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ABSTRACT

This thesis investigates display methods for representing
linear graphs. The basic aim of the research involved is to
discover whether it is possible to create an automated computer
process for generating visual reppesentations of linear graphs.

A visual representation of a graph is a picture or display
of the graph. For the purpose of the thesis this picture is
assumed to be one drawn on the screen of an IBM 2250 Graphic
Display Unit.

The first two chapters introduce the problem and describe
earlier research in the area, including the concept of the auto-
morphism group of a graph.

Chapter III discusses the suitability of the automorphism
group of a graph as a basis for gemerating visual representations.
It is shown that the symmetries in the automorphism mappings can
be portrayed visually.

Chapter IV considers the tradeoffs between algorithmic and
heuristic methods for calculating the automorphism group and
discusses the reasons for choosing the heuristic method. It is
shown that, by using interactive heuristics to calculate the
automorphism group, it becomes practical to use the automorphism
group to generate visual representations.

In Chapter V several visual representation procedures are
examined, two of which were actually implemented on an interactive
graph processing system. The degree of success of these routines

is evaluated and the tradeoffs between general and specific types



viii
of representation routines are considered.
Finally, possible improvements and applications of the thesis

research are described and the results are reviewed in light of

the original goals for the thesis.



CHAPTER I : INTRODUCTION

This thesis discusses some problems which arise when visual rep-
resentations of graphs1 are presented on a computer terminal which
contains a two-dimensional display screen. The process of generating a
visual representation of a graph requires two elements; a non-visual
representation of a graph such as its incidence matrix and a computer
program which, given this matrix or similar pepresentation, can produce
a visual display of the graph. The major goal of the research presented
in this thesis has been to develop an automated computer facility for
generating these visgal representations. The generation process is not
completely automatic in that it requires user interaction to direct
its operation.

It is not really necessary to define a visual representation of
a graph as a picture on a graphic display. For example, a diagram of
a graph in a text on graph theory is equally well a visual representa-
tion of a graph. However, in order to describe algorithms and data struc-~
tures for the generation of representations which are part of an inter-
active graphics system, a visual representation of a graph will mean
a screen display representation of the graph.

While the visual representation of graphs does not have to be an
intrinsic or even a necessary part of graph theory, the ability to model

even complex relationships pictorially has led to the use of graph theory

1. The definition of a graph is found in Appendix A. The thesis con-
tains many other graph-theoretic terms, definitions of which are
given in Appendix A.
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in many different areas and applications. Computers normally work with
a numeric representation of a graph such as its adjacency matrix.
Humans, however, usually find a visual representation more meaningful.

Drawing a picture of a graph can be a very tedious process. A
rough picture is drawn and then redrawn repeatedly, moving vertices and
edges until the result appears satisfactory or usually until one runs
out of time, paper or patience. Moreover, the final picture may only
appeal to the person who drew it. For example, if a graph is a tree
then it is also bipartite but a diagram of its tree structure is of
little interest to someone concerned with its bipartite nature., In fact,
one cannot even be sure that given the same graph again the result of
this trial and error method will produce the same or even a similar
visual representation. One graph can have an infinite number of visual
representations since any picture of the graph is a visual representation.
Moreover, as indicated above, the choice of visual representation may
be made so as to illustrate various properties of the graph such as its
tree structure or polygonal nature.

The system and, in particular, the representation routines described
in the thesis constitute the first automated process for manipulating
graphs. Previous graph processing systems allowed the user to work with
data structures especially designed for manipulating graph-theoretic
entities. Even the systems incorporating a graphic display required the
user to generate his own visual representations in essentially the same
trial and error approach described above. The major improvement was that
the system now provided a light-pen and display screen in place of pencil

and paper.
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Thus, this is the first graph processing system which through a
combination of heuristic techniques and semi-automatic procedures
generates visual representations which are meaningful to the user. The
user does not generate the representation but uses the computer as a
visual aid, a new tool for working with graphs.

There are two important criteria which must be satisfied by any
automated process for generating visual representations of graphs:

1) The process must use a systematic approach which generates the
same visual representations for the same graph every time it is used.
The same approach also should be taken with similar graphs so that a
particular class of graphs can be treated and the results used to
compare the different graphs in a systematic fashion.

2) The process or display system must allow the user to create
and test his own representation schemes. The wide range of possible
applications for such an automated visual representation process demands
a flexible system where old representation schemes may be easily replaced
or altered to suit a particular application.

A decision was made to use the symmetries of a graph as given by
its automorphism group as a basis for generating the visual representa-
tions. The detailed reasoning behind this decision is discussed in
Chapter III. However, it is possible to indicate briefly how this
approach satisfies the above criteria, Firstly, using the automorphism

group of the graph implies a systematic approach by the very nature
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of the automorphism group. It is invariant in the sense that it will
be the same every time it is calculated: It is also possible to use
the different mappings of the automorphism group to generate several
distinct visual representations of the graph. Moreover, the symmetries
of the graph as given by its automorphism group reveal the basic struc-
ture of the graph.

A cycle of length one in an automorphism is a vertex fixed by the
mapping. Cycles of length two indicate vertices which are interchanged.
Cycles of length three or greater represent vertices which are rotated.
These three types of vertices are used to generate the visual representa-
tions of the graph. The representation in Figure 1.1 shows a simple
graph which can be interpreted as a mirror-image reflection of vertices
across an axis of symmetry. Alternatively, it could be interpreted as
a rotation of the vertices about a central point.

The second criterion for the display process says that it must be
easy to change the representation schemes. Most of the representation
schemes described in the thesis, however, generate visual representations
based on the symmetries of the automorphism group of the graph. This
is not owing to a lack of flexibility in the display system as it has
been designed to facilitate easy implementation of alternative repre-
sentation schemes. Several such alternative schemes are described in
Chapter IV.

It is not a trivial problem to create a useful or general visual

representation scheme. However, the task is made much simpler by using
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the symmetries of a graph as given by its automorphism group as a common
starting point. The symmetries can then be interpreted in a manner most
suitable to the application at hand. The symmetries of graphs can be
used to create representation schemes for all classes of graphs, thus
providing a link between the wide range of applications in which such

an automated representation system might be useful.

The symmetries of a graph are also directly related to the in-
ternal structure of the graph. In a sense, these symmetries indicate
what parts of the graph '"look alike'". That is, the symmetries in the
automorphism group can be interpreted by a visual representation of
the graph.

The above discussion is not meant to imply that the choice éf the
automorphism group as a basis for generating visual representations
of graphs is obvious or even necessary. The discussion in Chapter
ITI describes an initial attempt to create representation schemes with-
out using the automorphism group and how the decision to use the auto-
morphism group was reached.

Once the decision was made to base these visual representations
on the symmetries of a graph, the graphics programs with which to
actually implement the tool were needed. Since none were readily
available at the time, it was necessary to create the GSYM graphics
system. This interactive system for the creation and manipulation
of graphs on a display screen was especially designed as an appro-

priate tool for working on the visual representation of graphs.
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The GSYM system is described in detail in a forthcoming University
of Waterloo research report. However, the thesis will occasionally refer
to features of the GSYM system which were especially designed to facili-
tate the creation of an automated process for generating visual representa-
tions of graphs.

At this point a basis for the representation process has been decided
and a tool is available with which to implement the system. There remain
the two problems of obtaining the automorphism group of a graph and creat-
ing a visual representation for each mapping in the automorphism group.

The resolution of these problems forms the most important part of the
thesis. Chapter IV contains a discussion of the automorphism group
problem. In general, computing the automorphism group of a graph is

very expensive in terms of the execution time required for its calculation.
The differences between algorithmic and heuristic approaches to automor-
phism group calculation and the advantages and disadvantages of each ap-
proach are described. The reasoning behind the choice of the heuristic
approach is found here. A heuristic used by Unger (xi) for computing
graph isomorphisms has been adapted to the automorphism group problem.

The main point of this discussion is the question of whether a heuristic
approach (or any approach) for automorphism group calculation is practical
for use in an interactive system for generating pictures of graphs.

Following this, the heuristics which have been implemented in a pro-
gram for automorphism group calculation are discussed. The discussion centres
around the tradeoff between the execution time required by the final auto-

morphism group calculation routine and that required by the heuristics.
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This routine considers all the possible mappings of the vertex set with
the exclusion of those mappings which have been eliminated by the earlier
use of the heuristic tests. It is an algorithm in that it will find the
automorphism group. However, it is relatively expensive when there is

a large number of possible mappings. The rationale behind the heuristic
approach is to eliminate as many mappings as possible using the various
tests available without using more execution time than would have been
required by calling the final routine sooner. With this in mind the dis-
cussion indicates how the various heuristics were chosen and implemented
in order to minimize the execution time necessary to run these tests.

Chapter IV closes with a discussion of the advantages in implementing
an interactive wversion of the automorphism group calculation program.

That is, the user is able to choose and repeat tests at will, specifying
new parameters if he so wishes. For some of the heuristics it is even
possible to view the results as the routine proceeds and to stop the test
if it does not appear to be making any headway in reducing the number of
mappings which must be checked later by the automorphism group algorithm.
The real advantage of this interactive implementation is that only through
this approach did it become practical to compute and use the symmetries

of the automorphism group of a graph to generate visual representations

of it.

Chapter V investigates the most important aspect of the whole process
of visual representation of graphs -- the actual creation of the dis-
plays themselves. The problem to be solved is to generate from the mappings
of the automorphism group, which are actually just permutations of the

vertex set of the graph, three dimensional visual representations
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of the graph. The first representation procedure that is treated is
a very general routine which produces a visual representation stressing
the two basic types of symmetries in graphs, mirror-image and rotational
symmetry. The success and failure of this attempt to handle all classes
and types of graphs with just one representation routine is discussed in
detail. One of the major conclusions reached from this investigation was
the need for a special postediting feature which would allow the user
to make alterations in a generated visual representation before going on
to the next.

The next representation routine examined was implemented in order
to provide special treatment for the large class of graphs which are trees.
If a graph is known to be a tree then this routine can be used to generate
a visual representation of the tree structure of the graph. Moreover, the
symmetry given by the mapping is used to shape the tree so as to reveal
the mirror-image and rotational symmetries. The remainder of the chapter
discusses the advantages of designing visual representation schemes for
special classes of graphs over the use of more general representation
schemes. Several possible technigues are suggested and evaluated in
some detail.

Chapter VI evaluates the degree of success of this attempt to
automate the visual representation process in terms of the original
goals that were set. Suggestions are made for improvements in the

existing system and several possible applications are considered.



CHAPTER II : HISTORICAL BACKGROUND

We believe that the system we have developed for generating visual
representations of graphs is the next logical step in the evolution
of special purpose programming languages for graph processing. In
order to fully understand this evolution several existing graph pro-
cessing languages and the various approaches used in their implementa-
tion are reviewed briefly. Following this, some of the recent research
on the automorphism group problem and those results which have been uti-
lized in this thesis are examined. Finally, we discuss the research
which has led to this investigation of the problem of visual representa-
tion of graphs.

The ability to manipulate graph-theoretic constructs on a computer
is becoming quite commonplace. In fact, many programming languages such
as PL/1 now contain all the list processing facilities necessary to
define and manipulate graphs without too much difficulty (ii). However,
only those languages and language extensions designed solely or pri-
marily for handling graphs are of interest here. Thus, the many graphics
languages and systems such as GRAF (iii), B-LINE (iv) and GPAK (v) which
have appeared in recent years are not considered. These languages are
designed to allow a user to communicate with a graphics display unit
but, since the basic elements of the language such as the data structures
and commands are not defined in graph-theoretic terms, they are not
graph processing languages. Of course this does not mean they cannot

be used for working with graphs.
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There are three approaches which have been used to implement graph
processing languages. The simplest approach is to create a subroutine
package which is called upon to perform the graph related operations.
This method only requires the existence of the subroutine library as
the subroutine calls are made within the context of the existing lan-
guage, eliminating the need to modify the original language compiler.

A second more complex method is to define extensions to a language
in the form of new data types and commands which operate on the new data
types. The graphs are represented using these special data types.

This requires a similar type of subroutine library to that of the above
method. Moreover, it is necessary to translate the special graph pro-
cessing statements into the format of the host language. Hence, the
extended language program is passed through a preprocessor program which
produces an equivalent program written in the base language. This pro-
gram is then passed to the host compiler. The most difficult approach
is to implement the graph processing language separately from any base
language. This method, while requiring the most effort to implement,
is usually the most efficient in terms of the execution time used by
programs written in the language. It again requires a program library
of run-time routines, as well as a new compiler for the language.
Depending on the complexity of the language this can be very costly in
terms of the manpower and machine time required to write the compiler.

Now that the usual methods of implementing special purpose languages
such as those used for graph processing have been reviewed, several
examples of such languages are described briefly. One example of an

extension to an existing language is GASP, which is a graph processing
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extension of PL/1l.(vi) A new data type called an 'object' has been
added to PL/1l. An object is a conglomeration consisting of a character
string, a name and a set. The elements of a set are themselves objects.
The name is used by the system to reference various objects. The
character string part of an object may be assigned character string
values by the programmer and is generally used to identify objects
when doing output. A graph is represented as an object whose set con-
tains the vertices and edges of the graph. The vertices and edges are
again objects, the set associated with an edge being the pair of
incident vertices and the set associatedwith a vertex being the set
of all incident edges and adjacent vertices. GASP additions to PL/1
consist of:
1) PL/1 statements which declare or assign values to
GASP data typess,
2) GASP procedure calls, and
3) Type functions which return a name, integer or truth
value. .

The declaration statements define the GASP variables as names,
character strings, integers, bits or truth values. The basic com-
ponent of a set is an element which has been declared as a name, Before
being used the name must be allocated storage using the $ALLOC type
function. This function actually creates space for an object which
becomes the definition of the name passed to it as an argument. The

character string value of the object is the same as the name used.
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The GASP function SCHANGES is used to add objects to or delete objects
from the set of another object. In this manner one adds (deletes)
vertices and edges to (from) a graph. The programmer works at the
name level; that is, he references an object through its name.

The procedure PELEMSK is a special I/0 routine which prints the con-
tents of a set in the form of a list. For example, 'CALL PELEMSK(A)'
will print the character string value of A followed by the character
string values of all the objects in the set corresponding to the name
A. Graph input is handled by calling READGR, which reads a sequence
of digits defining a graph as a set of paths. A new path is indicated
by a minus sign preceding the starting vertex of the path.

For example, the input sequence 3,4,5,-1,2,3,-4,1,0 would cause
READGR(B) to create the graph shown in Figure 2.1. The graph would
be the object definition of the name B. READGR assigns node i the
character string value 'Ni'. The ith edge created in building the
graph is assigned the character string value 'Bi'. These character
string values may subsequently be changed by the user. The command

PELEMSK(B) would produce the following output:
B = (Bl, B2, B3, B4, B5, N1, N2, N3, N4, N5)

Bl = (N3, N4)

B2

(N4,.N5)

B3 = (N1, N2)
B4 = (N2, N3)
B5 = (N1, N4)
N1 = (B3, B5, N2, N4&)
N2 = (B3, B4, N1, N3)

N3 = (Bl, B4, N2, N3)



N3

B4 Bl

N2 B2

B5
B3

N1

FIGURE 2.1 A GRAPH IN GASP
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N4 = (Bl, B2, B5, Nl, N3, N5)

N5

(B2, N4)

GASP contains several graph-theoretic functions such as INCIDENT,

a routine which determines whether a vertex is incident to an edge.

In theory GASP is quite powerful because it utilizes a very general

set theoretic data structure. However, in practice it is definitely
limited due to its relatively poor I/0 facilities and the comparatively
large amount of trivial programming which must be done to set up and
manipulate a graph. For example, each object of a set must be assigned
a character string value in a geparate assignment statement in order

to be able to distinguish the different elements of the set should it
be printed by PELEMSK. Thus, GASP is a potentially powerful but some-
what tedious tool for graph processing.

HINT is a graph processing language which is a stand-alone lan-
guage.(vii) HINT extends the semantics of list processing to graph
processing. The language is based on the concept of a hierarchical
graph, a graph with vertices that may themselves contain or represent
graph structures. The basic elements in HINT are numbers, character
strings and names. The names are given numeric or character string
values or they may be 'lists' composed of a collection of names and
numbers. A 'set' is a list with no elements repeated. A 'list structure'
is a list where the elements may themselves be similar to those of
LISP.(viii) Directed graphs are also defined in a similar list type
notation, a graph being a set of pairs of the form (pair 1l,...,pair n)
where each pair consists of a vertex, followed by + ,followed by the

link set of the vertex. The link set is simply the set of vertices

adjacent to the given vertex.
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For example,

GRAPH = (V1 » (v2,V3), V2 » (V5), V4 » (V3), V5> (), V3 >
(v2,V1,V4) ) defines the graph with the name GRAPH shown in Figure
2.2.

The language contains numerous primitives which perform tests on
the lists as well as handle such functions as I/0. There are also
many primitives which are used solely for operating on graphs. Since
the graphs are themselves lists any list function may be used on a
graph. The graph primitives perform such functions as the addition and
deletion of vertices and edges. There are also functions for finding
the complement of a graph, the shortest path between vertices, the
valence of a vertex and other elementary graph properties. These two
languages are just an indication of the current interest in graph pro-
cessing languages. As well, Friedman has implemented GRASPE 1.5, a
graph processing extension of LISP 1.5. (1) and an extension to FORTRAN
called GTPL has been used by King (xii) to experiment with many graph
theoretic algorithms.

This list does not cover all such existing graph processing lan-
guages, but it does illustrate their general nature. The above lan-
guages have concentrated on improving the ease of implementing graph
theoretic algorithms by providing the basic functions and data structures
used in manipulating graphs. There is no provision for interaction be-
tween the user and the system, nor has there been any attempt to incor-
porate a visual representation of the graphs. The next step in the de-
velopment of graph processing languages was the design of an interactive

graph processing system using a visual display.
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Wolfberg's Interactive Graph Theory System is just such a
system, (ix) The user communicates with the system in an interective
mode via a DEC-338 graphics display terminal.(x) Once more, a set-
theoretic approach is taken in order not to restrict the power of the
language. Graphs may be defined in terms of entities which include
atomic objects, ordered pairs and sets. Each atom, pair or set may have
any amount of associated data as its properties. An atom is a data type
having no structure other than its associated properties. A set con-
tains any number of elements, each of which is again an entity. Nor-
mally a graph is defined as an ordered pair where the left-element of
the pair is the set of vertices and the right-element is the set of
edges. Each edge is an ordered pair where the left-element is the posi-
tive vertex and the right-element is the negative vertex. Each vertex
will ordinarily be an atom, but the set-theoretic nature of a pair
allows any element of a pair to be another pair or set. Hence, it is
possible to represent a graph of graphs. Some of the more common struc-

tures which are possible are:

1. A set of edges whose order represents a path,

2. A set of edges as a property of a vertex - these
might be the set of out-directed edges,

3. A set of vertices as a property of a vertex -
possibly the adjacent vertices, and

4. An integer as a property of a vertex - depth

in a tree for example.
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The visual representation of the graph consists of vertices and
edges with or without labels. The edges take the form of straight lines
between the vertices unless the edge is a loop in which case it is
displayed as an elliptical closed curve. Edges may also have arrows
displayed at their midpoint if they are directed edges. An arrow has
one of eight orientations depending on the angle of the edge. The user
uses the light-pen to select commands on the screen in order to direct
the operation of the system. For example, he selects the creation of
a vertex as the next operation and then uses the light-pen to position
the vertex on the screen. The user also has available a set of special
control buttons and a typewriter keyboard. The display is under the
supervision of an interactive monitor which allows the user to execute
programs on the central computer. These programs may be system routines
or, as is more likely, they may be user written routines which have
been incorporated into the system. These routines are coded in the
special graph processing language used on the system. This language
is interactive in that it can react to user intervention at the terminal.

Wolfberg has created a powerful graph processing language with
the added attraction of having a display capability which permits the
user to see the graphs with which he is working. Of course, the user
must draw the graphs himself, either while working at the screen or through
his programs. As already mentioned, the thesis is concerned with what
we consider must be the next stage in this evolution, that is, the auto-

mated generation of visual representations of graphs. Besides being
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able to see a graph that he has drawn, the user should be able to request
the system to show him various visual representations of the graph in
which he is interested. It must also be possible for the user to easily
implement his own visual representation schemes and call them as if they
were system routines.

As indicated earlier, the work of several individuals on the problem
of calculating the automorphism group of a graph is reviewed briefly
here. As can be seen in Appendix A the concept of the automorphism
group of a graph is quite straightforward. An automorphism is simply
a permutation of the vertices of a graph which preserves the structure
of the graph. One way to find the automorphism group then would be
to generate all the permutations of the vertex set, checking each one
againg the definition of an automorphism. Here is the key to the
problem. The number of permutations of the vertices of a graph with
N vertices is N!. Thus, for a graph with 10 vertices it would be neces-
sary to examine over three and a half million permutations. Actually the
problem is to find an efficient algorithm for calculating the automor-
phism group. By 'efficient' is meant an algorithm where the number of
operations required tends to some small finite power of N rather than
N to the power. N.

Kagno (xvii) has calculated the automorphism groups of all g;gphs
having up to six vertices, while Hemminger (xviii) has extended this
list to include directed graphs having up to six vertices. Prins has
investigated the automorphism group of a tree.(xiii) However, he has

not developed any calculation methods suitable to graphs in general.
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Instead of attempting to compute the automorphism group directly there
has been significant interest in attempting to find the automorphism
group of a composite graph using the automorphism groups of the graphs
in the composition. For example, the group of the sum of nonisomorphic
graphs is the direct sum of the groups of the graphs in the sum. Harary
has investigated the groups of the cartesian product and composition

of undirected graphs.(xix) Unfortunately, this line of attack has

yet to produce an efficient algorithm.

