known that the
validity of a sentence in this theory may be decided by constructing
a finite automata which accepts some input iff the sentence is valid
[1]. While the original algorithm was not designed for computational
efficiency, it may be carefully re-done avoiding unnecessary steps
exponential growth and using great care in choosing intermediate
representation. This will allow us to come very close to the desired
result and to show that every formula in Zk,w may be decided by
some procedurevin SZL+] . Unfortunately, within the above notation,
we are unable to reduce the k+1 to k and thus obtain an exact
one-one correspondence between complexity classes and sentence
structures.

The difficulty seems to lie in a rather peculiar anomaly
that no uniform definition of complexity class which corresponds to
the structural hefrarchy in WMST(') . We must define

A

for i<2, ir} ='?}

for 1>3, (ﬁfi = the class of all sets S accepted by
come (possibly non-deterministic) Turing
machine in space (but not time) bounded by

f;

42

Thus for i >3, F; corresponds to Ritchie's original definition.

Claim: For any k > 0 ,

1) ‘gik is polynomial expressible in WMST(') by formulas in Zk,w_
form.

2) the decision procedure for formuias in WMST(') of z, ~form is

in Fi -

The second parf of this claim follows from a careful implementation of
the decision procedure, while the first part follows from an argument
similar to those used in sections III and IV. In particular, for
k >3, the unordered set of triple Cz is replaced by an ordered
sequence - essentially the sequence of instantaneous description of
the computation. This removes the time constraint for the simulation
of computation. The set € is required for < 2 since the formula
does not allow expression of the required ordering.

The interpretation of the strange fact that time as well
as space must be bounded for k < 2 may only be guessed. This fact
may give support to the conjecture that an exponential space bound
implies an exponential time bound as well; or in fact the conjecture
could be reversed, supposing that ifk-?i , k>3, is indeed empty.
On the other hand, many of the sub-recursive heirarchies contain
anomalies at their Towest levels, and study of abstract complexity
has shown very important properties which may fail for the lower
complexity classes of some measures [4,5]. Perhaps we have simply

uncovered another such anomaly.

43

The constraint k > 0 may be replaced by k > 0 if we
interpret ZO,w as the propositional calculus and appeal to Cook's
resq]t [2].

| We thus have constructed a heirarchy of formulas of WMST(')
which has the same structure as Kleene's arithmetic heirarchy, except
that a "jump" from Zk,w to Zk+],w corresponds to exponential
growth in computation space. For any k , the class of sentences in
Zk,w ”IIk,w corresponds to those computations which may be performed
‘deterministically in fk-bounded space. This may be seen from the
fact that if S is accepted deterministically in fk space, then so is
S . Hence membership in S is equivalent to the validity of negations
are naturally in IIk,w . It is also possible to show this by a direct
construction, constructing for a particular input a formula which says
any (hence the unique) terminating computation must end in an accept
state.

There is no doubt that it will be possible to find sets
which are p-complete in Zk,w and IIk,w . As with the polynomial
heirarchy [7], it will probably also be possible to construct still

further structure similar to that of the arithmetic heirarchy.

Now we consider WMST(<) . First observe that any
decision procedure for WMST(') provides a decision procedure
for WMST(<) . This is done in the obvious manner, replacing
each expression "x < z" by the expression which was noted in
Section II, and which requires only successor. The algorithm

for WMST(') s then applied. However, the formula expressing

44

"x < z" introduces an additional second order variable, and theorem
4.1 implies we are unable to place any elementary a priori bound on

the decision time of a sentence for WMST(<) by considering the form
of its set quantifiers alone. However, such a bound may be obtained by

considering the entire structure.

Theorem 5.1 Let & be a sentence of WMST(', <, r=) which has s
set quantifiers, 1 individual quantifiers, and r occurrences of

the relation. Then & 1is polynomially equivalent to ¥ of WMST('),
where V¥ s in Zkaz-form, for k = s+r+i+2 and & = 3i+tr+2 . Hence

the validity of & may be decided in space fk(|®|) and time

Proof Each substitution for < introduces exactly one additional
set quantifier, so ® may be converted into an equivalent formula in
WMST(') with str+l set quantifiers. This also introduces r addi-
tional individual quantifiers.

By standard algorithms, we may convert the resulting formula
into normal form, but with no particular order on the quantifiers. At
worst, the 1 individual quantifiers bound all s+r set quantifiers,
with the r individual quantifiers introduced during the substitution
for < 1inside. Next, a clause which will be used for expressing
equality to 0 1is added. Say the formula in prenex form is ¢' , then
it is converted into (3Z)[(3x)[x e Z] & (¥Wy)[y' ¢ Z] & '] . Now

define Ltz(X, y) , which is similar to Lt of section IV except that

45

it is true for Y =0 1if X does not equal {z : z g_xo} , for some

Xy - Thus Ltz(X, y) 1is unquely satisfiable in y for fixed x .

