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"You see it's like a portmanteau - there are two

meanings packed into one word."

The Walrus and the Carpenter.

"... in nature as in mathematics every form is
content for 'higher' forms and every content

form of what it 'contains'."

Structuralism.



ABSTRACT

A new setting for the study of formal languages is introduced:
many-sorted alphabets (operator domains). The derived algebra and the
completion (algebra) of a many-sorted algebra are defined and used to
study the derived operations of that algebra. Semi-Thue productions
and grammars over many-sorted alphabets are introduced and the classes of
regular, context free, monotonic, and context sensitive grammars are
defined by restricting the types of productions allowed. The concepts
of concatenation, complex product, Kleene closure, projection and
homomorphism are generaiised.

Finite automata over many-sorted alphabets are introduced and
the classical results of the conventional theory generalised (among them
the equivalence of the classes of deterministic and non-deterministic
finite automata, the solution to the emptiness, finiteness, and
equivalence problems, etc.). Regular grammars, the class of regular sets,
and equational systems are studied and a theorem proved relating the
classes of sets of terms defined by each method.

Context free grammars are shown to have canonic modes of
derivation. A normal form is introduced. The class of sets generated
by context free grammars is shown to be closed under the operations of
complex product, Kleene closure, non-deterministic linear finite state
transformation, intersection with recognizable sets, projection and inverse
projection.

The Fundamental Theorem is then proved. It shows that the class
of context free sets éver a many-sorted alphabet is equal to the class of
éets which are the homomorphic images of recognizable sets over a simply

related alphabet.



The classical Substitution Theorem i1s proved in this new setting

and the usual 'yield' theorems are extended. The closure of the class

of recogizable (context free) sets under the operation of homomorphism

is shown. A grammar-independent definition of languages is introduced.
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O INTRODUCTION

0.0 Motivation

This work is a report arising directly out of a process of
generalisation which began with the algebraic approach to conventional
formal language and automata theory taken by Blichi and Wright. It was
continued, independently in Doner and in Thatcher and Wright, by generalising
the concepts of the conventional theory to the so-called generalised
theory: that is, generalising from the study of sets of strings to the
study of sets of terms. Sets of terms were defined to be the subsets of
the carrier of the word algebra (totally free algebra) on a finite operator
domain (variously ranked alphabet, stratified alphabet ).

It was shown that the 'derivation trees' of context free sets of
strings could be characterised as recognizable sets over the appropriate
operator domain (see Mezei and Wright, Brainerd (1), Thatcher (1)).

The natural questions to ask at this point were: Can the concept of
context free set (and grammar) be generalised from the conventional
(string) case to define context free sets of terms (and grammars) over a
finite operator domain? If so, can we characterise the 'derivation

trees' of context free sets of terms by means of recognizable sets in,
perhaps, a more complicated operator domain? A subsidiary question is:
What class of 'derivation trees' of sets of strings is characterised by the
class of context free sets of terms (if these latter are definable).

(A short discussion of the first two questions with P.J.Landin was the
original motivation for this work.)

Let us analyse the significant difference between regular and
context free string grammars which allowed us to answer the first question
in the affirmative. Consider a production in a regular grammar, say

A > aB (A, B non-terminals and a terminal), and a production in a context
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free grammar, say A > w (A a non-terminal and w a string of terminals and
non-terminals in any order). Note that, in a derivation in a regular
grammar, a non-terminal can appear only at the end of a string (because

of the form of the productions) and so we can substitute a string
(derivable from that non-terminal) only at the end of another string.

On the other hand, in a derivation in a context free grammar, a non-
terminal may appear anywhere in a string (again because of the form of the
productions) and so we can substitute a string (derivable from that non-
terminal) in the middle of a string. In generalising this situation to
terms and term grammars, the analogy seems to be that, in a regular term
grammar, non-terminals may appear only as individual symbols (nullaries) in
a term (or, more picturesquely, on the leaves of trees) whereas, in context
free term grammars, non-terminals may appear as symbols of any rank in

a term (on the leaves or as intermal nodes of a tree). Regular term
grammars (or, more correctly, a slight generalisation of them) were studied
in Brainerd (1). Context free term grammars were presented, independently,
in Rounds (1), (2) but were arrived at through a very different motivation.

As to the subsidiary question, it turns out that the 'derivation
trees' of indexed sets of strings can be characterised by context free
sets of terms. This also appeared independently in Rounds (1), (2).

The second question above (motivated by the relationship between
context free sets of strings and recognizable sets of terms) also has an
affirmative answer but involved us in the extension of formal language
and automata theory concepts one step further: studying subsets of the
carrier of the word algebra (totally free algebra) over a many-sorted
alphabet. These many-sorted alphabets are used to define many-sorted

algebras, the latter being a simple extension of the usual notion of
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algebras where, insteéd of having one set as the carrier of the algebra

and operations on that set, a many sorted algebra has several sets (of
different sorts) and operations on them. Many-sorted algebras (and
structures) are not new in Computer Science and have infrequently appeared
in the literature (see Kaplan, Engeler). A simple example is the case of
the arithmetic operations in ALGOL which are defined only for certain sorts
of numbers (as, for instance '+' which is defined if the operands are both
complex and gives a complex number as a result; or if one operand is an
integer while the other is real and gives a real as a result; etc.).

It turns out, not unexpectedly, that the usual concepts of regular
and context free grammars, recognizable sets, equational sets, regular
sets, finite automata, etc., generalise in a straightforward manner to the
many-sorted case. One may well ask at this point whether this added
generality is really worthwhile? We believe it is for the following
reasons: (a) It allows us to present answers to what we consider to be
the very important questions discussed above; (b) It seems a 'fixed
point' in the process of generalisation (conventional to generalised to
many-sorted) in the sense that, in order to characterise the 'derivation
trees' of context free sets of terms over a many-sorted operator domain,
it is not necessary to generalise again to a concept more complicated than
'many-sortedness'; (c) 'Many-sorted structure' seems to be a concept
which is widely used in Computer Science (as in the example above, the use
and manipulation of different types of data structures, etc.).

The analysis presented allows us to draw the conventional and
generalised theories as special cases of the many-sorted theory. Many
concepts are clarified in this new setting and a number of anomalies
removed. We have reason to believe that many-sorted alphabets are a

'natural' setting for the study of formal languages and automata.
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0.1. Summarz

In Chapter I we present the definition of many-sorted structures
and study their properties. Many-sorted algebras appeared independently
in the literature as 'algebras with a scheme of operators' (Higgins) and
later as 'heterogeneous algebras' (Birkhoff and Lipson) in essentially
equivalent forms. The present study uses a notation suggested by
J.W.Thatcher which is similar to the usual notation for algebras and which
we hope is simple and clear. In Section 1 we present some basic set
theory. Section 2 introduces structures. In Section 3, we study
algebras (a special case of structures) as they will be the setting for
most of the remaining work. The Fundamental Theorem of Algebra is stated
to serve as the basis of much of what follows. Two new concepts are
introduced in Section 4: completions of algebras (after an idea in
Thatcher (2)) and derived algebras. These algebras systematize the study .
of the so-called derived operations of an algebra (the operations definable
in terms of the operations of an algebra). In this chapter, only the
results of the last section are original.

Chapter II is devoted to the presentation and study of formal
language concepts in the many-sorted case. The setting is provided by
semi-Thue productions and grammars which have been generalised from the
cenventional case. (A different definition for the generalised case was
suggested in Thatcher (1)). The classes of regular, context free,
monotonic, and context sensitive grammars are defined as semi-Thue grammars
with certain restrictions on the types of productions allowed. In the
Remark at the end of the chapter, the conventional theory is shown to be a
special case of the many-sorted theory. In this chapter, the definitions

of semi-Thue, context sensitive, and monotonic grammars and homomorphism
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with respect to concatenation are original. For the remainder of the
chapter, only the setting is new.

The definitions of deterministic and non~deterministic finite
automata are given in the first section of Chapter III. We then present
the well known results concerning finite automata and the sets they
recognize (among them the equivalence of the classes of deterministic and
non-deterministic finite automata, the relationship between congruences
and recognizability, the closure of the recognizable sets under the
Boolean operations, and the solutions of the emptyness, finiteness and
equivalence problems for finite automata). In Section 2 we prove that
the class of sets generated by regular grammars is the same as the class
of recognizable sets. The former class is also shown to be closed under
the operations of complex product, Kleene closure, projection, and
inverse projection. Sections 3 and 4 are devoted to briefly stating the
theories of regular sets and equational sets, respectively. The
Equivalence Theorem at the end of the chapter relates these four classes
of sets. We believe this is the first time such a theorem has been
stated for sets of terms. Otherwise, only the setting is really original
in the chapter (although some of the proofs are done in a new way).

The class of context free grammars is studied in Chapter IV.

We first prove the existence of a canonic mode of derivation (the so-called
outside-in mode). Then the equivalence of the sets generated by a
grammar using only outside-in derivations and using unrestricted
derivations is shown. We next prove a normal form result which seems a
direct generalisation of the Chomsky normal form for context free string
grammars. The class of context free sets of terms is shown to be closed

under the operations of intersection with regular sets, complex product,
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Kleene closure, projection, and inverse projection. The work presented
in this chapter is original, although we refer to the literature for
proofs which are detailed and unilluminating and can be easily generalised
to the many sorted case.

Chapter V is the core of this work. It contains the Fundamental
Theorem which characterises the 'derivation trees' of context free sets of
terms as recognizable sets over a derived alphabet. The concept of
context free set is extended to cover sets of derived operations of the word
algebra. This chapter is wholly original.

Chapter VI details some of the consequences of the Fundamental
Theorem. In Section 1 we generalise complex product and Kleene closure
(the generalisation of Chapter II being partial) and state the classic
Substitution Theorem. The next section proves a number of equivalences:
between the classes of derivation trees of indexed sets of strings and
context free sets of terms and between the classes of the 'derivation
trees of the derivation trees' of indexed sets of strings and recognizable
sets of terms over certain alphabets. Motivated by the latter equivalence,
we define indexed sets of terms and state the Second Fundamental Theorem
(showing the equivalence of the classes of the 'derivation trees of the
derivation trees' of indexed sets of terms and recognizable sets of terms
over certain related alphabets). Section 3 contains the proof of the
closure of the classes of context free sets of terms and recognizable sets
of terms under the operation of homomorphism with respect to composition.
The last section gives a definition of the classes of context free sets
and indexed sets in terms of congruences (and independently of grammars),

This chapter is original work.
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The last chapter sums up the work and presents some consequences

and open problems suggested by this theory.

0.2. Notational Conventions

The reader is referred to Halmos for the foundations of set theory
and to Hopcroft and Ullman (among many others) for the foundations of
conventional formal language theory. The following notation will be used

throughout (new notations being introduced where we need them):

{ao,...,an_l} The set with elements A seeend -

ae A a is an element of the set A.
ACB The set A is a subset of the set B.
ALJB The union of the sets A and B.
AlMB The intersection of the sets A and B.
A-B The complement of the set B in the set A.
A x B The cross-product of the set A and the set B.
N The set of natural numbers.
< ao,...,an_£> An ordered set (n-tuple) with n elements.
or

(agse.ha )

L& The set of strings on the set L.
w(e I¥%) A string over the set Z(w = w_ ... w__,).
2{w) The length of the string w.

A(e T#) The empty string (string of length O).

+

z % - {A} .
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I PRELIMINARIES

I.0 Introduction

This chapter introduces the algebraic concepts and definitions we
need for our explication. They are by no means intended to be in any way
complete and references are given where appropriate. The reader who is
unfamiliar with any of the material is advised to consult the literature.
The above is not intended to imply that all the material in this chapter
can be found elsewhere and where it cannot an effort has been made to be as
complete as possible. (References: Halmos, Birkhoff, Cohn (1), GrHtzer

(1), Higgins, Birkhoff and Lipson.)

I.1 Sets

Given two sets A and B, a relation between A and B is a triple
{ A, , B) where ¢ (C A x B. We will write such a triple as 9:A > B and,
where the sets A and B are obvious from the context, name the relation by 9.
We will generally use upper case Greek letters to denote relations. The
set of such relations on the sets A and B will be denoted by [A - BJ.

Each relation ®:A > B defines in a unique way the relation
p%:pA > pB, where, for A' C A, p#(A') = {y ¢ Bl(x, y) € @ for some x £ A'}.
Again, if A' C A, define ®|,,: A" + B by |,y = {(x, y) e ¢ and x e A'}.

0| is called the restriction of ¢ to A'.

At
Every relation ¢:A + B has the converse Q_l:B + A defined by

o™t = {(x, )| (y, %) € o).

The relation 8,:A > A defined by AA = {(x,x)]x e A} is called the

diagonal or identity in A.

A relation ¢:A -+ A is said to be symmetric if ¢ = Q—l, antisymmetric if

-1 . .
@ﬂ ¢ (:AA, and reflexive if @;AA.
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For any relations ®:A > B and Y¥:B > C we define the composition
Yo0:A > C with ¥0® = {(x, y) € A x C|(x, z) € & and (z, y) € ¥ for some
z € B}. A relation ¢:A + A is said to be transitive if ¢¢¢ C ¢.
A relation ¢:S - T is said to be a function if ¢ © S x T has the
properties:
(i) If (x, y) e ¢ and (x, y') € ¢ , theny = y'; and
(ii) For each x € S, there exists ay € T such that (x, y) € ¢
The sets S and T are called the source and target, respectively, of $.
If the second of the above two conditions does not hold, then ¢:5 + T is

said to be a partial function. We will generally use lower case Greek

letters to denote functions and use ¢(x) = y to indicate (x, y) € ¢
The set of all functions ¢:S »+ T will be denoted by (S = T).

A function ¢:A »> B is said to be surjective or onto if

¢°¢-l = AB’ injective or one-one 1if ¢—lo¢ = AA’ and bijective if it is

both onto and one-one.
Let A and I be any sets. Then the set

{6(i) € A|¢:I + A and 1 € I} is called a family of elements of A, indexed

by I. If x, = ¢(i) for i € I, then the family is denoted by {Xi}iEI

(or, when I is known, by x or {xi}). x; is called the i-coordinate of
{xi} and I is called the index set. Every set can be indexed(by itself,

for example).

An equivalence (relation) on a set A is a relation ¢:A > A which is

reflexive, symmetric, and transitive. That is, we have
1)y 4,9
(i1) o1 = e

and  (iii) ®e® 9.
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We will generally use the lower case Roman letters g, r, s to denote

equivalences. If q is any equivalence on A, then for each x € A we define

q

a subset x* of A, the g-class of x, by x3 = {y € Al(x, y) € q}. It is

obvious that x? = yq if and only if (%, y) € q.

A partition on a set A is a function pI:I + pA for some set I,
such that:
(i) for i, je I and i # 3, DI(i)iw DI(j) = ¢

and (i1) UJ DI(i) = A (where | A, = {x|x ¢ A; for some i e I} for
iel iel
{Ai}isl)
That is, the sets pI(i) are pairwise disjoint and the union of all such

sets i1s the set A.  The sets oI(i) are called the classes of the partition.

Given a partition p

I:I * pA, we can define an equivalence qp on A by the
I

following: (x, y) & 9, if and only if x, y € pI(i), some i e I.
I
Conversely given an equivalence q on A, we can define a partition

0 :{x%} > pA on A by p (x%) = x¥.  Thus there is a one-one
{x%} {x%}
correspondence between partitions on a set A and equivalences on A.
Let q:A > A be an equivalence on the set A. Let A/g be the
subset of pA consisting of all g-classes of A. A/q is called the guotient
A
set of A (mod g). We define the function q:A + A/q, called the natural

q

function from A to A/q, by Q(x) = x*. We note that a is surjective.

I.2 Many-sorted Structures

Let 1 be any set, called the set of sorts. A many-sorted alphabet

sorted by I, is an indexed family of sets I = {Z( Wi }<xv,i> eTH*xT ° -

by L1y is the set of (relation) symbols of type ( w, i> and if
E]
f e Z(w,i)’ then we say that f has type {(w, i), sort i, arity w, and

rank 2(w)+l. A symbol of type (A, 1) is called an individual or

constant symbol of sort i.
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Let M = {Mi}iEI be any family of sets indexed by I and I a many-

sorted alphabet. A (many-sorted) relaticnal structure over the alphabet

I, or more briefly, a Z-structure, is a non-empty family of sets M

together with a family of functions a R . - [Mw > M.J.
g Y (W,l) <W,1> 1

That is, to each f € Z(xw:i)’ we assign a relation fM:Mw > Mi’ where
H A

W
= Q = = x ..., X .
fM Cwii >(f) and, for w Woeee W0 M MwO MWH-1

The family of sets M with such a structure is denoted by My (or M if it
is obvious which many-sorted alphabet we are using). The underlying

~
family of sets M is also called the carrier of My. Let M = ) Mi'
iel

Let MZ and NZ be two ZI-structures. We say that N

is a substructure of M, ifN.CM, forall i eI and £ = f ) (N" xN,)
1 -1 N M 1

z

for each f € £ , all {w,i) e I* x I. That is, if the carrier

¢w, 1>
of NZ is a 'subset' of the carrier of M_ and if the relations fN of N

z )

are the restrictions to N of fM' The cross-product Mz‘x NZ of two

I-structures MZ and NZ is defined as the structure with carrier M x N =
{Mi x Ni} and relations defined component-wise. That is, for

C s

S i
03 e C 1 € M x N, (co, ey C ) e f if and only if

n-1 MxN

(ao, v an) € fM and (bo, cees bn) € fN where (aj,bj) = cj (0 <3 <mn).

Given I-structures M. and NZ’ an indexed family of functions

z

{ s > . . . . .
¢l Mi Ni} is called a homomorphism of MZ into NZ if {¢i} is a

substructure of MZ x NZ' Equivalently, {¢i:Mi > Ni} is called a homo-

. . W . .
morphism if, for (ao, cens an) e M x Mi’(ao’ ceey an) € fM implies
(¢wo(ao), cees ¢wn(aw )) e fy.  We usually write the homomorphism as

¢:MZ +~ N A homomorphism ¢:M_ » N_ is said to be an epimorphism if

by z z

each ¢.:M. > N. Is onto. Tt is called a monomorphism if each ¢,:M. ~ N,

is one-~one. It is called an isomorphism if each <1>i:M:.L 9—Ni has an

inverse. The inverse homomorphism is denoted by ¢_lﬂqz »—MX.
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A congruence on the structure MZ is an indexed family
{qi:Mi + Mi}i I of equivalences (denoted by q:M -+ M) which has the
€
property that g is a substructure of M X M, Using the indexed family of

A . .
functions g = {ai:Mi > Mi/qi}’ we define the quotient structure M/q

as the structure with carrier M/q and relations fM/q defined as follows:

W .
For (bo, cees bn) e (M/q) x (M/q)., (bo’ cees b ) € f M/q if and only
if there exists (ao, cees Ay ) e MY x M. such that qw (a ) = bj (0<j<n)
and (ao, e an) £ fM' q M + M/q is obviously an eplmorphlsm Given

a homomorphism ¢:M » N, a congruence q¢:M + M is induced on M. This

= ¢ " 0.

congruence is called the kernel of ¢ and g

¢

A many-sorted alphabet ¥ is said to be finite if the disjoint union
of the family of sets g is a finite set. A many-sorted I-structure MZ

A
is finite if ¢ is a finite alphabet and if M (= LJ Mi) is a finite set.
iegl
Example 1: Let I = {E, V} and I be the many-sorted alphabet with

z = {*} and all other & ) = 4. Then a graph with vertices
CVV,ES Cwiy - ¢ grap

(nodes) GV and directed edges GE’ together with a relation +G (with

(vl, Vo e) e +G interpreted to mean that e is an edge from vy to v2), is

a many-sorted structure. Let HVQQ:GV and Hp = {e e GEI there exist
Vis Vg, € GV such that (vl, Vo e) € +G}- Then {Hv, HE} is a substructure
of G. Consider the functions ¢E:HE +> GB and ¢V:HV > GV defined by

¢E(e) = e (for e ¢ HE) and ¢V(v) = v (for v ¢ HV), respectively.
¢ = {¢V, ¢E} is easily seen to be a homomorphism (in fact it is a mono-

morphism).

Example 2: If I consists of a single element, say i, and each relation
symbol f is assigned a (non-empty) relation in the only possible way (f
of type {(ii ... i, 1)) then the I-structures are just the structures of

the usual theory.
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I.3. Many-sorted Algebras

Let AZ be a I-structure, X a many-sorted alphabet sorted by I.
Recall that Ay is an indexed family of sets {Ai} together with an indexed

family of functions o + M *‘Mi]. If it happens that the

.l .
CWsl> (wW,1d
. W
i 1 i a R Lo T (MY M,
family of functions o is such that each i tew,is ( i)
a function from M" to Mi’

that is a assigns to each f € Z

{w,i) {w,ip

then AZ is called a many-sorted I-algebra. In this section we will study

the properties of I-algebras, as they provide the setting for most of the
remainder of this work.

We begin by stating that f € zj(w,i) is called an operator (symbol)
of type (w,i) , sort i, arity w, and rank &(w) (note the slight

difference between this definition and that for relation symbols in the
previous section). If in the previous section (less the first paragraph)
we replace the symbols '[' and ']' by '('and')' respectively, and the

word 'structure' by the word algebra, then we have a series of definitions

and properties valid for algebras. Since for each f e L . _, f, is a
LWLl Y A
function, we write fA(ao, cees an—l) = a  instead of (ao, cees an) e £
W
for (ao, cens an) e A xAi.