Mowshowitz has used a result of éhao (xx) to suggest an algorithm
for calculating the automorphism group of a digraph.(xv) Chao has
shown:

Lemma (xx, p.489):

Let o be a one-one mapping of the vertices of a graph G onto the
vertices of a graph H and let Py be the permutation matrix corresponding
to o . Let AG be the adjacency matrix of the graph G and AH the adja-
cency matrix of the graph H. Then a is an isomorphism of G onto H if
and only if AG*Pu = Pa*AH°
Corollary (xx, p.490)

Let o be a permutation of the vertices of a graph G onto itself
and Py be the permutation matrix corresponding to o . Then o is an
automorphism of G if and only if the adjacency matrix A of the graph
G commutes with Py , that is, A*Py = Py*A.

Therefore, one can find the automorphism group of a graph by generat-
ing all the permutations of its vertex set and finding those permutations

whose matrix commutes with the adjacency matrix of the graph. To do
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this directly is out of the question because of the amount of time that
would be required. Instead, Mowshowitz has created an algorithm for
constructing the general solution M for the matrix equation M*A = A*M,
for all permutations with permutation matrix P = M. The solution M
gives the automorphism group of the graph. Mowshowitz uses the algor-
ithm to derive conditions on the automorphism group which insure that
the information content of two graphs is identical. The information
content is calculated using an information measure defined by Mowshowitz.
In order to use the algorithm it is necessary to find a nonsingu-
lar matrix U which transforms A into Jordan canonical form, that is,
A=U*X*U—1. Substituting U='<I£\X'*U-1 for A in the equation A*M = M*A gives

1

UAK*UT xM = MAUSK*UTD, implying that A%(UleMku) = (U lemru)sk.  1e

we let Mk U-l*M*U, then Mk is an arbitrary solution to the matrix

equation MX*A = A*Mx. Thus, to find all the solutions M of the equa-

tion A*M = M*A we need the matrix Mk (which is a function of a fixed

number of parameters) and the transforming matrix U. The final result

of ali this is that the general solution M is given by M = U*MK*U—I =

)n
ii’ 1,j =l.

(x
If N is the number of parameters of M in the above general solu-
tion, then Mowshowitz shows that a permutation matrix corresponding to
a permutation of the vertices commutes with the adjacency matrix of the
. , 2 . .
graph if andonly if a nonhomogeneous system of n linear equations

in N ($n2) unknowns is consistent. This is summarized by the following

theorem:
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Theorem 2.1 (xv, p. 83)

Let o be a permutation of VG and Pa the corresponding permutation
matrix, M = (xij)n i,i =1 the general solution to M*A = A*M where
G is an n vertex digraph and N is the number of parameters of M. Then

0 is in the automorphism group of G if and only if the nonhomogeneous

system

1, if k = §

1<i, k<n,

0, otherwise
of n2 linear equations in N unknowns is consistent.

This algorithm is not the 'efficient' algorithm being sought owing
to the amount of computation involved in finding Mk and U. Moreover,
it is still necessary to determine for each permutation whether the
system of parameters Xij is consistent.

Kately appears to have been the first to develop an algorithm
based on information which is readily available from the structure of
the graph.(xiv) He attempts to reduce the number of permutations which
must be considered as possible elements of the automorphism group.

He gives the following definitions and theorems:
Definition (xiv, p. 23)
F

s

Tt

{fueve | (s,u) e EG}.

{v e VG I (v,t) e EG}.

FS contains the successors of s while Tt contains the predecessors
of t. A 'successor' of a vertex v is a vertex w such that there is a
directed edge from v to w. A 'predecessor' of a vertex v is a vertex

w such that there is a directed edge from w to v. Note that for undirected
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graphs an automorphism must map the vertices adjacent to a given vertex
onto those vertices adjacent to the image of the given vertex.
Definition (xiv, p.23):

Given a graph G, let

0, = {s | outvalence of s = k}, k = 0,1,2,...
L = {s | invalence of s =k}, k = 0,1,2,...
‘Hence, Ok is the set of vertices in VG having outvalence k and
Ik is the set of vertices in VG having invalence k.

Theorem 2.2 (xiv, p.24)

Let G be a graph. If f is in the automorphism group of G then

f(Ok) = 0k s

f(Ij) Ij for all k and j.

This theorem only states the rather obvious fact that an automor-
phism preserves the valencies of the vertices of the graph.
Theorem 2.3 (xiv, p.25)

Let G be a graph. If f is in the automorphism group of the graph

then

f(FS) Ff(s),

f(Tt) Tf(t).

This theorem states that an automorphism maps the successors
(predecessors) of a vertex onto the successors (predecessors) of the

image of the vertex.
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Theorem 2.4 (xiv, p.25):

Let G be a graph and let f be a permutation on VG. If f(FgﬁIj) =
Ff(afwlj for all Ij defined by G and for all a in VG with the provision-
f(@) = ¢, them f is in the automorphism group of the graph.

Kately then suggests using the above theorem to calculate the
automorphism group of a graph. This is accomplished by considering the
possible permutations according to theorems 2.2 and 2.4 For example,
consider the graph in Figure 2.3. The intersection table for this graph
is given in Table 2.1.

Theorem 2.2 indicates that the set of vertices {1,3,5} must map
onto {1,3,5,} and the set {2,4,6} must map onto {2,4,6} for any auto-
morphism f in the automorphism group. A permutation taking 1 onto
2 is therefore impossible. For example, Table 2.1 indicates that only
cycles starting with 13, 15, 35, 53, 51, 31, 24, 26, 46, 64, 62 and 42
can be permutations in the automorphism group. It is therefore neces-
sary to consider only those permutations which have not been eliminated,
checking them using Theorem 2.4, that is, f(F;\Ij) = Ff(afwlj. Kately
considers this method to be suitable for calculating the automorphism
groups of graphs by hand. Actually, this would be highly impractical
for all but relatively small graphs.

The result of Theorem 2.3 has been used by W. Jackson to imple-
ment a computer program for finding the automorphism group of a graph.(xxi)
His algorithm builds tree-like structures where each node represents
a mapping of a vertex in the graph. For example, all the possible

permutations of a graph with three vertices are given by the three trees
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TABLE 2.1 : INTERSECTION TABLE FOR GRAPH IN FIGURE 2.3

I = {1,3,5} I = {2,4,6}
{2,3} 3 2
{2,4} 2,4
{4,5} | 5 4
{4,6} 4,6
{1,6} : 1 6

{2,6} 2,6
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FIGURE 2.3
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in Figure 2.4. A permutation is found by starting at the root vertex
of any tree and moving down the tree until an endpoint is reached.

Jackson's algorithm creates each tree branch by branch and as the
permutation represented by a branch is generated the program checks
to see if it can be an automorphism. If this check fails at any node
then the remainder of the current branch is abandoned; that is, the
rest of the branch is not generated. The concept is similar to the
technique used by Kately in that time is saved because it is not neces-
sary to check all the permutations, nor, in many cases, is it necessary
to check a complete permutation. Since essentially the same algorithm
is used in Chapter IV it is explained in some detail at this point.

A discussion of the speed and efficiency of the algorithm is post-
poned until Chapter IV.

The notation used in the discussion is as follows:

a) "i = j" indicates a mapping of vertex i onto vertex j. Thus,
if a branch of a tree generated by Jackson's routine contains a node
where i + j the the permutation corresponding to the branch maps
vertex i onto vertex j. However, this does not imply that j is mapped
onto i by the permutation. This is true only if the branch also con-
tains a node j +» i. Thus, the two mappings i > j and j > 1 are distinct
mappings and one does not imply the other.

12 1"t . .
b) {Vl,V ,""Vn} > {wl,wz,...,wn} indicates a mapping of a

2
set of vertices Vi Vo cees v onto a set of vertices Wis Wos ceey W
With n elements in each set there are n! possible permutations. Thus,

the above notation indicates all the possible permutations of a set onto

another set.
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¢) The notation "=p»" is used to indicate that one mapping implies
another. That is, by Theorem 2.3 a mapping of a vertex (set of vertices)
will imply a mapping of the successors of the vertex (set of vertices)
onto the successors of the image(s) of the vertex (set of vertices).

d) The usual notation for permutations as found in Dean (xxiv)
is used for vertex permutations. Thus i % g 2 indicates a permuta-
tion where 1+4, 3+1, 2+3 and 4+2.

The program numbers the vertices of the graph from 1 to n where
n is the number of vertices in the graph. The root of each tree gen-
erated by the program represents a mapping of vertex 1 onto another
vertex in the graph. Thus, a total of n trees may be generated, one
each for the mappings 1-»1, 1+2, ..., 1»n. Beginning with the root of
the first tree, 1+1, Theorem 2.3 says that the successors of vertex 1
must map onto the successors of vertex 1. That is, the mapping 1>1 may
imply the mappings which become the nodes on the next level of the tree.

In order to find all the automorphisms in the automorphism group,
the program actually considers at the ith level of the tree only mappings
of vertex i onto another vertex.

The same procedure is used throughout the whole process of generat-
ing the tree. By Theorem 2.3, the mapping represented by any node
indicates which mappings will be considered next. This, of course,
means that the algorithm attempts to include in each branch only mappings
which may be in an automorphism. It is possible that the vertices
involved in a mapping at level i-1 of the tree have no successors or

do not imply any mappings of vertex i. 1In this case, the program must
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consider all the possible mappings of vertex i.

Thus, for the second level of the first tree, the program checks
all mappings of vertex 2 implied by 1»1. If 1+1 implies no such mappings,
then all the mappings 2»1, 2»2, ..., 2»>n are checked. When a mapping
is 'checked' it means that the valencies of the two vertices are com-
pared. If they do not match then the mapping and all subtrees that would
have this mapping as a root are abandoned. For example, the program
in considering a root mapping of vertex 1 actually only generates trees
for mappings of vertex 1 onto a vertex with matching valence. In
general, the number of trees generated by the program is much less than
the number of vertices in the graph.

If the valencies of the vertices do match, the program also checks
to see that the mapping does not contradict any previous mapping in the
branch being traversed. A contradiction exists in the mapping i+j
if vertex j has been already used as the image of some other vertex.

This follows from the fact that an automorphism is a 1-1 onto mapping

of the vertex set of the graph. Finally, the program checks that the
mappings implied by this mapping (if any) do not contradict any previous
mappings. In this case it is also necessary that the implied mappings
do not map any vertex onto a different image from an earlier mapping

of the vertex. This point is made clear by the example below.

The next example describes the operation of the algorithm for the
graph in Figure 2.5. This detailed explanation will indicate how Theorem
2.3 is used to limit the number of mappings that must be considered and

how often only part of a branch need be traversed.
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FIGURE 2.5
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Example:

Start with 1>1. Vertex 1 has no successors so no mappings for the
next level of the tree are implied by 1+1. Thus, the program must check
all the possible mappings of vertex 2. 2+l contradicts the previous
mapping 1+1, but 2+2 is possible. The program goes to the next level
of the tree. The possibilities 2+3, 2+4 and 25 will be considered
later. Vertex 2 has no successors meaning that all the possible mappings
of vertex 3 must be considered on the next level. 31 and 3+2 contra-
dict the previous mappings 1+1 and 2+2 respectively. 3+3 checks out
because the implied mapping 2+2 (i.e. 3+3 =>2+2) agrees with the pre-
vious mapping of vertex 2.

No other mappings are implied by 3+3 so the program proceeds to the
next level. No mappings of vertex 4 were imgdied by 3+3 so all the
possible mappings of 4 must be considered. 4+1, 42 and 4+3 all contra-
dict previous mappings. The next possibility is 4+4. 44 => {1,2,3,5} ~
{1,2,3,5}. This seems to indicate that there are 24 implied mappings

to be checked. However, any use of vertices 1, 2 or 3 would contra-

dict a previous mapping in the current branch (permutation). Thus,
12345
only 5+5 is possible. It checks out and the permutation\l 2 3 4 5/,

the identity automorphism has been generated.

The program now backs up the tree to consider the possible mappings
which were not checked and to generate branches (permutations) as far
as possible. The first such mapping is 4+5. The valencies do not match
and this is the last possible mapping of vertex 4 in this subtree so

the program backs up one more level to consider 3+4. The valencies
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do not match. 3*5 «> 2+1 which contradicts the previous mapping 1-1.
Baddng up again, the mappings 23, 2+4 and 2+5 all fail because the
valencies do not match. There is nowhere to back up to from here so
this tree is finished and only one automorphism has 1-1.

The program now considers the next possible mapping of vertex 1,

1+2. A tree with this root is generated and the result is a single
12345
automorphism given by the permutation \1 2 3 4 5). No more trees are
generated as the root mappings 1+3, 1+4 and 1+5 all fail the valence
check. The program is finished and has found only one non~trivial
automorphism. Figure 2.6 illustrates part of the tree structure that
would be generated in finding the automorphism group of the graph in
Figure 2.5. The tree with root node 1+2 has not been included.

The above discussion has examined attempts to find an efficient
algorithmic solution to the automorphism group problem. However, the
same problem can be attacked in a heuristic fashion. Unger has designed
a heuristic program which attempts to find a solution for the related
problem of graph isomorphism.(xi) Given two graphs the problem is to
determine whether the graphs are isomorphic and, if so, to find an
isomorphism of the graphs. As with the graph automorphism problem there
is a simple enumerative, algorithmic solution, but one which is imprac-
tical for almost all graphs because of the amount of time required to
complete the algorithm. Unger's program GIT, short for Graph Isomorphism
Tester, partitions the graphs into possible vertex pairing lists according
to various vertex properties. For example, if two graphs are isomorphic
they must have the same number of vertices with the same valence. More-

over, the set of vertices of the first graph having wvalence k must map
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1->1

13 -4 1-»5

oK xR

5 BRANCHES

2>1 252 23 24 2+5

31 32 33 34 35
X X X l
2>1
41 42 4+3 44 45
{l,2,3,5i[{1,2,3,5}
'1 23 5)
12 35,

FIGURE 2.6 : CALCULATION TREE



onto the set of vertices of the second graph having valence k. These
pairing lists may be further refined by comparing other properties

of the vertices in the two graphs. In this manner GIT attempts to re-
duce the number of possible mappings which might be isomorphisms.

Should there be a mismatch between two pairing lists, that is, one graph
has a different number of vertices having some property than are found
in the other graph, then the graphs cannot be isomorphic and GIT is
finished.

The final routine in GIT is an algorithm similar to Jackson's
which considers all the possible mappings according to the pairing lists.
This routine will determine whether the graphs are isomorphic regard-
less of how much the heuristic tests have refined the pairing lists.
The only difference is that the more the pair lists are refined the
fewer the number of mappings that must be checked. Among the various
vertex properties that Unger suggests for refining the pair lists are
the following:

1) The number of vertices which can be reached from a
vertex by a path of length n. The path need not be
simple.

2) The number of vertices which can be reached from a
vertex by a simple path of length n.

3) A binary valued function which indicates whether a
vertex is in a closed circuit or not.

4) Variations and combinations of the above including

variations for undirected and directed graphs.



The next question is "What has all this got to do with the problem
of calculating the automorphism group of a graph?'". The question will
be answered in full in Chapter IV when we investigate a heuristic ap-
proach to the automorphism group problem. In fact, this discussion
will show that the heuristics used by Unger as well as many others
can be applied to the problem of reducing the number of permutations
of the vertex set which may be automorphisms of the graph.

There has not yet been any mention of any research related to the
visual representation of graphs. The reason for this is quite simple;
there has been very little work in this area although there has been
considerable research into such indirectly related problems as deter-—
mining whether a graph is planar. Wolfberg has written a tree layout
routine using his interactive graphics system.(ix) His routine accepts
a user drawn tree and a user selected root vertex. The tree is then
redrawn on the screen.with the root at the top of the screen. The ver—
tices are positioned at different levels according to their distance
from the root vertex. They are also drawn so that no edges intersect.
The endpoints of the tree are equidistant from each other along the
horizontal direction although they may obviously be at different levels
vertically. The positioning of the end points determines the rest of
the positioning since each remaining vertex is positioned so that its
horizontal location is the average of the horizontal co-ordinates of the
connected vertices which are directly below it.

The problem with this routine is that it requires the user to draw

the tree beforehand. Moreover, the ordering of the vertices at each
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level depends upon the order in which they appear in the original tree.
This order is preserved by the layout routine with the exception of any
reordering necessary to prevent edges from intersecting. However, the
order of those vertices at level i+l with respect to the vertex at level
i to which they are connected will always be the same as in the original
graph. In Chapter V we shall present a tree representation routine
which uses only information based on the structure of the graph in
positioning the vertices.

Most of the research to date on the visual representation of graphs
has centered around the question of whether a graph is planar and, if
so, how to represent the graph. For instance, Fary has proven that if
a finite graph can be drawn on the plane it can be drawn using only
straight line edges provided the graph does not contain two edges joining
the same vertices and does not have any loops.(xxii) Tutte has also
investigated the problem of drawing a graph.(xxiii) However, Tutte
was mainly interested in nodally three connected graphs. Moreover,
neither Fary nor Tutte was primarily motivated by the practical nature
of their constructions for straight line representations of planar graphs,
but were more interested in showing that such a representation was
possible. As we shall see in Chapter V we do not restrict ourselves
to visual representations of only planar graphs. But more to the point,
the problem of whether the final visual representation of the graph

is useful and pleasing to the user cannot be ignored.
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CHAPTER III : SYMMETRY IN GRAPHS

In the previous chapter it was stated that the choice of the
automorphism group of a graph as a basis for generating visual repre-
sentations of the graph was not an obvious choice to make. This chapter
examines an attempt to create visual representations for a single class
of graphs without using the automorphism group of the graphs. The
representation routines described in this chapter were written before
the GSYM system existed.

The purpose of the chapter is to give the reader a better under-
standing of the difficulties involved in creating visual representations
for graphs. The discussions show how experience gained from these first
representation schemes led to the decision to use the automorphism
group symmetries as a basis for further investigation of representation
techniques for graphs. It is also shown how deficiencies and problems
encountered with these representation routines influenced the design
of the GSYM system and, in fact, indicated the actual need for an in-
teractive graphics system such as GSYM.

The problem of interest was how one could generate visual displays
of the class, C, of cyclically 4-connected, cubic planar maps. G. B.
Faulkner, of the University of Waterloo, had created an algorithm for
generating these maps. The difficulty was to devise a method whereby
displays of the maps could be produced on a display screen without

having to draw each one manually. Initially, the problem was restricted
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to a special subclass of the larger class C. Faulkner catalogued the
class C according to region size, that is, the number of regions in
a graph, starting with six regidn graphs, the smallest graphs in class
C. For every region size mnx6, there exists a graph consisting of two
polygons of n-2 edges each such that each vertex in one of the polygons
is adjacent to exactly one vertex in the other polygon. Such graphs
will be referred to as prism graphs. Figure 3.1 gives several examples
of prism graphs represented visually as concentric polygons. The prism
graphs are actually only chains of 4-gons. By restricting the problem
to that of generating visual representations for prism graphs the repre-
sentation problem becomes much simpler. If the two concentric poly-
gons can be isolated a screen display of the graph can be easily produced
using the following representation scheme:

Let N be the number of vertices in a polygon and D the screen dis-
tance desired between vertices in the polygon. Let 0 = 180° -

((n-2)*180°) /N. If (x ) are the screen co-ordinates of a vertex

1’71
of the polygon then the screen co-ordinates of the remaining vertices

are given by the equations:

= * : %
X1 X, + D*cos(i*p)

Yiep = Y4 + D#¥*sin(i*p)

Using this scheme it is possible to display the two polygonmns,
lining up the adjacent vertices on the two polygons in order to obtain
a concentric polygon picture of the graph. The edges of the graph can

be displayed as straight lines between the appropriate vertices omnce

all the vertex co-ordinates have been calculated. Figure 3.2 illustrates
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FIGURE 3.2
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how a polygon with 8 edges might be displayed. If this were to be the
outer polygon of a prism graph, then one would add the inner polygon by
simply changing the starting co-ordinates and the value of D and re-
peating the above scheme.

Locating two polygons in a prism graph to serve as the concentric
polygons of the visual representation is not difficult. The term
'concentric' is used to indicate the polygons being sought; it does not
have any graph-theoretic meaning. These two polygons are also referred
to as the 'ring' polygons of the graph because of the nature of the
visual representation as a ring or a chain of 4-gons.

The algorithm for finding two concentric polygons for the visual
representation builds this chain 4-gon by 4-gon. If P is the first
4-gon of this chain then P has both concentric polygons passing through
it. Two of the vertices in P are in the outer ring polygon and the
other two vertices are in the inner ring polygon. The choice of
which pair of adjacent vertices in P is placed in the outer ring is
immaterial as the algorithm will always find two concentric polygons
for the visual representation. Although the ring polygons used may differ,
the visual representation for a prism graph of n vertices will always
be a chain of n/2 4-gons.

Figure 3.3 illustrates the possible 'directions' of the ring poly-
gons through the starting 4-gon P. *Direction' is another geometric
term which in the strict sense is only meaningful when used with an
actual display of the graph. Such terms are used here only to simplify
the description of the algorithm. Since the choice of which vertex

in P is to be placed in the outer ring polygon:is quite arbitrayy, the
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vertex with the smallest vertex number is always placed in the outer
ring.
Beginning with P and a direction through P, the chain of 4-gons
is extended a pair of vertices (i.e. the next 4-gon) at a time. Thus,
a 4-gon is added to the chain by adding a vertex to the outer ring and
a vertex to the inmer ring.2 This procees is repeated until all the
vertices in the graph have been placed in the ring polygon. The follow-
ing is an algorithm which locates two ring polygons in a prism graph:
1) Starting with any vertex, K in the graph find a 4-gon P

containing v Put v, in the outer ring polygon.

L’ 1
2) Let v, and v, be the two vertices in P adjacent to vy and
let v, be the fourth vertex in P.

4
3) Set i = 3.

4) Let u and w be vertices which are not yet in a ring polygon
and which are adjacent to v, and Vil respectively. 1If no
such vertices exist4 the algorithm is complete and the two
ring polygons have been found. Otherwise, u is the next
vertex in the outer ring polygon and w is the next vertex in
the inner ring polygon.

5) Set i = i+2. Go to step 4.

1. This choice may be overridden by the user who may specify a starting
polygon and direction through it.

2. These vertices are of course adjacent.

3. Unless overridden by the user the program will place v,in the inner
ring polygon. This sets the 'direction' of the ring polygons through

P. Thus, Vg is in the outer ring and v, is in the inmner ring.
4. That is, all the vertices in the graph have been placalin a ring
polygon.