Specifically, Ltz(X, y) is

((Vz)[z' e X=>2zeX] & yeX & y' eX) v

(((Vz)[z & X] v (W)[w' e X & wéX]) & yeZ).

Now each individual quantifier which contains set quantifiers in its
scope is replaced by a set quantifier as follows. Consider the case
of a particular individual quantifier (VWy) which occurs in the
prefix form as

(2-quant. prefix)(yy)(r-quant. prefix)M ,

where M s quantifier free (and r-quanti. prefix contains at least
one set quantifier to make this step necessary). This formula is

equivalent to
(2 - quant. prefix)(VLy)(Hy)[Ltz(Ly, y) & (r.-quant. prefix)M] .

Sinqe Ltz(X, y) is uniquely satisfiable in y , this is equivalent,

by lemma 4.4, to

(2 - quant. prefix)(VLy)(r.-quant. prefix)(dy)[Ltz(L , y) & M]

y

The individual quantifiers in Ltz(Ly, y) may trivially be moved out

of [Ltz & M] , obtaining an equivalent prenex form with one fewer

individual quantifiers which bound set quantifiers. This step has

46

introduced one additional set quantifier and two individual quantifiers.
An existential individual quantifier is taken care of similarly. In all
at most i+1 set quantifiers and 2i+2 individual quantifiers (includ-
ing Z and the associated individual quantifiers) have been introduced.
Thus we have str+i+2 set quantifiers and i+r+2i+2 dindividual
quantifiers, and the number of alternations is of course bounded by

the number of quantifiers. By construction (3Z) 1is the leading

quantifier.

The decision procedure for WMST(<) may be implimented in
a uniform way by a Turing machine which applies Theorem 5.1 to bound
the space it uses for its computation. This provides a normal form

(

for WMST(<) .

Lemma 5.2 Let & be any formula of WMST(P) , for some collection
of primitives P , such that & is in Zk,w or IIk,w form. Then

o s polynomially equivalent to a formula &' of WMST(P, ') ,

where @' is of the same form as ¢ but has exactly k set quanti-

fiers.

Proof: This lemma states that any number of adjacent set quanti-
fiers of the same sign may be collapsed into a single quantifier of

the same sign. Rather than a formal proof, we will indicate how, for

47

example, (3V)(3W)(3X) may be collapsed into (3Y) with an encoding
such that positions 81 thru (81 +7) of Y (interpreted

as a binary sequence) correspond to the sequence 11OV10W10X1 . This
expands individual variables by a factor of 8 , and they are
synchronized by the regular occurrence of 110 in Y only at posi-
tions 8i, 8i+1, 8i+2 . ‘The clause "z ¢ V" of the original formula

would translate to
"z eV & z+1 eV & z42 ¢V & z+3 ¢ V" .

the first three conjuncts providing the synchronization. This
construction may be applied to all quantifier alternations in parallel,
and can at worst increase the formula length by less than a square.

W

Theorem 5.3 Let & be any sentence of WMST(', =, <, r=) . Then
¢ is polynomially equivalent to a sentence @' of WMST(<) , where

' is (3Y)¥(Y) , and ¥ has no set variables other than Y .

Proof: Say @ s as in Theorem 5.1 with s set quantifiers, r
occurrences of < , and i individual quantifiers. Then the

validity of ¢ is accepted in space and time fk+](|®l) by the machine
deciding WMST(<) . Since we can bound the computation time of 2

on input I, & halts on & iff a formula of WMST(<) in

o

48

£, -form is valid, by Theorem 4.1. But the previous lemma states

1,w
there is an equivalent expression with exactly one set quantifier.

O

49

BIBLIOGRAPHY

1. Biichi, J. R. Weak second-order arithmetic and finite automata,
Zeit Math. logik Grundl. Math. 6 (1960), 66-92.

2. Cook, S. A. Complexity of theorem proving procedures, Proc. Third
Ann. ACM Symp. Theory of Computing (May 1971), 151-158.

3. Elgot, C. C. Decision problems of finite automata design and
related arithmetics, Trans. AMS, 99 (1961), 21-51.
4. Landweber, L. H. and Robertson, E. L. Recursive properties of

_abstract complexity classes, JACM 19, 2 (April 1972), 269-308.

5. Lewis, F. D. The enumerability and invariance of complexity
classes, JCSS 5, 3 (June 1971), 286-303.

6. Meyer, A. R. Weak monadic second order theory of successor is
not elementary recursive, Preliminary Report, MIT (1972).

7. Meyer, A. R. and Stockmeyer, L. J. The equivalence problem for
regular expressions with squaring requires exponential space,
Proc. 13th Ann. IEEE Symp. on Switching and Automata Theory (Oct.
1972), 125-129.

8. Ritchie, R. W. Classes of predictably computable functions,
Trans. AMS, 106 (1963), 139-173.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