Example 1: Let I = {S, A, Q}. S is the sort 'states', A is the sort

'input symbols', and Q is the sort 'output symbols'. Let A = {Ai}i I be
£
a family of non-void sets such that AQ is finite. AS is called the set of
states, AA the set of input symbols, AQ the set of output symbols. Let
z = d = i . = b N let
¢ SA,SS {8} an Z(SA,Q) {¢} while all other Z(w,l) ) ow le

M be a sequential machine (with states AS’ input symbols AA’ and output
symbols AQ) and assign to § the change of state operation of M and to ¢
the output function of M, We have thus characterised the sequential

machine M as the many-sorted algebra A.
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Analogously, we can describe a finite automaton as a I'-algebra B,

with sorting set I = {S, A}, where B_. is a finite set of states and BA

S
is a finite input alphabet. L' consists of the set ! = {M},
< 8A,SD>
called the next state function, and the set 3' = {q }, called the
< A8 D> o)
e s . , _—
initial state of B, with all other ¢ <vaid> ¢

Example 2: Let I = {M, S} and z(MM,M) = {%}, E(A,M) = {1}, and

= {.} with all other I = 9. Let A,, be the carrier of a

L¢us,s> LW,iy M

monoid and *A’ lA the monoid binary operation, identity element
respectively. Let AS be any set and assign to .e I ¢ MS,SD any
operation .A:AM x AS > AS which satisfies the following laws for any

m, negA, and s ¢ A

M S*

(i) lA'AS = s

and (ii) (m*,  n)..s = m.,{(n.,s).

A A TATTCA

The p-algebra A then describes the action of a monoid on a set.

Example 3: Let C be any abstract category and |C| the objects of C.

then I = |C| x |C| = { eB} for each (B, B) ¢ I, and

> L a,(B,B)S
E¢(B,0)(C,p), (8 DY T {o} for all (B,C), (C,D) € I (with all other

= 4). For each (B, C) € I, let A m(B, C), the set of

z . =
<W’l> (Bg C)
morphisms from A to B. For each individual symbol € € z <A, (B,B)D °
let (eB)A be the unique identity element of w(B,B). For the operation
symbol o € ZA((B,C)(C,D),(B,D)> , let oy be the composition of morphisms

from n(B, C) and m(C, D). The axioms for a category can then be stated

as identities in this I-algebra.

Example 4: Let I consist of a single element, say i, and let 5 be an
alphabet sorted by I. If each operation symbol f ¢ ¥ is assigned a non-

empty operation in the only possible way (f of type (i...i,i)), then the
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Z-algebras are just the algebras of the usual theory.

Let Z be a many-sorted alphabet and X = {Xi}is be any family of

I
sets indexed by I.  The family of I-expressions, WZ(X) = {WZ(X)i}ieI’

indexed by I is the least family of subsets of

(U

)LJ (L,’ Xi)}* satisfying:
< W,iy eI*xI

iel

Z<w,i>

(o) X.LJ z T W.(X). for each i e I;
i 'Y A, = i

i

(w=w ,n > 0) and any n-tuple

and (i) for each f € z(w,i) ot Woo1

W
(to, cees tn_l) € WZ(X) s fto cen tn—l 3 WZ(X)i

We can impose a I-algebra structure on the family of sets WZ(X)

by associating with each f e I the operation defined by: If

<w,i>

w -—
(tgs «ves t 1) € W (X)7, then £ (tos evvs t g = FE_ .ot oo

WZ(X) n-1 o

This I-algebra is called the I-word algebra on the generators X. If

each X; = ¢, we denote WZ({¢}i€I) by L If Y is another indexed family of

sets then we write W.(X, Y) to denote the algebra WZ({Xil_JY.}. ).

i el

Example 5: Let I = {0, 1}, I hos T {1}, ZU,D = {a, b},

= {#}, and I = {+}. Let X, = {x} and X, = ¢.  Then we

Z<1o,o> (11,1) 1

may describe the set wZ(X)o as terms (words) of the form A, ®al, %bX, *xi,

*+aad, %*+axi, etc. (Generally, terms in WZ(X)O are of the form #+( )+( ).)
Elements of WZ(X)l are of the form a, b, x, +aa, +bb, +ab, +ba,
+ax, +xa, tbx, +xb, ++aataa, ++aa+bb, etc. (Generally , terms in WZ(X)l are
of the form ++( )+( ).)
If we change our example by specifying that XO = Xl = ¢, then (WZ)O

and (Wz)l are as above but without terms involving the generator x.
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Let MZ be a I-structure. We define a r~structure (pM)Z on

: . W )

= : X
pM {pMi}ieI as follows: Given (Ao, caes An—l’ An) e (pM) pM, and
fe Z(qu->, then (AO,..., An) € pr if and only if

= < 4 < n-
a = {a_ e Mi[EBaO ...Eaan_l[(ao,...,an)efM and a; € ij for 0 < § <mn-11}
It is obvious that, in fact, (pM), is a I-algebra and so we may write
pr(Ao’ RN An—l) = A . We call (pM)y the raised algebra of M;.

Given two L-structures MZ and NE’ it is obvious that any homomorphism

¢:Ms > Ny induces in a unique way a homomorphism p¢:(pM)Z > (pN)Z-

L

The following theorem is of fundamental importance in the study of

algebras and is stated without proof. (The interested reader is referred

to Cohn (1), Grdtzer (1), Birkhoff.)

Fundamental Theorem of Algebra: Given a r-algebra AZ and generators

X = {Xi} then any indexed family of functions {q;i:Xi > Ai} (usually

iegl?
written y:X -+ A) extends in a unique way to a homomorphism E:WZ(X) > AZ.
In particular, if each Xi = ¢, there is a unique homomorphism from WZ to

A _.
z

Example 6: Let y be the alphabet of the previous example. Let A be a
- = E3 = +
y-algebra where AO (Z<A’1>L_J{c}) and Al (Z<A51>L~){c}). To

+ e L we assign the operation of concatenation +,, defined if both
¢11,1> A

arguments of +, are not the empty string. To * we assign

A € %10,0

the operation of concatenation #,, defined only if the first argument is

A?
not the empty string. Consider the assignment ¢1:X > C. This extends

in a unique way to a homomorphism ;:WZ(X) > A (X as in the previous example?.
Intuitively, we can see this homomorphism as being the function 'display the

term t ¢ QZ(X) as a tree in the usual way and read the names of the leaf g

nodes of the tree from left to right, reading c¢ for x'. (See Thatcher (1)

for a similar idea called 'frontier function'.) We note that the string
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c4 A and A f AL If we let B = Ik 1y and By = Z;x .1y then there is a
unique homomorphism w:wz -+ B. The significance of this example will
become clear in Chapter VI.

In the work that follows, we will often use the convention 'f e '
to mean 'f ¢ Z(xa,i)’ some { w, i)y € Ikx I', Although this usage is
technically incorrect, it is nevertheless convenient and unambiguous.

Also, in most of the work that follows it will not be necessary to make a

distinction between an element f ¢ I, and its associated relation (function)

fM in a structure (algebra) M. We will denote both by f and it will be

simple to decide from the context which we mean. If this is not the case
we will make the distinction explicit. This procedure is quite common in
modern algebra and should not cause any problems. (For example, in

groups the unit operator of many groups is denoted by the same symbol '1'

and the group operator by the same symbol '+' (or sometimes '+')).

I.4. Derived Operations, Completions of Algebras and
Derived Algebras

We begin this section with an example of a Z-word algebra which will

play an important role in our development.

Example 1 (Thatcher (2)): Let I be a many-sorted alphabet and w e I%.

}, where w = w_ ... w . We
o n-1
n-1

say X 1is indexed by w € I*. As an I-sorted alphabet (X ), = {x. .|j < n}
W _— w'i 3,1

Consider the set X = {x s seas X

W OsW, n-1,w
for each i e I. Thus, our definition of word algebra with a family of
generators applies to the alphabet I and generators {(Xw)i} and we can
easily find WZ({(Xw)i}iEI)' We will denote this algebra by WZ(Xw)' A
term in wZ(Xw)i will be said to be of type (w, i).

Let VEC I* and let X, = {x }

WV Again we can easily make XV into

a family of generators sorted by I and define the algebra WZ(XV) as above.
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Let A be a IL-algebra. Consider the following question. What can
we say about the 'operations on the family of sets A definable from the
operations of the algebra A?' (See also Cohn (1), GrHtzer (1), Benabou,
Lawvere (1).)

To expedite our work, consider the term (also called I-expression)

= {g},

e = f(g(xl), xo) where I = {0, 1}; =& = {f}, =

< 00,0 <1l,0>

Z< 11,05 = {h}, Z( ALY T {a}; and X = {xo, yo}, X, = {Xl, yl}.

Then WZ(X)O = {xo, Yo h(xl, al), f(xo, g(xl)), etc.} while
WZ(X)l = {xl, Yy al. We can define a function, called a derived operation,

v A, X Ao > Ao by Ve (bl, bo) = ¢(f(g(xl), xo)) where ¢ is the unique

1

homomorphism E:WZ(X) + A generated by the assignments ¢o(xo) = b,

¢l(xl) z bl (and any assignments to Yo and Y, consistent with the sorting).

On the other hand, we could associate with e the function ve':AO x Al > AO

defined by Ve'(bo, b,) = ve(b bo). How can we distinguish between these .

1 1’

two functions and which should we associate with the expression e? (This

1

'
oA"Y is isomorphic to A" )

problem arises because of the fact that Az A

whenever, for w = w_ ... W and w' = w ' ... w' W 'y vie, W
’ o n-1 o n-1 ( o ? i -

)).

a permutation of (wo, ce Wy

We accomplish this by introducing a special set of variables, namely
that of Example 1, so that our notation will reflect exactly which operation
we intend to denote by any expression. So, given a I-algebra A and an

expression e in WZ(Xw)i’ some L, i &€ I, we I*, we will define a derived

operation, Vo of type {w,i» as follows: For all (ao,...,an_l)\a Aw,

ve(ao, cees an—l) = ¢(e) where ¢ is the unique homomorphism E}WZ (Xw) > A

generated by the assignments ¢, (x. w ) = a; for 0 < j < n-1.
i
Returning to our example above, let w = 10, v = 01l and

X = = .
. {Xo,l’ Xl,o}’ Xy {xo,o’ xl,l} Then f(g(xo’l), xl,o) € WZ(Xw)o
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corresponds to the first derived operation Ve:A X Ao - AO and

1

flglx, ), % ) € W.(X ) corresponds to the second derived operation
0,0 L v'o

1,1

ve':AO x Ay > Ao' Alsp note that e = f(g(xo

u = 100 and X = {
u

,l)’ Xl,o) € WZ(Xu)o’ where

P X x }, corresponds to an operation
0,1* "1,0° "2,0°° p P

Vg iA, X Ao x AO - AO which has a dummy third argument. Thus we see that

1

the same expression in two sets WZ(Xw)i and WZ(Xw')i defines two distinct
operations.
Let Z be a many-sorted alphabet and V C I%. Consider the new

- ! ! = . v, i I. That
I-sorted alphabet I' where Z(xv,i) WZ(Xw)l for each w ¢ V, 1 € a

is, the operator symbols of type < w,i» in X' are enumerated by the
expressions in WZ(Xw)i' We make a I-algebra A into a X '-algebra by

having e € £ name the operation Ve:Aw > Ai’ as defined above.

<Wai>

Let V= {we I*| 2 # ¢ for some i ¢ I}. If VOE;‘V, then we call

{W,i>
the I'-algebra, obtained from AZ’ a completion of A and denote it by A(V).

Its operations of type < w,id, w e V, are the derived operations of A of
type <w,i). The definition of completion ensures that the operations of

A are also operations of A(V) because if f ¢ & then the operation fA

{wWoiy?
f A = S . =
o is exactly v_ where e f(xoswo, , xn_l’Wn_l) If V= V_, we call

K(VO) the initial completion of A and denote it by A(). We note that A()

is the 'least' completion of A which one can obtain if the operations of A
are also to be operations of a completion of A. If V = I%, we call A(I¥%)

the full completion of A and denote it by A. A is the 'largest' completion

of A in the sense that any operation of a completion of A is also an
operation of the full completion of A.

Now, consider some completion A(V) of a Z-algebra A. Let
eeg I . name some derived operation ve:Aw > Ai in A as defined above.

{Wsl)
Also, let ej e L) for 0 < j < n-1. Then it is obvious that we can

(V’Wj>
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define a derived operation of type <V, i> on A as the operation named

by Subw(e; e s ), where o = Subw:wZ(Xw) > WZ(XV) is the homo-~

., €
> "n-1

morphism generated by the assignments G(Xj,w.) = ej for 0 < j < n-1.
J

(This is the familiar substitution operation (Thatcher (1), (2) and Rounds

(2)) where some expression is substituted for each occurrence of a given
variable in another expression, simultaneous substitution for different

variables being allowed.) We call any such instance of the substitution
operator composition (as we are using it to compose functions) and denote

it by c What can we say about the operations in the completion

<W,v,id
A(V) of the algebra A under such operations of composition? It seems

obvious that it forms a many-sorted algebra closely related to A(V) (or to A).
We proceed to clarify this relationship with the following

definitions: Let A be a I-algebra (sorted by I) and A(V) some completion of

A, Define DV(A), the derived algebra of A, with respect to VC I*, to be -

the many-sorted algebra with:
(i) sorting set Dy(I) T I* x I where Dy(I) = {gw,iy|we V, i¢ I};

(ii) an indexed family of operator symbols DV(Z) called the derived
alphabet, where:

(a) feZ . (f of type < w,i> in I) is an individual symbol
{Wul>
of type { A, & w,id» in D,(Z). That is, f e DV(Z)<)\,(w,i>>5

(b) § is an individual symbol of type {1, < w,wj>> for each w ¢ V

and each 0 < j <n-1(w = W oeen ). These operators are

W

n-1
called projections (and their significance will be clarified
in later chapters). We usually indicate that

.. T 5
§ ¢ DV( L) A, (W,wj)) by explicitly writing 8- 5

(c¢) c is an operator symbol of type <<ﬁw,i><fv,wo> cen (v,wn_i> s
< v,i)) (arity (w,i)(v,wOS <v,wn_l) » sort {v,i) , rank
n+1(=g(w)+1)) for each ¢ W,v,iy g IT x I* x I such that
w,v € V. We usually write c for

L W,V,1Y
c e DV(Z)

KWy KV d v v >, < v,id))°
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(iii) the indexed family of sets DV(A) = {DV(A)<w,i>} CHyive V ox I as

carrier (where each DV(A) . is, of course, the set of derived

<Wsl )
operations of A of type < w,i»); and
(iv) an indexed family of assignments

) W
a(w,i) 'DV(Z)<w,i> > (D, ()" DV(A)i)’

where {w,i> ¢ DV(I)* x DV(I), such that

(a) fe DV(Z)<)\,<W,i>> , dW,id> ¢ Vx I , is assigned the

derived operation fA H

j+1
(b) 637 ¢ D (2) Ww e V, is assi d the operation
W \Vi < >"<w’wj>> > € V, assigne op

of projection;

and (c) € DV(Z)

C .
{W,V,15

LLWHIDLVW D . <v,wn_l) , v,id> "’

v,w € V, is assigned the operation of composition.

We denote the derived algebras of A with respect to I* and v, by

D(A) and D()(A), respectively. Also, denote by D(I) and D(I) the sorting

set and alphabet, respectively, of D(A); by D()(I) and D()(Z) the sorting

set and alphabet, respectively, of D()(A). Note that D(A) is an example

of what is usually called a clone of A (Hall, Cohn (1), Benabou, Lawvere (1)).
An important point to note immediately is that if § is finite then

so 1is D()(Z). If A is a I-algebra with ¢ finite (and so I can be taken to

be finite as well), then D()(A) is a D()(Z)—algebra with both D()(Z) and

D()(I) finite. Also note that each A, € A, some 1 € I, is also an element

of the family of sets DV(A) and is sorted in DV(A) by <A, 1) € DV(I)-

Example 2: Let I = {0, 1}, QU,O> = {1}, 90,1) = {a},

Y = {* = _— . .
(10,0 {*}, Q(ll,l) {+} and all other Q(W,i> ® The derived

algebra D()(WQ) of the algebra WQ is obtained as follows:
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(i) The sorting set is D()(I) = {{A,0>, {A,1), £10,0>,

10,1y, 11,00, <11,10};

(ii) The indexed set of operator symbols is

PO, a0 T P PG ea1p T
Q) = {82, %) () 610}
(2, L10,0)) 10° 7 A, 10,10 © >
2) ¢, D,(%) = (6%, 82, +} and
<AL <1,0M) 7 P POM O, <11, 11° %110

¢ & D()(Q)<<w,i>(v,wo') RS NHY {v,1d)y for each (w,v,i)e

{10, 11} x {A, 10, 11} x I (with all other D( (Q)< iy ° =)

(iii) Let X = } and X, = {x } be a family of generators

1.0 0,1° *1,1° Y0,1

indexed by I. Then the element of the carrier of D()(WQ) of sort < 1, 0> -
is the set (WQ)o’ the element of sort { A, 1) is (W)),, the element of sort
{10, 0> is WQ({yO,l’ yl,O})O’ the element of sort {10, 1) is

WQ({yO,l’ yl,O})l’ the element of sort { 11, 0y is WQ({XO,l’ Xl,l})o

and the element of sort { 11, 1) is WQ({xo’l, Xl,l})l;

(iv) A, a, *, + name the constants A, a, % 0 T X

V0,191, 0,1%1,1

respectively. c< WavaiS e D )(Q WL 1Y< g ) V’WD_1>’ Cv,iS is

assigned the operation of composition described previously. 63:1 (0<j<n-1)

is assigned the following operation:

W
If (to, cees tn—l) £ WZ(XV) and C<w,v,wj> €
D,,(2) F+1 _
( ((w,wj)(v,wo\, v < v,wn_l)a <V,wj>), then c<w,v ,wj>(6w St e ,tn_l)—t
That is, 63]+l 'chooses' the (j+1)st element in the list to’ cees tn—l'

Example 3: Let I = {1} and Q< L1y S = {a, b, c}, Q(ll,l) = {f},

§ <11 1,1) = {g}. We note that this example illustrates the alphabet for

the usual notion of algebra. Since any h € Q2 is of type {w,l1%», with
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w=1... 1, we can indicate this by writing h e Q n for 2(w) = n.
This is more like the notation we encounter in the usual theory. Thus, in
¢ above: Q(A,l) =Q o ® Q(ll,l) =Q X Q(lll,l> =8 3

The derived algebra D()(WQ) of the algebra Wo is obtained as follows:

(i) The sorting set is D()(I) = {0, 2, 3} (We have again used

n = 2(w) instead of { w,iD» );

(ii) The indexed set of operator symbols is D()(Q)<'A, 0> = {a,b,cl,
1 2 1 (52 63

D()(Q)<A, 2> £, 85, 6,1, POyea, 3> = 1es 6755 87,87, 3, and

Q i =
c € D()( )<m B .. om0 usually written C(mn‘)’ form = 2, 3 and
n =0, 2, 3. (We have of course used n instead of w € I* such that
2(w) = n.) 3
(iii) Let X = {x,y,z} (we only need one sort of generator). Then the

element of the carrier of D()(WQ) of sort <A, 02 is the set Wes the
element of sort < A, 12> is the set WQ({x,y}), and the element of sort

<A, 3> is the set WQ({x,y,z});

(iv) a, b, ¢, f, g name the constants a, b, c, fxy, gxyz respectively.

Gjn and(%nm) are assigned the obvious projection and composition operations.

(I am greatly indebted to J.W.Thatcher for parts of this section.)

Remark

Although it has not been explicitly stated until now, we are not
assuming that each symbol in a many-sorted alphabet has a unique type.
That is, the disjoint union of I may not be the same as the union of I.
This corresponds, in Thatcher (1) for example, to allowing multiple ranking
of symbols in the usual theory. This may be somewhat confusing at first and
the reader may be reassured by the fact that, for his convenience, he may

assume that, in fact, each symbol has a unique type. This assumption will
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not make a difference in most of the following. This is because we can
associate an alphabet I' (with each symbol having a unique type) with I by
assocating with each f ¢ ¥ the set {f, . ¢ L' . fect . 1.

E <w’l> <W:vl>l <W,l>
Thus with each type < w,i)> associated with the symbol f € %, we have the

element f(w iy € Z' with unique type < w,i)> in the alphabet I'. It is
3
easy to see how we may regard a I-algebra as a L'-algebra. Where the

assumption does make a difference, we will state so explicitly, indicating

the alternate version necessary.
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IT FORMAL LANGUAGES

IT.0 Introduction

In this chapter we generalise some of the concepts of conventional
formal language theory to the many-sorted case. The method of presentation
is similar to what one finds in the usual exposition of the theory:
although it is hoped that some of the material presented here clarifies
the conventional theory. (References: Gross and Lentin, Hopcroft and

Ullman, or any other basic book on formal language theory.)

IT.1 Term Grammars

Let £ be a finite many-sorted alphabet, sorted by I.

N
Let X = {Xi}i€ be any family of sets indexed by I. If te WZ(X)’ we

I
define the depth of the term t, d(t) as follows:

(o) Ifte Xi’ some 1 ¢ I, then d(t) = 0;

(1) Ift = fto cee T for f e I and tj € WZ(X)W

n-1’ <w,i) 3
(0 < j <n-1), then d(t) = 1+ max {d(t;)}.
0<j<n-1
Suppose t € WZ(X)i’ t, € WZ(X)j for some i, j € I. Then t; is said to

be a subterm of t,, t <ty if there exists t', ¢ WZ(X’ Yi)j and

1 2

Subi(tQ'; tl) =t (We have introduced the notation WZ(X’ X') to

o
indicate that the generators are the indexed family of sets {XiLJXj'}iEI')

This Y. (i € I* a string of length one) is of course the set of variables

{xo i} (i € I) and is sorted by I as in Example 1, Section I.4. ty is
b

said to be a proper subterm of t,, t, < tss just in the case that t; < t,

22 "1 -

and tl 7 t2.

Let a e X (that is, a is an individual symbol of sort i).

{A,i>
A
Given t e Wy(X) and t' ¢ WZ(X)i’ we define the operation t - _ t' of

a-substitution as follows: t "4 t' = Subi(t"; t') where t = Subi(t”; a),
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A
t" e WZ(X’ Yi)’ and t" has no occurrences of a (that is, as a string of
symbols, t'" does not contain an occurrence of the symbol a). We emphasize‘
that this operation is defined only for a and t' of the same sort.