5. As shown in Figure 3.3.
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This algorithm produces a visual representation for a type of
graph which occurs only once for each region size in the class C.
However, it forms the basis for a heuristic program for generating visual
representations for the whole class C.

The next step was to investigate the method used by Faulkner to
produce graphs from class C. The prism class is obtained by starting
with the 6 region prism graph and adding to the graph a new edge with
new end-vertices for each consecutively large region size. The edge
must be added so that it splits one of the 4~gons in the ring into two
new 4-gons., Figure 3.4 illustrates how this is done. As it happens,
roughly the same method is used to genmerate all the graphs in class C,
again starting with the six region prism graph. One adds a new region
by adding a ‘'diagonal edge' to an existing map. This diagonal edge
and its new end-vertices must divide a polygon of the original map into
two new polygons, both having at least 4 edges. By 'diagonalizing'
every polygon of every map of region size n in class C one can produce
every map of region size n+l in class C.

This procedure is simple, except that it results in the creation
of many different maps of graphs which are isomorphic. Figure 3.5
shows how the only six region graph im class C can be 'diagonalized'
by adding the new edge (vl,vz) to get two different maps of what is
really the same 7 region graph. The significance of Faulkner's algorithm
is that is makes it possible to systematically generate one map for each
non—~-isomorphic graph in class C. However, the point of interest is that

all the graphs of class C are essentially being generated from the simple
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prism graphs, suggesting that the prism graph structure might be common
to all class C graphs. That this statement is false is evident from the
graph in Figure 3.6 which shows a map of an 8 region graph which cannot
be transformed into a map of an 8 region prism graph. Of course, this
must be the case or the prism class would be the same as the whole class
C. The ring structure in Figure 3.6 is, however, very similar to that
used in the maps of the prism graphs. The only real difference is the
pair of vertices on the inner ring which are the end-vertices of an

edge inside the inner ring polygon. This suggests that it might be
possible to use the ring structure as the starting point of a representa-
tion routine for class C graphs.

With this more complex ring structure in mind the previous al-
gorithm was modified to allow for the inclusion of vertices on the inner
polygon ring which are not adjacent to vertices on the outer ring.

This in turn means that it is necessary to allow for the possibility
that some or maybe all of the polygons in the ring chain might contain
more than 4 edges. Instead of an algorithm for finding the chained
4-gons of a prism graph, a heuristic routine has been derived which
attempts to find a chain of n-gons as the ring structure of the map.

The representation routine will still attempt to display the graph
as a chain of polygons. However, these polygons no longer are restricted
to 4-gons but may be n-gons, that is, polygons with n edges (and n vertices)
where n>4. Figure 3.7 is an example of one such representation. The
ring structure contains two 4-gons but it also contains three 5-gons.

The 5-gons are placed in the ring structure so that two edges of each

5-gon are found on the inner ring polygon. The same approach will be used
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to add any n-gon where n>4. That is, where one edge was added to the
inner ring polygon to add a polygon to the ring structure of a prism
graph, a path of one or more edges is added to the inner ring polygon
in incrementing the ring structure of a class C graph.

The representation routine was designed so that when it seeks to
increment the ring structure, it attempts to add a polygon with as few
edges as possible. If it fails to find a 4-gon for the next polygon
it will search for a suitable 5-gon, then a 6-gon and so on. Similarly
the routine attempts to find a starting polygon with only four edges.
Failing this, it attempts to find a starting 5-gon, then a 6-gon and
S0 on.

It became appatent that a limit on the number of edges allowed in
any polygon in the ring structure was needed. Such a limit was needed
to force the program to attempt to build a chain of small polygons if
possible before admitting very large ones. Thus, N indicates the maxi-
mum number of edges allowed in any polygon in the ring structure. It
is possible for the user to specify the value of N. Thus, it is possible
to prevent the program from using excessive execution time testing all
the possible combinations of polygons that may go in the ring structure.
Moreover, it gives the user greater control over the form the representa-
tion is to take.

The program attempts to find a starting 4-gon (n=4) for the ring
structure. If the graph does not contain a 4-gon, n is incremented
by 1 and the program attempts to find a starting 5-gon. This process

is repeated until a starting n-gon is found or until n exceeds the limit N.
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If n>N then the user is asked whether N should be irncremented by one.
If so, then the process is repeated again. Otherwise, the program is
finished and no representation has been found.

Once a starting n-gon is located one of the edges of the n-gon
is chosen to go on the outer polygon ring. If the program is unable
to complete the ring structure with this edge on the outer ring it will
try all the other edges in the starting n-gon before searching for
an alternative starting n-gon.

The process of extending the ring structure is very similar to that
used for prism graphs. The program again attempts to add a pair of
adjacent vertices to the ring polygons, one vertex to the outer ring
polygon and the other to the inner ring polygon. However, for non-
prism graphs the new pair of vertices6 may not be adjacent. If they
are the newest element of the ring structure is a 4-gon. Otherwise,
however, the program attempts to find a path joining the two vertices.
This path may not pass through any vertices already in the ring polygons7.

If no such path exists the program backs up and begins again with
another edge of the starting n-gon on the outer ring polygon. If such
a path exists then another n-gon is added to the chain. The maximum

length of the path is N-3. The vertex in the new n-gon adjacent to the

6. Which are found the same way as in the prism graph routine. That
is, by taking the pair of vertices (which are not yet in the ring
structure) which are adjacent to the last pair of vertices added
to the ring polygons.

7. The case of adjacent vertices may be considered as an instance where
the path has length 1.
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to the last vertex in the outer ring polygon is added to the outer
ring polygon.8 The vertex in the path that is adjacent to this vertex
is added to the inmer ring polygon.

Whenever the path discussed above has length greater than one there
will be one or more vertices on the path which are not added to either
of the ring polygons. These vertices are placed in a special list, L,
and are referred to as 'inner' vertices because they will be displayed
inside the ring structure.

The ring structuré is complete when the last n-gon of the chain
passes through the first pair of vertices in the ring polygons. This
is the only case when the n-gon added to the chain may contain vertices
already in the ring polygons.

Once two ring polygons have been identified, the ring structure
is displayed using the method for drawing concentric polygons. If all
the polygons in the chain are 4-gons (graph is a prism graph), then the
display is finished. Otherwise, the vertices in L are placed on the inner
ring polygon. These vertices are spaced equidistantly along the portion
of the inner ring polygon in which they occurred. For example, the
ring polygons (1,2,9,7,5) and (4,3,10,8,6,) in Figure 3.7 would have
been displayed first (including the edges joining the adjacent vertices
of the ring polygons). Vertices 11,12 and 13 would then have been
displayed in the middle of the lines originally connecting the vertex

pairs 10 and 8, 6 and 4, and 3 and 10 respectively.

8. This vertex is now referred to as the last vertex added to the outer
ring polygon.
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The display is only partially finished at this point because the
vertices in L have only two edges drawn incident to them and there
may be verticeswhich are not yet in the display.

If any vertices in L are adjacent then these vertices are joined
by straight lines in the display. All such adjacent pairs of vertices
are removed from L. If L is now empty the representation is finished.
The graph in Figure 3.7 does not contain any such pairs of adjacent
'inner' vertices.

Otherwise, L is examined for any pairs of vertices which are con-
nected by a path of length 2, the middle vertex of the path being one
which is not yet in the display. Straight lines are drawn joining all
such vertex pairs. The middle vertex of each path is displayed at the
mid-point of the corresponding line. The middle vertices are added
to L while the vertices in L joined by the paths are removed from L.
The vertices 1l and 12 in Figure 3.7 are joined by such a line with
vertex 14 at the mid-point of the line.

If L was altered by the previous step it is necessary to go back
to the step where L is checked for adjacent vertices. For the graph
in Figure 3.7 this is necessary. At this point L = {14,13}. But vertex
13 is adjacent to vertex l4 so that the two vertices will be joined by
a straight line and the representation is finished.

If L was not changed by the previous step,10 then an edge is drawn

incident. to each vertex in.L. These edges are drawn towards the centre

10. This means that none of the vertices in L are adjacent and none
can be joined by a path of the type described above.
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of the display. The length of the edge is under user control and depends
upon the desired size of the map of the graph. The new end-vertex of
each edge is added to L while the vertices previously in L are deleted
from L. The program now loops back to the point where L is checked for
adjacent vertices. The heuristic used by the representation routine
to find a suitable ring structure and then display the graph is given
below:
1) Let N (N24) be the maximum number of edges allowed in any poly~
gon in the ring structure.11 Let n = 4 and L = §.
2) Find a (anotherlz) starting polygon with n edges. If the graph
does not contain such an n-gon set n = nt+l and go to step 3.
Otherwise go to step 4.
3) If n>N then set N = N+1.13 Go to step 2.
4) Choose one of the edges of the starting n-gon to be an edge
on the outer ring pog.ygon.14 If all the edges in the starting
n-gon have already been tried, go to step 2.

5) Find a pair of vertices, u and w, which are not yet in the

11. The user specifies a value for N before the routine begins.
12. One which has not yet been tried.

13. The user is asked if he wisheg N incremented. If not the routine
halts without finding a representation of the graph.

14. The initial choice is quite arbitrary and is made in the same
manner as for prism graphs.
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ring structure 15 such that u is adjacent to the last vertex
added to the outer ring polygon and w is adjacent to the last
vertex added to the inner ring polygon. If no such vertices
u and w exist then go to step 4.

If u: is adjacent to w then add u and w to the outer and inner
ring polygons respectively and go to step 5. Otherwise, go
to step 7.

Find a path from w to u with length % N-3 such that the path
does not contain any vertices already used in the ring struc-
ture. If no such path exists then go to step 4, otherwise

go to step 8.

Add vertex w to L. Also add to L all the other vertices in
the path except vertex u and that vertex (in the path) which
is adjacent to u. Let w now denote the vertex in the path
which is adjacent to u.

Add u and w to the outer and inner ring polygons respectively.
Go to step 5.

Draw the ring structure using the display method for concen-
tric polygons.

If L is empty the representation is finished. Otherwise, add

all the vertices in L to the display.16

ring polygon. If vertex w is the first vertex of the inner ring
polygon or there is a path from w to the first vertex of the inner
ring polygon of length < N-3 (path of the type described in step ﬂ,
then the ring structure is complete, Go to step 10 in this case;
otherwise, go to step 4.

The vertices are spaced. equidistantly along the portions of the
inner ring polygon in which they occurred.
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12) Join all adjacent pairs of vertices in L by straight line edges.
Delete all such vertex pairs from L. I1f L is now empty the
representation is finished.

13) For every pair of vertices in L for which there exists a path
of length 2 between the vertices (the middle vertex of the
path must not be in the display yet), draw a straight line
joining the vertices. Display the middle vertex of each path
at the mid-point of this straight line. Delete each such vertex
pair from L, at the same time adding the middle vertex of each
path to L. TIf no such vertex pairs existed then go to step
14, otherwise go to step 12.

14) Draw a straight line from each vertex in L towards the centre
of the display screen.17 For each vertex, X, in L add to
L the vertex, y, which has not yet been displayed and which is
adjacent to x. Delete x from L. Display y as the end-point
of the edge which was just drawn incident to x. Go to step
12,

Appendix B contains examples of some of the displays obtained
using this representation routine. There is also a detailed flowchart
of the representation routine. Just as Faulkner generated planar maps
for the class C, the representation routine creates planar representations.
Once the ring structure has been displayed steps 12 to 14 add vertices

and edges to the display in the form of polygons with no intersecting

edges.

17. The length of these lines is specified by the user before the
representation routine begins.
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In order to illustrate how the representations in Appendix B were
created, the following example describes how the routine might create

a representation of a 10 region graph.

Example:

10 11

The graph does not contain a chain of 4-gons so that if N were
initially set equal 4 the user would eventually be asked to increment
N as described in step 3 of the heuristic. In order to shorten the
example the assumption has been made that N is initially set to 5.

1) N=5,n=4and L = 0.

2) The starting &4-gon (1,2,15,16) is located.18

4) Let the edge joining vertex 15 to vertex 2 be the first
edge in the outer ring polygon. Vertex 15 is then the
first vertex in the outer ring polygon and vertex 16

is the first vertex in the inner ring.polygon.

18. The order in which starting n-gons are tested depends upon the num-
bering of the vertices,
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Vertices 2 and 1 become the last vertices in the outer
and inner ring polygons as the 4-gon (1,2,15,16) becomes

the first polygon in the ring structure.

bN
e

< b

16 1

u = vertex 6 and w = vertex 5.
Vertex 6 is added to the outer ring polygon and vertex
5 to the inner ring polygon as vertex 6 is adjacent to

vertex 5.

Vertices 6 and 5 are adjacent to vertices 11 and 9 respec-

tively. Therefore, u = 11 and w = 9.

Vertex 1l is not adjacent to vertex 9.

The path (9,10,11) is the required path joining vertex
9 to vertex ll1. The length is < N-3 (N=5) and vertex
10 has not yet been used.

Add vertex 9 to L. w now denotes vertex 10, the vertex

in the path (9,10,11) which is adjacent to vertex ll.
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16 1 5\ ——10 4;
inner vertex
9
5) u = vertex 12 and w = vertex 13.
6) Vertex 12 is added to the outer ring polygon and vertex
13 to the inner ring polygon as vertex 12 is adjacent
to vertex 13.
5) Vertices 12 and 13 are adjacent to vertices 7 and 14
respectively. Therefore, u =7 and w = 14.
6) Vertex 7 is not adjacent to vertex l4.
7) The path (14,8,7) is the required path. The length is
S N-3 (N=5) and vertex 8 has not yet been used.
8) Add vertex 14 to L. w now denotes vertex 8, the vertex
in the path (14,8,7) which is adjacent to vertex 7.
9) Vertex 7 is added to the outer ring polygon and vertex
8 to the inner ring polygon.
15 2 6 11 12 7
<
16 1 s ~~""10 13—~ w
inner vertex inner vertex
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Vertex 11 is added to the outer ring polygon and vertex

10 to the inner ring polygon.

9 14
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u = vertex 3 and w = vertex 4.

Add vertex 3 to the outer ring polygon and vertex 4 to the
inner ring polygon.

There is no vertex adjacent to vertex 3 which is not in

the ring structure. However, vertex 3 is adjacent to vertex
15, the first vertex in the outer ring polygon. Thus

u is set to vertex 15. Similarly, there is no vertex
adjacent to vertex 4 which is not already in the ring struc-—
ture. However, vertex 4 is adjacent to vertex 16, the

first vertex in the inner ring polygon. Therefore, the

ring structure is complete.

The ring structure is displayed as shown below using the

concentric polygon display method.
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11) The inner vertices 9 and 14 in L are added to the display.

12) A straight line representing the edge (9,14) is drawn
joining the adjacent vertices9 and 1l4. Vertices 9 and
14 are deleted from L. Since L is now empty the repre-

sentation routine is finished.
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The representation routine for prism graphs is an algorithm.

Given a prism graph it generates a ring structured display of the graph.
However, the more general representation routine for class C graphs is
a heuristic.

Given a class C graph it may not succeed in creating a visual
representation of the graph. It fails to do so whenever it is unable
to find the required ring structure. In step 7 when attempting to ex-
tend the polygon chain only one polygon is considered even if several
suitable polygons exist.19 Should the routine then fail at a later point
it does not back up to test the other possibilities.

It would be quite easy to have the routine back up and try all the
possibilities. However, the routine already requires a relatively large
amount of execution time. In fact several features which are described
below were added to the routine in an attempt to reduce the amount
of execution time it consumes. Checking all the possible paths would
only use up even more exXecution time.

Moreover, there is mo proof that the ring structure used in the
representations must exist in every class C graph. Even if all the
possibilities were tried the routines might still not find a pair of
ring polygons. However, by the time the representation routine had
been implemented it was clear that the routine was using too much
execution time to be satisfactory and proving that a ring structure existed
for every class C graph would not eldiminate this problem. The reasons
for abandaing this representation routine in order to investigate auto-
morphism group based routines are discussed later in the chapter.

19. That is, there may be more than one path from w to u of the type
required.
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Several features were used in the final implementation of the
representation routine in order to reduce the amount of execution time
required to produce a map. The user is able to set the maximum polygon
size to be used, preventing the routine from trying all the possible
polygon sizes up to and including the largest polygon size in the graph.
In addition, the user may set an extension limit for edges. 1If this
is greater than O then the routine can try to form a chain of n-gons,
n24, immediately rather than attempt to find a chain of 4-gons first.
Only occasionally will the graph actually be a prism graph. The user
may also specify the starting polygon for the ring structure. This
does not mean that if the routine fails with the specified polygon it
-might not have succeeded with another. Rather, it prevents the program
from running away with execution time trying all the different possible
starting polygons. Finally, the user may indicate that there may be
an axis of symmetry (mirror-image symmetry) through the starting polygon
he has specified. This forces the routine to consider only one direc-
tion through the starting polygon. Notice that if the routine does
succeed in finding a visual representation using the specified starting
polygon and axis of symmetry it does not follow that the graph is ac-
tually symmetric about the given axis. This is evident from the map
of the graph shown in Figure 3.7.

It is rather difficult to attempt to evaluate this representation
scheme. The visual representations it does produce are quite interest-
ing and pleasing. As can be seen from Appendix B it is also very suc-

cessful in finding a representation for a graph, although it may require
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several repetitions of the same graph with different user specified
starting polygons to do so. In fact, a class C graph has not yet been
found. for which the routine would not eventually produce a representa-
tion. The representations are also planar and stress the polygonal nature
of this class of graphs very effectively.

The heuristic is also capable of creating visual representations
of 'nearly symmetric' graphs. In other words, the heuristic may produce
an almost symmetric display of a graph which has only trivial automor-
phisms. The visual representation routines discussed in Chapter V re-
quire at least one non-trivial automorphism before they will create
a display.

Unfortunately, the heuristic is equally capable of creating a nearly
symmetric display when there actually exists a symmetric visual repre-
sentation which it did not find. The routine is also expensive in terms
of the execution time required to check all the possible combinations
of starting polygons and ring structure polygons which might be used
in a map. This follows from the fact that the routine does not make
use of any information which could be obtained regarding the structure
of the graph. The user has.very little, conttol over the operation of
the program. Once it begins execution he cannot even suggest which
paths seem to offer the greatest chance of success and which are likely
to prove fruitless. The result is a very simplistic trial and error
type of heuristic. Finally, although the ring structure display
usually proves quite satisfactory, the routine is overly rigid in that

the user cannot alter the final visual representation.
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While working with this routine it became apparent that there were
several improvements which were necessary. These were changes needed
not so much to reduce the execution time used by the heuristic as to pro-
vide a better graphics tool for implementing the visual display segments
of the program. It was obvious that there had to be more interaction
between the user and the representation process. This would allow the
user to direct the operation of the routine but, more important, would
make it easier to test different algorithms for creating representations.
In connection with the representations the graphics software must allow
the user to save the visual representations in a backup file from which
they can be easily recovered at a later date. It should also be possible
to manipulate the displays without reference to the representation rou-
tines, thereby permitting the user to insert his own improvements in
any of the representations. It would also be very useful to be able
to obtain copies of the representations without having to copy the dis-
play from the screen by hand. That is, it should be possible to use
a plotter to create printed copies of the graphs shown on the screen.

As already mentioned the above heuristic fails to use, other than
indirectly, any of the information readily available on the structure
of the graph. As a result the visual repmsentations are obtained in
a rather haphazard fashion. It is impossible to tell how many representa-
tions might be obtained from a graph and there is no systematic way
to catalogue and compare the representations of different graphs.

It was primarily this lack of a systematic approach that led to
an investigation of the feasibility of using the automorphism group of

a graph as a basis for generating its visual representation. The main
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obstacle, of course, was the fact that obtaining the automorphism group
of the graph could be very expensive in terms of execution time. At
the time however, the major concern was whether the automorphism group
would be useful in creating the representation and not whether the
cost of calculating the actual group would be prohibitive. The major
consideration was how well the symmetries of a graph as represented
by the mappings of the automorphism group would lend themselves to a
visual portrayal. Should we be successful here we could then worry
about the problems and costs of calculating the automorphism group.
Thus, the problem became one of interpreting the automorphism group
mappings visually by transforming the symmetries present in the mappings
into concrete display images. A large number of graphs were chosen
at random and their automorphism groups calculated. The automorphism
groups were then classified according to their group structure. That
is, the automorphism groups were considered as abstract permutation
groups. In many cases the automorphism groups were cyclic groups.
Occasionally, one also encountered a dihedral group structure. This
suggested that an attempt be made to create a visual representation
based on the properties of such groups. For example, if an automorphism
group was cyclic of order n one might try to create a visual representa-
tion showing a cycle or rotation of n vertices.
The most immediate objection to this approach is that one of the
reasons for using the automorphism group was to be able to generate
a different visual representation for each element in the group and the
above method only permits one representation per group. Another objec-

tion is evident when one considers the rather well known fact that any
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two cyclic groups of the same order are isomorphic. But it is possible

for non-isomorphic graphs to have isomorphic automorphism groups.

Therefore, by rigidly applying this approach one could be forced to generate
almost the same representation for two non-isomorphic graphs because

they both had cyclic automorphism groups of order n. The two graphs

in Figure 3.8 are clearly not isomorphic since they have different

numbers of vertices; however, they both have automorphism groups which

are cyclic of order 4. Thus, a representation routine using the above
approach would try to generate the same representation for both graphs.
This, of course, is quite absurd.

The last and most strenuous objection to the previously mentioned
‘approach is that it does not really attempt to represent the symmetries
of the graph at all. What happens is that the method actually trys to
represent an abstract group structure. Only rarely will the structure
of the automorphism group correspond to the structure defined by the
symmetries of the graph. The graph shown in Figure 3.9 is one such
case. The automorphism group is cyclic of order 5 while the automor-
phisms, considered as permutations of vertices, all have a single orbit
containing all 5 vertices in the graph. It would be reasonable to repre-
sent these mappings as rotations of 5 elements, the same form the visual
representation would take if the previous approach was used.

On the other hand, the graph in Figure 3.10 has an automorphism
group which is ecyclic of order 6 while the automorphisms themselves
contain 9 vertices. The closest one can come to a cycle of 6 elements

is with the two permutations (automorphisms) in the group which each
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have an orbit with 6 elements. In each case there remains the problem

of how to interpret the other orbit with 3 elements. Therefore, this
approach is rejected in favour of one which takes into account the struc-
ture defined by the automorphism group mappings rather than the struc-
ture of the automorphism group itself.

With this goal in mind an investigation of the structure of the
automorphism group mappings themselves was begun. These mappings are
only permutations of the vertex set of the graph and may therefore be
partitioned into orbits. An orbit containing a single vertex means that
the vertex is fixed by the respective automorphism, whereas an orbit
containing two vertices indicates that these vertices are interchanged
by ﬁhe automorphism. Lastly, an orbit containing more than two vertices
represents a cyclic permutation of these vertices by the automorphism.
These three types of orbits coincide with the two common forms of sym-
metry with which most people are familiar, mirror-image symmetry and
rotational symmetry. Mirror-image symmetry or, as it is sometimes called,
biplanar symmetry, consists of a reflection about an axis of symmetry.
Rotational symmetry is a repetition of an image about a point, that
is, a rotation of the image about a central point. The examples in
Figure 3.11 should provide a better explanation of these two concepts
than any detailed and verbose written description.

The point is that mirror-image symmetry in an object can be rep-
resented by a mapping which maps the points on the axis of symmetry
onto themselves and interchanges those points on opposing sides of the

axis. A rotation is simply a cyclic permutation of the same element
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or portion of an object about a central point. For example, a rotation
of a spoke and part of the rim produces the wheel in Figure 3.11.

The conclusion is that any automorphism can be separated into mirror-
image and rotational mappings of the vertices. This provides the link
between the symmetries of a graph and a suitable visual image that was
needed. Each mapping in the automorphism group defines a partition of
the vertex set into three classes: fixed vertices, mirror-image vertex
pairs and rotational vertices. The combination of fixed vertices and
mirror-image pairs corresponds to any mirror-image symmetry in the graph
while the rotational vertices correspond to the rotational symmetries.
In Chapter V it is shown how the visual images corresponding to these
symmetries may be used to create a representation illustrating the struc-
ture of the graph.

However, there are several peculiarities of the orbits of the
automorphism mappings which will affect any visual representation scheme
based on these orbits. The diagrams .in Figures 3.12A and 3.12B show
a simple yet typical example of the structure often found in automorphism
mappings. The visual representation shown for each mapping is designed
to illustrate the mirror-image and rotational symmetries in the res-
pective automorphism. Notice that the representation for automorphism
3 is identical to that for automorphisms 4 and 5. The reason for this
is that in automorphiéms 4 and 5 only two vertices are 'moved' by the
automorphism while the rest of the vertices are fixed. The result is
that the visual representations are not unique, indicating that the
automorphism group approach will not (directly) provide a unique visual

representation for every mapping in the group.. Moreover, for all but
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: 2
5 : ;
AUTOMORPHISM GROUP: ORBITS:
1 2 3 4 5 {1}, {2}, {3}, {4}, {5}
2 1 5 4 3 {1,2}, {3,5}, {4}
3 5 1 4 2 {1,3}, {2,5}, {4}
5 3 2 4 1 {1,5}, 12,3}, {4}
5 2 3 4 1 {1,5}, {2}, {3}, {4}
1 3 2 4 5 {1}, {2,3}, {4}, {5}
2 5 1 4 3 {1,2,5,3}, {4}
3 1 5 4 2 {1,3,5,2}, {4}

FIGURE 3.12A

.
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FIGURE 3.12B
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the simplest graphs it is very difficult to determine when repetitive
representations will be obtained from different automorphisms.

As indicated above a mapping of a mirror-image symmetry in a graph
contains mirror-image vertex pairs and fixed vertices only. However,
it does not follow that all the fixed vertices must be placed on the
axis of symmetry in a visual display of this symmetry. Such is not the
case for the above representations of automorphisms 4 and 5. 1In both
instances the visual representation is effectively split into two parts
at a vertex on the axis of symmetry. As shall be seen in Chapter V
it often happens that a mapping of a mirror-image symmetry may be di-
visible (with respect to its visual representation) into sets of vertices
which are mapped across the axis of symmetry and sets which, though they
are fixed, are interchanged by another mapping. This fact results in
the 'best' representations of mirror-image symmetry being obtained
from automorphisms containing a comparatively large ratio of mirror-
image vertex pairs to fixed vertices.

The representations for automorphisms 6 and 7 are clearly different.
Yet, on closer examination it becomes evident that one can be obtained
from the other by reversing the positions of either vertices 1 and 5
or vertices 2 and 3. This is a situation which occurs frequently with
automorphisms containing rotations. There are often several automorphisms
which have cyclic orbits (i.e. 2 or more elements) containing the same
vertices. The only difference is in the order of the vertices as taken
from the corresponding automorphism. As will be seen in Chapter V this

situation usually leads to very similar representations being generated
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for these automorphisms. The problem may be even more pronounced in

the case of automorphisms containing a mirror-image symmetry as well as
one or more rotational symmetries. Moreover, identical or similar visual
representations may result when rotational symmetries duplicate the

effect of a mirror-image symmetry. For example, Figure 3.13 shows two
identical representations derived from two different automorphisms,

one composed of mirror-image pairs and fixed vertices and the other having
a single cyclic orbit.

In conclusion then, the automorphism group approach satisfies most
of the requirements for a useful basis for the creation of visual rep-
resentations. While it may not be possible to obtain a unique repre-
sentation for each automorphism it should be possible to generate a
sufficient number of representations to reveal all the symmetries in
the graph. Moreover, the automorphism group method satisfies the
criterion that the approach must be systematic. By breaking the graphs
down into their component mirror-image and rotational symmetries it is
possible, for example, to examine graphs using a logical basis for com—
parison. Lastly, the concept of mirror-image and rotational symmetries

seems quite natural and should prove satisfactory in most situations.
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CHAPTER IV : AUTOMORPHISM GROUP CALCULATION

In this chapter the problem of calculating the automorphism
group of a graph is considered. Of primary interest is a heuristic
approach to automorphism group calculation and various heuristics
used in finding the automorphism group will be discussed. The execu-
tion time requirements of such procedures will be discussed in some
detail. The chapter will conclude with a discussion of an inter-
active approach to automorphism group calculation.

The problems involved in finding the automorphism group of a
graph were first introduced in Chapter II where it was indicated
that this was still essentially an unsolved problem. There is as
yet no fast and efficient algorithm for £inding the automorphism
group. Nor do we claim to have found such an algorithm.

We are more interested in using the automorphism group to
generate visual representations of a graph than with how the auto-
morphism group can be obtained. For instance, were there an exist-
ing algorithm for calculating the automorphism group quickly, we
would be quite content to use it. However, there is no such algorithm
available. Yet we have indicated that the automorphism group is an
integral part of our plan for generating visual representations of
graphs. Moreover, it is necessary to be able to calculate the auto-
morphism group while the user is waiting at the screen. The execu-
tion time required for the algorithm described in Chapter II would
result in the user waiting for long periods of time between representa-
tions. This assumes of course that the user would even be willing

to pay the large costs in execution time.
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As Unger has discussed, when faced with the choice of a long
investigation into the problem of obtaining a suitable algorithm
(with no guarantee of success) or trying a heuristic approach, it
may be more profitable to take the heuristic route.(xi) It was for
this reason that the decision was made to investigate the possibilities
of using heuristic routines for the calculation of the automorphism
group.

It was mentioned in Chapter II that the heuristics used by Unger
to tackle the graph isomorphism problem could also be applied to the
automorphism group problem. Unger's program GIT attempts to reduce
the number of possible isomorphism mappings between two graphs. The
vertices of each graph are partitioned into sets of vertices having
the same property or properties. The graph properties used by Unger
to partition the vertex sets of the graphs were primarily the valence
of the vertices, the number of vertices that could be reached from
a vertex v by a path of length n and whether or not a vertex was
included in a pulygon of length n.

The plan is to use different graph properties to refine these
partitions further and further until it becomes evident that the
graphs are not isomorphic or until the number of possible mappings
that must be checked is considerably reduced. If at some point in
the process of refining the partition, there is created for ome graph
a partition for which there is no equivalent partition for the other
graph, then the two graphs cannot be isomorphic. If this refinement
process does not preclude the possibility of an isomorphism then

GIT calls on a routine which tests for isomorphism all the possible
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mappings of the vertices according to the last vertex set partition.
That is, vertices in each partition set of a graph can only be mapped
onto vertices in the corresponding partition set of the other graph.

This concept of working with sets of vertices that can be mapped
onto each other is very similar to the algorithm used by Kately
(see Chapter II). Kately has used the valencies of the vertices to
eliminate mappings which cannot be automorphisms. That is, he uses
a property of the vertices of the graph to partition the vertex set
into sets of vertices which must be mapped onto themselves by any
automorphism. But we can clearly continue in this direction by using
any property of the vertices of the graph which is invariant under
automorphism to further refine the vertex set partition. 1In partic-
ular, the properties mentioned above that were used by Unger for
the isomorphism problem can be used for this purpose. Again, the
aim is to refine the partition as far as possible. Unlike the GIT
program, however, there is no question of searching for a contradiction
between the resulting vertex sets. Each set in the partition always
represents a set of vertices which might be mapped onto themselves
by an automorphism. It is possible that the partition may be refined
to the point where each member of the partition contains only one
element. This, of coursé, indicates that the automorphism group
contains only one automorphism, the trivial identity mapping. In
any other case, the sets of vertices in the partition can be used to
check all the possible mappings of these vertices to determine which
mappings are .actually automorphisms.

Checking for automorphisms is simply a matter of applying an

altered version of the algorithm of W. Jackson that was described in
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Chapter II. As seen there, Jackson's routine tested the possible
mappings of each vertex using the valence of the vertex as well as
the fact that with an automorphism the successors of a vertex have
to map onto the successors of the image of the vertex. But there
is now more information on the possible mappings of the vertices.
Each set in the partition is the set of possible images of each
vertex in that particular set. Thus, an alteted version of Jackson's
routine has been written which uses only these 'image sets' in
generating the automorphisms.

The problem was to determine which properties of the vertices
of a graph would be most useful in calculating the image sets. Each
suitable property could then be incorporated into a heuristic routine
which would attempt to further refine the vertex set partition. It
is important to remember that these routines are heuristics because
it is impossible to tell beforehand whether or not they will succeed
in further refining the partition. Moreover, even if they succeed
in generating a refinement of the partition it is impossible to tell
if this new partition can be further refined. The goal of all these
heuristics is to obtain the automorphism partitioning of the vertex
set. Unfortunately, it is impossible to tell whether this goal has
been reached without actually generating the automorphism group.

There are several reasons why the algorithm of Corneil and
Gotlieb (xxxiv) is not used to generate the vertex set partition.
While it appears that their algorithm actually does find the auto-
morphism partitioning, the fact remains that this is still a con-

jecture which has not yet been proven. Moreover, the algarithm is
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not a general algorithm in that it is not applicable to all classes of
graphs. This in itself was sufficient reason not to incorporate the
algorithm into what was intended to be a generalized graph representa-
tion system. Moreover, the heuristic tests would still have to exist
in order to allow the user to work with graphs the Corneil and Gotlieb
algorithm could not handle., The task of determining whether a graph
is of the type that could be partitioned by the Corneil and Gotlieb
algorithm is also a non-trivial process., This process would have to
be repeated for every graph.l

Had the heuristic approach to calculating the automorphism groups
failed, that is, had it proved impractical because of the execution
time required to use heuristic routines to calculate automorphisms of
every graph to be displayed, then it might have been necessary to use
the Corneil and Gotlieb algorithm. However, as discussed later in this
chapter, the use of interactive heuristics for partitioning the vertex
set has made the calculation of automorphisms of a graph computationally
feasible. The symmetries indicated by an automorphism can then be used
to generate a picture of the graph.

It has been mentioned that the heuristics used by Unger may be
used in a routine for calculating the automorphism group. There are
many other properties of a graph related to its structure such as the
cutsets of the graph, the blocks of a graph and so on which might be

used as the basis for other such heuristics. In deciding

1. This would be unnecessary if the user knew the graph could be
partitioned by the algorithm.
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which heuristics to finally implement a number of considerations
determined our choice. Primarily we wished to use heuristics which
required very little execution time since the user is sitting in
front of the display screen impatiently waiting for a picture of
the graph. However, the same heuristics must also be useful in the
sense that they frequently find a refinement of the vertex partition.
For example, there is little point in implementing a routine which,
though it may execute very quickly, is applicable only to an exotic
class of graphs which occur infrequently. Finally, there is the
question of adapting the choice of heuristics to the type of graph
being'investigated. This implies that it would be worthwhile when
working with a special class of graphs to include tests based upon
the special properties found in the class. However, this raises
the question of how large a variety of tests are necessary. For
instance, heuristics based on similar or related properties of a
graph will tend to be redundant, in which case there is little point
in having both tests available.

In light of the above criteria, those heuristics which have
been included in a GSYM user routine for calculating the automorphism
group of a graph will now be examined. This consists of a collection
of heuristic tests which attempt to reduce the number of mappings
which might be automorphisms. The user indicates which tests are
to be tried and the values of any required or necessary parameters.
Once all the specified tests have been tried, a routine for generat-
ing the automorphism group from the vertex set partition obtained

by the heuristics is invoked. This routine will calculate the
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automorphism group regardless of how successful the heuristics were
in partitioning the vertex set. However, the execution time required
to compute the automorphism group depends on the degree of success

of the heuristics.

Before discussing the various heuristics it should be noted that
these heuristics and also the visual representation routines discussed
in Chapter V assume the graph to be a simple directed or undirected
graph. The graph may not contain a mixture of both directed and un-
directed edges. The restriction on loops and multiple edges is made
only to simplify the routines used. These situations could easily
be treated as special cases if it became necessary or desirable.

The following is a discussion of the heuristics which have been
implemented on the GSYM system for finding the automorphism group

of a graph.

Valence Test

The user must always invoke this test before any others unless
the graph is regular. The vertex set is partitioned according to
the valencies of the vertices. A vertex can only be mapped by an
automorphism onto a vertex having the same valence. If the graph
is directed then the vertex set is partitioned using both the in-
valence and outvalence of the vertices. This routine is the éimplest
and the fastest of all the heuristics as the required valence in-
formation is directly available from the GSYM data structures for
representing graphs. It is also very useful as the majority of the

graphs treated will not be regular.
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Path Test

This test attempts to refine the vertex set partition by cal-
culating the number of vertices that can be reached from each vertex
by a path of length N. The user must specify the value for N. This
routine has been written so that it creates a vector of N elements
for each vertex, the elements of the vector representing the number of
vertices that can be reached by paths of length 1, 2,...N. The vertex
set partition is then refined on the basis of the complete vector, not
just the value of the last element. Vertices with identical vectors
are placed in the same set.

The paths need not be simple and may pass through the same vertex
more than once; they are, however, prevented from passing through their
origin a second time. A similar heuristic was tested which used only
simple paths. It was found that in generating the paths it was simpler
and faster to allow repeated vertices. Since the two heuristics appeared
to be equally successful in refining vertex set partitions, the simple
path heuristic was removed from the list of heuristic tests. If the
graph is directed the test is first performed using the positive paths
beginning at each vertex. The test is then repeated using the negative

paths beginning at each vertex.
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Polygon Test

The polygon test determines the number of polygons of length N
through each vertex. This is an improvement on the test suggested
by Unger which only determined if a vertex was in a polygon of
length N. While this heuristic requires more execution time than that
used by Unger, it has been found to be considerably more effective.
A further motivation was the need to have a heuristic that is suitable
for treating graphs with a polygonal type of structure. The user
specifies the maximum length N to be used in searching for polygons
through each vertex. As in the path test, a vector is created for
each vertex representing the number of polygons of length 3, 4,...N
passing through the vertex. Again, in order to simplify the
procedure and to reduce the amount of execution time required, the
polygons need not be simple. The heuristic has been implemented
as a simple recursive routine which creates a tree structure re-
presenting all the paths starting at each vertex. As each level is
added to the tree it is checked to see if a polygon through the root
vertex has been found. Obviously, it is sufficient to use positive
polygons when the graph is directed as repeating the test using
negative polygons would only find the same polygons by going in the

opposite direction,

Fixed Point Test

As a result of applying the various heuristics it may come
about that there exist sets in the partition that contain only one
vertex. Such vertices are 'fixed vertices', that is, every auto-

morphism of the graph must map such vertices onto themselves. For



4,10

example, if a graph contains only one vertex with valence 4, then
this vertex would be 'fixed' by every automorphism. Moreover, this
fact would be evident after the valence test had been executed.

Such vertices are important because every neighbourhood of a
fixed vertex must be mapped onto itself. Thus, the fixed point
heuristic when invoked identifies these neighbourhoods and uses
them to refine the vertex set partition. The user must identify
the fixed vertex and specify a value N, the neighbourhoods 1, 2,...N
being used by the test, It is also possible to specify that the
test be tried for all fixed vertices in the graph. The reason for
this is that this test tends to isolate other fixed vertices (when
they exist) which in turn can be used to identify others. For
directed graphs both positive and negative directions are used to
determine the neighbourhoods.

This heuristic, while it appears very simple and is, in fact,
quite inexpensive in terms of execution time requirements, has
proven extremely suitable for graphs containing one or more fixed

vertices.

Tree Centre Test

This heuristic was especially written to be used with graphs
which are known to be trees. It was included in the collection be~
cause it has proved ideally suited for refining the vertex set par-
tition of a tree. Every tree has a unique vertex or pair of vertices

called the centre or bicentre of the tree. The centre of a tree is
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mapped onto itself by every automorphism of the tree, that is, it
is a fixed vertex. A bicentre pair must also be mapped onto it-
self by every automorphism in that every automorphism either fixes
these vertices or exchanges them.

The algorithm for finding the centre or bicentre of a tree is
very simple and also very fast. All vertices of valence 1 are de-
leted from the graph. This process is then repeated until the graph
contains only one vertex, the centre, or a pair of adjacent vertices,
the bicentre pair. If the graph is directed then it is treated as
an undirected graph in order to find the centre or bicentre. Although
this algorithm is clearly not going to require a lot of execution
time, the amount it does require may seem rather excessive just to
distinguish one or two vertices from the rest of the graph. However,
this vertex or pair of vertices may then be used to great advantage
in refining the vertex partition. A centre vertex is a fixed vertex
so the fixed point test is automatically invoked for the centre ver-
tex. Almost as much information can be gained from a bicentre pair
by using the fact that all vertices at distance N from one or other
of the bicentre vertices must be mapped onto each other. Thus, the
neighbourhood concept is applied to a pair of vertices rather than
to one vertex as is the case in the fixed point test.

The user specifies the parameter N to be used in the neighbour-
hood test for bicentres or to be passed to the fixed point test for
centres. If the graph is directed both positive and negative dis-
tances from the centre or bicentre are utilized. As mentioned this
routine is extremely useful when working with trees. It is a case

of implementing a special purpose heuristic especially suited to a
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particular class of graphs and it is not intended to be generally
applicable. The user must know that the graph is a tree since the
routine does not check this fact. Naturally it would be possible
to test if the graph were a tree and inform the user. However, this
is contrary to the idea that the routine is reserved for users work-
ing with trees.

Trees are a very intemresting class of graphs that are frequently
used in applications of graph theory and it was felt that this
warranted the inclusion of a heuristic that facilitates the handling
of such graphs. Checking every graph passing through the system to

see if it happens to be a tree would prove too costly to be practical.

Undirected Version of Tests

It is possible for the user to invoke undirected versions of
the path test and the polygon test. In both cases an undirected
version of the current graph is created by removing all edge directiomns
from the graph. The path or polygon test is then applied to this
new undirected graph. The undirected path test and the undirected
polygon test are included because the results obtained from these
tests may differ from the results obtained when the original tests
are applied to the digraph. Moreover, removing the edge directions
does not affect the structure of the graph so that any further re-
finement of the vertex set partition obtained in this manner is still
valid.

Figure 4.1A illustrates a digraph which yields the following

results for the regular path test.
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Path Length

Vertex | 41 | 42 | -1 | -2 |
1 | 2 | o | o | o |
2 | o | o | 2 | o |
3 | 2 | o | o | o |
4 | 0 | o | 2 | o |
5 | 2 o | o | o |
6 o | o | 2 | o |
7 | 1] o | o | o |
8 | o | o | 2 | o |
9 | 2 | o | o | o |
10 | 0 | o | 2 | o |
11 | 2 | o | o | o |
12 l 0 | o | 3 | o |
13 | 1| o | o | o |
14 [ 1] o | o | o |

These results give the vertex set partition:

(1,3,5,9,11),'(2,4,6,8,10), (7,13,14), (12)

There are no vertices which can be reached from any vertex by
a positive or negative path of length 2. Thus the above partition
has been refined as far as is possible.with the regular path test.
However, if the undirected path test is then applied for paths of

maximum length 2 the following results are obtained:
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Undirected Path Length

Vertex | 1 | 2 |
1 | 2 | 2 |
2 | 2 | 2 |
3 |2 | 2 |
4 | 2 | 2 |
5 | 2 | 2 |
6 |2 | 1|
7 |1 | 1 |
8 | 2 | 2 |
9 | 2 | 2 |
10 | 2 | 2 |
11 | 2 | 3 |
12 | 3 | 1 |
13 | 1 | 2 |
14 | 1 | 2 |

Applying these results to the above partition gives a further
refinement of the vertex set partition:

(1,3,5,9), (2,4,8,10), (13,14), (6), (11), (7, (12)

Moreover, by continuing with the undirected path test one would
eventually find that all the vertices in the graph are fixed except
vertices 13 and 14.

Similarly, Figure 4.1B shows a graph whose vertex set partition
cannot be refined by using the polygon test since there are no posi-
tive polygons through any of the vertices. However, the undirected

polygon test will find a polygon of length 3 through vertices 1, 5
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and 6 and a polygon of length 4 through vertices 1, 2, 3 and 4. This,
in turn, gives the following vertex set partition:

(1), (5,6), (2,3,4)

Thus, it is evident that the undirected path test and the undirected
polygon test may be useful either by themselves or in conjunction with
the regular path or polygon test.