A
Again let a € I Given UL WZ(X) and VC WZ(X)i’ we define

Ouid s’
the operation, U "4 V of a-complex product as follows: U "4 Vo=
{t[t = Subw(t”; to', RN tg_l); Subw(t"; @, ..., @) ¢ U with exactly
e

n times
n-occurrences of a; t'. € V for O < j <n-1; and t" € W_(X, Y ), with w
3] - = 2 v

a string of i's of length n, in which a does not occur}. Intuitively, we
obtain the set U .a V by substituting some (not necessarily the same)
element of V for each occurrence of the symbol a in an element of U.

It is obvious that U ‘a{a} = U and we define the set U "4 ¢ to be the subset
of U with no occurrences of a. We again emphasize that this operation is
defined only for a and V of the same sort.

Let a ¢ & Given U E;WZ(X)i’ we define the operation N

{r,i> °

U 2 of a-Kleene closure as follows: Let VO = {a} and Vm+l = v"UJu "a v,

Then U © = L,J v, We emphasize that this operation is defined only for
neN

a and U of the same sort.

Example 1: Consider the alphabet I of Example I-3-5. If t = +atab
and t' = b, then t "a t' = +b+bb, while if t' = X then t "4 t' is undefined
(as t' and a are not the same sort). We note that if LJC:(W?)i, then
- fal=v. =0 A} =u
EPN

Let U = {*ak}g;(wz)o. So U is defined and we can calculate it

as follows:

v° = {A};

vt = v°Uu o Ve
O3 trard -y 0
{x, *ax},
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v2 = v Ju Y vt

i, *axlJxany SNECUNEETY

{A’ 7':a>\’ :':a*a)\};

ve = v Ju ") v

{X, +ai, ®a*a), *a%a*alr}l,

etc.
. *)\ 3, ) 2, 3 - .
Obviously U = = L_J Ve o= {A, ®*ar, *a*a), *a%a®ax, etc. }. Similarly,

neN

gl E3 E
if U = {+ab}g;(wz) then U © = {a, t+ab, tatab, etc.} whereas U A

l’

is now undefined.

For further examples and clarification, in the generalised case,

the reader is referred to Thatcher and Wright.

We now wish to introduce two operations on many-sorted alphabets
and study their effect on sets of terms. The first operation may be

called 'change of symbol', although we will most often refer to it as

projection. Let @ and A be two many-sorted alphabets sorted by I such
that @ Qw,id = ¢ if and only if é:w,i)- z ¢. That is, £ and A have
symbols of the same types. Consider a family of functions

{ } (usually written #:2 - A). Then a

™ Lo R . > A .
{w,1> <W,i> <W,1>

homomorphism ?:D()(WQ) > D()(WA) is induced in the natural way. We are

assuming that there are assignments to the projections which are the

identity in each case. 7 is called a projection and ;_l is called an

inverse projection. (We have in fact been cheating in calling

?:D()(WQ) > D()(WA) a homomorphism. In actual fact, we have here a
function between algebras over two different alphabets: D()(Q) and
D()(A). If we consider a new alphabet I which is obtained from

D()(Q) (D() (A)) by the deletion of nullaries corresponding to Q(A) and
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regard the families @ and A as generators, then in fact we do have a
homomorphism ¢:WZ(Q) > WZ(A)' The function n:D()(wQ) > D()(WA) is a

simple example of what Birkhoff calls a cryptomorphism. )

Let © and A be two many-sorted alphabets sorted by I. Let

v = {we I%® # ¢ for some i & I}. Consider

2,0 B wi> TP T by

the indexed family of assignments {¢ - D

<ni> Pani> T Py Yl gy

(which extends as the identity to projections of sort€w, i) ). Note that

each £ € @ . is assigned a derived operation of W, of type <w, i>.
<w,1> A

A homomorphism EED()(WQ) + D (WA) is induced in the natural way (with a

Va,a

misuse of the name 'homomorphism' similar to that in the definition of

projection). The function EED()(WQ) - Dv (WA) is called a homomorphism
Q,A

with respect to composition, or, more briefly, a homomorphism and E‘l is

called an inverse homomorphism. (The motivation for this definition will

be given in Chapter VI.)

A semi-Thue production on terms (over the many-sorted alphabet I)

is a pair p = (Subi(z; s), Subi(z; s')) where s, s' ¢ WZ(X', Xw)i for some
w ¢ I%, no element of Xw occurs in s' which does not occur in s, and z is

A
a variable which takes as values elements of WZ(X', Yi) (Yi is of course

the set {Xo,i} indexed by the string (of length one) i g I#). We define

the relation :::}:%(X') +-Q(X') as follows, for t, t' ¢ WZ(X')j:

(t, t') € —h_iF (more commonly written t=——=3t') if and only if there exist

Tt e %Z(X" Y?), (?;, ey ?5_1) € WZ(X')w such that

t = Subi(E; Subw(s; ?g, cees ;5~l)) and t' = Subi(§} Subw(s‘; Eé""’gg—l))'
t' is called an immediate consequence of the term t. t is said to ‘

directly derive t' via the production p.

It is obvious that ws 2sn drop the variable z in the definition of

semi-Thue production without ambiguity. We will adopt this convention fror
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now on and write productions in the form (s, s') or, more commonly, s > s'.

Example 2: Let I be as in Example 1. Then p = (®*ax, A) or %¥alX > X is an
example of a semi-Thue production. Thus, for example, *ak:;§> As that is A
is an immediate consequence of #*a}. We also have *b*akzzﬁy *bA and
*+ba*+bb*a*ak::%?> *+ba*+bb*a)::§i> %+ba®+bb, Note that ®al is not an
immediate consequence of A (for which the pair p would have to be reversed)
but is said to directly derive A via the production p.

Consider p = (#x*al, *x*+axd) or *x¥al > #*x*+ax\ where X is a set
of generators and x € Xl' Then, for instance, *b*ak::€§j> *b¥*+abl
since #*b%a\ = Subl(*x*aA; b) and *b%+abl = Subl(*x*+axl; b). We note
that *b*+aal is not an immediate consequence of *b*al since not the same
term has been substituted for each occurrence of x in #*x*+axX (b being
substituted for the first occurrence of x and a for the second). Also note
that *x*tax) is not an immediate consequence of *x%*a\ (over the many-sorted

alphabet I) since x is not in I.

A semi-Thue grammar (or system) is a u4-tuple {2, Z, P, S> where

(i) I is a finite many-sorted alphabet (sorted by I);

GD 9 s gty

R Z). ! is called the terminal alphabet while N = -0 (that is,

for all i € I (usually will be written as

N = {z -

Cw.i> Q w.is }) is called the non-terminal alphabet;

(iii) P is a finite set of semi-Thue productions; and

Fal
(iv) sC W is a finite set of axioms.

Define the relationt:ij:ﬁz(x') -+ ﬁZ(X') as follows, for
t, t' € WZ(X')i:t:;> t' (instead of (t, t') e :??>) if and only if there
is some p € P such that t—=> t'. Let'—ﬁzj:%z(X') > QZ(X') be the least
relation such that:ii? contgins ——>and iz reflexive and transitive;
that is t:ﬁ%b t' if znd only if tiere exist tos ey T € WZ(X')i’




_38_

1 ...,pnlePsuchtha‘ct=t :} _'j :ﬁt = t'. The

relatlon::§ H (X') > W (X'), called derlvatlon, is the reflexive,

tr'anSJ.tlve closure of the relation :;ﬁ W (X') > w (X') If

t _é t' then t' is said to be a conseguence of t and t 1s said to
p
derive t'.

The set generated by the grammar G = <Q, r, P, S> is

L(G) = {t' ¢ WQ[t:“:)t' for some t e S}. It should be obvious that we

P .
can replace G by a grammar G' = < @, ', P', {Z}> , where

iy T Igwid for w Aorw =2, ¢ Ig=f €I|sﬂ(w ), 7 o)

Z'<>\’i> = Z()\ U{Z} for i ¢ IS and Z a symbol not in r; and

P' = P U{Z > t|t g S}, so that L(G) = L(G'"). We will use this fact
from now on and abuse our notation somewhat to define grammars as a

4-tuple < Q, I, P, Z> where Z is the axiom. We will also use the

symbols -E_“?;, ':_‘7 instead of :> . : respectively whenever it is

P P
obvious which set of productions P we have in mind.

Remark: Of course, if we assume that each symbol in an alphabet y has a
unique type, then we cannot associate such a gramfnar G' with the grammar G.

H "no- " 1" " . = .
owever, let G < Q, ', P", Z> be the grammar where Z(w,j> Z(w, iy

for.*w#}\orw:)\,jJ;Is:{ieI[Sﬂ(Wz)i#dJ};

" U {Z.} for i e Ig3 Z = {Zi[i e I and Z, not in 1}

His T LI 5

and P" = P L__) { Z > t]t € sm(w ). } Then L(G) = L(G') and we have

iel
a unique axiom for each sort in S. The reader is asked to take account

of this difference between G' and G" as we proceed.
We obtain different classes of grammars (and sets generated by -
these grammars) by restricting the types of productions we allow in a

=

grammar. A regular grammar G = <Q, I, P, Z) is one in which all p € P

are of the formA-*fAO...A (fe @ . AeN , and

n-1 <wW,id '’ <ALi>
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A. < 4 < n- > Q . N . h
]EN(X,wj> for 0 < j <n-1) or A > a(a ¢ <)\’l>,AE <)\’l>)were
N<Wj> = ¢ for w # A, The former set of productions is called
b
non-terminal while the latter set is called terminal. The sets generated

by such grammars are said to be regular (see Brainerd (1), (2)).

A context-free grammar G = Q, L, P, Z‘> is one in which all p e P

are of the form A(xo, cee s xn—l) + t (or, more correctly, AX_ ... X 17 t)

where A € N = {xo, }, and t € W (X ), (Note that we

Cyid> Xw cs XL 1

have reindexed Xw for simplicity of notation.) The sets generated by

such grammars are said to be context free (see Rounds (1), (2)).

A monotonic grammar G = < Q, £, P, Z> is one in which all p € P are

either of the form t > t', where t, t' ¢ WZ(Xw)i’ some w £ I#*, and

d(t) < d(t') (hence the name monotonic) or Ax e X > X,
- O,W n-l,wn_l j,wj

(0 < 3 <n-1). The sets generated by such grammars are said to be

context sensitive.

We note that the class of regular grammars is a subclass of the
class of context free grammars which is in turn a subclass of the class of
monotonic grammars.

We give below an exampie of a semi-Thue grammar which is not
monotonic. For the sake of simplicity our example uses a non-sorted

alphabet (as explained in Example I.3.4). Let G =< Q, £, P, 2> where:

(i) £ = {vo, Vl}’ 2, = {1, 2, = {V,A\1;

{z, V}, Nl = {C, F}; and

(ii) N
o
(iii) p = PO(_)Pl where:

(@) Py =A{z~> FrNw, v)), z > FV(V, V), 2> F(U(V)),

VoA, V), vV (v, V), Vv>TI(v), v > vo» V> vi} and
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() Ppo= (P, %)) >N (F(x ), Flx)),
F(V(x > x)) >V (F(x ), F(x)), FOUx)) > Clx ), Flv ) > v_,
Flvy) > vy, Clv ) > v, Clvy) > vy, COUx D) > Fx ),

C(V(xo, x1)) +/\(c(x0), (%)), C(A(xo, x)) +V(c(xo), Cxy )}

This grammar generates all the Boolean expressions, in the Boolean
variables v and vy such that the only subexpressions which are complemented
are the variables. The productions in PO are used to generate all Boolean
expressions in the Boolean variables Vs and Vs while those in Pl convert such
expressions, using de Morgan's laws, into equivalent ones so that the
variables are the only subexpressions occurring with complement signs on
them. This grammar is not monotonic since there are productions oYy
in P such that d(to) > d(tl) (F(‘Kxo)) > C(xo), for example). -

Note that we have adopted the common practice of using commas and
brackets in writing our I-expressions. This will be done in most of what
follows for the sake of clarity.

Examples of regular and context free grammars can be found in

Chapters III and IV, respectively.

Remark: Let I be a finite set (and £* the set of strings over I). Let
T(Z) be the family of ranked symbols with T(Z)O = {A}, T(Z)l = I and
T(Z)n =¢ forn > 1. There exists a bijective function ¢Z:Z* - WT(Z)
(and we will often write ¢Z instead of ¢Z—l because of this bijection
property) given by the inductive definition:
(0) 6. (X)) = A3 -

(1) ¢Z(W) = wh forwe XV .

We call the elements of the carrier of wT(Z) monadic or unary terms.
Thus, given a regular grammar G = <{ Q, £, P, Z > (of conventional

theory), we can easily convert it into a regular term grammar
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g' =< T(Q), T(Z), P, Z >. This is accomplished as follows:
(1) T(2), - T(R), = IR and T(X), - T(W)) = é3

(ii) P' is obtained from P by
(a) replacing A+ a in P by A+ ax in P';
(b) replacing A > aB in P by A~ aB in P';
and (¢) replacing Z+ A in P by Z> XA in P';
(iii) Replace each production of the form A » a) in P' by two regular

productions with the same effect (for example, A > aL, L - ).

It should be clear that ¢Z(L(G)) = L(G').
1fe=<4Q, I, P, 7 > is a context free grammar (of conventional
theory) in Chomsky normal form, we obtain a context free term grammar

e =< T(Q), T(£), P', 2> as follows:
(1) Let T(Z), - T(@)y = {2} and T(2), - T(Q), = I - (2 Uiz,

(ii) P' is obtained from P by
(a) replacing Z -+ AB in P by Z + A(B(})) in P's
(b) replacing Z~+ a in P by 2 > a(A) in P';
(c) replacing Z + A in P. by Z > A in P';
(d) replacing A > BC, A # Z, in P by Alx) + A(B(x)) in P';

and (e) replacing A+ a, A #Z, in P by A(x) > a(x) in P'.
Again it should be clear that ¢Z(L(G)) = L(G").

If G = < Q, Z, P, Z>> is a monotonic grammar (of conventional theory),

we obtain a monotonic term grammar G' = (TKQ), T(Z), P', Zﬂ> as follows:

(1) lLet T(f), - T(@)y = {2} and T(2); - T(®), = ¢ - (@D
(ii) P' is obtained from P by:

(a) replacing Z >t in P (t # A) by Z > tA in P';
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(b) replacing Z > A in P by Z > X in P';

and (c) replacing A > t(A # Z) in P by A(x) =+ t(x) in P'.

Again it should be clear that ¢Z(L(G)) = L(G"). (We have assumed in
all the above that the empty string A appears only in productions of the

form 2 > A , Z the axiom.)

Example 4: We illustrate the above procedures with the following simple

example. Let 6 =< Q, £, P, Z> where:

(i) 9= {a, bland - Q= {2, A, B, C, D};

(ii) P

H

{Zz >AB, Z »AC, C >DB, D »AC, D - AB, A >a, B >bl.

G is a context free (string) grammar and L(G) = {anbnln > 0}.
We apply the above procedure to get the grammar
6" = { T(R), T(X), P', Z > where P' = {Z > A(B(}X)), Z » A(C(})),
C(x) - D(B(x)), D(x) » A(C(x)), D(x) - A(B(x)), A(x) » a(x), B(x) = b(x)}.

L(G') = {a"b"A|n > 0} and so L(G') = ¢.(L(G)).

Note that what we have called the conventional definition of
monotonic grammars is usually given as the definition of context sensitive
grammars. The latter, however, is a different class of grammar whose
productions are of the form uAw > uvw (to be read as: Replace A, in the
context of u and w, by v) where A ¢ £ - Q and u, v, w € I¥%. It can be
shown, however, that the two classes of grammars generate the same class of

sets (of strings). Motivated by the above, we define a context sensitive

term grammar G = £ 2, , P, Z> (I Q a many-sorted alphabet) to be one
in which all productions p € P are of the form t - t' where t, t' ¢ WZ(X)i
and there exist A s]ﬂ( R re WZ(Xw)j’ s € WZ(X, Yj)i’ and

w - .
(so, eees Sn—l) € WZ(X) such that t = Subj(s, As_ ... Sn—l) and

t' = Subj(s; Subw(r; Sgo veeo sn_l)). Although we will not prove it
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here, it can be shown that context sensitive and monotonic term grammars

generate the same class of sets (of terms).
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III. RECOGNIZABLE/REGULAR/EQUATIONAL SETS

IIT.0 Introduction

In this chapter we present familiar material about recognizable
sets (Thatcher and Wright, Doner), regular grammars (Brainerd (1)),
regular sets (Thatcher and Wright), and equational sets (Mezei and Wright,
Eilenberg and Wright) in a new setting: the many-sorted case. (The
references are to studies of the generalised case. The reader is
probably familiar with a great deal of material on the conventional case.)
Since the material is not really new (and every effort is made by means
of our notation to show this), we do not give full proofs of our results
unless the proofs are new or are an improvement on the ones to be found
in the literature.

We conclude the chapter with a very important theorem relating
the classes of sets recognized by r-automata, generated by regular

grammars over I, regular over I, and equational over Z.

IIT.1 Finite Automata

Let I be a many-sorted alphabet, sorted by I. We wish to define
finite automata which 'accept' I-expressions and motivated by this we begin

A
by defining I to be the possible set of input symbols and WZ to be the

universe of possible input terms.

A (deterministic) finite automaton of type % or, more briefly, a

A
I-automaton, is a finite I-algebra. If A is such a I-automaton, then A is

the set of states; for a e & .\ » 4, 18 an initial state; and for
<A,id) A

felk CW,iS® fy is the (direct) transition function for the input symbol f..
L]
A non-deterministic finite automaton of type I, or, more briefly, a
non-deterministic I-automaton, is a finite I-structure. Given such a

structure M, ay is the set of initial states corresponding to the input

symbol a € Z'<A P> and fM is the transition relation for the input symbol
3

er<wJ>.
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Each input term t € (Wx)i induces a corresponding output state

n?(t) in a I-automaton A (where nA:W + A is the unique homomorphism

z
defined by The Fundamental Theorem of Algebra). Similarly, each input

term t € (WZ)i induces a corresponding set of output states nEM(t)
in a non-deterministic I-automaton M (where nEM:WZ -+ pM is the unique
homomorphism).

As is the case in both the conventional and the generalised
theories of finite automata, we can define the set of terms recognised
by an automaton as follows:

(i) For any deterministic I-automaton A and a choice of final states

{AigAi} (usually written AFgA), the behaviour of A with respect to aF

is the indexed family of sets bhA(AF) = {te (wz)i|niA(t) e Ai};

(ii) For any non-deterministic I-automaton M and a choice of final
states {Mi c Mi} (usually written MF(;M), the behaviour of M with respect

to MF is the indexed family of sets th(MF) = {te (WZ )i]ngM(t)ﬂMiF Z 6}

(iii) An indexed family of sets U l'_'_:WZ is recoggizable if there exists

a I-automaton A (deterministic or non-deterministic) and a choice of final

F F, _
states A" [T A such that bhA(A ) = U.

Example 1: (a) Let I be the many-sorted alphabet of Example I.3.5.

Let M be a Z-jautorrlaton such that -

(1) M ={z, E}, M, = {4, B,C, D, F, 6}

(ii) (A, b, C), (C, B, D), (A, B, C), (A, B, F), (A, D, G) ¢ Y

and (F, E, Z), (G, E, Z) € *M;

(iii) The set of initial states corresponding to a € I 1) is the
3
set {A}, tob € z(A,l) is the set {B}, and to
z i R
X e ¢r, 0> is the set {Z, E};
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(iv) The choice of final states is {Z} E;MO and ¢ C M, .

M is obviously a non-deterministic automaton and it recognizes the indexed

family of sets {{A, *+ab\, *+a++abbX, *+at+a++abbbi, etc.}, o¢}.

(b) If we changed the above example by allowing Z ¢ Ml and

(A, B, 2), (A, D, Z) € +, with the choice of final states {Z} e

M
{z} C M), then M recognizes the indexed family of sets

{{), #+abX, *+at+abbA, etc.}, {+ab, +at++abb, +a++at+abbb, etc.l}}.

We are now ready to state three important theorems whose proofs,
since they are of a purely algebraic nature, are exactly analogous to
those found in the conventional and generalised theories. As such, we
restrict our 'proofs' to giving brief versions of the necessary
constructions used and leave it to the reader to supply his own detailed

proofs.

Theorem 1. An indexed family of sets ng;wz is recognizable by a
deterministic Z-automaton if and only if U is recognizable by a non-

deterministic I-automaton.

Proof. If UQ;V%:is recognizable by a deterministic Z-automaton, then it
is trivially recognizable by a non-deterministic I-automaton since
I-algebras are I-structures (see Section I.3).

Conversely, if U is recognizable by some non-deterministic
Z-automaton M, then U is also recognizable by the deterministic Z-automaton
PM, the raised algebra of M.

From now on, we may refer to recognizable sets without reference

to the kind of automaton involved.
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Theorem 2: [JE;WZ is recognizable if and only if U is the union of classes
of a finite congruence on WZ‘ (A congruence q on WZ is said to be finite
if each q; has a finite number of qi—classes (and I is finite, as it must
be here).) Note: We have here extended the notion of union from sets to
indexed families of sets. For example, if U, V are two families of sets
indexed by I, then vy = {UiLJ Vi}ieI' Intersection, set difference

(or complementation) and other operations on sets, can be extended in a

similar way.

Proof. Let A be a (deterministic) I-automaton which recognizes U (with

the choice of final states AEYGZAJ. We know from Chapter I that

A

n :W. *> A induces a congruence on W The classes of this congruence

L L

for each 1 € I are (n‘;‘)_l (a) for all a ¢ Ai' Then

_ A.-1
U= {UF () @Y

ach,
i

Conversely, let g be a finite congruence on WZ and let

U

mi—l
{L_J Um, > 0},
kzo"k i 2

fel” Then A = wz/q is a finite automaton and if

F_. q q Fy _
we let A” = {{xo s eens xmi—l}}ieI then bhA(A ) = U.