There is one other routine which the user may invoke before
entering the actual automorphism group calculation algorithm. Unlike
the above routines it is not a heuristic test, nor is it designed to
refine the vertex set partition. However, it is described here because
it too is intended to reduce the execution time required by the auto-
morphism group algorithm.

After using the various heuristics the sets obtained from the vertex
partition will be different sizes. This routine relabels the vertices
of the graph so that the largest sets are moved to the bottom of the
list of sets. Thus, the new vertex 1 (which may be the same as the old
vertex 1) now is din the smallest set while vertex n (|VG|=n) is in the
largest set. The following example illustrates how this relabelling is

done.

Example 4.1:
The graph below would result in the following partition after the

valence test had been applied.
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Vertex Object Set

1 (1,3,5,7)
2 (2,6,8)

3 (3,1,5,7)
4 (4)

5 (5,1,3,7)
6 (6,2,8)

7 (7,1,3,5)
8 (8,2,6)

The above partition is changed by relabelling the vertices

into the following partition:

Vertex Object Set
1 (L
2 (2,3,4)
3 (3,2,4)
4 (4,2,3)
5 (5,6,7,8)

6 (6,5,7,8)
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Vertex Object Set
7 (7,5,6,8)
8 (8,5,6,7)

The relabelling is given by:

01d Vertex Label New Vertex Label
1 5
2 2
3 6
4 1
5 7
6 3
7 8
8 4

The routine which calculates the automorphism group is, as
previously mentioned, very similar to Jackson's. In the course of
analysing this routine it became evident that reordering the
sets by relabelling the vertices could, in many cases, save a signifi-
cant amount of execution time. The same type of tree-like structure
described in Chapter II is created by the routine. The root of this
tree is vertex 1. The vertex labelling used by the automorphism
group calculation algorithm is independent of the vertex labelling
in the GSYM system. Originally the labels are ordered from 1 to
n (IVG|=n) according to the order in which the vertices were created.
The problem is to relabel the vertices from 1 to n so that the
smaller the label the smaller the set in which the vertex is found.

The logic for doing this is based on the knowledge that the
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algorithm will, in almost all cases, discover branches of the tree
that do not represent automorphisms. As described in Chapter II,
if a contradiction is found while a branch is being created the
remainder of the branch representing the permutation being tested
need not be generated. Therefore, if it is discovered that the
current vertex permutation is not an automorphism before too much
of the permutation has been generated, a significant amount of
execution time can be eliminated.

For example, Figure 4.2 shows part of the tree structure that
would be generated by the automorphism group routine using the
original vertex labelling and partition of the graph in Example
4.1. TFigure 4.3 shows the tree structure that would be generated
for the same graph using the second labelling and reordered list
of sets from Example 4.1.

The notation used in Figures 4.2 and 4.3 is the same as that
found in Chapter II. The structure in Figure 4.2 begins, as usual,
by examining all the possible mappings of vertex 1, in this case
1+1, 1+3, 15 and 1+7 as the object set for vertex 1 is (1, 3, 5, 7).
Mappings implied by other mappings are shown in both figures. Thus,
in Figure 4.2, 1»1 => 3»3, 3*3 => 7»7, 7»7 => 55 and 55 => 1~>1.
All these implied mappings must be checked before proceeding to the
second level of the tree. This is again true when proceeding down
the branches which begin with 1-+3, 1»5 and 137.

Once the second level of the tree is reached the mappings
2>2, 2>6 and 2+8 must be examined? as vertex 2 has the object set

2. This must be repeated for each of the subtrees beginning with
1~1, 1»3, 1»5 and 1»7.
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(2, 6, 8). Thus, in this labelling of the graph there are many
mappings that must be examined in the first few levels of the tree
structure. However, for the second labelling of the graph there
is only one possible mapping at the first level, 1+1, as vertex 1
has the object set (1). Vertex 2 has only three possible objects
2, 3 and 4 so there are only three subtrees starting as the second
level. Figuratively speaking, the second tree structure is longer
and narrower than the "bushy' tree structure of Figure 4.2 where
many subtrees begin in the first few levels,

The mapping checks3 in Figure 4.3 tend to be near the bottom
of the tree. This postponement of possible vertex mappings and their
examination is the result of reordering the sets so that the smaller
the vertex label the smaller the object set of the vertex. As
explained in Chapter II, the automorphism group algorithm considers
the possible vertex mappings beginning with vertex 1, then vertex 2
and so on up to vertex n. With the new ordering of the sets the
upper levels of the generated tree structure will tend to have fewer
branches4. The lower levels of the tree structure will tend to have
correspondingly more branches.

However, it is possible and, in many cases, quite likely
3. See Chapter II for a discussion of the tests that are necessary
to determine whether a vertex permutation is an automorphism,

4. There are fewer possible mappings at this stage because the
object sets are smaller.
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that these lower branches will never be generated as contradictions
in the upper levels of the tree structure cause branches to be
abandoned. The savings in execution time, which can be considerable,
are a result of the tendency of a single contradiction to eliminate
more mapping tests in the second type of tree structure than in
the first type of structure.

If the partition created by the heuristics actually
represents the automorphism partitioning of the graph, however,
there will be no reduction in execution time. In this case, all
of the possible mappings given by the sets are in auto-
morphisms and the whole tree structure will be generated.

The above collection of heuristics does not, of course,
begin to exhaust the list of possible heuristics that might have
been used. The set of heuristics that has been implemented has
been kept quite small partially in order to limit core requirements,
but mainly because the present set has proved very successful in
actual use. There have been very few cases when these routines
did not succeed or come quite close to obtaining the automorphism
partitioning of the vertex set. However, any property of a graph
that is preserved under automorphism could conceivably be used as
the basis for a heuristic test.

For instance, one such heuristic might be based on the cut
vertices in the graph. The cut vertices of a graph must clearly
map onto themselves under automorphism. Thus, a routine which found
the cut vertices of a graph could then use them to further refine

the vertex set partition. At one stage such a routine had been



4,22
implemented. However, graphs with cut vertices tend to have rather
distinct structures. There is usually not a high degree of similarity
between the various parts of the graph. Thus, while the cut vertex
routine was not very expensive in terms of execution time, it was
found that the results obtained from it could normally be obtained

using the path test and the polygon test.
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The implementation of a cutset heuristic, one which used the
cutsets of the graph to refine the vertex set partition, was also
considered. As with cut vertices, vertices which are in cutsets
can only be mapped by an automorphism onto vertices which are also
in cutsets. Moreover, vertices in a cutset containing n elements
cannot map onto vertices in a cutset with m elements, n#m. After
trying numerous examples, it was again felt that the information
obtained from such a heuristic could usually be obtained by using
heuristics that were already available. Moreover, in comparison
with the other heuristics a cutset routine would have been quite
costly in terms of execution time.

There may be situations where a uger is working with graphs
that model a special type of relationship. For example, the graph
might represent a switching circuit. In such cases there are often
special properties assigned to the elements of the graph which
should be considered when calculating the automorphism group. In
the case of a switching circuit some of the vertices might repres-
ent AND gates while some might be OR gates. The user would
wish to eliminate from consideration any mappings exchanging these
different gate types. While such a heuristic has not been imple-
mented it would be a simple matter to do so. Any special properties
of the vertices and edges would be represented using the vertex
and edge property lists of the GSYM system. It would be quite
simple to implement a heuristic which when passed a list of the
properties to be compared would use them to further refine the ver-

tex set partitionm.
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The type of heuristic used by Unger to 'extend' the existing
vertex set partition by calculating special functions of the
existing partition has not been mentioned. One of the functions
suggested by Unger assigns each set and therefore each vertex in
the set a unique number, say a prime number. One then goes through
each set and applies the function to the vertices adjacent to each
vertex in the set. For example, if prime numbers were used, multiply-
ing the prime numbers assigned to the vertices adjacent to each
vertex in a set would produce different results when two or more
of these neighbourhoods were distinct. That is, if the neighbour-
hoods of each vertex of a set do not produce the same result, then
that set and hence the partition can be further refined. This
example is indicative of the type of functions that might be used,
although as Unger points out it might prove impractical to retain
the product of large prime numbers. Moreover, it is also necessary
to generate the prime numbers.

The main reason for omitting such heuristics was that after
experimenting with the heuristics that were already implemented
it did not seem necessary. In addition, closer examination proves
this type of heuristic to be based on the neighbourhood concept.
That is, they attempt to refine the vertex set partition by examin-
ing and comparing the neighbourhoods of every vertex. As already
indicated, several of the heuristics including the path test, the
fixed point test and the tree centre test use the same neighbourhood
concept, albeit in a more direct fashion. Thus, it was felt that

the 'extend' type of heuristic would be somewhat redundant.
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The automorphism group heuristics were originally implemented
and tested in a batch processing environment. The user specified
which tests were to be tried and then specified the parameters which
were to be used. From the discussion about the nature of these
heuristics and their suitability to different classes of graphs,
clearly the user would not wish to use all of the heuristics on
one graph. However, in a batch processing environment it is necessary
to anticipate which tests and parameters should be used. More~
over, a test would use the parameters specified even if long before
reaching the parameter limit it had become obvious (as the user
could tell from later printed output) that no more information
was going to be obtained.

This situation had already been anticipated. 1In fact, it
was partially responsible for the decision to implement GSYM as
an interactive system facilitating communication between the user
at the screen and the routines running on the main machine. The
plan was to test the theory that in the process of interacting with
the automorphism group heuristics the user would develop an intuitive
"feeling" about the graph or, if not about the graph, then at least
about the class of graphs to which the graph belonged. As a
result of this "feeling" the user would then be able to make more
effective use of the available heuristics when treating other graphs
in the same class. Thus, the decision was made to make the heuris—
tics as interactive as possible without significantly impairing

their efficiency or speed.
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USE LIGHT-PEN TO INITIATE ACTION:
VALENCY TEST - MUST CALL IF GRAPH IRREGULAR
FIXED POINT TEST
TERMINATE
PATH TEST
POLYGON TEST
TREE CENTRE TEST
UNDIRECTED PATH TEST
UNDIRECTED POLYGON TEST
DISPLAY OBJECT LISTS

CALCULATE A(G)°

FIGURE 4.4: HEURISTIC SELECTION LIST

5. Calculate the automorphism group of the graph.
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The user is presented with a selection list of all the heuris-
tic routines as shown in Figure 4.4. He continues to select various
heuristics to be tried until he finally invokes the automorphism
group calculation algorithm using the "CALCULATE A(G)" option. At
any time during this process the user may request a display of the
current vertex set partition in order to judge how effective the
heuristics have been and whether he should now invoke the automorphism
group algorithm. Once a heuristic has been selected the user is
requested to type in the parameter to be used (if such is required).
After the heuristic has finished execution the system returns with
the heuristic selection list and the process begins anew. Thus, it
is now possible for the user to select and vary the order in which
the heuristics are applied to the graph. Moreover, if it ever seems
warranted he can repeat tests at will. Some of the heuristics,
however, have been rewritten to make them even more interactive.

For example, the output from the path test is displayed when-
ever the path length is incremented. Figure 4.5 shows an example
of one such display. The upper limit of 17 is a limit which in

practice is never reached.
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LENGTH 1 2 3 4 5 6 ... 17
V0ol 1 3 2 3 3 4

V002 1 2 2 0 0 o0

V003 2 2 2 0 0 o0

V004 1 3 3 3 2 1

V005 2 3 2 3 3 4

V006 1 3 1 1 0 o

VOON

FIGURE 4.5 : PATH TEST VECTOR DISPLAY
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The user can tell at any point how well the path test is
performing. More to the point, he is able to halt the test if it
becomes obvious that no more information will be forthcoming. For
example, if the vector columns are beginning to repeat themselves
the test should be halted. It is no longer necessary for the test
to execute until the maximum distance specified is reached. The
user indicates after each increment whether or not the test is to
continue. For directed graphs the process of displaying the path
list is repeated for both positive and negative paths. When the
undirected path test is invoked the same process is used. That is,
it is just the same as if the graph were originally undirected and
the normal path test had been invoked.

In the case of the fixed point test an attempt is made to
refine the vertex set partition after each neighbourhood of the
fixed vertex is calculated. The user is asked after each such
attempt whether he wishes the test to continue. At this point the
user may ask to see the current vertex set partition in order to
judge whether the test is succeeding and whether it seems likely
to continue to succeed. What is more important he may find that
another fixed vertex has been uncovered. In this case he may wish
to stop the test in order to start it again with the new vertex.
This is important because it effectively provides a means for the
user to, so to say, march about the graph using this test to
examine the structure of different parts of the graph.

The tree centre test first informs the user of the identity

of the centre or bicentre. In the case where the tree has a centre
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the fixed point test is in&oked and the user controls the operation
of this heuristic in the manner described above. If there is a
bicentre pair then a test based on the neighbourhooﬂ concept and
similar in nature to the fixed point test is applied to the tree.
This routine attempts to refine the partition on the basis of the
first neighbourhood of the bicentre pair. The first neighbourhood
consists of tliose vertices which can be reached from either vertex
of the bicentre by a path of length 1. The user is then asked if
he wishes to continue the test. He may, of course, examine the
current vertex set partition in order to help him decide. This
process is repeated for each neighbourhood just as with the fixed
point test, the difference now being that the neighbourhoods are
calculated by examining paths originating at either of two vertices
rather than at just one vertex.

It is difficult to evaluate with any real degree of precision
just how advantageous the interactive automorphism group heuristics
are in comparison to the original batch environment heuristics.

Our experience has been that they can be used considerably more
effectively. What is most pronounced is the saving in execution
time. For example, when testing the non-interactive heuristics

it was found that it was usually possible after several tries to
select a set of tests and corresponding parameters which were the
'best' possible selection from the viewpoint of execution time
required versus results obtained. That is, several tests were
tried to determine how much time was subsequently required to cal-

culate the automorphism group. The same graph would be tried again
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but with some of the tests and/or parameters changed. This pro-
cess would be repeated until the chosen combination worked quite
well for the given graph. Of course, the user at the display screen
cannot do this; moreover, he would not wish to recalculate the auto-
morphism group once he had it.

However, experience has shown that when using the interactive
heuristic tests it is possible to come very close to selecting
the 'best' set of tests and parameters the first time. Actually,
what happens is that it is now possible to evaluate the tests and
the corresponding parameters almost immediately. Tests which are
having little or no effect can be halted quickly without their use
involving a significant loss of execution time. Other tests can
then be tried and evaluated in the same manner until the time appears
ripe to invoke the automorphism group calculation algorithm.

Unfortunately, we cannot define or meaningfully describe in
concrete terms the intuitive "feeling'" we have been discussing.
Were it possible to do so it might help the user in his own selection
of tests. What is possible, however, is to compare the number of
operations and the time requirements of the various heuristics.
In this way it is possible to better explain some of the tradeoffs
and considerations involved in selecting the heuristics and deter-—
mining the point at which the automorphism group algorithm should
be invoked.

The processing time required by each heuristic is to be deter-
mined as a function of n (|VG|=n). 1In order to do this the steps

involved in each heuristic (other than the valence test) and the
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number of operations required by each step are examined. The
following assumptions are made:

81 = machine cycles required to access an element
in storage.
85 = machine cycles needed to compare two elements.
63 = machine cycles needed for an integer addition.
8, = machine cycles needed for an element replacement.
Since the heuristics are written in PL/1, the above constants

are taken to mean the respective operations as coded in PL/1.

Example 4.2:
IF A=B THEN... - denoted by ¢,
I+J, 2+3, I+3 ~ are all denoted by 63
=B is considered to require 61 + 64 cycles since the
value of B must be accessed and then assigned to A.
We make use of two other constants in the discussions below:

L

average number of successors of a vertex.

B average number of vertices in any neighbourhood of
a vertex.

These two constants are used only to simplify the formulae
below. However, it is important to note that 0 < £ < n and
0 < B < n. Thus, when these constants appear as coefficients
we know that the formula is bounded by the same formula with the
constant(s) % and/or B replaced by n.

The following is a list of the number of operations required

by each heuristic routine.
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Timing Considerations

Fixed Point Test

Undirected Graph:

Invariant: n(48y + 38, + 364)

1st Neighbourhood:

n2B(28; + 28, + 26,) + nB(28, + 84) + £(267 + 284)

For each additional nedighbourhood:
n2B(287 + 28, + 284) + nB(28; + 84) + BR(481 + 83 + 48y)

+ B(281 + 28y)

Directed Graph:

Invariant: n(SGl + 387 + 464)

1st Neighbourhood:
n?B(48 + 48, + 46,) + nB(48y + 28,) + n(108) + 38,

+ 285 + 108,)

For each additional neighbourhood:
n2B(40] + 46y + 454) + nB(587 + 48, + 65 + 584)

+ BL(48] + 63 + 45,) + B(4S) + 46,)

Path Test
Undirected Graph:
1st Increment:
nL(8y + §,) + n(361 + 38,)
Each additional increment:

n2 (36 + 8p + 85 + 36,) + nBL(S] + 84) + nB(81 +84) + n(36+ 36,)
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Attempt to refine partition:
n2d(26] + 267 + 28,) + nd(26) + 285 + 26,) + (8] + 6,),

where d = maximum path length.

Directed Graph:

The number of operations required for positive paths is the
same as is required for an undirected graph. The same number of
operations is again required to go through the negative paths.

The same number of operations is required to attempt to refine
the partition. That is,
n2d(261 + 289 + 284) + nd(287 + 28, + 25,) + d(81 + §y),
where d = maXimum path length.

This number of operations is required twice, however, once
after creating the positive paths and then again after creating

the negative paths.

Polygon Test

n2d (281 + 285 + 264) + n22d(8y + 565 + 483 + ;)
+n2d (285 + 284) + nd(281 + 262 + 28,) + nL(8y + 84)

+n(387 + 384) + d(81 + S4), where d = maximum polygon length used.

Tree Centre Test

Let w = maximum distance from any vertex to centre or bicentre

of tree. 0 < w < n.

To find centre or bicentre:

200287 + 6o + 6. + 38,) + +
n“w(29; 2 3 4) nw(461 352 + 84 % 554)

+ n(él + 262 + 64)
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If the tree has a centre:

n2(261 + &y + 262) + ndo9 + fixed point test is invoked.

If the tree has a bicentre:

n2(461 + 28y + 48;) + nd, + following # of operations:

1st Neighbourhood:
n26(267 + 287 + 28,) + nB(265 + 6;)

+ 5(86; + 28, + 265 + 85,)

Each additional neighbourhood:
n28(287 + 289 + 284) + nB(28, + 84) + BL(4S] + 89 + 83 + 48y)

+ B(28] + 264)

Directed Graph:
n2(261 + 02 + 8y operations are needed to create an
equivalent undirected tree.

The rest of the test is the same as required for an undirected
graph except that when there is a bicentre the test that is then
used takes twice as many operations as for an undirected graph
with a bicentre since now the bicentre neighbourhood test is per-

formed for both positive and negative paths.

Undirected Path and Polygon Tests

The number of operations required to remove and later replace
the edge directions is given by:
nf(8; + 83 + §4) + n(587 + 83 + 4§,).

The appropriate test is then invoked with no change in the
number of operations required from what is needed for the original

tests.
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As indicated previously all of the tests are very quick.
In fact, all of them are bounded by an upper bound of n3 opera-

3 operations is, in practice, on the

tions. The upper bound of n
order of n2 operations. The reason for this is that the values

for 2, B and d are normally relatively small in comparison to n.
Listing the heuristics according to the number of operations re-
quired and hence by the amount of execution time required places

them in the following order:

Fixed Point Test

Polygon Test number of

Path Test operations
Undirected Polygon Test required
Undirected Path Test increases in
Tree Centre Test \/ this direction

However, this list is misleading. For example, it suggests
that the fixed point test is the 'best' test to invoke first.
However, as fixed vertices are normally revealed as a consequence
of the application of other tests so that one usually delays in-
voking the fixed point test (unless the results of the valence test
reveal a number of fixed vertices). Furthermore, if the graph is
a tree there is no point whatsoever in invoking the polygon test in
preference to the tree centre test. However, if the user truly has
no conception whatsoever of the nature of a graph, he might well
be guided by the above list into choosing the polygon test over
the path test.

It is necessary to remember that the number of operations and
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the time required by the various tests are not as important as the
results they obtain. The tests are heuristic rather than algorithmic.
If they were algorithms that were all equally capable of producing
the same vertex set partition then one would be compelled to use
only the fixed point test., However, as they are heuristic in
nature there is no definite rule as to which test is better in any
given situation. The main benefit of the above timing considerations
is to stress again the difference in the number of operations re-
quired by the heuristics and the number required by the automorphism
group algorithm. The algorithm takes on the order of n! operations
(IVG|=n) when the vertex set has not been partitioned. However, a
successful partitioning or refinement of the vertex set partition
by any heuristic results in a large reduction in the number of
operations later required by the algorithm, especially in comparison
to the number of operations required to execute the heuristic.
Consider, for example, a graph with 10 vertices. The number of
possible vertex mappings is 10! = 3,628,800. Suppose, however,
that the path test partitions the vertex set into just two sets
of 5 vertices each. Then the number of possible mappings is only
5:x5! = 14,400, a much smaller number of mappings. The saving is

3 = 1000 operations

much larger than the upper limit of at most n
that would be.required by the path test.

Now that the various tradeoffs involved in obtaining the auto-
morphism group have been considered, the question is how to actually
use the automorphism group. Thus, in Chapter V the problem of gen-

erating the visual representations of graphs and their symmetries

is investigated.
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CHAPTER V : VISUAL REPRESENTATION OF GRAPHS

In this chapter the discussion centres about the use of the
automorphism mappings of the graph in generating three dimensional
visual representations.

In Chapter III an investigation was begun into how one might in-
terpret visually the mappings of the automorphism group. At that time
the relationship between the automorphisms and a corresponding visual
image was discussed. Every automorphism can be separated into orbits
which represent mirror-image and/or rotational symmetries. This chapter
describes some of the ways that these symmetries have been or can be
used to create visual representations of graphs. It is important to
remember that the primary goal is to devise representation techniques
whose end product, the display, reveals the structure of the graph.
Thus, while different representation criteria and methods for generating
these displays will be discussed, the main emphasis is on the portrayal
of the symmetries of the graph. For example, a three dimensional rep-
resentation of a planar graph may be preferable to a planar embedding
if the three dimensional representation better illustrates the symmetry
in the graph.

Two representation schemes which have been implemented using
the GSYM system will be discussed in detail. In addition, several
representation schemes which have not been implemented but which appear
to be suitable candidates for implementation will also be discussed.
The discussion will centre around the advantages and disadvantages of

these various sghemes in hopes of providing some insight into the manner
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in which one might go about devising representation algorithms.

Once the user has invoked the automorphism group calculation routine,
the routine returns with a display of the type shown in Figure 5.1.
This indicates that an automorphism mapping has been found. If there
are no more automorphisms in the automorphism group of the current
graph the routine displays the message 'AUTOMORPHISM GROUP COMPLETE"
instead of a display such as the one in Figure 5.1. The display in
Figure 5.1 gives the orbits found in the automerphism

(1 234567891011 12 13 14 15 16
123457681611 1512 9 14 10 13) .

This automorphism is only given as an example of the method the
automorphism group routine uses to report the automorphisms it finds.
The graph from which the automorphism was obtained has not been shown.
This, in fact, is the situation which the user normally faces. An
automorphism of the current graph is displayed on the screen but, as
yet, there is no picture of the graph itself.

It is possible to determine the automorphism mapping from the dis-
play in Figure 5.1 as the display give the orbits of the automorphism.
In this example vertices 1 1,2,3,4,5,8,12 and 14 are fixed by the auto-
morphism. There is one mirror-image symmetry mapping vertex 6 onto
vertex 7 and 7 onto 6. There are two rotational symmetries, 9 16

16+13, 139 and 10~11, 11+15, 15>10. It is also possible to have the

1. The display in Figure 5.1 uses the internal names VO0Ol, V002,...
V0016 for the vertices 1,2...16 respectively. The "V" notation
is used in the GSYM system to indicate vertex labels as opposed
to edge labels which start with an "E".



WAITING FOR LIGHT PEN RESPONSE :

(Voo1) (v002) (V003) (V004) (V005) (V006 VO007) (V008)

(V009 vVvO016 VO013) (V010 VOll 'v0l5) (VO12) (VOl4)

FIGURE 5.1 : DISPLAY OF ORBITS IN CURRENT AUTOMORPHISM

5.

3
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actual mapping displayed in the manner shown in Figure 5.2 as each auto-
morphism is calculated.2 This display shows the actual automorphism
mapping in terms of image and object vertices. That is, if vertex v

is mapped onto vertex w then v is the image vertex and w is the object
vertex of the mapping v > Ww.

The mapping given in the form in Figure 5.2 is exactly the same
as that given as a display of the automorphism orbits. However, the
orbit display is usually preferable since the user can tell immediately
from it the types of symmetries represented by the automorphism. It
is also possible to determine immediately from the orbits how many vertices
are actively involved3 in the automorphism. As discussed in Chapter III
the automorphism with the smaller number of fixed vertices usually pro-
duces the better display. Thus, when the user is presented with the
display in Figure 5.34, he can better judge whether or not to invoke
one of the representation routines.

Figure 5.3 indicates that at this point the user has three options
open to him. He can specify that he does not wish to have a representa-
tion generated for the current automorphism. In this case, the auto-
morphism group routine begins to search for the next automorphism
mapping. If the user wishes to see a display of the graph he can invoke
the General Representation Routine by selecting the "YES" response.

He may also select the Tree Representation Routine.5

2. This option is available using a GSYM feature which allows the user
to set special flags which are available to system and user written
routines in the GSYM system.

Actively involved means here that a vertex is not fixed by the mapping.

4. This is the next display produced by the system after the user has
finished examining the automorphism mapping.

5. Provided that the graph is a tree.



PAGE CONTROL PFK28 - BACKWARD PFK31 - FORWARD

PFK30 - STOP
AUTOMORPHISM

IMAGE V00l OBJECT Vool
IMAGE V002 OBJECT V002
IMAGE V003 OBJECT V003
IMAGE V004 OBJECT  VOO0O4
IMAGE  VO0O05 OBJECT V005
IMAGE V006 OBJECT Voo7
IMAGE V007 OBJECT V006
IMAGE V008 OBJECT  VO0O8
IMAGE V009 OBJECT VOl6
IMAGE VOl0 OBJECT Vo1l
IMAGE VOll OBJECT VOo15
IMAGE Vo1l2 OBJECT Vol1l2
IMAGE Vo13 OBJECT V009
IMAGE VO1l4 OBJECT VOl4
IMAGE V015 OBJECT V010
IMAGE Vo1l6 OBJECT VO13

FIGURE 5.2 : AUTOMORPHISM MAPPING DISPLAY
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General Representation Routine

This routine is a very general display procedure which attempts
to handle all classes of graphs by creating representations based
solely on the mirror-image and rotational symmetries in the automorphism
group mappings. The flowchart in Figure 5.4 shows the overall logic
of the routine. This flowchart contains two 'black boxes' representing
routines for handling mirror-image and rotational symmetries. An ex-
planation of what actually happens when these routines are invoked is
given below. The procedure is basically quite simple. Fixed vertices
are placed on an imaginary axis of symmetry through the centre of the
screen. The mirror-image vertex pairs are then placed in corresponding
positions on either side of this axis. Finally, the rotational vertices
are placed in separate planes of rotation for each rotational orbit.
These rotations are drawn using the ring structure algorithm described
in Chapter III.

There is a serious fault in the above plan for displaying the fixed
vertices about a single axis of symmetry. The problem arises when fixed
vertices are found adjacent to other fixed vertices. Consider the example
shown in Figures 5.5A, 5.5B and 5.5C. Figure 5.5A shows the desired
form of the display. The problem of coincident edges along the axis
of symmetry can in certain cases, such as the above, be resolved by the
order in which the vertices are displayed. An alternative solution
is to use curved edges (via the light-pen edge feature of GSYM). How-
ever, as can be seen in Figure 5.5C this solution can destroy the desired

mirror-image form of the display. The problem is even more pronounced
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START

CLASSIFY
VERTEX
TYPES

DELETE
EXISTING
DISPLAY

BIPLANAR
REFLECTION
ROUTINE
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IMAGE MAPPING ?

ANOTHER

SPECI
CLFY PLANE ROTATION ?

CO-ORDINATES

LY EXIT

ROTATION
ROUTINE

FIGURE 5.4 : GENERAL REPRESENTATION ROUTINE
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when there exists a set of fixed vertices which form a polygon. In this
case there is no possible positioning of the vertices along the axis
of symmetry which will prevent the edges of the polygon from over-
lapping. The resultant display is usually quite misleading as to the
number of edges being displayed and the identity of the proper end-vertices
of these edges.

The solution that has been adopted is to create another axis of
symmetry in a different plane from that of the original axis. The
first axis is filled with fixed vertices until the overlapping problem
arises. An attempt is then made to place the remaining fixed vertices
on the second axis. It is again possible that not all of the fixed
vertices will go on this axis without causing edge overlapping. The
process is repeated with the user creating a third axis in a different
plane from the first two. This process is continued until all the
fixed vertices have been accommodated. Thus, the final display may
contain several axes of symmetry in different planes. This solution
is acceptable only because the graph is considered as a three dimen-
sional entity. Furthermore, the rotation facility of the GSYM system
makes it possible for the user to view the graph from different sides.

The following is a detailed description of the procedure used to
position the vertices on the screen.

Let A = "Axis Set" - the set of fixed vertices in the current
automorphism mapping.

P = "Plot Set" - the set of vertices positioned so far. Initially,
P = ¢, the empty set. P = VG, the vertex set of the graph, when the

procedure has finished.
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S = "Path Set'" - a set of fixed vertices representing a path in

the graph.

Display of Fixed Vertices

0) If A= ¢, then go to step 5. Otherwise, ask the user to select
the z co-ordinate for the plane on which the next axis is to be 1ocated.6
1) Let v be any vertex in A which is not adjacent to any vertex
in P. 1If there is no such vertex, then go to step 3. If such a vertex
exists, then let S = {v} and A = A - {v}. 1In this step the routine
attempts to find another fixed vertex which can be displayed on the cur-
rent axis without causing any edge overlapping.
2) Find a vertex, w, in A which is adjacent to v, but which is
not adjacent to any vertex in PyS other than vertex v. Since the graph
is simple there is no possibility of multiple edges between v and w
when the graph is undirected. However, the above statement . also implies
that if the graph is directed, then there cannot be both a positive
path from v to w and a negative path from v to w.
If there exists such a vertex then let S = SU{W}, redefine v to
be the new vertex w and go to step 2, If there is no such vertex, then
let P = PUS and go to step 1.
In steps 1 and 2 the algorithm is attempting to place as many
paths of fixed vertices as possible on the axis. Step 2 attempts to
extend a path which was started in step 1. The path is extended as
6. The IBM 2250 graphic display as shown in Figure 5.6 is considered
by the GSYM system to be a three dimensional cube with the screen
representing xy co-ordinate values. All points on the screen have
a z co-ordinate value of 0. Non-zero z co-ordinate: values inside

the cube are specified by having the system temporarily rotate the
cube so that the screen represents yz co-ordinate values.
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A GRAPH IS DEFINED

AS A 3-DIMENSIONAL
ENTITY WITHIN A CUBE
HAVING THE APPROXIMATE
SHAPE OF THE ACTUAL
PHYSICAL DISPLAY

UNIT.

FIGURE 5.6 : THE IBM 2250 GRAPHIC DISPLAY UNIT
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far as possible without causing edge overlapping. Note that if a path
is in a polygon, the path cannot be extended to complete the polygon
due to the restriction that the new vertex, w, not be adjacent to any
vertex already in PV s,

3) Letp = IPI, the number of vertices in P. Let d = the length
of the axis of symmetry/(p+l). At present the length of the axis is
taken as 4096. The user may control the size of the display by specifying
the axis length.

4) Position the p vertices in P on the axis of symmetry at the
points (xo, yo+d), (xo, y0+2d), cees (xo, yo+pd). The point (xo, yo) is
the lowest screen point on the axis. The vertices are positioned from
(xo, yo+d) towards the top of the screen in the same order as they were
placed in P. Set P = . Go to step O.

5) 1If there are no fixed vertices in the automorphism, go to
step 6. Otherwise, invoke the MOVE option7 in order to allow the user
to make any changes he wishes in the layout of the fixed vertices.

Actually at this point the user should not alter the x or z co-
ordinates of any of the fixed vertices as this could interfere with
the form of the rest of the representation. The user is being given
the opportunity to move the fixed vertices up and down the axes. He
is not expected to move vertices off the axis or out of the plane in

which the axis is embedded.

7. The MOVE option is a GSYM feature which allows a user to move elements
of a graph about the cube in which the graph is defined.
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In order to allow the user to determine the location of the vertices
along the various fixed vertex axes (assuming more than one axis was
required for the fixed vertices), the graph is now rotated 90° about
the y axis. This, in effect, gives the user a side view of the axes.

The MOVE option is again invoked to allow the user to relocate vertices
if he wishes. Again, he should only move vertices up and down axes.
Finally, the graph is rotated back to its original position. Go to

step 6.

Addition of Mirror—-image Vertex Pairs

6) If there are no fixed vertices in the automorphism then go
to step 7.
Examine each fixed vertex in order to determine if there exists a
pair of mirror-image vertices which are adjacent to the fixed vertex
and which have not yet been positioned. 1If there are no such vertex
pairs to be plotted go to step 7.
Otherwise, for each fixed vertex for which there is an adjacent pair
of vertices to be plotted, assign to the vertex pair the same y and z
co-ordinates as the fixed vertex. Then assign the values 1648 and
24489 to the x co-ordinates of the first and second vertices, respectively,
of the pair. Thus, these vertex pairs are placed on two imaginary lines
parallel to the axis of symmetry. Only one such vertex pair is used
with each fixed vertex even if there are several mirror-image pairs
adjacent to the fixed vertex. Go to step 7.
8. The result is the same as would be achieved if the user were abile
to walk around the 2250 Display Unit and view the graph from the
side of the display.
9. The values used in this procedure were chosen after several tests

and are a function of the scheme used on the IBM 2250 Display Unit
to address points on the screen.
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7) Let m = the number of mirror-image pairs which have not been

assigned their screen co~ordinates.
Let d; = 2896/(m+1), d, = 1448/([m/2] + 1).

The mirror-image pairs are all placed in an xy plane in the centre
of the cube in which the graph is defined. The x and y co-ordinates
of the first vertex of each pair are assigned values according to the
scheme illustrated in Figure 5.7.

The second vertex of each pair is assigned x and y co-ordinates
so that it is displayed as the mirror-image of the first. These pairs
are positioned in this fashion in the hope that the "X" format will reduce
if not eliminate the problem of overlapping edges. The values of d1 and

d2 have been chosen to spread the display about the screen without

getting too close to the border.

Postediting the Graph Representation

8) 1If the graph contains only rotational vertices go to step 9.
After positioning the fixed and mirror-image vertices the user
is presented with the display shown in Figure 5.8. The purpose in giving
the user the chance to edit the graph now is to allow him to concentrate
on the mirror-image symmetry before the rotational symmetries (if any)
are added to the display.
If the user selects the free format edit option, then the GSYM
MOVE option is invoked and any positional changes the user wishes to

. 1 . . . . . .
make can be carried out. 0 The mirror-image edit option makes it possible

10+ Allowing the user access to the very powerful GSYM MOVE option
at this point means the user could destroy the symmetry of the
mirror-image vertices. In practice, however, the mirror-image
edit option has proven more useful and would normally be the
option chosen.
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to handle the mirror-image pairs as single entities. Under this option
if the user moves a vertex of such a pair, then its image (under the cur-
rent automorphism) is moved at the same time in such a way as to preserve
the mirror-image symmetry between the two vertices. This feature is
especially useful when moving each vertex of a mirror-image pair to the
opposite side of the axis reduces the number of edge intersections in
the display.

The GSYM rotation option is available so that the user can view
the graph from different sides as is desirable when there is more than
one axis of symmetry. It is particularly useful to have the rotation
feature available when there are a significant number of edges conmecting
vertices on one axis to vertices on the other axes. These edges cannot
be properly viewed except from the side of the display unit, an effect
which can be achieved (i.e. simulated) only by rotating the graph.
It is also possible to request a hard copy of the display, even though
the display is incomplete since the automorphism may contain rotational
vertices.

The stop option was included as a natural consequence of a desire
to allow the user to change his mind at almost any point and start fresh,
even part way through the creation of a visual representation. The
'SHOW ORBITS" option allows the user to view the orbits of the current
automorphism again. This helps to relate the representation being
generated to the automorphism from which it is generated. The continue
option is invoked when thé user is ready to have the rotational symmetries

added to the display.
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Rotational Symmetries

9) 1If all the rotational symmetries present in the automorphism
have been plotted then the procedure is finished.

Have the user select the z co-ordinate for the plane in which the
next rotation is to be embedded. Then ask the user to specify the screen
distance between the vertices of the rotation and the screen co-ordinates
of the first vertex in the rotations.

10) Use the method described in Chapter II for drawing polygons
to position the vertices in the rotation. The vertices are assigned
screen co-ordinates in the same order as they appear in the orbit re-
presenting the rotation, beginning with the user specified co-
ordinates for the first vertex. Note that the vertices in the rotation
may or may not be adjacent unlike the polygon the method was originally
used to display (see Chapter II).

11) Enter the postediting routine. The user now has the same
options described under step 8. Once the continue option is selected
the procedure goes to step 9.

The above procedure uses no information about the graph and its
structure other than the information available on the types of symmetries
represented by each automorphism. It is completely general in nature and
because of this generality one might expect that it would encounter
difficulties. The possibility of successfully using one representation
routine to handle all classes of graphs seemed remote even before the
routine was tested. Some of the problems, the disadvantages and also
the advantages in trying to apply the above procedure to all types of

graphs are discussed below.



5.20

One of the biggest problems is how one judges the importance of
the tradeoff between stressing the structure of the graph and presenting
a 'pretty' picture of the graph. By its very nature the above procedure
does a good job of displaying the different symmetries in the automorphism.
However, there is little attention paid to the final picture one creates
by isolating the individual symmetries and then rather artificially grouping
them together on the screen. While the user is able to identify the var-
ious symmetries and the symmetry types, the overall view of the graph
is often unnatural and less than satisfactory. Thus, one must rate this
procedure a failure in the sense that the final picture is usually not
very esthetic and frequently cannot be used by the user as it stands.

However, this very weakness does vindicate the earlier conclusion,
based on the attempts at ring structure representations in Chapter III,
that an interactive system is a necessary tool for attacking the visual
representation problem. It is only because these representation routines
are implemented on an interactive graph processing display system that
it is possible to allow the user to perform postediting of the display.
And it is the postediting facility which allows the user in most cases
to transform an unsuitable visual representation into a picture that
he finds pleasing and satisfactory.

Consider the following example of the representations produced by
the General Representation Routine.

Figure 5.9 shows a graph as it might have been created by a user
working with the GSYM system. Figure 5. 10 shows a visual representa-
tion of the same graph as created by the General Representation Routine

using the specified automorphism. The automorphism is quite simple,
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FIGURE 5.9 : ORIGINAL GRAPH
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resulting in a straightforward mirror-image display in only one plane.
The diversity of the General Representation Routine is evidenced by the
representation shown in Figure 5.11. This is the very same graph.
The only difference is that now the representation is derived from an
automorphism containing only rotational symmetries.

Simply describing the proéedure for drawing these displays does
not convey a feeling for its usefulness or indicate its weaknesses.
However, Appendix C contains numerous displays produced using the
General Representation Routine and the Tree Representation Routine.
It is hoped that by examining this appendix the reader will obtain a
clearer understanding of the points discussed in this chapter. An
attempt is made, by means of suitable diagrams, to illustrate here some
of the problems encountered in using these visual representation routines.

For example, it was indicated that the facility overcomes many
problems by allowing the user fo perform post-display operations on
the representation. Figure 5.12 shows a representation created by the
General Representation Routine., While the graph is actually quite
simple, the nearly coincident edges shown in Figure 5.12 detract from
the representation. TFigure 5.13 shows the same graph after it has
been transformed by postediting into a much more pleasing picture.

In Chapter III it was shown that representations derived from auto-
morphisms which involved a high percentage of the vertices in non-trivial

mappings (that is, the majority of the vertices were not fixed) would
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reveal more of the structure of the graph. This fact is stressed even
more in the representations generated by the General Representation
Routine since the representations depend solely on the symmetries in the
automorphism. Figures 5.14 to 5.16 show several representations of the
same graph obtained with the General Representation Routine for the
specified automorphisms. The representations obtained from the automor—
phisms containing fewer fixed vertices are clearly more informative as
well as more interesting. The second and third representations are more
informative than the first because fewer fixed vertices are placed on
axes of symmetry. The representation in Figure 5.16 uses only one axis
of symmetry and as a result shows clearly all the edges in the graph.

In comparison the first two representations did not show all the
edges connecting fixed vertices on the axes of symmetry. The last two
representations are more interesting in a graph-theoretic sense because
more and more of the tree structure of the graph is revealed, the repre-
sentation in Figure 5.16 showing clearly that the graph is a tree.

Another aspect of the same problem is that the more fixed vertices
in the automorphism, the larger the number of axes of symmetry that the
General Representation Routine will use for the representation. For
example, Figure 5.17 is a representation of a graph with a large number
of fixed vertices. The same graph is shown in Figure 5.18 as it would
appear from the side of the graphic display.ll The large number of

axes of symmetry results in a picture which is not nearly as pleasing

11. If it could be viewed through the side of the graphic display.
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as that in Figure 5.1% Here the representation is derived from an
automorphism with fewer fixed vertices.

It was necessary to rotate the graph in Figure 5.18 in order to get
a clear picture of its shape as the representation routine created the
display using several planes. While, as previously indicated, it may
be necessary in certain cases to generate a three dimensional repre-
sentation, it is also true that in many cases the General Representation
Routine uses more planes than are really necessary. This does not imply
that there is an error in the procedure. It simply means that of all
the automorphisms in the automorphism group of a graph, some of the auto-
morphisms will be better suited than others for generating visual rep-
resentations. Thus, Figure 5.20 shows a picture of a graph where the
General Representation Routine used more planes than necessary as evidenced
by the representation of the same graph shown in Figure 5.21.

This problem of resorting to a three dimensional representation
when two dimensions would suffice is closely related to the question of
how well the General Representation Routine handles planar graphs. Un-
fortunately, the same problem may occur. Representations are created
in which the vertices are placed in several planes when, because the
graph is planar, one would hope that a single plane might have been
used. It is difficult to fault the General Representation Routine for
this as it has not been designed to worry about planar representation
of graphs. 1In fact, the opposite approach has been used in that the
procedure immediately seeks to use a non-planar representation in order
to avoid problems with edge overlapping. In other words, the General
Representation Routine is not as suitable for planar graphs because of

the nature of its design.
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Figure 5.11 shows a representation of a graph which, according to
the orbits of the automorphism mapping, should reveal the rotational
nature of the symmetries. However, the actual rotations are not nearly
as clearly displayed as they are in some representations. For example,
the representation in Figure 5.22 appears to be more rotational in nature.
The problem is that the mappings of the automorphism group are mappings
of the vertices. The automorphism mappings, by definition, preserve
adjacency. However, the mapping of the edges in EG induced by an automor-
phism mapping does not necessarily correspond to the vertex mapping.

For example, in a graph with one edge and two vertices, the end-
vertices of the edge, an automorphism exchanging the two vertices as in
a mirror-image symmetry induces a mapping of the edge onto itself.

Thus, a mirror-image or rotational symmetry in an automorphism does not
imply a corresponding mirror-image or rotational symmetry of the edges
incident to the vertices in the vertex symmetry.

The result as indicated by the two graph representations in Figures
5.11 and 5.22 is that a representation created by the General Representa-
tion Routine may suffer because the display is based on an automorphism
mapping of the vertices and does not, at least not directly, take into
account what happens to the edges incident to these vertices under the
mapping.