Theorem 3. If U, VQ;VE:are recognizable, then so are ul1v and WZ - U.

Proof. If A, B are IL-automata such that bhA(AF) = U, th(BF) = V respectively
. F. _

then (i) bhy(A - A") = Wy = U

and (id) bh (AP X BF) = UHV .

AxB

Corollary. Ifu, vC W. are recognizable, then so is Ul,JV.

The last theorem proves the closure of the recognizable sets under

the (extended) Boolean operations.
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An automaton A, with choice of final states AF, is said to be
equivalent to an automaton B, with choice of final states BF, if
bh,(a%) = bh (8",

One of our basic tasks in automata theory is to prove the existence
or non-existence of effective procedures to solve certain questions about
the sets accepted by certain classes of automata. These so-called
decidability results will be the subject matter of the remainder of this -
section. We will be discussing three particular questions (given

Z-automata A and B and choices of final states AF and BF, respectively):

(i) Does bhA(AF) =67 (¢ is of course {¢}i )3

el

(i1) TIs bhA(AF) infinite? (Here, by 'infinite' we mean: Is some

component of bhA(AF) infinite?)
fes Fy _ F
(iii) 1Is bh,(A ) = bh_(B")?
A B
We proceed by first proving a number of auxiliary results which are of
importance in themselves.

It is a well known theorem of conventional finite automata theory
that, if in accepting a string W oW W, (over some given alphabet), an
automaton is in the same state immediately after processing both strings
W and WY s then the automaton will recognize wowlkw2 for any natural

number k. A generalisation of this to the many-sorted case is:

Theorem 4: Let A be a X-automaton and to’ t. € (WZ)i such that

1
A A .= — )
ni(to) = ni(tl). Given t € WZ(Xi)j such that Subi(t, to) = t and
Subi(Eé tl) = t', then n?(t) = n?(t'). (That is, if t' is obtained from

t by 'replacing an occurrence' of t, in t by t, and if t, and t. induce the

1 1

same output state in the automaton A, then so will t and t'.)
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: = . = = 1 =
Proof: Suppose t = ac¢ Z(A,j) Then to tl t =t a and the

A A e
result follows. If t # a e L . then n, (t) no(t') = ¢(t)
D J J
where ;:Wz(Xi) + A is the homomorphism generated by the assignment

. > niA(to) (= niA(tl)) and again the result follows.

¢i:xo,l

Corollary. Let A be a I-automaton and (to, cees tn_l) € (WZ)W,
I sn_l) € (Wz)w such that ”i.(ti) = nii(si) for 0 < i < n-1.
Given t e WZ(Xw)j such that Subw(¥} lto, cens tn—l) = t and

Sub (T3 S, ..., s__,) = t', then n§<t) = ng‘(t').

Theorem 5. Suppose A is a r-automaton and that A has n states.
(That is, the cardinality of X is n). Given t ¢ (Wz)i, we can find

t' ¢ (wz)i such that d(t') <n and n?(t) = n?(t')-

Proof. If d(t) < n, then we are done. Suppose, therefore, that

d(t) > n. Then there exist tos cres Ty such that t =t > ... > tae) ©
a g ¥ .o - The corresponding sequence of states n% t), «ony

<xs30 1, ©
n% (t ) must contain a repetition, say né (t.) = n% (t, ) for j<k.
i d(t) i,v 7] i k
a(t) 3 k
Then, by the above theorem, if we replace t, by ti in t to obtain t',
i k
A .
ns (t) = n? (t"). Now d(t') < &(t') < 2(t) (where 2(t) is the length

o o
of the string of symbols t). Thus, if d(t') > n, a finite number of

repetitions (limited by 2(t')) of the above procedure will result in a term
of the required depth.
We are now ready to state our promised result:
Theorem 6. Given Z-automata A and B and choices of final states AF and
BF, respectively, there exist effective procedures for deciding the
following questions:
(i) Does bh,(a") = ¢?

(ii) 1Is bhA(AF) infinite?
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(iii) Are A and B equivalent?
Proof.

~N
(i) Consider all terms t € W, such that d(t) < n, where n is the

z

number of states of A. There are only a finite number of such terms.
By the previous theorem, if bh(AF)i contains any terms, then it contains

terms of depth < n. Thus the procedure is to test all terms t such

F

that d(t) < n and we have bhA(AF) # ¢ if and only if n?(t) £ Ai for some

such t and some 1 ¢ I.

(ii) If we show that bhA(AP) is infinite if and only if A recognises
a term t such that n < d(t) < 2n, then the obvious procedure is to test
the finite number of terms of depth between n+l and 2n for recognition

by A. It remains to prove the condition of the above statement.

Suppose t € bhA(AF)j and n < d(t) < 2n. Then, by the previous

theorem, there exist t , t, € (W_). such that t < t., and né(t ) = n@(t Yo -
o bt o i o 11

1 1

Let t ¢ WZ(Xi)j such that t = Subi(¥§ to). It follows that

A A - _ A - . —. 13
nj(t) = nj(Subi(t, to)) = nj(Subi(t, tl)) and so t' = Subi(t, tl) € bhA(A )j'
Let t ¢ wz(xi)j such that Subi(-’E; to) = t'. It follows that
n%(t) = n%(t') = nA(t”) (where t" = Sub.(?' t,)) so t" € bh (AF).

] ] ] im0l A 3’

And so on.  Thus bhA(AF) is infinite.

Conversely, suppose bhA(AF) is infinite and that no term of depth
between n+l and 2n is recognized by A. Let t be such that d(t) > 2n and
such that d(t) = ziﬁ{d(t)lt € bhA(AF)i, some i € I, and d(t) > 2n}.

eny

(Such a term must exist if bhA(AF) is infinite.) Then we can obtain

A A
terms t_, t; e (WZ)i such that t > T >t and ni(to) = ni(tl). Let

— A —_ _—
t e WZ(Xi) such that Subi(t; tl) = t. Then A recognizes t' = Subi(t; to)W

to and tl can be so chosen that d(to) < n. This leads to a contradiction:
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either ton < d(t') < 2n or to 2n < d(t') < d(t ). Thus there is a
t, n < d(t) < 2n, recognized by A.

(i1) Ga, DV, = by 35U (G, - b, AP Tong 85 1s
th(CF) for some IZ-automaton C and choice of final states CF.

It can be seen that th(CF) £ ¢ if and only if bhA(AF) # bthF) and so

we can use (1) to decide the question.

III.2 Regular Grammars

We begin this section with an example of a regular grammar:
Example 1: Let G = {z, A, P, Z ) where:
(1) I is the alphabet of Example I1.3.5;

(ii) N<Aﬂ> = , N en, 1> = {A, B, C, D, F, G};

(iii) P ={Z2~> A, Z > *FE, Z > #*GE, C > +AD, C > +AB, D > +CB, E > A,
F > +AB, G > +AD, A > a, B > b}.
The set generated by G is L(G) = {A, *+abX, *+at+t+abbA, *+at+a++abbbi, etc.}.
If we modify the above example by allowing Z € N<(A,l> and adding
the productions Z + + AB and Z - +AD to P, then L(G) = {{X, *+ab,
%+at++abb), etc.}, {+ab, +a+t+abb, +at+at+abbb, etc.}}. (L(G) is now an
indexed family of sets.)
We proceed with the following classical result of finite automata
theory (Chomsky and Miller, Brainerd (1)):
Theorem 1. The class of (indexed families of) sets recognized by
{i~automata is the same as the class of (indexed families of) sets
generated by regular grammars over the alphabet Q.

Proof. The theorem is an immediate consequence of the following lemmas:
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Lemma 2. Given a regular grammar G = { Q, I, P, Z>, one can effectively
find an Q-automaton A and a choice of final states AFQ A such that

_ F
L(G) = bh,(a").

Proof. Given G, let the (non-deterministic) Q-automaton be
- 1 : | 1 1
A= {X'|xe N<)\, i>}ieI' The relations of A are (YO, cees Y105 X ) € £,
for each X > fY_ ... Y1 1n? (where f € Q<w,i) s X € N<)\, is and
(YO, cens Yn—l) e N¥).  The choice of final states for A is {Z'}. (Note

that {Z'} is an indexed family of sets with each element of the family
corresponding to each type of Z in N.)
% . .
It remains to show that, given t ¢ (WQ)i’ Z—>t if and only if
A .
ni(t)ﬁ {Z'} # ¢ (where Z' ¢ Ai). We will prove the more general result:

&
X=>t if and only if ng}(t)ﬂ{X'} £ ¢ for t e (wn)j.

If t = ac¢e then we have

T

Xéa if and only if X==pa in G
if and only of X » a is in P
if and only if {X'} ¢ a,

if and only if n?(a)ﬂ {X'} #¢.

If t 2 . th z .

£ ac <AL en t fto tn-l for £ ¢ Q(w,j>’
W
(to, ceny tn-l) € (WQ) and we have
X:;}t if and only if there exists (XO, e Xn—l) e N and
&
x__>fxo cee X _mpft et

if and only if X - fXO anl is in P and X === K

forOf_kf_n-—l

. . ' pA
if and only if (XO, cees X X) ¢ £, and Xy e ne (t,)

_19
n-1 K

A
for»Oikin—l

if and only if {x'}f1{n§A<t)} ‘6.



Proof. Let G- =< a, b, Y, zt>, ¢ =< e, 1%, P2, 72 be grammars
for U, V respectively. Assume, without loss of generality, that

W2 - 4. Let ¢ =<Q, I, P, 2 be defined as follows:

(i) N = NlUNQ;

.. _ 1 1
(ii) Let Q = {pe P|p=A~>a for some A e N ¢ k,i>>}' Then

p=p?| Jet - lJta» t|a~ae qand 22+ t e PP
(1ii) 2z = z%.
It is easy to see that G is a regular grammar. Also, we have

L(G) = U "a V as any term generated by G is just a term in L(Gl) with each
a replaced by some (not necessarily the same) term in L(G2).
Similarly, let G' = <'Q, ', P', Z'>> be defined as follows:

(1) N' = N

(ii) Let Q be as above. Then P! = {Z ~» a}t_}(Pl - Q) L~j
{A>t|lA>aeQand 25 > t ¢ P},

(iii) z' =zt

Again G' is a regular grammar and L(G') = u .
We now wish to study the operation of 'change of symbols' on

recognizable (families of) sets. (Also see Thatcher and Wright.)

Theorem 5. If U, V are recognizable (families of) sets over the

alphabets  and A, respectively, and T is a projection generated by the

function 7:Q + A, then {m(U.)}. and{r —l(V)}. (usually written as
1773el iel

7(U) and ;._l(V), respectively) are recognizable (families of) sets over

the alphabets @ and A, respectively.

Proof. Let 6 ={ Q, L, P, Z> be a grammar for U. Define

G' = <A, ', P, Z'> as follows:

(i) z' = NUA;
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Conversely we have:
Lemma 3. Given an {i-automaton A and a choice of final states AFC;[\,
one can effectively find a regular grammar G =< Q, I, P, Z':> such that
L(G) = bh,(a").
Proof. Assume without loss of generality that A is deterministic and
that each component of af is at most a singleton (say Z ¢ AE if and only if

Ai £ o). G is obtained as follows:

(i) Let N = {X' ¢ N<A,i>lX e A}, s

(ii) P ={z' > aln}a) = 2, i ¢ T} (2" ~ L lFen,
and £a(X 5 ooy X ) = 2P U0 s m ke fE e % iy @4
FX s e, X 1) =X}
=X - XL Xr'l-llf € n<w,i> and £,(X_ 5 ...y X ) = X},

It remains to show that any term recognized by A has a derivation
in G and conversely. This fact follows from the more general statement
A . . % ] s . .
ni(t) = X if and only if X'::;'t. The proof is similar to the one in the

previous lemma and so is omitted.

Example 2. Consider the automaton M of Example III.1.1 and the grammar

G of Example 1 in this section. M was obtained from G by the process used
in Lemma 2. We could easily get another grammar G' to generate the family
of sets recognized by M by applying the method of Lemma 3 to the deter-

ministic automaton pM.

Theorem 4. Let a € Q< iS and‘VE;(Wb)i be a recognizable set.
Then V 2 is a recognizable set, If U is a recognizable family of sets,
then so is U ‘3 V. (We have again extended the . operation from sets to

indexed families of sets.)
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14 vo= : > fA_ ...
(ii) P' = {a~» iy A A _lfe Vi 20d A EA
is in P},
(iii) 2z' = z.

Then w(U) = L(G).
Let G =< A, I, P, Z ) be a grammar for V. Define

G' = < Q, 2', P', Z'> as follows:

(1) ' = NUQ

1] 'z . X . £IA
(ii) P {A > £A_ An_l[f € Q(w,1> and A > ﬂ4w’l>( )A
is in P};
(iii) 2z' = z.
Then L(G') = ?'-l(V). This works because each f e A . has only a
{w,i>
finite number of pre-images in Q S - Thus P' remains finite.
<W,id
Remark. Consider the following class of semi-Thue grammars :
E = i i = £
ach G <Q, r, P, Z> in the class is such that N<w,i> $ for
w # A and each p ¢ P is of the form t > t' with t, t' ¢ (Wz)i. The

A
n

reader can easily satisfy himself that this class of grammars (restricted

to the non-sorted case) is equivalent to the class of regular systems

defined in Brainerd (1).

Let L(G) be the indexed family of sets generated by the regular

system G, It can be shown that to each regular system G, we can
effectively associate a regular grammar G' such that L(G) = L(G').
proof is a simple generalization of the method used by Brainerd.)

more important result is:

Theorem 6 (Blichi). Let U be recognizable. One can effectively find a

regular system G = ( 2, 2, P, Z>> such that L(G) = U. That is,

(The

recognizable (indexed families of) sets can be generated by regular systems

without any non-terminals.
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The proof of the above is again a simple generalisation of

results in Brainerd (1) and is motivated by the results of Blichi (3).

III.3. Regular Sets

Let I be a finite set. One of the most important notions in
conventional theory is that of 'regular set of strings’'. The class of
regular sets of strings, over the alphabet I, is defined to be the least
class of subsets of I%* which contains the finite subsets and is closed under
the operations of union, complex product, nnd Kleene closure (see Kleene).
A very important property of this class is that it is the same as the |
class of recognizable sets over I(and thus the same as the class of sets
generated by regular grammars over ). We wish to generalise the concept
'regular' to indexed families of sets (over a many-sorted alphabet) and
prove an analogous equivalence theorem.

Unfortunately, the concept does not generalise 'regularly'.

For an indication of why this is so we refer the reader to Thatcher and
Wright. Let £ be a many-sorted alphabet. We proceed by defining the

A
class of I-regular sets to be the least class of sets in WZ which contains

the finite subsets of each sort and is closed under the operations of
union (restricted to sets of the same sort), a-complex product and a-Kleene
closure for each individual symbol a in I. This definition in fact
restricts I-regular sets to be subsets of (WZ)i for some i € I.

[JE;(WZ)i, some 1 € I, is regular (over I) if there exists a

finite many-sorted alphabet I' such that I' = for w £ A

. X .
{WsI> <W,I>

and U is I'-regular. An indexed family of sets U is regular (over I)
if each U, is regular. We state without proof the following classical

result (the proof is exactly analogous to that found in Thatcher and Wright

or the improved proof in Arbib and Give'on):
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Theorem 1: U is recognizable if and only if it is regular.
Corollary. Let I be a many-sorted alphabet. The following are
equivalent classes of indexed families of sets:

(i) The class of indexed families of sets recognizable by I -automata:;

(11) The class of indexed families of sets generated by regular

grammars over L

(iii) The class of regular indexed families of sets over L.

IIT.4 Equational Sets

In this section, we present a generalisation of the work reported
in Mezei and Wright. The material, except for a few refinements
necessary for the many-sorted case, is basically the same as in the above
and we try to indicate this with our notation. The reader who is not
familiar with the subject matter is referred to the above for the details
of proofs and constructions.

Let ¥ be a many-sorted alphabet and A a I-automaton. We note

the following property of each pr, fel Given arbitrary

<W,i> )
families of sets S, C;'(pA)w for 0 < j < n-1, then

]
pr(lSJ Ro,...,LJ] Rn—l):lEJ %) £
W

o n-1 o wn—l

pA(RO’ -e5 R _J) for

5 € Sw » 0 <3 <n-1. We say that each pr has the property of being
J

completely distributive.

Let X = {Xi}ieI be an indexed family of sets called variables.

Let I be ordered (by enumeration) and let each X; be ordered (by

A
enumeration). A term t ¢ WZ(X) is linear if each variable in t occurs
no more than once. A term is linear distinguished if the leftmost

occurrence of a variable of a given sort i ¢ I is X, € Xi’ the next

occurrence of a variable of sort i ¢ I is X, € Xi’ and so on. Terms in

A
WZ (that is, terms without variables) are linearly distinguished. All
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terms t may be associated with a unique linear distinguished term t from
which t may again be obtained by a substitution of variables. Let
te %Z(X). We let Et andQJ; denote the collection of operator symbols
and variables, respectively, which oceur in t.

Sincer‘t inherits an order from X, t determines in a natural way

(using the Fundamental Theorem of Algebra) a term function IAt|:

pAioX v X PAin-l > pAi wherella is the ordered set {yo, cens yn_l},
yj is of sort Xi for 0 < j < n-1, and t is of sort i. Note that IAtI
] ~
may be obtained as an appropriate restriction of IA tI. In general, term
functions are not completely distributive. They, however, have the

following property, called distributivity over w-chains (where an w-chain

over a set S is a non-decreasing sequence of subsets of S indexed by the

A
natural numbers): Given t e WE(X),]J; = {xo, cees Xn-l}’ and an w-chain

Slc: 53 C ... over A, (x, € X, ) for each 0 < j < n-1, then
o= 1= lj 3 1j - -
_l - .
]AtI(L~J S;, cens L_j Si ) = L,J{[AtI(SE, cens Si l)}. In particular,
keN keN keN
term functions are order preserving. That is, given Sj’ Rjgz'Ai for
3
0 < j < n-1, if sjl‘:‘Rj, then lAtl(So, sn_l)g[At}(Ro, coes RO
Let EC W.(X),. Define £_ = \J 2, and . = L_)If. Againlf
=z 1 E t E t E
tekE tekE
inherits an ordering from X. We associate with E a mapping
: X ... . =
| AE] PA; X pA, > pAiwhere IAEI(SO, , Sn—l)
o] n-1
E_J{IAtI(SO, cees Sn_l)} for Sj Q;Ai.’ 0 <3j<n-1. Of course, ij is
eE j
the sort of y3 in the ordered setrU; z {yo, e yn—l}' Note that since,

for any t' e E, yj may not occur in t', strictly speaking the expression
|At'|(SO, cees Sn—l) is incorrect. We extend our notation to allow such
expressions and interpret the meaning to be that lAt" is empty in the

j'th argument.
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A system of equations 8 is a finite sequence of expressions of the

form xj = E, (called an equation) for O < j £ m-1 where each xj is a

distinct variable (called the left hand side of the j'th equation) and

each Ej (called the right hand side of the j'th equation) is a finite set

of terms of the same sort as x.. Let U be the ordered set of variables
J 3

of the system E . rUé can be ordered and the equations are ordered

accordingly. Let m = {mi}iel where m, is the number of equations in £

with left hand sides of sort i. We re-index the right hand sides of E

as follows: For each i ¢ I, the ordered set of sets of terms are

enumerated by Ei, 03 Tt Ei,m.—l where (xj s cees xj ) is the ordered
i o m. -1
i

set of variables of type i in U . We say that we have a system 6 of
.—1

m = {m.} equations. Define E, = [J) {E. }andz_ =1J s

1 i ~ i,k . E,

k=0 iel i

Let 1f£= {yo, v yn—l} and let {0, 1, ..., k} be an ordering of I.

m m
We can associate withE the function |AE | :(pAO) °x ... X(pA, ) ks
m m .
o k I R e=; -
(pAO) X ... X (pAl) ” where for all > Ry C_Idz(x)j (0 <2 < m, 1 and
. o o k k
0 <3 <1afl(s, ..., smo_l, I smk_l) =
o o k k . . i o
(RO, cees RO g een, Ros vens Rmk—l) if and only if Ry = IAEQ’jf
o
o o k k .
(SO, e Sm ITIRRR So’ cees Smk—l) for each 0 < & _f_mj-l and 0 < j < k.
o
m my
Let L be the lattice (pAo) °X ... X (pAk) ordered by
componentwise set inclusion and denote by O the (mo + ...+ mk)-tuple of
empty sets. Since term functions are order preserving, lAEf is a

monotonic map of L into itself and the sequence {IAUj(O)} is an w-chain,
where [Aalj(o) is defined by |Af[°(0) = 0 and |af[®*t(0) -
IAEIH(]AEI(O)). IAE’ inherits from term functions the property of

distrinbutivity over w-chains and so we have
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€l tlag3on = UJtagldaglion:

jeN jeN

LJ (] agl3co.

jeN

We denote U {IAEIj(O)} by [A&w]. Thus [AEw] is a fixed point of
jeN

|AE| and in fact, since O is less thamn or equal to any fixed point of
|AE| and |AE] is monotonic, [A £%] is the least fixed point of la & |.
Given a system 5 of m equations, we define the following properties
for it:
(i) 6 is of depth one if and only if its terms are of depth one;
(ii) E is deterministic if and only if, for each i ¢ I, {E. .} is

1,3

a partition of the set of all terms t of sort i such that d(t) = 1 and
Y. c 1{: 5

(iii) 6 is reduced if and only if for all IZ-algebras A, all the

components of [AEw] are non-empty.

Theorem 1. There is an effective procedure which, when applied to a

systema, yields a systemg with the properties:

(i) S is deterministic
(ii) S is reduced, and
(iii) For any I-algebra A, any component of [A£"“] is a union over

some components of [Agw] (of the same sort).