The above discussion shows clearly that the General Representation
Routine does not succeed in handling all classes of graphs equally well.
In fact, some classes of graphs it does not handle at all well. However,

it should be just as evident that in the majority of cases it does succeed
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in providing a logical basis upon which the user can build his own picture
of the graph. That is, if the routine generated picture is unsuitable,
then at least the user has a good starting point from which to create

his own picture.

It is impossible to list all the classes of graphs which are 'good'
graphs and those which are 'bad' graphs in terms of the success the
General Representation Routine has in displaying them. However, there
is one very large and important class of graphs for which the General
Representation Routine appears almost totally unacceptable. This is the
class of graphs which are trees. The General Representation Routine
generates displays for trees which rarely, if ever, have a form suitable
for portraying a tree. For example, Figures 5.23 and 5.24 show several
representations created by the General Representation Routine for very
simple trees. Owing to this rather serious failing of the General
Representation Routine and because trees are important in many graph-
theoretical applications the decision was made to investigate the pos-

sibility of implementing a separate tree representation procedure.

Tree Representation Routine

Figure 5.3 showed that the user can select either the General Repre-
sentation Routine or the Tree Representation Routine. The Tree Rep-
resentation Routine is intended for the use of anyone working with trees.
The graph must be a tree since the routine will not work otherwise.
Moreover, the tree centre heuristic must have been invoked so that the
identity of the tree centre or bicentre is known. The following is

a description of a simple tree representation procedure. The procedure
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will be complicated later by the necessity of avoiding intersecting

edges in the picture of a tree.

Tree Representation Routine

1) Use the centre or bicentre of the tree as the root of the
tree in the display.

2) Partition the vertex set of the graph into sets according to
the distance of each vertex from the centre or bicentre. There will be
2+1 "levels™ in the tree representation, where £ = the farthest distance
of any vertex from the centre or bicentre. Let n, = the number of
vertices at level i.

3) Assign y co-ordinate. values to each vertex according to the
level in which the vertex is found. The z co-ordinate for each vertex
is set at 2048 in order to place every vertex in the tree on a plane
in the centre of the three dimensional cube in which graphs are de-
fined. This is possible since a tree is planar. The plane is then
divided into #+1 equidistant levels along the y axis in order to
spread the tree across the whole screen.

4) Let e = the number of end-vertices in the tree + ¢, where
¢ =1 if the tree has a centre and ¢ = 2 if the tree has a bicentre.
Divide the plane into e+l equidistant increments along the x axis.

The method being used here is similar to that described in Chapter 1I
for Wolfberg's Tree Layout Routine. The final x co-ordinate values are
assigned to the vertices of the tree by spacing the end-vertices and

the centre or bicentre equidistantly across the screen and working from
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the lowest level of the tree to the top, locating each vertex, v, at
level i midway between all the successors of v at level i+l.

So far this procedure seems quite straightforward and just about
what one might expect. In fact, Wolfberg's routine is essentially the
above procedure with one difference, Wolfberg's routine assumes that
the vertices are to be placed in the same order at each level as they
originally were in when the graph was created.on the screen by a user.
The Tree Representation Routine cannot make this assumption. It must
determine the ordering of the vertices in the graph without any prior
information on how the user would like the vertices displayed. In ad-
dition, the vertices must be ordered so that the tree representation does
not contain any intersecting edges. Finally, the visual representation
of the tree must reveal clearly the mirror-image and rotational sym-—
metries in the tree structure.

In order to isolate the various symmetries in the current tree
automorphism the representation routine has been designed so that it
moves mirror-image symmetries to the outside of the tree display. The
rotational symmetries and fixed vertices are placed on the inside of the
representation. This process begins with the ordering of the vertices
on the first level. It is necessary to remember in the discussions
below that the object is to order the vertices at each level. Once the
vertex ordering has been determined the actual layout of the tree is handled

quite simply by a routine similar to Wolfberg's.

First level of the Tree

5) Let I be a location counter which is initially set to 1. Let

0(v) be the order or position of vertex v at whatever level of the tree
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v is in.lz For every mirror-image pair of vertices (v,w) in the auto-
morphism which are in the first level of the tree, order the vertices
as follows:

o(v) = I, Oo(w) = n, + 1 - 1I.

Increment I by 1 and repeat the process for the next mirror-image
pair.

In this manner the mirror-image vertices are ordered so that when
the tree is finally displayed the mirror-image symmetries are on the
outside of the tree,. The idea behind this is that were there no rotational
vertices or fixed vertices (other than the root vertex if the tree has
a centre vertex) in the automorphism, then the display would show the
mirror-image symmetries just as if there was an axis of symmetry passing
through the centre of the tree. The representation in Figure 5.25 is
an example of such mirror-image symmetry.

For each rotational symmetry at level 1 order the vertices in the
following manner:

Let S = the number of vertices in the rotation.

Let (vl, v ceny VS) be the set of vertices in the rotation.

2’
Set O(Vi) =14+ i-1,
Reset I =1 + S.
This process is repeated for every rotation at the first level.
Thus, the rotational symmetries are placed from left to right after
12. That is, the vertex set of the graph has been partitioned into sets
of vertices representing each level of the tree. The problem now
is to change these sets into ordered lists by ordering the vertices

at each level according to the left to right order in which they
will be displayed on the screen.
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the last mirror-image symmetry on the left side of the tree representation.
The reason for this is that rotational symmetries are not as naturally
related to trees as are mirror-image symmetries. That is, when one

thinks of the structure of a tree one usually does not visualize it in
terms of rotations.

One possible alternative to the method just used would be to space
the rotational vertices equidistantly on the inside of the tree display.
This would involve considerably more calculation, especially when it
was necessary to order the vertices of several rotations. The primary
consideration, however, was that the rotational symmetries in the final
display are such that in another automorphism the vertices in the rotational
symnetries are in mirror-image symmetries. What this means in terms of
the tree display is that normally the user can, by postediting the dis~
play, picture the rotational symmetries as mirror-image symmetries.
Keeping the rotational symmetries together in one area makes it easier
for the user to locate the rotational symmetries and then do something
about them if he wishes.

Let F = the number of fixed vertices at level 1. The fixed vertices
are assigned the orders I+1, I+2, ..., I+F-1. This means that the fixed
vertices are placed from left to right after the rotational symmetries.
Unfortunately, owing to the nature of a tree it is not possible in most
cases to place all the fixed vertices on an axis of symmetry as was
done in the General Representation Routine.

It now appears as if a representation has been derived as a way
has been found to use the symmetries in the automorphism to order the

vertices in the graph. Now all that remains is to apply the above scheme
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to each level of the tree and then use the resultant orderings to create
the tree display. Unfortunately, when such an attempt is made the disas-
trous results illustrated in Figure 5.26 can be generated.

What happened, of course, was that the ordering at the first level
was ignored.when the vertices at the second level were ordered. Thus,
it is necessary to remember what has happened in the upper level order-
ings as the vertices at the lower levels of the tree are ¢rdered..
The same type of ordering as outlinedin step 5, should be applied but
with the new restriction that what happens in level i+l is dependent

upon the ordering in level 1.

Ordering of Vertices in Level i, i>1

6) Reset the location counter I to 1. Examine the vertices at
level i in the order determined by the ordering of the vertices at
level i-1. That is, first examine those vertices at level i which are
adjacent to the first vertex at level i~l. Continue with the vertices
at level i adjacent to the second vertex at level i-l and so on until
the ordering for level i is complete. In this way it is insured that
the vertices are ordered so as to prevent the intergecting edge problem
(see Figure 5.26) caused by ignoring the order of the vertices at level
i-1.

The problem now is to order whatever set, V, of vertices at level
i (adjacent to a vertex v at level i-1) is currently under examination.
This problem can be subdivided into two cases:

i) The vertex v at level i-1 is a fixed vertex.
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If v is fixed then there is no problem about preserving the
correspondence between vertex v and its image under the automorphism
mapping.13 Preserving the correspondence between a vertex, v, and its
image, w, under an automorphism mapping simply means that the layout
imposed on the subtree having v as its root vertex must be repeated for
the subtree having w as its root vertex. In other words, given some
particular ordering of the successors of v, the successors of w (which
are, of course, the image vertices under the automorphism mapping of the
successors of v) must have the same relative ordering. For fixed ver-
tices the same procedure that was used for level 1 vertices is used to
add this set of vertices to the ordering of vertices gt level i. The
only difference now is thet instead of using n, in the ordering formula
the number of vertices in the set V must be used. Once the ordering
of V is determined the vertices are added in this order to the list of
ordered vertices at level i.

ii) v is not a fixed vertex:

In this case vertex v is involved in either a mirror-image mapping
or a rotational mapping at level i-l1. But if a vertex v is mapped onto
a vertex w, then the successors of v (at level i) must map onto the
successors of w(at level i). Thus, the vertices in V are involved in
a mirror-image or rotational mapping.14 Moreover, if the preimages of

these vertices have already been ordered then the ordering of the vertices

13. Being fixed v is, of course, mapped onto itself by the automorphism.

l4. Because, if the root vertex of a subtree is in a mirror-image or
rotational mapping, the whole subtree is in the same type of mapping.
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in V must correspond to this ordering. However, if the preimages of the
vertices in V have not been ordered then the vertices in V can be given
any ordering. That is, within the interval in which these vertices

are to be added to the existing ordering of level i, their actual order-
in is irrelevant.

Thus, examine the vertices in V and if their preimages have not
been ordered assign an arbitrary ordering to the elements of V. If,
however, the preimages have been ordered then the following scheme for
ordering the vertices must be used:

Let V = {vl, Vos eees VIVI}.

Create a lV| X 3 array where row i contains the elements V.o the
preimage of v, and whatever numerical order has been assigned to the
preimage of v, Reorder the rows in the array so that the elements in
the third column are in increasing order. The order of the elements
in the first column is now the order in which the vertices in V are to
be added to the end of the current ordering of level i. This reordering
makes the vertices in V correspond to the same relative order assigned
to their preimages.

Once all the vertices at level i have been ordered, go to step 7.

7) If i<®, then set i = i+l and go to step 6. That is, order the
next level. If i = £, then go to step 8.

8) The graph has been ordered and the same type of layout routine

Wolfberg used to create tree representations is used to display the graph.
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Example 5.1

20

19

Automorphism:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 8 9 10 12 11 13 20 19 4 6 5 7 14 15 17 16 18 3 2

Orbits:
(1), (14), (15), (18) - Fixed vertices
(4,10), (5,12), (6,11), (7,13), (16,17) - Mirror-image

(2,8,20), 8,9,19) -~ Rotations



5.52

In order to illustrate how this procedure works and to help the
reader interpret the tree representations shown in Appendix C, the
operation of the procedure on the automorphism in Example 5.1 will be
described in detail.

Root vertex = 1. (found by the centre test)

Level 1:

n, = 6, s = {2, 4, 8, 10, 18, 20}. The only mirror-image pair

is (4,10) so 0(4)

1 and 0(10) = 6. The only rotation is {2, 8, 10}

so 0(2) = 2, 0(8) 3 and 0(20) 4. The only remaining vertex is fixed

so 0(18) = 5. Thus O0(level 1) = (4, 2, 8, 20, 18, 10), rearranging the
set of vertices at level 1 to obtain an ordered list using the orders

just assigned to each vertex at level 1.

Level 2:

The successors of vertex 4 are the vertices 5 and 6. But the preimages
of 5 and 6 15 are not yet ordered so that an arbitrary ordering can be
assigned, say 0(5) =1 and 0(6) = 2.

The successor of vertex 2 is vertex 3. Since vertex 2 has only one
successor at level 2, 0(3) = 3 can be set without having to consider
whether or not vertex 2 is fixed. This is true whenever a vertex has
only one successor at the next level.

Similarly, vertex 9 is the only successor of vertex 8, so 0(9) =
4 and, again, 19 is the only successor of 20 s0 0(19) = 5.

15. The preimages of 5 and 6 are 12 and 11 respectively since the auto-
morphism maps 12 onto 5 and 11 onto 6.
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The successors of 18 are vertices 15, 16 and 17. Vertex 18 is fixed
s0 it is necessary to examine the types of mappings vertices 15, 16 and
17 are involved in. 15 is fixed, but 16 and 17 are a mirror-image
pair so that 0(16) = 6, 0(17) = 8 and 0(15) = 7.

The successors of 10 are 11 and 12. Vertex 10 is not fixed.
Moreover, the preimages of 11 and 12 are already ordered. Hence, build

the array:

il
]

1116 0(6)

[
[

12 {5 0(5)

The array is sorted to produce:?

fl
[

1215 0(5)

il
[}

11] 6 0(6)

Therefore, 0(12) 9 and 0(11) = 10.

Thus, 0(level 2) (5, 6, 3, 9, 19, 16, 15, 17, 12, 11).
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Level 3:

Only three vertices at level 2 have successors at level 3 and
all three vertices have only one successor. The successorms of vertices
6, 15 and 11 are 7, 14 and 13 respectively. Hence, 0(7) = 1, 0(l4) =
2 and 0(13) = 3.

The complete graph is ordered so that after applying the layout

routine the following representation is obtained:

17 11

15
9 19 16 |7

)/
~
Rotational //////ﬁ/

*

Mirror-Image

13
7 14
i , (- S
Mirror-Image Fixed Mirror-Image

Note that the above representation shows a mirror-image mapping
at level 2. The two vertices in this mirror-image pair are adjacent
to a fixed vertex at level 1. This type of situation occurs frequently

in the representations generated by the Tree Representation Routine.
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Once the tree representation has beenscompleted the user is again
allowed to perform postediting. For example, he might wish to move the
branches of the rotation in the above example in order to display them
as mirror-image symmetries. However, the user should not invoke the
mirror-image edit option to move mirror-image pairs which do not have
the centre of the screen as their axis of symmetry since this routine
assumes the axis to be in the centre. The actual postediting facilities
for trees are rather limited. For example, there is no way to relocate
all the vertices in a branch except by moving each vertex individually.
Special postediting options for trees were not felt to be necessary be-
cause it was found in general the Tree Representation Routine produced
excellent displays.

The reader can judge for himself the degree of success of the
Tree Representation Routine by examining the tree representations included
in Appendix C. The only real problem one might encounter in using the
tree representation routine is the problem previously discussed where
an automorphism contains a large number of fixed vertices. In such
cases the representation routine still creates a very good display of
the tree as evidenced by the representation shown in Figure 5.27.

The problem is that the symmetries that would be revealed by another
automorphism of the tree are not available to use to balance the branches
of the tree. However, this problem is easily avoided by using only
automorphismswith a small percentage of fixed vertices to generate the

representations.
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MIRROR-IMAGE PAIR

2 @ ® T 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

i 2 3 4 5 13 7 8 9 10 11 12 6 14 15 16 17 18 19 20 21 22 23

FIGURE 5.27 : AUTOMORPHISM FIXES ALL VERTICES
EXCEPT PAIR (6, 13)
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Alternative Visual Representation Schemes

The two visual representation schemes that have actually been
implemented using the GSYM system are radically different in nature.
As has been seen, the General Representation Routine frequently fails
to produce a satisfactory representation in the sense that it is either
unwieldy or is unsuited to the user's application. On the other hand,
the Tree Representation Routine generates extremely good displays for
any graph which is a tree. Both routines attempt to portray the struc-
ture of the graph in terms of mirror-image and rotational symmetry.
The difference in the degree of success thus stems from the fact that
the Tree Representation Routine knows a good deal more about the graph
than does the General Representation Routine. Since the graph is a
tree it knows that the graph has a planar representation, that it has
a centre or bicentre that can be used as the root of the tree representa-
tion, that the vertices can be placed at equidistant levels from the
root, that there are no polygons in the graph and so on. All of this
information helps to determine the best way of displaying the symmetries
in the graph.

One ther questions whether there should be a concentration on de-
signing visual representation routines for special classes of graphs
or on attempting to improve the General Representation Routine. This
is not an easy question to answer. One must not be misled by the above
discussions as the Tree Representation Routine and the General Repre-

sentation Routine are both extreme examples of representation routines.
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One is almost totally naive about the nature of the graph while the other
routine knows everything. There are very few classes of graphs such

as trees which lend themselves so well to a visual portrayal. Instead

of attempting to answer this complex question with a simple yes or

no, some special representation routines and some improvements to the
General Representation Routine will be considered. By doing this some

of the problems involved in choosing a visual representation scheme

will be illustrated.

None of the schemes about to be described have been implemented
owing to the considerable amount of time required to prepare and program
a visual representation routine. This, then, is the first tradeoff in
the debate between general versus specific representation routines.

With a general representation routine one hopes, at best, to be able to
handle many if not all classes of graphs moderately well. A special
representation routine, on the other hand, is designed to handle one
class of graphs extremely well. The special routine may not be able to
cope with any other class of graphs. Assuming that both types of routines
take about the same amount of effort to implement, one must decide how

to allocate programming resources. A user interested in a special
application involving only one class of graphs would be foolish to
implement a general representation routine. His time is better spent
creating a routine to handle the type of graph he is using. If, however,
one may encounter several types of classes of graphs, it would seem a
better approach to implement a general representation routine or at

least fashion a compromise routine based on any special properties that

may be common to the several classes of graphs involved.
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In general, improvements and changes to the General Representation
Routine will take the form of display layout improvements, since any
consideration of specific graph-theoretic properties cannot be added
to the procedure without compromising the plan to have a completely
general representation routine. These improvements in display methods
for the graph may be very simple and some are not at all obvious.

For example, in the course of deciding how to treat the rotational sym~-
metries in the General Representation Routine it became necessary to
decide whether each rotation should be on a separate plane or whether
several rotations could be placed on the same plane. The final decision
to use separate planes was based primarily on a desire to isolate the
individual symmetries. In using separate planes to place the rotations
one often creates a display where many edges connect the different
planes. In order to see these edges in the proper perspective it is
usually necessary to rotate the graph.

In the case where several rotations are placed in the same plane
one is attempting to embed as many edges as possible in each rotation
plane and thus reduce the number of connecting edges. A very simple
example of this type of embedding is shown in Figures 5.28A and 5.28B.
In Figure 5.28A it is seen how a pair of concentric triangles might look
when they are embedded in the same plane. Using separate planes for these
triangles would force the user to experiment with various rotations of
the graph before obtaining a display such as that shown in Figure 5.28B.
This is a very simple example and does not indicate the problems that
could arise when several rotations were placed in the same plane. For
example, Figure 5.29 illustrates how a slightly more complicated pair of

rotationstreated in this manner results in a rather confusing display.
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FIGURE 5.28A

FIGURE 5.28B
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FIGURE 5.29 : CONFUSING ROTATIONAL REPRESENTATION
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The reader can imagine just how cluttered a single plane could get with
several such rotations on it. This is not to say that using indivi-
dual planes provides a magical solution to the problem, but at least
the user is able to separate the rotations from the interconnecting
edges by rotating the graph.

Probably the most important improvement one could make to the
General Representation Routine would be to devise a method whereby
the elements of the graph could be distributed more evenly about the
screen. This means that one would try to balance the distance between
the elements and also the area enclosed by polygons of the graph.

A small step in this direction has been made in the General Represen-
tation Routine where the user is required to specify the distance be-
tween the vertices of each rotational symmetry and the location of the
first vertex in the rotation. The idea is that the user will thus

be able to distribute the rotations equally about the screen and also

be able to treat them as if they were concentric polygons. This is the
method used to generate most of the General Representation Routine
displays in Appendix C. As the reader can see from these representations
this mode of attack works quite well in many cases.

However, this is strictly an ad hoc method. What would be really
useful would be a method whereby the polygon areas would automatically
be balanced or a means whereby the user could request that the screen
area used to display specified parts of the graph be equalized or reduced
or enlarged. Such a routine, in our opinion, would be more useful
and have a better chance of success if it involved the user at some point
in the process. Such a routine would be both simpler and more effective

if guided by a user viewing the display and judging how well the routine

is working.
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The creation of special purpose representation routines takes the
opposite approach to the same problem of obtaining a 'good' display of
the graph. The idea is to find some special property of a class of graphs
that can be interpreted visually in such a way as to dictate how the
graph must be displayed on the screen. This was especially evident
with trees where the properties of a tree indicated that the graph must
have a planar representation with a root vertex and several levels of
vertices below the root vertex. In essence, the special property sought
is one which will impose a unifying approach over the steps that are taken
to display the various symmetries in the automorphism group.

The most obvious special property that a graph might have is that
it be planar, since all graphs can be partitioned into planar and non-
planar graphs. The representation system could then be restricted to
displaying only planar graphs. It is possible to embed such graphs in
a single plane without having any intersecting edges and Tutte gives
an algorithm for drawing such a graph in the plane.(xxiii) Unfortumtely
Tutte's algorithm tends to produce pictures where a large number of
edges are drawn within a very small area. As a result, for most
practical purposes, the algorithm proves to be unsatisfactory. More-
over, the algorithm does not attempt to represent the structure of
the graph as given by the symmetries of the automorphism group. This
in itself is sufficient reason for not using the algorithm.

The problem with the property of planarity is that it is too

general since it does not indicate how one might represent the symmetries
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of the graph in a planar representatiom. When the display of mirror-
image vertex pairs by the General Representation Routine was discussed
it was shown how the procedure attempted to reduce the occurrence of
intersecting edges. This, again, was an ad hoc treatment. A procedure
for creating planar representations would probably use the regions of
the graph to generate a display without intersecting edges. The display
could be generated region by region, thusly preventing any possibility
of intersecting edges. However, as there is no direct relationship
between the vertex mappings of the automorphism group and the regions
of the graph, it is not obvious how the symmetries of the graph could
be represented using the regions of the graph to create the display.

The type of special property that is being sought is best illus-
trated by the special class of cubic, cyclically four-connected graphs
considered in Chapter III. There it was shown how the special properties
of this class of graphs could, in most cases, be used to impose a special
type of overall structure on the displays of graphs in the class.

In this case it was a ring structure form that was the basis for the
representations. Curbusly enough, this same type of ring structure
seems intuitively well suited for representing both mirror-image and
rotational symmetries. Unfortunately, there has not been time to pursue
this possibility and perhaps generalize the ring structure to handle
similar classes of graphs.