We obtain the above system S by first reducing & to a system \;
of depth one (see Corollary to Theorem IV.13). With F we associate
a deterministic system }P' by a subset construction similar to the method
used for obtaining a deterministic automaton from a non-deterministic one.
We then associate a reduced system 8 with f—' by, basically, eliminating

the use of variables which are not 'used' in the function ng' |.
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We are now ready to apply these results to the case when the
L-algebra under consideration is W . A simple result that follows
immediately from the above is:

Lemma 2. If €_is an equational system that is both deterministic and
reduced, then the family of collections of components of each sort of
[WZE:w] is a finite congruence on WZ.

The following is the main result of this section:

Theorem 3. Given an equational system E:, each indexed (by I) family of
components of [WZE:w] is recognizable. Conversely, given a family of

sets U recognizable over I, there exists an equational system S such that
U is an indexed family of components of [Wzsiw] .

Proof. Given 6:, we can obtain a reduced, deterministic system,S

such that a component of [WZEuﬁ is a union of components of [wz€3“].

By the previous lemma, the family of collections of components of [WZS(B]

of the same sort is a finite congruence on W Hence each component of

5
Wy . .
[WZ(E ] is recognizable.

Conversely let U be recognizable. There is a regular grammar

e

6= {z,A, P, Z>> such that L(G) = U. Form the equation system j
as follows:

(1) Let’\4§ be a set of variables in one-one correspondence to the
disjoint union of Nj

(ii) For each A e N<'A,i) , let the right hand side of the eguation
with left hand side x, (corresponding to A, according to (9)) be
Ei,A = {t'|A~> t is in P and t' is obtained from t by replacing non- <

terminals by the corresponding variables!.

We claim that L(G) is the indexed family of components of EWFS “7 corres-

ponding to the variables associated with Z. The proof is omitted.
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Example 1. Given the alphabet I of Example III.2.1, consider the

following equational system éi of m = {2, 6} equations

Xy = s Mg *xGxE};
Xp = {A};
X o = {a};
Xp * {bl};

Xp = {+xCxB};
Xp = {+xAxB};
Xg = {+xAxD}.

It should be clear that the component of [szlw] corresponding to X, is

{\, *+ab\, *+a++abbl, etc.} = L(G).

If we consider the second half of the example III.2.1 and modify
the above systean:so that m = {2, 7} and we insert the equation
v - . - . .
XJ {+xAxB, +xAxD} after the equation xg {1}, then it is clear that the

family of components of [sz;w] corresponding to {X 73 xé} is L(G).

Let A be any Z-algebra and CC A an indexed family of sets.
C is equational with respect to A if and only if there exists a system

. . . . w
of equations E:such that C is an indexed family of components of [AE; 1.
The following is the most important theorem of this chapter.

Theorem 4 (Eguivalence). Let I be a many-sorted alphabet. The

following classes of indexed families of sets of terms are equivalent:
(i) The class of recognizable (families of) sets of terms over Iy
(ii) The class of (families of) sets of terms generated by regular

grammars over L;
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(iia) The class of (families of) sets of terms generated by regular
systems (with or without any non-terminals) over I;
(iii) The class of (families of) regular sets of terms over I;

(iv) The class of equational (families of) sets of terms over I.

Proof. A simple consequence of Theorems ITI1.3.1 and III.4,.3 and the

Remark at the end of Section 2.

A
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IV CONTEXT FREE SETS

IV.0 Introduction

In the previous chapter we generalised a 'nmatural' class of sets
to the many-sorted case. These were the recognizable/regular/equational
sets. We now proceed to generalise the next 'natural' class of sets to
the many-sorted case and study the class of grammars which generate them.
These are the context free sets and, as we have seen in Chapter II, the
context free grammars form a proper sub-class of the class of semi-Thue
grammars.

We proceed by obtaining a series of results leading to a Normal
Form theorem for context free grammars exactly analogous to Chomsky
normal form grammars for context free sets of strings (see Chomsky (1)).
Along the way we also obtain a theorem on canonic systems of derivation.
These are based on results obtained in Fischer (1) for macro-grammars.

We then proceed to prove a number of classical results about context free
grammars. Where appropriate (see the Preface), the reader is referred
to proofs already published (for the generalised (non-sorted) case) in

the literature.

IV.1l. Context Free Grammars

We begin with a few examples of context free grammars.

Example 1. Let G =< @, L, P, 2> where:

(1) 1 = {0, 1};

(1) ey oy =0h 0., 0y =faybyeh, 0y, = {f),

W00 = B faan 1y 7 ek

= {Z}, N {F},

(11) Ny oy <111,1> ©
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(iv) P = {Z > h(Fabe, X)), F(x, y, z) * F(f(a, x), f(b, y), flc, 2)),

F(x, y, z) > gxyz} where x, y, z ¢ X,

The set generated by G is L(G) = {hgabcl, hgfaafbbfccAr, hgfafaafbfbbfcfcch,
etc.}.
if h the ab b ddi Z N to 2 and
we change the above grammar by adding Z € A1 S
Z > Fabc to P then L(G) is the indexed family of sets
|
{{hgabc), hgfaafbbfcci, etc.}, {gabc, gfaafbbfcc, gfafaafbfbbfcfce, etc.}}.

Example 2. Let G = @, I, P, Z> where:

(1) 1 = {0, 1};

Bl = = = {% = :
(ii) Q(A,o) {1}, Q(A,l) {a}’Q<lO,l> {%*}, Q(ll,l) {+};
- {7}, N - . .
(iii) N<>\’ o> {2}, <115 {B};
(iv) P = {Z ~» *ax, Z » *B(a)Ar, B(x) > B(+xx), B(x) > +xx} -
where x g Xl’
The set generated by G is L(G) = {*aX, #+aai, *++aataal, etc.}
If we change the above grammar by adding Z € N to I and
< 2,10
Z »B(a), Z~> a to P then L(G) is the indexed family of sets
{{*aX, *+aar, *++aataa), etc.}, {a, +aa, t++aataa, etc.}}. Note that the

second component of L(G) is the set of balanced binary trees on the symbols +

and a with the leaves labelled by a only and the internal nodes by + only.

Example 3. Here we give two examples over non-sorted alphabets closely
related to the above examples (see Example I.4.3 for the explanation of
the notation):

(a) Let ¢ =(@q,z,P, Z> where:

(i) o = {a}, a9, = {+};
o]
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(ii) N ={z}, N, = {B};
o} 1

(iii) P ={Z2~+» a, Z~»> B(a), B(x) » B(+xx), B(x) » +xx}.
Then G generates the set L(G) = {a, +aa, ++aataa, etc.}

(b) Let 6 =< @, L, P, Z» where:

(i) QO={a,b,c}, 92={f}, 93={g};

(1) N_ = {2z}, Ny = {F};
(iii) P = {Z » Fabe, F(x, y, z) > F(f(a, x), £f(b, y), f(c, 2)),
F(x, vy, z) + gxyz}.
Then the set generated by G is L(G) = {gabc, gfaafbbfcc, gfafaafbfbbfcfcc,
etc.}.
We note that in the above grammars there was no restriction put on

where a non-terminal may be in a term before we can apply a production.

This corresponds to the notion of unrestricted derivation in the grammars

for context free sets of strings. Now, in the conventional case, we have
a notion of left-most derivation for context free grammars. Analogously,
we define the concept of top-down or outside-in (0I) derivation for context
free term grammars: An outside-in derivation is one in which productions
are applied only to top level symbols in N, where a symbol F ¢ N is said

to be at top level in a term t if it does not occur in the argument list

of any H £ N.

In the conventional context free case, to every unrestricted
derivation there corresponds a left-most derivation (with possibly a greater
number of steps) in the same grammar which generates the same string.

We will prove an analogous result for context free term grammars. In
fact, the conventional theorem becomes a special case of the more general

result (see Remark at the end of Chapter II).
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Remark. We note that another mode of derivation may be distinguished
for term grammars. An inside-out (I0) or bottom-up derivation is one in

which productions are applied to a non-terminal F € N if and only if no
non-terminal H € N occurs in the argument list of F. In the string case,
this would correspond to a right-most derivation. The expected result,
in analogy with the conventional case, is that to any unrestricted

derivation for a term t, there corresponds a bottom-up derivation (with

possibly a greater number of steps) in the same grammar which generates the

same string. That this is not so is a consequence of the fact that
terms are not symmetric in the same sense that strings are. (A string
'read backwards' is still a string but a term 'read backwards' is not
necessarily a term.) See Fischer (1), (2) for a similar distinction.
We will not discuss IO derivations further here except to note that the
class of sets of terms generated by context free grammars using only IO
derivations is not the same as the class of sets of terms generated by

context free grammars using only OI (or unrestricted) derivations.

Lemma 1 (Parallel Derivation). Let G = <9, £, P, Z> be a context free

A
term grammar and allow only OI derivations. Suppose s, t € WZ such that
:': . . » A
t::f; s in p steps (which we write as t:éébs). Let r ¢ WZ(XW) and

(t 5, vuu,y tn—l) £ (WZ)w such that tos vees t < t and Subw(r; toseres t

o n-1

A
= t. Then there exists a term t!' ¢ WQ(XW) and non-negative integers Py
and P, such that r —t', Subw(t'; to’ cees tn_l):::§ s, and P1tPy = D
(That is, we can first apply productions to r and eliminate all non-

terminals from it to obtain t' and then proceed with applying productions

to occurrences of to, cees tn—l in Subw(t'; to, cee tn—l) to get the

results and not take any more steps in this derivation than in the

original.)

-
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Proof. Let G, p, t, 5, P, 0, T, be given as in the statement

T

of the theorem. The proof will be by induction on p.
p = 0: Obviously true.
~p > 0: t::;'t":g;g S. Suppose that t —t" via the production

> ! F .ee =
F(xo, )>vin P for F e N<fv,i) . {xo, . Xk—l} X _, and

e Kl v

! ~
Ve WZ(Xv)i' Then t = Sub,(t; FE_ ... gk—l) and

N
}) for some %'e W.(X.) and
1

o
1" ~ . -
t" = Subi(t, Subv(v, Eo’ cees Ek—l

v
(go, ey Ek—l) e (Wg) .
Case 1: The transformed occurrence of FEO vee Ek_lin t is not contained

in any occurrence of tj (which is replaced by x. w in r) for 0<j<n-1.
WWe

. ~ A - =t v
Then there exists r € WZ(Xw’ Xi) and (50, cees Ek-l) € wZ(Xw) such that
r = Subi(;; PEO ces E%—l)”¥ = Subv(g; tye - tk—l)’ and
Ej = SubV(Ej; Tos oo tk—l) for 0 < j < k-1. Let
nt — —
r' = Subi(r; Subv(v; Egs +ovo &k_l)). We have:
(1) t = sub,(¥; F ) implies t" = Sub, (Y3 Sub_(v;
i = ; (13 EO cen gk-l implies t" = Su i(t, u v(\), Eo,...
. o [d g -y . 3 n = -
(ii) » = Subi(r; FES «.- Ek_l) implies r' = Subi(r; Subv(v; Eo""’gk—l
and
(iii) Subw(r'; to, RN tn_l) = t".
By the induction hypothesis, there exists t' € ﬁh(xw) such that
9 4
r'—> t', Subw(t'; tos sres tn_l):::i) s and q,+q, = p-1l. But then

q
1
r—yr' =3 t', so we are done if we take p; = q;+1, P, = 4"

Case 2: The transformed occurrence of PEO .o gk—l in t is contained in

some occurrence of tj (which is replaced by xj w in r) for some O0<j<n-1.
SW.
]

Since FEO ... E is the term that is transformed in the first step of

k-1
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t:é%}s, it must occur at the top level of t and so at the top level of tj'

~ ~
Then there exists tj € WZ(Xi)wj such that tj = Subi(tj, FEO - Ek_l).
n ~ ~s A
Thus t = Subw.(t, t.) = Subw'(t, Subi(tj, FEO cen Ek_l)) for t € WZ(XW.)
J J J
d r = Sub.(p; ) where Sub (1; t t ) “¥ Let
and r = 105 %y e WO tgs cens T 1) = L.
nJ
L . . ] 3
tj = Subi(tj, Subv(v, EO, cees Ek_l)). Then tj::b tj via the rule
nJ ~
F(xo, cees Xk—l) + v in P. Also, t" = Subwj(t; Subi(tj; Subv(v;
- Y 1 T i } =
Eg> +nes gk_l))) = Subw'(t, tj ). Let »" = Subw.(r, yv), {y} = Yw.
] J ]
> L1 - 1" . 1
It is clear that t" = Subwj(Subw(r 3 Tgs eees tn_l), tj )

By the induction hypothesis, there exists'¥' € WQ(XW, Yw ) such
q 9, 3
nt ~
that " —) t', Subwj(Subw(t’; tos e tn_l); tj'):::b t' and

S
ql+q2 = p-1. Since r'" contains exactly one occurrence of y, so does t'.

nS
Thus, since tj::iytj', then Subw.(Subw(t'; tos eees tn_l); tj):::fy .

3 ~
Yy, . 1 - 1. :
Subw.(Subw(t 3 Tos - tn—l)’ tj ). Let t Subw‘(t ; Xj,w.)' Since

j j j
9

r = Sub (r''; x. ), r—=5t' by simply substituting x. for v in each
w J W, JL.wW

3 3 4 i

n
step of the derivation r"==3)t'. t' satisfies the theorem since:

nJ
Subw(t'; tos wees tn—l) = Subw-(Subw(t'; tosenest
J

i
::i?Subw.(Subw(t’; tos woes T _ )3 tj') —> s
3

Let P, = q, and Py = Qy t 1.

Suppose G is a context free grammar. We will denote the (indexed
family of) set(s) generated by using only outside-in derivations in G by
LOI(G). Similarly, LU(G) will be used to denote the (indexed family of)

set(s) generated by using unrestricted derivations in G. Also, === and
U



- B9 - Tl “

== will be used to denote unrestricted and outside-in derivations,
CI
respectively, in G.

Theorem 2 (Canonic Derivations). LOI(G) = LU(G) for any context free

term grammar G.

Proof. Let 6 = <8, I, P, 2. It is clear that L, (8) CL (G).
P A N
To prove the opposite relation, suppose td::§> s (to € Wy, s € WQ).

. . . % )
We will show by induction on p that to:::i§ s; that is, we can use a
0I

canonical derivation at the expense of perhaps using more derivation steps

than in the non-canonicalderivation.

p = O: Obvious.

p-1
p> 0: t = t-——)s, where t ===t by means of the rule
°T Yy 1 U oy 1

> i =
F(xo, e Xn-l) v in P for {xo, .. } Koo V€ wZ(Xw)i’ and

5 Xn_l
F ebi(w’i> . Let FEO iee gn—l be the subterm of to that is rewritten
A
1] 1] .
and let t', ¢ WZ(Xi) such that Subi(t 13 FEO ee. £

1 ) = t_ and

n-1 o

Subi(tl'; Subw(v; E, --- gn—l)) = t;. By the induction hypothesis,

E3 A
tl‘”;i> s. By the previous lemma, there exists t' ¢ WQ(Xi) such that
01

tl'::::>t' and Subi(t'; Subw(v; EO, cees En_l))———Jys. Now
01 0 0I
1. — '. . .—___j.'_:.
Subi(t 3 FE ... gn—l)‘_::> Subi(t ; Subw(v, &o, s gn—l))‘“_" s
01 oI
where m is the number of occurrences of X o in t', Substituting
3
. . . Ry
FEO .o En-l for Xi,o in each step of the derivation ty _anyt gives
®
1] 1.
Sub, (t;', FE_ ... En-l)? Sub,(t'; FE ... £ ;).

Putting the above together we get
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- 1.
= SUbi(tl 5 F&O oo &

o
b

— LI
Sub, (t'; FE_ ... &

oI n-1

m
_:O:I.:E;Subi(t' 3 Sub (v £

Thus LU(G) g:LOI(G) and we are done.

to be in standard form if all derivations are OI and every production pin P

Given a context free term grammar G = {(Q, I, P, Z>>, G 1is said

is in one of the following forms:

(i) F(XO,

where F & N

i SN iy

for v # X;

(ii) F(xo, ""xn—l) +> t where F e N

Theorem 3.

. Xn—l) > G(Ho(xo,...,xn_l),...,H

» and, for each O<j<m-1, H. ¢

N
] <w,vj>

V .
WS and t e VQ(XW)l

For every OI grammar G (that is, a context free grammar G

using only OI derivations), we can effectively find another grammar G' in

- ]
standard form so that LOI(G) = LOI(G ).

Proo f£.

n(ad)

From G = {Q, I, P, Z> we will form a sequence of 0I grammars

, G, ., 6% =0, 6 =¢q, 19, PY, 2> for O < j < q, so that

= L(G), each GJ is a step on the way to putting G in standard form,

and ¢4 = G' is in standard form.

(We drop the OI from LoI(Gj) when it is

clear from the context that this is what we mean.)

Let Gl = 0, Zl

. Pl, Z> where:

>
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1
. 3 A
(i) N<w,i) N(W,i >U{Cf|f € Q(w,i>} for all w #
d Nl = N for all i e I;
and XoaLi> T N¢a,i> v @ 5

1

. _ a
(ii) P E’LJ{Cf(xO, cees Xn—l) > f(xo, ceey xn_l)!f € CHLid?
w # A and {xo, cees xn_l} = XW}.

We apply one of the following two transformations to obtain Gk+l

from Gk, if possible. If neither is applicable, Gk is in standard

form.

(Tl) Transformation 1: If F(xo, e Xn—l) > fto eeo t 5 is in P
A

and fto et g ¢ WQ(XW) ({xo, cens Xn—l} = Xw), then replace that

production by the production F(xo, cees xn_l) > Cf(to, ey tm—l)' Then

k+1 _ .k k+l _ k _
N = N and P = (P {P(XO, eeey Xn—l) -+ f‘to e tm_l})u

{F(xo, cees Xn—l) > Cf(to, cens tm_l)}.

. . . k
(TQ) Transformation 2: If F(xo, cees xn_l) > G(to, cees tm—l) is in P

md,ﬁmsmm()ijfjrl,H #H&o,“.,xmi)fm*mwf{sN<wJ>

({x , ..., x_ .} =X ), then replace that production by the pair of
o] n-1 W p
productions Q = {F(xo, cees Xn—l) > G(to, cee tj-l’ W(xo, cees Xn—l)’

tj+l’ cees tm—l)’ W(xo, veey X l) > tj} where W ¢ Nk and W e Nk+l

y 5 n- <W’Vj>
(for F e N(wi>’ G e N(vi>)'

K+l K for Lu > # (w,vj.) and N

Note that tj € WZ(XW)V.

k+1

Then N = N
LWLV

<u,t> Lud>

. K+l _ ok _
while P = (B - {F(x_, «ouy x 1) > Gl , .., thUe.

ok
- N<w,vj5U{W}

One of the above transformations applies to a grammar if and only if
the grammar is not in standard form. To show that the sequence of grammars
terminates (after a finite number of steps), we assign a non-negative

integer to each grammar in the sequence and show that each transformation
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(strictly) reduces this number. Thus the number assigned to c° serves
as a bound on the length of the sequence.
Let M be the maximum rank of any F € N. Define

d:N x WZ(X) > N by:

(1) ®,(n,a) =0 iface Q<A,i>U X,

m-1
(ii) ¢i(n, fto “e tm-l) =1+ M+ j%o @wj(n, tj) where

W
fe Q< Wai> and (to, ces tm-l) € WZ(X) ;

(111) @.(n, 6(t_, ..oyt 1)) = T + jST @wj(n, tj) where

W . .
GeN (to, cees tm—l) € WZ(X) ,and T = {]]O_i j < m-1 and

<w,id’

tj ? H(xo, v Xn—l) for any H e N}.

Define I':P > N by T(F(x_, ..., x_;) > t) = é,(n, t) for F ¢ N o w,is

Define A:{grammars} > N by A(G) = I TI(p)
peP

We now show that A(Gk+l) < A(Gk) for each 1 < k < g - 1.

Case 1. Gk+l is obtained from Gk by an application of Tl. Then we have:
m—1
(i) P(F(xo, e Xn—l) > fto . tm_l) =1 +M+ 'Z Qv. (n, tj);
3=0 3
m
(ii) I‘(F(xo, cees Xn—l) > Cf(to, cees tm_l)) <m+ § e (n, tj);

3
(i11) 86 - 8(E™) = T(FGey, Ly x ) fFro...ot ) -

F(P(xo, vees Xn—l) > Cf(to, e tm—l))-i M+1-m>1 (since M > m).
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k+1

Case 2: G is obtained from Gk by

(i) T(F(xo, s

(ii) T(Fr(x_,
o

? Xn—l) M G(to’

- Xn—l) > G(to,

an application of T

= |7 + = @V (n, tl) where T' = T - {j};

2eT! L

(ii1) A& - a ™y = [1| + : °

L e (n, t,)) = [T] - | T']

LeT? A

L

o

Then we have:

Lot =T+ Te (n, t,);
m-1 2eT 'L 2
cees W(xo, Cees xn_l), . s tm_l))

(n, tz) - (@V.(n, tj) + |T'[ +

3

Thus we obtain a standard form grammar for G in at most A(G) steps.

Obviously L(G) = L(G%) = L(Gh).

for 1 <k <q- 1:

p A
Suppose t is a term of Gk and t ——% s, s e W

%
induction on p that t ——=—ps.

Gk
p = 0: Obvious.
p-1
p>0: t >t > S
Gk+l Gk+l

Case 1: t——=3t' by a rule which is also in Pk.

Gk+l

G

k+l

Gk, so t’é&ﬁ)s by the induction hypothesis.

Gk

k+1

Q

Then t'

We proceed to show that L(g*™ Q:L(Gk)

We show by

is a term of

Hence t::gﬁys.
k

G

Case 2: G is obtained from Gk by Tl and t ——=> t' by the rule

F(xo, v xn_l) > Cf(to,

Then Pk has the rule F(xo,

. tm-l) which is in P

ces xn—l) - fto .o

k+1
© k+1

m-1

t . Thus

but not in Pk.



m—l;

il k+1 -
R _l)) for some t, go, cees En-l’ and T € N<:w,j_> . The only

N
- . L .
t = Subi(t, FE --- gn_l) and t' = Sub,(t; Subw(cfto oo t

o ) n
k+1

+
i i £ ce
rule of P with C_ as the left part is Cf(xo, cees Xn—l) > 2 X1

t
T :EE%; B h
S0 Subi(t : Subw(ftO e tm—l’ Eo’ cees En_l)) — s. y the
G

nJ
induction hypothesis Sub. (t; Subw(fto cee B 05 E s +veo En—l))'“—” s

~ ~
Thus t = Subi(t; Fgo - gn_l):zﬁz§8ubi(t; Subw(fto RN go,...,gn_l))

e
«w

:ﬁg:? 5.

G
k+l |, . k
Case 3: G is obtained from G by T,. t=—==t' by the rule
k+1
G

k+1

F(xo, cees Xn-l) > G(to, cees W(xo, cees ) tm—l) which is in P

¥n-1
but not in Pk. By the construction, there is exactly one rule

k+1

w(xo, cees Xn—l) > tj in P

for some term tj and Pk has the rule

F( ) > G(t ). Th = Sub. (Y3 F ) and °
Koo wees X g o2t tm—l . en t = Su 5 ts EO .o gn—l an

- Y. .
t' = Subi(t, Subw(G(to, cens w(xo, cees xn_l), vees tm_l), go, ey gn_l))

r~ k+1 -
for some t, go, cees En—l and F ¢ N<.w,i>' Let t' be the result of

ktl ) so t' =

sV
<w J>

~
. . |
Subi(t, Subw(Gto cees Yo oenes T 03 Eo, cee s En_l)) and t

replacing WE ... E-1 in t' by v ¢ Xj (WeN

i

Subw (%', WEO ene En-l)' By the parallel derivation lemma, there exists
i -, pl Py
r e WQ(YV.) such that t'=—"Sr, Subv'(r; L En_l)::::£> s and
3 Gk+l j Gk+l
p, tpy, = p-l. Since the only rule in Pk+l with W as the left part is

R . .

W(xo, ey xn_l) tj and since each occurrence of WEO - gn—l in

Sub_ (r; WEO . gn—l) is at top level, we can find a derivation .
]

Subvj(r; WEO - in_l) :i%§> Subvj(r; Subw(tj; go, cees & _l))..*‘wmb s
G
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and P, * Py, " 4 < p-1. By the induction hypothesis

- *
t. . >
Subv'(t ; Subw(tj, Egs +ves En__l)) ?s. Also F(xo, cees xn—l)

]
) is in PX = tF ) ——
G(to, v tm—l is in . So t = Subi(t, EO En—l ._GF>
nt —

. . - 1, -
Subi('t, Subw(Gto cee T 13 Eo’ v En_l)) = Subvj(t, Subw(tj, EO, cees En_l)
_x ;: ..

G

We now show the opposite relation L(Gk) [_:_L(Gk+l):

b A
Suppose t :ﬁ(:bs for some term t of Gk, s € WQ. We show by induction
G

%
on p that t ‘"ﬁ S.
G

p = 0: obvious.

p-1
P> 0: t—p t'=—=—s
Gk Gk

k+1

Case 1: t':“—“—]—(-—‘) t' by a rule also in G =, By the induction hypothesis
G

%
t!' /%  s. So t —=—=» s.

Gk+ Gk+J.
k+1 . X k .
Case 2: G is obtained from G by T, and t::?)t by the rule
. G

F(X , evey x ) > ft ... t which is in Pk but not in Pk+l. Then

o n-1 o m-1
Pk+l has the rule F(x X ) > C_(t t ) Thus

o """ "n-1 £f'70? "7 m-177
~N N
t = Subi(t; FE gn—l)’ t = Subi(t; Subw(fto cee t g5 E arers En—l))
~n k
for some t, Eo, cee s gn—l andF€N< Waid Then
nt

t = Subi(t; Subw(Cf’co cee T 93 Egs wovs En_l))———?:>

k+1 k+1

G G

nJ
Subi(t; Subw(ftO tm—l; Eo, cees En_l)). By the induction hypothesis,
£ e s and sot::“—_*') s.
k+1 k+1

G G
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Case 3: Gk+l is obtained from Gk by T2 and t::ﬁ»t' by the rule

c k k+1 -
F(xo, e, Xn—l) > G(to, vees tm—l) which is in P* but not in P .
Then Pk+l has the rules F(x x_ .) > Gt t
o "t X or e Tyope
W(XO, cees Xn—l)’ tj+l’ s tm—l) and W(xo, . xn—l) > tj for some
- — Nt
0 <3< ml. We thus have t = Subi(t, F&O - En—l) and
n n
L - .
t' o= Subi(t, Subw(GtO ce tm—l’ go, cees En_l)) for some t, Egs wveo gn_l
k ~
and F ¢ N i Then, t ——=> Subi(t, Subw(G(to, cees w(xo, ey Xn—l)’
k+1
U,G
nJ
s B 105 Egs eens £ 1)) ::'::::)Subi(t; Sub (Gt ... teooee g5
k+1
U,G
E 4 vy & )) = t'. By the induction hypothesis t' ——> s by an 0I
© n-l k+1
derivation and hence an unrestricted derivation. G
Thus t —— > s. By the previous theorem, we can find an OI derivation
UGk+l
%
of the same string. Thus t— s.
k+l .
G
Corollary: Suppose E,is an equational system (as described in Section
ITT.4) over the many-sorted alphabet Q. If we consider an equation x = E

as representing a set of productions {x > t|t ¢ E} (with the variables
considered as non-terminals), then we can reduce E_to a system :ﬁ of depth

is in Pk and, for

one by using only Transformation 2': If A - fto e tm—l
some O < j < m-1, tj £Be N<)"wj> for f ¢ Q(:w,i) s then replace that
production by the pair of productions @ = {A ~+ fr ... tj—thj+l t s

k k+1 k
W t, . =
t]} where W ¢ N Then N e Neaes
k+1 k

- okl _ ok
N <K,wj) z N< A,wjgj{W} while P = (P {A + fto . tm_l})LJ Q. ‘

for £ # wj and

Let G = < Q, L, P, Zj> be a context free term grammar. Then G

is said to be in reduced form if all derivations are 0I and every production

p in P is in one of the following forms:
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(1) F(xo, cees xn—l) -+ t where F ¢ N<:w,i> and t € WN(Xw)i;
i .o > cee . §2 Pl e
(ii) F(xo, . xn__l) fxo X 1 where T € N<w,1> and f € Cw,i>
Theorem 4. For every OI grammar G, we can effectively find another OI

grammar G' in reduced form so that L(G) = L(G').
Proof. Our reduced form is the generalization from non-sorted alphabets
to many-sorted alphabets of Rounds' 'normal form'. The reader is
referred to Rounds (1), (2), (3) for the proof and further discussion.

Let G = <’Q, r, P, Z.> be a context free term grammar. Then G
is said to be in (Chomsky) Normal Form if all derivations are OI and every

production p € P is in one of the following forms:

(i) F(xo, cees xn_l) > G(Ho(xo, cees xn—l)’ cens Hm—l(xo""’xn—l))
h F N . Ge N . h H. ¢ N £ 0 < 3 < m-1 d
where T ¢ Cvai>’ v, each H, <w,vj> or 0 < j < m-1l an
v £ A
(ii1) F(x_, «o., % ) > fx. ... X, where F ¢ N c s
o n~1 3 3 & WalD
o k-1
feQ . and fx. ... X. € W (X D).
Q L]
<V,yl> ]O ]}(—l Wl
(iidi) F(xo, cees xn—l) > X5 where T ¢ N<.w,i)>’ with w # A, and
0<3j<mn-1

Note that these three types of productions are analogous to the three types
of productions in a Chomsky normal form string grammar where the productions
are of the form A ~ BC, A+ a, or A+ A (A, B, C non-terminals, a terminal,

A the empty word).

Theorem 5 (Chomsky). For every OI grammar G, we can effectively find

another OI grammar G' in normal form so that L(G) = L(G').
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Proof. Apply Theorem 4 to G and Theorem 3 to the result.

Example U4, Let G be the context free grammar of Example 2. Then
G' ={Q, £', P', Z')> is a normal form grammar such that L(G) = L(G')
where:

(i) Néxao> = {z, L}, ka’l> = {a, C}, N' = {B, D},

N' = {s};
<10,0>

<1,1>

(ii) P' ={z~> S(A, L); Z > S(C, L), C > B(A), S(x, y) > *xy,

B(x) » B(D(x)), B(x) » +xx, D(x) > +xx, A > a, L > A};
(iii) 2' = 2.

To obtain the normal form for the grammar of the second part of Example 2,

we must add Z to N!

\i
<A1 above and Z > A, Z > B(A) to P' above.

Example 5. Let G be the context free grammar G of Example 3b. Then

G' = {Q, L', P', Z'> is a normal form grammar such that L(G) = L(G') where

(1) N_' ={z, A, B, C}, N,' = {F, G, H, J, K, L, M};

6

(ii) P' = {Z > MABCABC, M(x, v, 2, U, v, w) > M(F(x, y, 2, U, V, W),

G(Ry wvwy W)y H(x, vuuvy W)y J(X, cuuy W)y K(R, vovy W)y Lix, vuo.y W),
M(x, ..., W) > gxyz, F(x, ..., w) > f(u, x), G(x, ..., w) > f(v, v),
H(xy, vooy w) » f(w, 2), J(x, vov, W) > u, K(x, ..., W) > v, L(x, ..., W) > w,

A~ a, B>b, C~»cl};
(iii) z' = 2 .

Theorem 6. Suppose Ll and L2 are (indexed families of) context free sets

of term, L.E;(Wg)i is a context free set, and a € 9 Then

. <A,i> 7
»
LlLJ L2, Ll "a Land L ° are all context free. N
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Proof: We will give only the construction of a grammar G' = < y 2, P, Zﬂ>
for Ll .a L as the proofs are simple. Let Ll = L(Gl), L = L(G) where

Gl =<Q, Zl, Pl, Zl>, =<, , P, 7Y are grammars for L, and L,

1
. ln _
respectively. Assume N N = {¢}. Then
(i) N' = Nll._)N2 less the axiom Z of Gj
.. 1 .
(ii) P' = {p € P7|p is not of the form A + a} J

{p e P[p is not of the form Z ~» t}l_J{A > tlA £ Nl ;
<ALi>

s A~> a is in Pl
and t e (wz)i, Z »+ t is in P};

(iii) z' = zl.

Thus G' has derivations which are the same as those of Gl until an a
would have appeared, at which point we have a derivation in G of a term in
L. It is clear that L(G') = L, 2 L.

We now set out to prove that the class of (indexed families of)
context free sets of terms is closed under the operation of intersection
with (indexed families of) recognizable sets. This result is a corollary
of another important and interesting closure result: closure of the class
under non-deterministic linear finite-state transformations. This is an
idea due to Rounds and the reader is referred to Rounds (1), (2), (3) for
full details.

A non-deterministic linear finite-state transformation (NLFST)

is a four-tuple T = < @, Q, QIn, > where:

(i) @ is a many-sorted alphabet;
(ii) Q = {Qi}iel is a family of finite sets called states;

... I . . e s
(iii) Q o G Q is a choice of initial states;

(iv) 1T is a finite set of productions of the form (g, f(xo,...,xn_l))

> t where f & Q » 4 € Qi’ and t ¢ WQ(Qwa)i. We require that each

LW,id>

Xj’ O<j<n-1, appear at most once in t. We say such a production is linear.
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We define a binary relation —=) called direct derivation on

WQ(Q x WQ) as follows: t‘:T:}t" if rarmd only if there exists )
r € /V;Q(Q x WQ, Xi)’ a production (q, fxo xn—l) -+ Subw(t; (qo, xo), e,
(qn-—l’ xn_l)) in Tl for f € Q(w,i) and g e Q. such that

t! o= Subi(r; (q, fr_ ... tn_l)) and t" = Sub, (r; Subw(t; (qo, t )y e
(q-n—l’ tn_l))). Let the relation —_—Thﬁ , called derivation, be the
reflexive, transitive closure of the relation —> . Let t ¢ (wQ)i’

T
q € Qi' Then:

T(q, t) = {t' ¢ Wo (Q x wQ)il(q, t):*—_—>t'};
T
T(q, t) = {t" ¢ wﬂl(q, t):i-;t'}.
T
Let CCWQ. Then T(C) = L.J T(q, t).

(qeaIn ,tee)

We may ask at this point what relation, if any, NLFST have to semi- -
Thue grammars. It turns out that we may associate with each T(q, t) a

context sensitive (in fact, monotonic) grammar G = < Q, L, P, 2> such

that T(q, t) = L(G). This is done as follows: Let N<i,i> = Qi and
z . q

€ N(Lj) for t ¢ (WQ)j For each (q, f(xo, . xn_l)) >
Subw(s; (qo, xo), e (qn—l’ xn_l)) in 1, let q(fxo Xn—l) >

Subw(s; qo(xo), cees qn-l(xn—l)) be in P. Let Z » q(t) be in P. Then
% —
it should be clear that Z=t' if and only if t' e T(q, t). Also
G
L(G) = T(q, t).
A production F(xo, cee, xn_l) * t in a context free term grammar

IS
=<0, =z, P, Z> is said to be useless if there is no t' ¢ WQ(X) such

ES
that t—> "',
G
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Lemma 7. If G' is obtained from G by discarding all uesless productions,
then L(G!') = L(G). (Note that there is an effective procedure for
deciding| whether a production in G is useless or not. See Corollary of

Theorem LI.2.3).

Proof. It is clearly true that L(G') C L(G). For the converse, we

| . .
proceed,‘lnformally, as follows: Let t € L(G) and let ti::Eb ti+l be the
last apphication of a useless production p in G. Then, by the definition

A
of derivation, there exists r € wZ(Xj) such that ti = Subj(r; Fs ... s )
o

1

F S
and F e N .o - But then there is no r' € W, such that
<W,3> Y

%
. . 1]
Subj(r, Sub_ (v Syt sn_l)):§f§x‘. Therefore we can assume that no

= : . = ->
and ti+ Subj(r, Subw(v, Sgs wres sn_l)) for p F(xo, e X ) > v

further productions apply in Subj(r; Subw(v; Sgr e Sn—l)) and if
s . - — . , . . .
ti?if’é? t,,, viap' in P ©f G), then tegot, , via p'. This eliminates

the use of (the useless production) p.

Theorem 8. The class (indexed families of) context free sets of terms

is closed under the operation of non-deterministic linear finite-state
transformations.

Proof. We give here a sketch of the proof and the interested reader is
referred to Rounds (1), (2) for the details (of the generalised case).

Let G =< Q, I, P, Z:> be a reduced form grammar from which all useless
productions have been eliminated. Let T =< Q, Q, QIn, H:) be a NLFST.

The technique used in the proof is to allow T and G to 'run simultaneously’',
T transforming a symbol of § as soon as G has produced it. We obtain the

system G' = £ Q, < Q,L), P', S> as follows:

(i) 1If F(xo, vees xn—l) > fxo oo X g is in P, put (q, F(xo,...,xn_l))+
Subw(t; (qo, xo), cens (qn—l’ xn_l)) into P' for each production
(q, fxo ce Xn—l) - Subw(t; (qo, xo), cees (qn_l, xn_l)) in I(f € S?( Wi )
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(ii) 1If F(xo, e xn—l) > t is inP(F ¢ N.(w,i> , t € WZ(Xw)i)’

then put the production (q, F(xo, v xn_l)) > (g, t) into P' for each

qe Q.

(1i1) Let S = {(q, Z)|q e Q;", 2 }.

€ N<A,i>

This system G' is the generalisation to many-sorted alphabets of what

Rounds calls a creative term grammar (dendrogrammar). It can be shown
that T(L(G)) = L(G"), Also with any creative term grammar G', we can
associlate a context free term grammar G" such that L(G") = L(G')(=T(L(G)).
This then proves the theorem.

Corollary. The class of (indexed families of) context free sets of terms
is closed under the operation of intersection with (indexed families of)
recognizable sets of terms.

Proof. Every (indexed family of) recognizable set(s) is the domain of

a NLFST which acts as the identity when defined.

Theorem 9. Suppose m:f > A is a projection and G = <Q, I, P, Z» and
G' = <A, ', P, 7'> are context free grammars over §§ and A, respectively.

Then 7(L(G)) and';_i(L(G')) are context free over A and 2, respectively.
Proof. Similar to the proof for the analogous result for recognizable

(indexed families of) sets.
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V THE FUNDAMENTAL THEOREM

V.0. Introduction

This chapter contains the basic result of our work. It is a
generalisation of such concepts as 'yield', 'leaf profile', 'frontier
function', etc. (see Brainerd (1), Rounds (1), (2), (3); Thatcher (1), (2),
Mezei and Wright). We call our result the 'Fundamental Theorem' because
we believe it will play a role in Formal Language Theory similar to the
Fundamental Theorem of Algebra (of Universal Algebra). The reasons for

this belief will become clear in the next chapter.

V.1l Who Needs Context Free Sets?

Let @ CIZ be a many-sorted alphabet. (Note that from now on we
will always speak of a context free set over some alphabet f in the context
of L2, the alphabet of non-terminals and terminals of the grammar which
generates that set. Similarly, we will use the notation D()(Q) in this
context to mean D()(Z) less the nullaries corresponding to N = & - Q.

So this alphabet D()(Q) Q;D()(Z) and we 'preserve' the relationship.

In general, of course, this alphabet D()(Q) E;D()(Z) will not be the same
as the alphabet normally denoted by D()(Q). In fact, the second alphabet
will not usually be a subset (in the extended sense) of D()(Z)).

D There exists a

Consider the three algebras W (W.), and WD

£ T()s ()

)

unique homomorphism

YIELD:WD()(Z) -+ D()(Wz) .

Note that the set (Wz)i, ie I, is also an element of the family of sets

%)U%)ofsam LA, 15,

Theorem 1. Suppose G = { Q, L, P, Z> is a context free grammar and

L(G) C WQ. Then we can effectively find a regular grammar
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G' = (I%)(Q), D()(Z), P', Z'> such that L(G') = ¢ for w # A

LWl

(so L(G') can be indexed by I) and L(G) = {YIELD (L(G'))}ie

<A,i> I

(that is, L(G)i = YIELD (L(G"))

<ALi> <A,idF
Proof. Let G be in normal form. (We note here that the normal form

theorem is not necessary for this proof but makes the proof simpler.)

G' is defined as follows:

(i) For each F € N denote by F' the corresponding symbol in N'.
If the type of F is (w,i> € I* x I, then the type of F' is
<A, Lw,id> ¢ D()(I). Essentially, we are just relabelling the non-

terminals of G' for convenience;

(ii) P' is obtained from P as follows -

>
(a) For F(Xo,wo’ e Xn”l’wn-l)
G(H (x s cevs X )y «.., H _(x . ., X )) in )
o} o,wo n l,wn_l m-1 o,wo n l,wn_l
P ! . 1 V... t 2 t 3 3
let F 9-C<W,V,I>G H Hm—l be in P' where F is of typedw, iy,
WEW, ... W ., Gis of type{ v,i», and each Hj’ 0<j<m~1, is of type
<W, Vj>;
(b) For p(x s eees X ) > fx. ce. X in P let
o,wO n—l,wn_l ]O,w. ]k,W.
. Jo Ik
It > ¢ £6° sjk be in P' wh F is of t {w, i)
suwvaist Oy e Sy e in ere I is of type {w, i),
WOE W e W f is of type (v, id, v = wj ces wj 5
o k
. . i+l .
(c¢) For F(x s ce.s X )+ x. in P let F' > § be in
O,W n-1,w SW. W
o n-1 3 >
P' where F is of type ¢w, wj>, WS W e W

Obviously G' is a regular grammar (or, at least, easily reducible
to one which is regular by a version of the Corollary to the Standard Form

Theorem.  Note that (ii)(b) may introduce terminal productions which are not
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strictly regular). We claim that, given t. € WZ(Xw)i and

1
q
()(Z))<)\,i> such that YIELD<>‘,i>(sl) = t), t7/g>t, in g

q
steps via the productions p , ..., p in P if and only if s —=——> s
o q-1 1 a 2

s E(WD

1

via the corresponding productions po' s coey P:l'l of P' and

YIELD <rLi> (82) = t,. If the claim is true, then it is easy to see
% %
3 3 LI 1
that Z::E$‘t € (Wﬂ)i if and only if Z G:'t £ (WD()(Q)) AL
and YIELD . (t') = t.  Thus YIELD(L(G')) = L(G).
<ALis

Proof of claim: The proof will be by induction on the length of the

derivation (using only the outside-in mode allowed for normal form grammars).

length q = 0: obvious.

length g > 0: Suppose the claim is true for all derivations of length < g.
q g-1
' .
Let tl—————G:} tys s t, € (Wz)i. Then tl=?t2 :G#tQ’ the last step via

. in P. . . '
the production pq—l in There exists s 5 € (WD()(Z))< A,i> such that

YIELD . (s,') = t,' and s _;__q__—__>_l_ s,' (by the induction hypothesis).
<A,i> %2 2 17 %2
. (- - oot '
Case 1: If t, H(F,O, cens Em—l) then s 5 Sub i (52 , H') where
ns ] - . .
W X . .
s,' € D()(Z) ( <w,1>) <ALis (where < w,i> is a string of length one
x S ') =
over the alphabet I* x I).  Thus YIELD<>\’:'.~> (32 )
Subw(¢(xo,<w,i) ) Eo’ cees Em—l) where ¢ is an assignment to xo,(w,i) .
Thus if ¢(x ) = H(xo, cens Xm—l) then the above becomes

Oy L W,1)
H(E s «ovs £ 1)
(a) If pq-l is H(xo, ey xm_l) > G(Ho(xo, e, X

H (xo, cees Xm-l)) where H ¢ Z(w,i) , then:

t, = G(Ho(go, cees B )5 et He (B s +vvs gm_l));
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s, = Sub GiLi> (s2

YIELD<)\’i> (s2) = Subw(YIELD<

. 1o ' T
5 cG HO ve. H k—l) for some c € D()( ); and

1] 1 1 .
Wi (cG'H o "t Hk—l)’ EO, ey gm—l

GH (B s wvns € 1) oes B (€, wouy £

=t
5 -
(b) 1If Pg-1 s H(xo, ceey »xm_l) > ij e Ko then:
o) k
t, = f(g. , s £. )3
2 g Ik
j 41 j, o +1
- Yy s © k z
S, SUb<w,i> (32, cf ; . Gw ) where H ¢ Wi c € D()
and
, jo+l jk+1
YIELD<)"i> (32) = Subw(YIELD<w’i> (cf sw aw )3 PPN
= fg, . &,
is I
= t2
(c) Ifp 1 is H(Xo’ ces xm-l) + X., 0 < j <m1l, then:
t, = Ej;
s=Sub("6j+l)whereHeZ ;
2 W 2° Ty {w,iy’
and
- j+l,,
YIELD () oy (s)) = Subwj(YIELD<w,wj> (6775 By vees B 1)
= {-;
J
= t2 .
A
. 1 = .
Case 2: 1If ty' = Subi(r', HEO gm-l)’ where v € W (Xi), and pq~l
: (- ', g ot '
applies to H, then S, Sub <iis> (r'; cH EO gm—l) for some
c € D, () where H e & . and YIELD (£.') = £. for each
©f0 i gy 3707

0 <3 <ml;



- 87 -

1 1 1] - .
YIELD<}‘,i>(cH go R 3 m-l) = H(Eo, vees gm_l), and
1 = . . .
YIELD< i,i>(r) Subi(r, ¢(Xo,<i,i>)) where ¢ is an assignment to
To,<i,i>"
(a) If pq_l is H(xo, cees xm_l) + G(Ho(xo, e xm_l), s
Hk_l(xo, ey xm_l)), where H ¢ z<w,i> , then:
t, = Subi(r; G(HO(EO, ey Em__l), cees Hk—l(go’ ey Em_l)));
- T. 1 1] 1 1 1
s, = SUb<i,i>(r ; c(dG Ho Hk-l )EO Em—l ) for some c,
d D L),
€ ()( )
and
: '. ' 1 . e » '
YIELD<)‘,i>(82) YIELD<A’i> (Sub(i,i>(r ; c(d(G H, Ho )
] t
£y ov- Em—l )))
- . 1t ' '
Suby (r3 YIELD oo (e(dG'H' ... H_ g " ..o £ !
= Subi(r; G(Ho(ao""’Em—l)"”’Hk—l(go""’gm—l)))
= t2 .
(b) If Pg-1 1s H(x s vy X 1) ij e Xs then:
o k
t, = Subi(r; fE. ... EL )
Jo Ik
' J tl 3y tl ' '
S, = Sub{i,i) (r'; c(dfdw <5w )go gm—l) for ¢, d € D

and H ¢ Z(w,i> 5

and

)

(z)
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jo+l jk+l
= . ', 8 ..6 g ...z
YIELD <x,i>(32) YIELD<A,i>(Sub<i’l> (r'; c(df . , )E €m_l))
= Sub,(r; fE&. £E. )
1 Jo Iy
= t2 .
(c) 1If pq_l is H(xo, cee, Xm—l) > X3 0<j<ml, He Z<:w,i 5> then:
t, = Subi(r; Ej);
s, = Sub (r'; céj+l£ "... E' ) for some ¢ € D, . (Z);
2 <1i,i> > 7w o m-1 @ i
and
= . j+1 1 )
YIELD<>\’ >(32) = YIELD<>"i\>(Sub<i’i>(r i S gm_l))
- . !
Sub, (r; YIELD<>"W.>(E] ))

]
= Subi(r; Ej)

:‘t2

Theorem 2. Let G = <_D()(Q), D()(Z), P, Z>> be a regular grammar such

that L(G) . = ¢ if w # A. (Thus we can consider L(G) to be indexed
<wW,i>

by I.) Then we can effectively find a context free grammar

¢' =<q, £, P', 2'> such that YIELD(L(G)) = L(G').

Proof. Let G be as given. We obtain G' as follows:

(1) For each F & N, let F' € N' of type < w, i> where F is of type
< A, <L w,i§$> . We are again relabelling the non-terminals of G' for
convenience;

.. . . .

(ii) For each production F + t in P, let F (XO,WO, vees Xn_l’wn—l) -
YIELD . i ! i i
L Cwyid (t) be in P' where F is of sort <w,id and
{x ., X } o=x .
o,wo’ ? n—l,wn_l W
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The rest of the proof is exactly analogous to that of the previous

theorem and is omitted.

Example 1. Let &'=<Q, L', P', Z'> be the normal form grammar of
Example IV.1.5. Then the regular grammar G" = £ D( )(Q ), D()(Z ",

pr, oz D is obtained, as in Theorem 1, where

(a) D()(Z') is a many sorted alphabet sorted by D()(I) ={0,1,2,3,6}

(we have again adopted the convention used in Example I.4.3) in which:

' 1

' = " 1 ' 1] . t = {8 .

D()(Z )<>\,o> {a,b,c,Z" ,A" ,B'",C'}; D()(Z )<>\,l> { l},
1.2

! = . ' =

D()(Z )</\,2> {62’ 62’ £ D()(Z )<)\,3>
l 2 3 . 1] - l 6 ] ] 1 1]

{53, 845 8, gl D()(Z )<A,6> -{66,...,66,F,G JH' 07 KLY M),

! = = =
D()(Z )< .v.n,n> {c<m,n’n>} form = 1,2,3 or 6 and n = 0,1,2,3 or 6.

(b) D()(Q) is D()(Z') less the individual symbols 2" ,A',B',C' of
type <X, 0> and the individual symbols F',G',H',J',K',L',M' of type
< A,6> . Note that this is not the alphabet of Example I.4.3 but the
alphabet indicated by the convention stated at the beginning of this

chapter.

(c¢) P" is enumerated below:

(1) 2"+ ¢ <6.0.05 M'A'B'C'A'B'C';
3 2
(2) M' » 6.6 6> M'F'G'H'J'K'L';
b ] ]
1.2.3
] .
(3) n' - € ¢3,6,6> 86%¢%g 3
4.1
] .
(4) F' > C ¢2.6.6> f6666 ;
5.2
] .
(5) G' —» C<2,6,6> f6656 3
6.3
1 .
(6) H' > ©¢2,6,6) f6666 >



(7) J' > 8&_
(8) A' » a;
(9) K'~>3$
(10) B' » b;
(11) L' > &

(12) C' »c .

An example of a derivation is:

IN=—=p c

! ] 1 1] [} ] [
o <6,0,0> MIATBICTATBIC (by rule (1))

> c

1,2.3
8§88 A'B'C'A'B'C' (b
o <6,0,0» ©<3,6,6> 8 33353 (by rule (3))

%
~ 1.2.3 ..
":a'_>0<630’0> C<3,6,6> g636363 abcabe (by two applications

each of rules (8), (10) and (12)). -

. 1.2.3 . .
Consider YIELD<)\,O> (c< 6,0,0> C<3,6,6> g636353 abcabc). It is obviously

gabc ¢ L(G"). Another example of a derivation is

N ==> ¢

MYA'RI'QTAIRIO!
=7 CB0,05 T ATBICTAIBICT - (by rule (1))

trt Ty 17! t el \} T 1
:é';:?c<6,o,o‘>c<6,6,6>M F'G'H'J'K'L'A'B'C'A'B'C' (by rule (2))
===y cC c c M'P'G'H'J'K'L'F'G'H'J'K'L?

aQn £6,0,0> "£6,6,6> <6,6,6>
A'B'C'A'B'C’ (by rule (2) again)
1.2.3

— g8.8.6

C C [¢] C
o <6,0,0% T<6,6,6>  £6,6,6>° <3,6,6> 3°3°3

~

F'G'H'J'K'L'F'G'H'"J'K'L'A'B'C'A'B'C' (by rule (3))
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3
§
3

626262 F'G'H'J'K'L'A'B'C'A'B'C' (by rules (4), (5), (8),
7y, (9), (11))

1.2
© £ 6,0,05°<6,6,6% ©<6,6,6> C< 3,6,6>2°3%3°

£§

b1
666

©¢2,6,6%

6 £

2 6.3.4.5.6
€< 2,6,6> 6 <2.6,6> 0060606 s abeabe

(by rules (4), (5), (8), (7), (9), (11), (8), (10), (12)).

Call the result of the above derivation t. Then YIELD <hio> (t) is seen
k)

to be gfafaafbfbbfcfec & L(G").

Example 2. Let G' = {Q, &', P', Z'> be the normal form grammar of
Example IV.1.4. Then the regular grammar G" =<D()(Q), D()(Z‘), P, Z">

is obtained, as in Theorem 1, where:

(a) D()(Z') is a many-sorted alphabet sorted by
D()(I) = {{h,0>, <A,1>, 1,09, <1,1>, £10,09, 10,17, <11,0>,

{11,1> } in which:D()(Z')‘<)‘,<A’O>> = {A,Z2",L'}; D()(Z')<>\’<>\,l>>

fatC s DOED ¢y cao5y T 20 c1a>>T
1 1 1. 1 - 2 P tl].
{G(l),B D'} Dy(Z )<A,<10,0>7 = 1600y ¥ S s
' _ el ) . = 4.
D(y(2 )<x,<1o,1>> = 1810y} DB 2, <11,0% C
' = (T 2 !
P, c1,5> T 8any Sy P PO )<<W=i><"swo> .

{

<V’wn_l> < IS = C(w,v,i>} for each (w,v,i) € {1,10,11} x

{x, 1, 10, 11} x 1.
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(b) D()(Q), according to our convention, is D()(Z') less the
individual symbols 2", L' of type < A, < A, 0D>>» ; the individual symbols
A', C' of type <, €1, 1> ; the individual symbols B', D' of type

{1}, <1, 1¥> ; and the individual symbol S' of type <A, €10, 0D>> .

(c) P'" is enumerated below:

(1) 2" > c 9,05 AL

(2) 2" > e 0, (58T

(3) c'~> CL1a1> B'A';

(#) 8" > ¢ 10,10,0> *5110 5210 ;
(5) B! >,y 1,158 D"

() B' > qy 11> ¥ oy 6y
(M D' >eras t 511 511 ;
(8) A' » a;

(9) L' - A,

An example of a derivation is:

" TATT
Z ? C<lO,)\,O>S A'L (by rule (1))

% o1 2 - u
‘?0410,A,O>C<10,10,O> S 10 8 10 A'D (by rule (1))

% . ol 2
£ s
,—:3G" C<lO,)\,O>C<lO,10,O> 8 10 8 10 @A (by rules (8) and (9))

A ar)

(c ¢10,1,0>%¢10,10,05 " %10 %10

It is obvious that YIE.LD<>‘,O>

= ®al, An example of a longer derivation is:
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1" . 1] 'L' 2
Z :G?) c <1o,x,o>s c (by rule (2))
1 2
% (R
—:é? © ¢10,,0> © <10,10,0> 3 10 8 10 C'L (by rule (4))
1 2
— * B'A'L' 3
o € ¢10,0,0>°¢10,10,0> " 10 S 10 Liga,a> BA (by rule (3))
1 2
- %
::ﬁg,, ©¢10,0,05°<10,10,0> %10 %10 S¢ 1,0,1% ©¢11,1,1>
+8l. &' ALY (by rule (8))
1 %1
:“f::bc c x5t 52 c c
o C<10,2,05 © <10,10,0> 10 °10 “<¢1n,1> C<11,1,1>
1.1
+87, 8 ;A (by rules (8) and (9)).

Then if the result of the above derivation is t, YIELD<>\ o> (t) =
E]

*+aal ¢ L(G").

The reader may already have noted that Theorem 2 is not a full
converse of Theorem 1. This is because we have not yet assigned any

meaning to the images under YIELD of recognizable sets of sort

{W,i>
< w,iD> where w # A. We do know that if U is a recognizable set of sort
£ w,1%» over D()(Q), then it is the pre-image under YIELD<W i of derived
5]

operations of type {Ww,i» over the algebra W Consider the many-sorted

o

(augmented) alphabet Q(Xw) where Q(X ) for v # X and

.. =9 .
W L V,1> <V,1>
=Q . . . i
Q(Xw)<>\,i> <}\,1>L‘J (Xw)l YIELD(W,1> (U) can now be considered
a context free set of sort i over the augmented alphabet Q(Xw). Context
free sets over Q(Xw) can also be defined in the normal way using context

free term grammars. We call such sets (defined by either method above)

context free sets of derive operations of type { w,i> over 2. This

definition includes the cases considered in Theorems 1 and 2 as simpler
examples (namely, when w = 1),
We must make one more slight extension of our previous theory:

Indexed families of recognizable sets of terms over §§ are indexed by I.
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Over D,,(2), they are indexed by D, ,(I). Thus the image of UC W
) ) = D()(Q)

under YIELD is a family of context free sets (of derived
oPerations) indexed also by D()(I). From now on, we will always mean
this indexing set when we mention a family of context free sets over Q.
(The preceding discussion of families of context free sets in Chapter IV
is now the special case where the sets indexed by < w,1> € D()(I) are
empty for w £ A.)

As a consequence of this discussion and the two preceding
theorems, we are ready to state the most important result in this work:

Fundamental Theorem: Let 2 I be a many-sorted alphabet. Given L, an

indexed family of context free sets of terms over £, we can effectively

(2)

find L', an indexed family of recognizable sets of terms over D

O
such that YIELD(L') = L and conversely.
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VI. APPLICATIONS OF THE FUNDAMENTAL THEOREM

VI.0 Introduction

As the title suggests, this chapter is devoted to the study of the
consequences of the Fundamental Theorem stated at the end of Chapter V.
We will show that the results of conventional and generalised theories of
formal languages are special cases of our more general theory. We will
also extend the theories in light of our definition of derived operations.

We begin by providing a full generalisation of the operations of
complex product and Kleene-closure (on sets of strings). (The definitions
we presented in Chapter II are 'partial' in a sense to be explained below.)
The classical Substitution Theorem is then generalised. The concepts of
'yield', 'leaf profile', etc., are extended and clarified. We then proceed
to discuss the operation of homomorphism (with respect to composition) and
present an algebraic definition of regular, context free and indexed sets

of terms ('indexed' not being here used in the sense we have so far meant it).

VI.1l. Substitution

Let ¢ be a many-sorted alphabet. Recall the definitions of
a-complex product and a-Kleene closure for a € I el o We subsume
(A L1

these definitions in the following generalisation:

A
1 ]
(i) Suppose f ¢ I <w,i>.’1:€ WZ(XV)’ and t' € wZ(Xv’Xw)i'

Define the operation t ‘£ t' of f-substitution as follows: t . t' =

(ry £)),

( (r; s')) where t = YIELD (Sub

{AL1> <WLi>

<Asi>
A

W X .
Y€ D()(Z(XV))( Wi ) and r has no occurrences of £, and

YIELD Sub .
{W,e1d

WD()(Z(XV)))<)‘,<W’i>> such that YIELD, . (s') = t'.

s' € (

Informally we have just substituted the derived operation t' of type

{w,i) for each occurrence of f ¢ I (taking care that the terms

< wW,id

appearing in the argument list of axoccurrence of f in t are substituted in

the 'proper' place in t').
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A
(ii) Given U(_:_WZ(XV), VL_'.'__'WZ(XV, Xw)i and f as above, define the

operation U £ V of f-complex product as follows: U 'fV = {tlYIELD<:A P>
b1

(Subu(r; S5 rees Sn—l)) =t for some i € I; YIELD

<AiS
(Sub, (r; £, ..., f)) € U with exactly n occurrencesof £f; s. €
u \ ) J
n times
. ELD . .
(WD()(Z(XV))) Wi such that YI cw,i> (s]) e V for
0 <j<n-l; and r ¢ wD()(Z(XV))(Xu)( A with u = {w,idw,id

< w,iy (a string of n  w,i>'s), in which f does not occur }.
Informally, we obtain U £ V by substituting some (not necessarily the
same) element of V for each occurrence of the symbol f in an element of U.
We again have U 'f{f} = Uand U g is the subset of U with no occurrence
of f in any of its elements. We can, of course, extend this operation to

an indexed family of sets LIE;IJZ(XV).

(iii) Given LJE;VJZ(XV,Xw)i and f as above, define the operation uxt

of f-Kleene closure as follows: Let V° = {fx eee X } and
OsW n—l,wn_l

%
vy U V", Then U foUJ ™
mgl‘l_

We state without proof the important Theorem 1 (Substitution):

Suppose that L is an indexed family of context free sets of terms over 7
and that to each f e I there corresponds a context free set of terms LF
of the same type as f. Then if we (simultaneously) substitute each

Le (f e £ ) for f in L, the resulting indexed family of sets of terms L'

is context free.

VI.2. 'Yield' Theorems

It is a well known result of the generalised theory that the class
of context free sets of strings (which do not contain the empty string A)
over some alphabet I is equivalent to the class of sets of strings which

are the 'yields' ('leaf profiles', 'frentiers') of recognizable sets over
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some non-sorted alphabet A which contains I as individual symbols.

(See Brainerd (1), Mezei and Wright, Thatcher (1), (2), (3) and Rounds
(2).) We note the anomaly of considering only the class of sets without
the empty string. The following (really a corollary of the Fundamental

Theorem) rectifies this situation:

Theorem 1. Let Q be a finite set and L C 0% a context free set.

Then D()(T(Z)) is a 2-sorted alphabet (sorted by {0, 1}) and there exists
a recognizable set UCC (wD()(T(Q)))o such that YIELDO(U) z ¢Q(L) (see
Remark at the end of Chapter II for the definitions of T(R) and ¢Q).
Corollary. Suppose L §;9+ (L does not contain the empty string).

Then there ex1sts[J§;(WD (T(Q)))l such that ¢Q(YIELD1(U)) = L where

O
¢Q:WQ({X}) > 1 is defined by $§(wx) =wforwe Q.

The converse result will not be stated as it is any easy
consequence of the Fundamental Theorem.
Example 1. Let € = {a, b} and consider the context free (string)

grammar G' = {0, A', P', Z'> where:

(i) N' = {2', A', B', C', D'}; and
(ii) P' = {2' > A'B', Z' » A'C', C' > D'B', D' »> A'C',
D' > A'B', A' > a, B' » b}.
L(G") = {anbn]n > 0}. Consider the regular term grammar
G =<Z,A, P, Z> of the second part of Example IIT.2.1. T is
1 and 61 . It is clear

PO (0) (1)
that in the case of unary alphabets such as T(R), the projections 6%0)

(T(Q)) less the two individual symbols §

and 6%1) are 'redundant' and so can be dropped. We will follow this
procedure.  Then ¢Q(L(G')) = YIELDl(L(G)l). If we add the production
Z' > A to P' in G', then L(G') = {anbn]n > 0} and

¢Q(L(G')) z YIELDO(L(G)O).
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We now go on to generalize a similar 'yield theorem' for context
free sets of terms (see Rounds (2)). But first we must introduce two
further definitions of string grammars:

An indexed grammar G is a 5-tuple {9, I, P, F, Z)> where:

(i) N = I -0 is a set of non-terminal symbols;

(ii) © is a finite set of terminal symbols;
(iii) P is a finite set of productions of the form A + o where A ¢ N
and a e (NF*[_JQ)*,
(iv) F is a finite set of flags where a flag f ¢ F is a finite set

of ordered pairs, or index productions, each of which is of the form

B> B where B e N and B ¢ (NLJq)* = I#,

(v) 2 is the axiom.

There are two rules of derivation: The string B is a conseguence

of (is directly generated by) the string a, o ——%B, if either of the
G

following conditions holds:

o, € (NF*[_)Q)*,'A € N, £ e F¥#,

(1) «a alA§a2 for a

13

B = aleelX262 PN

2

for X X, ey A->Xn, ... X

% 0% 10t Xy 1M KM

is a production in P, n cees My E F* and for 1 < i < k,

l’

. n; & if Xi e N
. Aif Xi € 2 (in which case n; = ).

(i1) o = alega2 for a5 Oy € (NF*I_JQ)*, BeN, feF, £&e F#,

B = aleel e Xkeka2 for Xl’ e Xk € I,

B ~» Xl P Xk is in f;

and for 1 < i <k

o - £ if Xi e N

* A if X. e Q.
1
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In (i) we may informally say that A and its associated string
of flags is replaced by the string obtained from the right hand side of a
production for A by inserting a copy of £ following each non-terminal
symbol and its associated flags. In (ii), we say that the flag f is

consumed by the non-terminal B.

%
Let =—=) be the reflexive, transitive closure of ——=y and
G G

L(G) the indexed set of strings generated by the indexed grammar G.

We again have a normal form for these grammars which we state in:

Lemma 2. Given an indexed grammar G = <Q, i, P, F, A , We can
effectively find another indexed grammar G' =< @, &', P', F', Z' >, said

to be in normal form, such that L(G) = L(G'), where:
(i) Each production in P' is of the form:

(a) A > BC where A e N' and B, C e N' - {Z'};
(b) A > Bf where Ae N', Be N' - {2'}, fe F';
(¢c) A~> a where Ae¢ N' and a £ Q;

(d) 2' » X if and only if L(G) contains the empty string;

(ii) Each index production is of the form A > B for A e N', B e N' - {z'}
and, for each flag f € F' and each A € N', f contains exactly one index

production with A as left part.

Proof. A consequence of Theorem 4.5 of Aho (1) and Lemma 4.2.3 of

Fischer (1).

A macro-grammar structure G is a 5-tuple <Q, N, V, P, Z> where:

(i) 9 is a finite set of terminal symbols;

(ii1) N = L,J Nn is a finite set of non-terminal symbols;
neN
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(iii) V is a finite set of variable symbols;
(iv) P is a finite set of productions of the form F(xo, ey Xn—l) >V
where F & Nn’ Xys +=vs X _q are distinct elements of V and v is a term

(see below) over Q U {xo, }, N

.. X
> Tn-1

(v) Z is the axiom.

The set of terms over LJX, N(X{ V) is the least set of strings

mmrQLJXLhdJ{(,),",”}smjﬁyhg:

(i) X is a term;
(ii) a is a term if a ¢ Ql‘JX;
(iii) o1 is a term if o and 1 are;

(iv) F(oo, . on_l) is a term if Fe N_and 0_, ..., o __j are terms.

T 1s said to be a subterm of ¢ if 1 is a substring of ¢ and T is a term.
A subterm 1 of a term ¢ is said to be at top level in ¢ if T soes not appeaf
in the argument list of any non-terminal in o.

Given terms 0,7 over LJX, N and a macro-grammar

G =< 0, N, V, P, Z> » T is a consequence of (is directly generated by) o

by an unrestricted step, denoted 0 —=) 1, in case the following

condition holds: ¢ contains a subterg’gf the form F(EO, RN gn—l) for

F e Nn and Eo’ cees gn—l terms over {2 l_JX, N; P contains a rule of the

form F(xo, cees Xn—l) *> v and 1 results from ¢ by replacing a single

occurrence of F(Eo, e £n_l) by v' where v' is obtained from Vv by

replacing each occurrence of X, by Ei for 0 < i < n-1. 0 directly i

generates T by an outside-in step, denoted 0 === T, if 0 z==—=) T and
0I,G U,G

the subterm of ¢ which is rewritten occurs at the top level of o. Let -

_miN;>and nmmfm;; be the reflexive, transitive closure of > >

U,G 0I,G U,G 0I,G
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respectively. Let L(G) be the set of strings generated by G.

We again have a normal form for these grammars which we state in:

Lemma 3. Given a macro-grammar structure G = <:Q, N, V, P, Z:> and
that L{(G) is generated by derivations in the unrestricted mode, then one
can effectivel& find a macro-grammar structure G' = <SZ,PW, vt, P', Z2' >
such that L(G) = L(G') and L(G') is generated by derivations in the

cutside~in mode, where the productions in P' are of the form:

(i) F(xo, cee, Xn—l) > G(Ho(xo""’xn—l)"'°’H _l(x . .X ))

m o™ n—-1
for F, Ho, e Hm-l € Nn and G € Nm; or
(ii) F(xo, cees xn—l) + v where v ¢ (QLJ{XO, e xn_l})“
for n > O,
Proof. See Fischer (1).
Theorem 4. Given an indexed grammar G, one can effectively find an

outside-in macro-grammar structure G' such that L(G) = L(G') and

conversely.
Proof. See Fischer (1).

We are now ready to state our promised 'yield theorem':

Theorem 5. Given an indexed grammar G = ®, L, P, F, 2>, we can
effectively find a context free term grammar G' = ¢ D()(T(Q)), nt, P, ZC)
(where T(Q) is the unary non-sorted alphabet corresponding to the string
alphabet @) such that ¢,(L(G)) = YIELD_(L(G')).

Proof. We assume that G is in normal form. The proof is similar to the
proof of the equivalence of the class of indexed languages and the class
of languages generated by OI macro-grammar structures. Assume that

A, ..., A is an enumeration of N, For each £ € F let C s e e
o n f,o f,n
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be the non-terminals in N such that £ = {A =+ C s ..y A > C_ Y.
o f,o0 n f.,n

Then we obtain G' as follows:

(1) N%A’O> ={Z},Néx’l> = {A']A e N - {2}} and

N' 11> = {a"|A e N},

11.
A St
n+l times

(ii) P' is obtained as follows:
(a) If Z~> BC is in P and Z, B, C € N, then let Z' » *+BCA and
Z”(xo, vees xn) > 4 B”(xo, cees xn)C"(xo, cees xn) be in P', for

{xo, cens xn} SR PR is a string of n+l 1's;

(b) If A> BC is in P, A # Z, and A, B, C € N, then let A' = 4B'C' and

A”(xo, cees xn) > +B"(xo, e xn)C”(xO, cees Xn) be in P' for X, as in (a);
(¢) If Z -~ Bf is in P, Z, B e N, then let Z' » # B"(C'f,o’ e, C'f,n)
1t 1" " 1
and A (xo, cees Xn) + B"(C f,o(xo’ cees Xn)’ eevs C f,n(xo’ cee xn)) be )
in P' for Xw as in (a);
(d) If A~» Bf is in P, A # Z and A, B ¢ N, then let A' » B" (C’f 0t
]
1 " 1 L (3]
C f,n) and A (xo, cees Xn) -+ B"(C f,o(xo’ cees Xn)’ ee., C f,n(xo""’xn))

be in P' for X, as in (a);

(e) IfZ~>ais in P for Z e N, a € 2 , then let Z' - %al and

Z”(xo, cees Xn) + a be in P' for X, as in (a);

(f) IfA>aisin P, for A# Z and Ae N, a € Q , then let A' - a and

A”(xo, cees, xn) > a be in P' for X, as in (a);

(g) If Z~> X is in P, then let Z' > X be in P'; -
" > . 1 : .

(h) Let Ay (xo, cees xn_l) s be in P' for O < i < n (where AO, cees A )

is the enumeration of N we have been considering).
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We define the representation map ¥:

(NFx ) Q)% > (WZ')O inductively:

(1) v() = A;

(i1) Y(w) = #*6(w)A for w € avex L)t where 9:(NF*\.~JQ)+ > (WZ')l
is defined inductively by -

(a) 6(a) = aif a e Q;

(b) 6(A) = A" if A e N3

(c) o(afn) = A™(B(C, n), ..., 8(C. n)) if Afn e Nt and f e F,
]

£,
n e F*,

(d) 6(aB) = +6(a)8(B) if B ¢ (NF*L Jo)t and a ¢ NF* or o e 0.

This clearly and uniquely defines ¥(8) and $(6) is clearly recursive.
There is a correspondence between productions in P and pairs of
productions in P' obtained by rules (a) to (g) (except if Z > A is in P,
there corresponds to it only the production Z' + A in P'). It is easy
to verify that if we take left-most derivations in G and outside-in,
leftmost derivations in G' (that is, choose the leftmost occurrence of a
top level non-terminal where the outside-in mode leaves a choice), then

for any a,8 € (NF*l_JQ)*:

(i) a =—2B via a production in P if and only if P (a) =——=¥(B) via
G Gl
one of the two corresponding productions in P' obtained by rules (a) - (g):

(i1) o==% B by consuming a flag with the non-terminal symbol Ay
G

if and only if ¢(a) === ¢(B) via the production Ai”(xo, cees ¥ ) > % dn
G'
P' obtained by rule (h).

4 ]

Hence for each w g Q%, Z::é:#w if and only if ¢(Z) = Z'=—=>¢(w). Thus
G a!

we have our result: ¢Q(L(G)) = YIELDO(L(G')).
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Corollary: Given a macro-grammar G over the alphabet £ one can
effectively find a context free term grammar G' over D()(T(Q)) such that
¢Q(L(G)) = YIELDO(L(G' )).

Proof. Consequence of the theorem and Theorem .

We may again note here that the 'yield theorems' previously
published are results concerning indexed sets (over some alphabet Q)
not containing the empty string which relate them to context free term

sets of sort 1 over the alphabet D, . (T'(R)). The converse of the above

)
theorem is obtained from:
Theorem 6. Given a set © and a context free term grammar G = <’D()(T(Q)),

L, P, Z:>, we can effectively find a macro-grammar G' :<< Q, N', V', P', Zf>

such that ¢Q(L(G')) = YIELDO(L(G)).

Proof. Assume G is in normal form. G' is obtained as follows:
. - ' : .
(i) N {A']a e N< waiS and rank of A is n} for each n € N;
(ii) v' = {xo, cees xk—l} where k is the highest

rank of any A € N;

(iii) P' is obtained as follows:

(a) 1If A(yo, vees yn—l) > B(Co(yo, vees yn_l), ey Cm_l(yo, e yn_l))

)

te 3 1 ( ' '
is in P then let A (xo, ceees xn-l) +> B (CO (xo, . S

1 > ' .
Cm—l(xo’ . Xn—l)) be in P';

(b) If A(yo, cees yn—l) > fyi cee Vs is in P, then let

o k
A’(xo, ceey xn—l) Xy e X be in P'; R
o} k
.. .
(c) 1If A(yo, ey yn-l) > y; is in P, then let A(xo, ey Xn—l) > X,

be in P'.
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It is obvious that for tys t, € wE(X)o’ tl—:éj t, via the rule
F(yo, e yn-l) =+ t if and only if ¢Q(YIELDO(tl)).—?"‘> ¢Q(YIELDO(‘C2))
via the corresponding rule in P', So we have the result:
1] -
L(G') = ¢ (YIELD_(L(G)).
Corollary. Given a context free term grammar G over the alphabet

D()(T(Q)), we can effectively find an indexed grammar G' over

such that ¢Q(L(G')) = YIELD _(L(G)).

Corollary. Let { be a many-sorted alphabet and let ¢ =< 9, Z, P, z>
be a context free term grammar. Consider G' =< UQ .o s N', 0V,
iel <ALi>

P', Z' ) where:

(1) = U

Q . for each n € N3
n 2 (w)=n < WalD>

(ii) v = {xo, vy xk—l} where k is the highest rank of any A € N;

(iii) As in the theorem.
Then G' is a macro-grammar structure over LJS2 . and L(G') is an
iel <Asi>
indexed set.
Corollary. Let G = {Q, L, P, Z> be a context free term grammar.
Then there is an effective procedure to decide whether p € P is useless or
not.
Proof. The emptyness problem is solvable for the class of indexed sets
(see Aho (1)). Use the previous corollary to get the desired result.
. . . n,n n
Example 2. Consider the indexed set of strings L = {a"'b c'|n > O}.
L = YIELDl(L(G)) where G is the context free term grammar of Example
IV.1.3b.
Theorem 7. Suppose £ is a set and G is an indexed grammar over . Then
we can effectively find a regular grammar G' over the many-sorted alphabet
D( (D (L(G"))).

)(T(Q))) such that ¢,(L(G)) = YIELDO(YIELD

) ¢ <A,0>
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Conversely, given a regular grammar G over the alphabet D()(D()(T(Q))),
if L(G) is of sort < x, 0>, then we can effectively find an indexed

grammar G' over Q such that ¢,(L(G')) = YIELD (YIELD (L(G))).
Q o <AL,o>

Proof. An easy consequence of Theorems 5 and 6 and the Fundamental
Theorem.
Example 3. Consider the regular grammar G" of Example V.1.1l. L of

Example 2 is then just YIELDl(YIELDl(L(G"))).

We remark that this is a very important result as it has 'reduced'’
a very complicated class of sets (at least in terms of its grammars) to a
much simpler class of sets (albeit over a more complicated alphabet).
Put another way, if we can refer to context free term sets as in some way
characterising the derivations of indexed grammars, we have characterised
the derivation trees of the derivation trees of indexed languages as
recognizable sets.

Inspired by these ideas, in the general case of a many-sorted

alphabet I, we may define the indexed sets of terms over I of type

i to be the images under the maps YIELD . and
oSBT ; ° maps D L anniny

YIELD<:X i (in that order) of some recognizable subset of
k-

W . .
D()(D()(Z)))<)\,<)\,l>>
sets of terms over I of type <1, < w,1>> to be the image under the maps

(

More generally, we may define the indexed

YIELD(A,(W,i)‘) and YIEI_.D<W,i> (in that order) of some recognizable

subset of (W Even more generally, we may define

) .
D D
the indexed sets of terms over ¥ of type«@,i><&,v;> - <w,vm_i> L, LV,
D R . and
(w,JXw,vo).. {w,vm_:L) » v ,1i>> .
YIELD (in that order) of some recognisable set in

<v,1iy

W : . . Obvi 1 ind d t
D()(D()(Z))&;,1>Q¢,vo>.,.<w,vm_l> s Vi Sy viously an indexed se

to be the images under YIEL

(
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of type@,j}(w,vo) cee KWLV > L V,idy 1is a set of derived

operations. An indexed family of indexed sets of terms over y (note

the two meanings of indexed) is indexed by D()(D()(I)). We can now

state the important

Theorem 8 (Second Fundamental Theorem). Given an indexed family of
indexed sets of terms L over the many-sorted alphabet £, we can effectively
find an indexed family recognizable sets of terms L' over the alphabet
D()(D()(Z)) such that L = YIELD(YIELD(L')) and conversely. (Note that

we have used the name 'YIELD' for both the homomorphisms

(W

YIELD:WD

> D, (W_)).
O )z

(D (z) D, (Z)

) O O
We remark that the Second Fundamental Theorem does not prove that

the class of context free sets of type < w,i>» over I is a proper

subclass of the ‘class of indexed sets of type <), € w,i3> over I.

The following will rectify this point.

Theorem 9. The class of context free sets of type £ w,i> over I is a

proper subclass of the class of indexed sets of type <A, < w,iD>%>» over T

for any many-sorted alphabet I.

Proof. We know from the second Corollary of Theorem 6 that there is an

effective procedure to obtain an indexed grammar over the set Uz

iel i
from the context free term grammar G =< I, A, P, Z>. We can exteénd this
result in the following way: Let fr:W_ - (U ) . )*® be defined by:

z . <A,i>
iel
(0) fr(a) = a for a ¢ Z()\,i>’ some i € I
N
and (1) fr(fto...tn_l) = fr(to)...fr(tn_l) for ft_...t _; € Ws.

(This is the definition of 'yield', 'leaf profile', etc., given in Mezei
and Wright, Brainerd (1), Rounds (2), et al.) Then we claim

L(G') = fr(L(G)). The proof is left to the interested reader. The proof
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of the theorem then proceeds by showing that there exists an indexed
set L of type < *,{w,i>> over I such that fr(L) is not an indexed set
of strings. We will show this only for the case I = D()(T(A)), A

a set. The interested reader is referred to Turner for a proof of the
general case.

Consider the alphabet D, () of Example V.1.2 and the following

O
context free grammar G = < D()(D()(T(A)), $', P, Z > over the alphabet

D()(D()(T(A)) (A = {a} and 9 is D()(T(A)) less the 'redundant' individual
symbols 6%0) and GL(Ll)) where:
. = {7 = {E}:
(1) N a5y ™ B V¥ 11> ¢y T B
(ii) P = {z2 » C(lO,lO,O> % C<ll,l,l> +aak,
7+ c % c E(c + 6t 5t )
£10,10,0> <1,1,1> <11,1,1%> (L1,1> ) (<1,1>)
ai,
E(x) » E(c< 1,1,1> XX),
E(x) + C¢1,1,1> xx} for x € X<l,l‘>}'
Then L' = YIELD< 2,05 (L(G)) is an indexed set of terms of type

< 2,< 2,09 over D()(T(A)) = Q. Then by the above discussion, fr(L')

is an indexed set of strings. But it is clear that
22n
L" = fr(L') = {a )\[ n > 0} (A here is not the empty string). L" is not

an indexed set of strings, so L' is not a context free set of terms (of
type < A, 0> over Q).
Note the fact that L', as a set, is also a subset of

D()(WD (T(A)))<w,i> (and so of WD (T(A))(Xw)i) for any

0)
<w,i> ¢ D(

0

)({O,l}). This is clear since A ¢ L' and t ¢ L' is just a
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derived operation of type « w,i > in which none of XW appears. There

exists a context free set of terms L over D()(D()(T(A)))such that

YIELD . (L) = L. We again see that fr(L') is not an indexed set
<WL1>

of strings (as above) and so we have proved our result for any < w,i>.

VI.3. Homomorphism with Respect to Composition

Let 2 and A be sets. A homomorphism with respect to

concatenation (of the conventional theory) ¢':Q% - A% is defined as the

function generated by the assignments:

(1) ¢ (A) =X and

we A% for a € Q.

(ii) ¢,(a)
(The algebras under consideration are, of course, the algebras with the
single binary operation of concatenation and carriers Q#* and A%.)

Under the equivalence in the Remark at the end of Chapter II, ¢' is seen

to be the component s of the map ¢:DVT(Q) T(A)(WT(Q))» DVT(Q) T(A)(WT(A))

generated by the assignments (i) and (ii) above (again leaving out the
'redundant' projection operations).

It is a classical result of the conventional theory that if @
and A are as above, ¢':Q% > A% is a homomorphism with respect to
concatenation and U %, V C A% are context free (recognizable) sets,
then p¢'(U) and (pcb')—l (V) are context free (recognizable) as well.
Motivated by this we state

Theorem 1. Let Q and A be many-sorted alphabets, ¢ ;D (W,) > D (w,)
—_— ° VQ A Q VQ A A
2 9

be a homomorphism with respect to composition, and UC WQ be a family of
context free sets. Then so is p¢(U).
Proof. Suppose U = L(G) where G =<, £, P, Z> is a normal form grammar.

Then let G' = { A, L', P', Z:> be the grammar obtained by forming the
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alphabet Z' in the obvious way and replacing the production

-> i ! > 1
P(xo, cees Xn—l) Ve in P! for F(xo, cees xn-l) fxio R xik in P
where v_ = ¢ . (f) for £ e Q ._ - All other productions of P'
f < WHiS < Wo1>
are the same as those of P. G' is a context free grammar (in standard
form). Note that there is a one-one correspondence between productions

in P and those in P'.

We can extend ¢ to ¢:D (W.) =~ D (W.,) by defining
\ z \% L
L,ut .5t
. (F) =F for Fe N L Remark that t—==»t' via a production
qb<Wal> L Wi a b
in P if and only if ¢(t) === $(t') via the corresponding production in P'.
G'
It can now easily be shown that p¢(U) = L(G').
Corollary. If in the statement of the theorem, U is recognizable, then
so is pe(U).
Proof. The proof is similar to the above except for the fact that we
first obtain a regular system G' from the regular grammar G for U. We

then invoke the results of the remark at the end of Chapter III, Section 2.

Unfortunately, the closure of the class of families of context
free sets under the operation of inverse homomorphism is not immediately
obvious. . It is hoped that this open problem will soon be solved. If it
is, then the class of (indexed families of) context free sets of terms
would have properties analogous to a Full Abstract Family of (String)
Languages (see Ginsburg (2)). (A full AFL is a class of sets (of strings)
closed under the operations of union, complex product, Kleene closure,

intersection with recognizable sets, homomorphism and inverse homomorphism. )

VI.4. An Alternative Definition

One of the characteristics of recognizable sets is that they can be

defined independently of any generating (or, equivalently, any fixed point)
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system. It was shown in Chapter III, Section 2 that the class of
recognizable sets of terms over £ is equivalent to the class of unions of
the classes of finite congruences over WQ. Motivated by the Fundamental
Theorem we make the following definition: A context free set of terms over
a many-sorted alphabet Q is the homomorphic image (under YIELD) of the

union of classes of some finite congruence q over WD Motivated by

()(Q)'

the Second Fundamental Theorem, we define indexed sets of terms over
to be the homomorphic images (under two separate YIELD functions) of the

union of classes of some finite congruence q' over WD

()(D

()(Q))'
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VII CONCLUSION

We have attempted in this study to achieve two main objectives:

(i) To place the study of formal languages in a setting general
enough to facilitate the consolidation of existing results and to open
new avenues of research;

(ii) To prove within this framework what we have called the
Fundamental Theorem of Formal Languages: specifying the fundamental
nature of recognizable sets.

In a sense, the Fundamental Theorem shows that we only need to
'know' about recognizable sets. Other classes of sets are just homo-
morphic images of certain classes of recognizable sets. Now, consider
the grammar G of Theorem VI.2.9. We know YIELD(YIELD(L(G))) =

2n

2 . . . . . .
{a In > 0} which is not an indexed set of strings. Let us depict in
pictorial form what this and the Fundamental Theorem suggest for a set

(string alphabet) Q:

9] D Q
2 (or T(2)) D, (T@)) (P (T
Recognizable Recognizable Recognizable
//////W M.»"‘
[*] //////H (—] L;f“”'ru (’]
Context %ree Context free Context free
{‘) < [—] L
Indexed Ingexed
Level 3
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The inclusions indicated are of classes and the arrow indicates
equivalence of classes via the YIELD operation (homomorphism). We have
called the image under YIELD of an indexed set of terms over D()(T(Q))

a Level (of complexity) 3 set (as opposed to 'type' used in the Chomsky
classification of language classes). According to this method of
nomenclature, recognizable sets over 8 are level of complexity O,

context free sets over { are level of complexity 1, etc. We might call
any set over 9 of level of complexity n (any neN), a set over @ of level
of generalisation O. Any set over D()(T(Q)) of level of complexity

n (any n € N) is a set over Q of level of generalisation 1. And so on.

Our diagram suggests that it may be extended infinitely in two
dimensions. Thus any class within this extension can be pinpointed by
two coordinates: its level of generalisation and its level of complexity
within that. Thus each increase in the level of generalisation 'reduces'
the level of complexity by one! Note that we need not have started with
a string alphabet. Any many-sorted alphabet would have done just as well.

We note that, at all levels of generalisation greater than =zero,
all non-individual symbols in our many-sorted alphabets were assigned typed
(in the logical sense) composition operations. Level of generalisation
increased with the 'level of the logical types' of the operator symbols.
We speculate that a third 'dimension' may be added to the diagram by
considering many-sorted alphabets which will have logically typed
application operations assigned to its symbols. (Note that composition
is a particularly simple form of application.) Note the connection with
Scott's models of the lambda calculus.

-~ As noted, the comments above are just speculation; on the other
hand, we hope that they are not idle speculation. They demand a lot of

study before confirmation can be obtained. Here are some other questions
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that demand answers: Are ther e classes of automata of different levels

of complexity and generalisation to match our classes of sets? What
light, if any, does this approach to formal languages shed on the study of
natural languages and programming languages? More specifically, can we
prove the closure of a class of sets under the operation of inverse
homomorphism?

We believe both our stated aims to be achieved.
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