The types of considerations one must make before choosing or im-—

plementing a visual representation algorithm have been discussed.
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There is no definitive answer as to which of the previous methods should
be chosen; the answer must depend on the particular application or need.
The two approaches discussed previously are not the only ways to tackle
the problem of visual representation of graphs. The above methods have
been discussed because both attempt to interpret directly the symmetries
found in the automorphism group mapping. An alternative method which
was considered does not directly utilize the symmetries of the automor-
phism. Instead it determined if the graph had a spanning tree. If

such a spanning tree could be found then the Tree Representation Routine
and an automorphism of the tree could be used to obtain a good display
of the tree. The remaining edges of the original graph would be added
to the display to create the graph representation. Since the Tree
Representation Routine is capable of producing a good representation

of a tree then it would be expected that the final representation of the
whole graph should also be gquite good.

Another rather novel idea (suggested by Z. Jordanov) is that one
might treat the edges as springs with equal physical properties. One would
choose several vertices of the graph as fixed pointsand then release
the springs (edges) to see what form the graph took when the springs
reached a state of equilibrium. The intuitive idea behind this is that
the forces exerted by the springs would depend on the structure of the
graph and the final equilibrium state should, therefore, reflect this
structure. Even if this were true, the problems involved in choosing

suitable fixed points and in calculating the forces exerted on each



5.66

vertex appear to make this method impractical. However, it is a good
example of the room that exists for experimentation and research into

the question of how to obtain the 'best' visual representation of a

graph.
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CHAPTER VI : IMPROVEMENTS, APPLICATIONS AND CONCLUSIONS

This chapter concludes the thesis by suggesting several improvements
that might be made in the work that was done. Some possible applica-
tions of the concept of automated visual representation of graphs and,
in particular, the representation of symmetry in graphs are also considered
briefly. Finally, we shall attempt to evaluate the degree of success
of our efforts to create an. automated generation process for visual

representation of graphs in light of our original goals.

Improvements

The two main areas of the thesis research which are most susceptible
to improvement are those of the calculation of the automorphism group
and the generation of visual representations. In Chapter IV it was in-
dicated that the set of heuristics used in the automorphism group cal-
culation had proven very efficient and practical. However, as indicated
then the chosen collection of heuristics is not definitive. There
may be additional heuristics which are especially suited for certain
classes of graphs and worth implementing. For example, a worthwhile
addition would be the inclusion of the algorithm of Corneil and Gotlieb.
Until the conjecture about the automorphism partitioning is proven the
results could be treated just as those of any other heuristic.

The reordering of the partition sets option was implemented with the
idea of possibly reducing the execution time required by the final

automorphism group algorithm. Another very simple such option would
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be one where the user can determine the ratio of edges to vertices in
the graph. If by taking the complement of the graph it is possible to
obtain a graph with fewer edges it may be-worthwhile to use the com-
plement to obtain the automorphism group. It is possible to use either
the graph or its complement since the automorphism group of a graph

is the same as the automorphism group of its complement. The possible
saving in execution time comes from the fact that the final automorphism
group algorithm calculates the automorphism group using the fact that
the successors of a vertex map onto the successors of the object of

the vertex under the mapping. Thus, by reducing the number of edges

the number of successors that must be checked is reduced and hence there
is a saving in execution time. The difference in the number of edges
between the graph and its complement would have to be large enough

to make it profitable to use the complement, taking into consideration
the time required to calculate the complement of the graph.

Again, in connection with the final automorphism group algorithm,
it might prove useful when checking the vertex mappings to use the fact
that the predecessors of a vertex must map onto the predecessors of
the jimage of the vertex. This fact, of course, is applicable only to
digraphs. The tradeoff involved here is whether the increase in ex-
ecution time required to check a mapping would be offset by possible
reductions in the number of mappings that will need to be checked.

That is, by checking both facts at the same time, it should be possible

on the average to discover sooner that a permutation is not an auto-

morphism.
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The area of the thesis in which improvements are most important
is in connection with the process of generating visual representations.
One of the minor problems currently encountered in using the visual
representation routines is to obtain a representation based on a mapping
containing few fixed vertices. This problem can be avoided by examining
the orbits of the automorphism and determining whether the percentage
of fixed vertices indicates that a 'good' representation may be
forthcoming. This, however, is somewhat tedious and it might be useful
to add a feature whereby the representation routine would generate
representations only for those automorphisms having a user specified
percentage of non-trivial mappings.

Another useful improvement would be to extend the postediting
facilities which are currently oriented primarily towards manipulating
mirror-image symmetries. There are no facilities available for treating
rotational symmetries in the same manner. Another possibility would
be to improve the editing facilities for tree representations. In
particular, it would be very useful to be able to manipulate whole
branches of a tree as single elements.

With the current representation routines the user is given the
choice of having a representation created for each automorphism after
the automorphism is generated. It is not possible to create the auto-
morphism group first and then use the representation routines to generate
the representations. In cases, however, where the user already knows

the automorphism group, it would be useful to be able to do this.



6.4

Another consideration is whether it is necessary to use the whole
automorphism group in order to obtain a satisfactory representation.
For example, the user might be able to obtain the representation he
requires from one of the first few automorphisms. Thus, one possibil-
ity would be to generate several automorphisms and then use these to
generate one or more cyclic subgroups of the automorphism group. It
is impossible to determine if any such cyclic subgroup is actually the
complete automorphism group without calculating the automorphism group
itself. However, the representations derived from these automorphisms
may be sufficient for the user's purposes and, of course, it is much
quicker to create such subgroups than it is to calculate the whole
automorphism group.

Another problem related to the generation of the representations
is that of the uniqueness of the representations. As indicated in Chapter
I1T the mappings of the automorphism group may give rise to representa-
tions which are similar if not identical. In many cases the only dif-
ference is in the labelling of the vertices. One possible way to reduce,
if not solve, this problem would be to examine the orbits of each mapping
of the automorphism group. Mappings whose orbits are the same, except
for the order of the vertices in the orbits, give rise to very similar
representations. Thus, it might be worthwhile to generate only one
representation for each set of mappings whose orbits contain the same
elements. The problem here is that it would be necessary to calculate
the whole automorphism group in order to be able to examine the orbits

of all the mappings.
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When the reasons for using the automorphism group of a graph as
a basis for generating visual representations of the graph were disc
cussed it was indicated that one advantage of this method was that
it made it possible to create representations in a systematic fashion.
This should mean that the same representations will always be generated
for a graph regardless of how the graph is labelled. Closer inspec-
tion of the General Representation Routine procedure reveals that this
is not necessarily true. The problem is that the fixed vertices are
selected for the various axes of symmetry (assuming that more than
one axis is used) in the order in which the vertices are labelled.
This means that by relabelling the graph one could conceivably obtain
two different representations for the same automorphism of the graph.
The allocation of the fixed vertices to different axes should be made
in a deterministic fashion. For example, the longest path of fixed
vertices could be used first and so on.

The same problem appears again when the routine adds to the dis-
play mirror-image pairs adjacent to a fixed vertex. There may be more
than one such pair adjacent to a fixed vertex, yet only one pair at
most is used with each fixed vertex. Moreover, the choice as to the
pair added to the display is quite arbitrary. The procedure should be
changed so that all pairs adjacent to the fixed vertex are used. Later,
when adding mirror-image pairs which are not adjacent to any fixed
vertex to the display, the pairs are added according to the order of
their vertex labelling. This should be changed so that they are added
according to their distance from the first fixed vertex on the axis

or according to some other deterministic criteria.
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In actual practice the above problems are not too serious as they
will only affect someone using the General Representation Routine to
examine and cocmpare the members of a particular class of graphs. How-
ever, as indicated in Chapter V someone in this situation is quite
likely to use a special representation routine especially suited for

use with the particular class of graphs.

Applications

The GSYM system was designed as a tool for graph-theoretical re-
search into the question of visual representation of graphs. Thus, it
might be expected to prove useful to anyone interested in continued
research in this area. It is also a relatively general graph processing
tool and could be used for implementing and testing general graph-
theoretical algorithms. It could conceivably be used for other non-
graph-theoretical problems requiring a display facility. However, this
guise would be an ill fit because the operations and data structures
of the system are designed and implemented using graph-theoretical
terminology.

The GSYM system in combinétion with the representation routines
is obviously best suited for use as a tool for graph theorists. It
provides a means whereby a graph theorist can easily investigate the
structure of a graph or class of graphs in which he is interested.

The system and the representation routines were designed to be easy to
use and also to be as fail safe as possible so that a person with little

or no previous experience with computers or the graphic display could
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start using the system immediately. A tool is of little use if the
effort required to use it is greater than that required to tackle the
problem without the tool. Thus, we are suggesting that the most imme-
diate and probably the most useful application of the thesis work is
to replace the trial and error, paper and pencil method of drawing
graphs.

We also hope to show that this facility is ideal for communicating
graph-theoretical information about the structure of graphs. ' Repre-
sentation routines should be very useful for communication between graph
theorists in situations where someone needs to obtain a catalogue of
a class of graphs for his own research. At present it would only be
possible to provide him with a list of the adjacency matrices of the
graphs plus possibly some other written data on the structure of the
graphs. However, by using a representation routine for the class of
graphs it would be possible to provide one or more pictures of each
graph as well.

There are other possible applications for the thesis work which
are not so immediate. For example, some of the original heuristics
used for automorphism group calculation were based on heuristics used
by Unger to tackle the graph ismorphism problem. The fact that the
interactive versions of these heuristics as well as the others implemented
have proven much faster and more practical than the non-interactive
versions indicates that these interactive routines could, in turn, be

applied to the graph isomorphism problem. Due to the similarity of
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the two applications one would expect the same type of improvement in
execution time requirements. It might also be possible in some cases
to settle the question of whether two graphs are isomorphic by simply
examining the representations created for the two graphs by one of the
representation routines. This would be practical only if the repre-
sentations already existed. It is unlikely to be cheaper in terms

of execution time to calculate the automorphism groups of both graphs
solely in order to obtain visual representations of the graphs which
may or may not settle the isomorphism problem.

During the discussion of the ring structure representation routine
in Chapter III it was mentioned that since the representation is not
tied to any automorphism of the graph, it is possible for the routine
to create a representation of a graph having only the trivial automor-
phism group. After that this question was tactfully avoided. The
representation routines were based on the automorphism group of the
graph and the representations were derived almost exclusively from
non-trivial automorphisms. While it is possible to use the representa-
tion routines to obtain a representation from the identity mapping, such
representations are of little practical value as the identity mapping
provides no information about the structure of the graph. Thus, the
question that was avoided. What happens if the graph has only the
trivial identity mapping in its automorphism group? There is usually

little point in generating a representation from the identity mapping.



6.9

This problem is related to one which has been investigated previously
without much success. What is the minimum number of changes necessary
to a graph with a trivial automorphism group in order to create a graph
with a non-trivial automorphism group? This problem was originally
investigated by Erdos and Renyi (xxxvi) and more recently by Quintas
(xxxvii) . An asymmetric graph is a graph with a trivial automorphism
group. The degree of asymmetry of a graph is the minimum number of
changes (edge additions and/or deletions) required to create a graph
having a non-trivial automorphism group. The results obtained so far
have been restricted primarily to existence proofs. There has not yet
been found a construction which determines what edges must be added
and/or deleted to create the desired graph. However, it would seem
intuitively feasible that one way to tackle this problem would be to
use the partition created by the heuristics in the calculation of the
automorphism group. The partition indicates which mappings are most
likely to be automorphisms although a later check of these mappings may
prove that they are not. However, when these checks fail it may be
possible to use the failure points as starting points to determine
what changes are most likely to produce a non-trivial automorphism.

The immediate relevance of this question to the visual representa-
tion routines is that it may be possible by making the required changes
to obtain an automorphism which can be used to create a good representa-
tion of the new graph. This representation may then be altered (reverse

the edge additiom and/or deletions) to produce a representation of the
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original graph. Moreover, if the required changes were not too extensive
the final representation should also be a good representation in that
it will reveal the "almost symmetric' structure of the original graph.
The most apparent application for visual representation routines
is to problems where the structural symmetry of an object is important.
The representation routines are intended to portray visually the struc-
tural symmetries in a graph. However, a graph can be used to model
many different relationships from chemical bonding to program structure.
Thus, it might prove useful to apply the visual representation routines
to such areas. For example, in the field of fault diagnosis one of the
more recent techniques for digital fault simulation is that of functional
simulation.(xxxv) With this method a digital system composed of modules
Ml’ M2, cens Mh is to be simulated. Overall system behaviour is to be
determined using the assumption that there are faults in only certain
of the modules. Thus the remaining modules need not be simulated at
the gate level. It is only necessary to compute the output of these
modules as a function of their input. If such a digital system were de-
fined as a graph, then one could use a representation routine to obtain
pictures of the symmetries in the system. These pictures would indicate
which modules should or should not be simulated in detail. For example,
if modules M& and Mj form a mirror-image pair, then if module Mi is
not being simulated at the gate level then the mirror-image symmetry
suggests that neither should module Mj be simulated at the gate level.
The idea is that the symmetry in the system would help determine how

to set up the simulation tests.
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Another area where symmetry is important is in the optimization
of computer programs. This can take place at two levels. On the higher
level there is the question of program structure and the best segmen-
tation of programs in such applications as time-sharing. Graph-
theoretic techniques are currently being used in such investigations.
The structure of a program, interpreted as a graph, could be displayed
with its symmetries using the representation routines. Such displays
might then indicate the best program segmentation points or reveal por-
tions of the program which are repeated. On a lower level there is the
problem of formula simplification. This is a subject which has received
considerable attention in connection with the optimization of code
generated by compilers. For example, in a statement or series of state-
ments where a common subexpression appears it may be less costly in
terms of execution time to replace the expression by a variable and set
the variable equal the value of the expression before executing the

statement(s).

Example 6.1:

A = 2% (CHD-2*LOG(X) ) + (A+B)* (C+D-2*LOG(X) )
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Formula Tree Representation:

OROJIOIC OO0 &

In the above simple example the subexpression C4+D-2*LOG(X) could
be replaced by a variable set equal to the subexpression. It would
then be necessary to generate the code for the subexpression only once.
Moreover, the value of the subexpression would be calculated only once
at execution time. If such a formula were treated as a tree and then
displayed on the screen using the Tree Representation Routine the user
could easily identify the symmetric subexpression from the representa-
tion. He could then determine for himself the best way to simplify

the formula.



6.13

The above discussions were intended to indicate some of the possible
applications and benefits of research into the visual representation
of symmetries in graphs. It has not been possible to consider these
applications in detail and assess their practical merits as each appli-

cation appears to be a major research problem in its own right.

Conclusions

Apart from such considerations as the efficiency of the coding for
the representation routines, the generality of the GSYM system, the
selection of automorphism group heuristics and so on, the question to
consider is what has been achieved in light of the original goals for
the thesis. The original aim was to create an automated process for
generating visual representations of graphs. On the whole, this goal
has been achieved. The representations, being derived from the automor-
phism group of the graph, are obtained in a systematic fashion. More-
over, it is possible to generate one or more representations (usually
more) for each graph. In addition, thanks to the interactive GSYM system,
it was possible to successfully handle the automorphism group problem.
The use of interactive heuristics in the calculation of the automorphism
group made it not only possible, but even practical, to base the visual
representations of a graph on its automorphism group.

The stated goals indicated that the process of generating visual
representations was to be automated. The user should be able to request
a representation of a graph and have the system return with the representa-
tion on the screen. As we know, we have had to allow for postediting of
the representations that are generated. Thus, the system is not fully
automated. However, the need for postediting is reduced when special

representation routines are used and this is the direction we expect
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further research in this area will follow. That is, just as with the
development of programming languages we would expect a parallel develop-
ment in the creation of visual representation routines —— a proliferation
of special representation routines intended for specific applications.
As to the question of whether the representations are "good" repre-
sentations, this is difficult to answer in general. The representations
obtained from the Tree Representation Routine are very good. The repre-
sentatiors generated by the General Representation Routine can usually,
thanks to the postediting facilities, be transformed into quite satis-
factory if not good representations. Unfortunately, it is not easy to
determine what constitutgs a '"good" representation. However, we feel
that we have shown that it is possible to create representation routines
which are suitable for most users and for most applications. More-—
over, we believe that this work has shown that this facility should be
present in all graph processing languages, especially those which make

use of a graphic display medium.
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APPENDIX A : HARDWARE DESCRIPTIONS AND DEFINITIONS

Hardware Descriptions

The IBM S/360-2250 Model 1 Graphic Display Unit is the graphic
device on which the GSYM system was implemented. The 2250 Display Unit
has been designed to operate in combination with an S/360 computer; in
this case the 2250 was connected to an IBM 2911 switching unit which,
in turn, was linked to an S/360 Model 75 and an S/360 Model 50. Thus,
the 2250 Display Unit and the GSYM system could be used with either
machine. The following description briefly describes some of the
features of the 2250. It will not discuss the S/360 machines except

in their relation to the 2250.

IBM 2250 Display Unit

The IBM 2250 Display Unit is a programmable cathode ray tube (CRT).
Although the 2250 is a computer with its own control unit and memory,
it is normally expected to be operated as an I/0O device attached to a
channel of an S/360 computer. The channel is usually a multiplexor
channel as the 2250 is basically a low speed device.

The CRT consists of an electron gun and a phosphor-coated screen.
The electron gun focuses an electron beam on the screen which causes the

phosphor to glow briefly at the point of contact. The movement of the

electron gun is controlled by graphic orders placed in the 2250 memory.



Thus, the user programs the 2250 to trace images on the screen, placing
graphic orders in the 2250 buffer to create a display. The CRT screen
is divided into a 1024 by 1024 grid, with each intersecting point
being addressed as an ordered pair (x,y) where 0O<x,ys1023.

The 2250 at the University of Waterloo contains most of the optional
features which are available to the Model 1 2250 Display Unit.  These
include the following:

1) Buffer Memory

The buffer for the 2250 consists of between 4K and 32K bytes
of storage in 4K increments. The University of Waterloo 2250 has
an 8K buffer. This buffer can be accessed by either the 2250 or
the main computer with an access time of 4.2 microseconds per byte.
The 2250 uses the buffer as a memory for storing the instructions
and data which control the movement of the electron gun. The main
computer uses the buffer to pass data and instructions to and from
the 2250. While the 2250 executes the graphic orders in the buffer
the main computer can continue processing. Thus, the screen may

contain a display while the main machine is preparing the next.

2) Absolute Vectors

Without this feature the 2250 could only draw straight lines
horizontally, vertically or at a‘456 angle. Any other straight
line would be drawn as a combination of such lines. With this
option, however, the 2250 can draw straight lines between any

two points on the screen grid.



3) Character Generator

This option is a hardware device which draws alphanumeric
characters on the screen. The characters are stored as one byte
data items in the 2250 buffer and when they are to be displayed
the character generator directs the movement of the electron gun
S0 as to trace the character. Without this option characters must

be generated by software using a sequence of vectors.

4) Function Keyboard

The function keyboard consists of a box with 32 pushbuttons
or keys on it. The keyboard is used primarily for interrupting
the main computer. An interrupt is sent to the main computer which
then requests data from the 2250 to identify the key used. In the
GSYM system the keyboard is used mainly to control light-pen

operations.

5) Alphanumeric Keyboard

This keyboard is very similar to a typewriter keyboard. 1Its
primary purpose is to type in alphanumeric data which is stored
in the 2250 buffer. This data is displayed on the screen as it is
typed. A special underscore character is displayed on the screen

beneath the position where the next character typed will be placed.

6) Light-Pen

The light-pen is another user control device. It is a pen—

like stylus which is attached via a flexible cord to the 2250.
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The pen can detect the beam of the electron gun as it passes over
the screen. If the pen is enabled when it detects this beam it
halts the display and sends an interrupt to the main computer.
Information is then sent to the main computer specifying the type
of data detected (line or character), the location of the byte
accessed in the 2250 buffer and the x,y co-ordinates of the beam.
The pen is enabled and disabled under program control. When it
is enabled an interrupt occurs as soon as the beam is detected.
Otherwise, the pen switch must be activated by pushing the tip

of the pen gently against the screen.

Further details on the use and programming of the 2250 Display
Unit may be obtained from the IBM manuals listed in the Bibliography

(xxv, xxvi).

Graph-Theoretic Definitions

Set - A set is a collection of distinct elements (objects). The

set {a,b,c,d,e} contains the elements a, b, ¢, d, and e.

Empty Set - the empty set or null set, denoted by §, is a set that

contains no elements.

Subset - a set T is a subset of another set S if every element

in T is also in S.
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Group -~ a group is a nonempty set G together with a binary operation

(denoted by uv for u, v in G) which satisfies the following:

1) Closure - For all u, v in G, uv is also an element of

G.

2) Associativity - For all u,v,w, in G u(vw) = .(uv)w.

3) Identity - There is an element i in G such that iv = vi

for all v in G.

. . . -1,
4) 1Inversion - For each v in G there is an element v in

G such that vv—1 =v v = 1.

Subgroup - if S is a subset of a group G and S is a group under

the same binary operation as in G then S is a subgroup of G.

Cyclic Group - a group which can be generated by one element is called

a cyclic group. Thus, if g is in a group G, then the set of powers <g> =
{gn : n is an interger} forms a subgroup of G, the cyclic group generated
by g. The number of elements in a group is called the order of the
group. Thus, if g is the generator of a cyclic group of order n, then

the elements of this group can be given as {g, gz, g3, ...,gn}.

Permutation - a permutation of a set of elements G is a 1 - 1 mapping

of the set G onto itself.
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Cycle - a cycle in a permutation is a subset of elements that

abcdef>

are cyclically permuted. For example, in the permutation (cedabf

{a,c,d} is a cycle since a is permuted into ¢, ¢ is permuted into d and
d is permuted into a. We shall also refer to a cycle as an orbit.

Thus, the orbits in the above permutation are {a,c,d}, {b,e} and {f}.

Graph - a graph G consists of a vertex set VG and an edge set EG.
Each edge is incident upon two vertices called its end-vertices. The
end vertices need not be distinct, in which case the edge may be called
a loop. The number of vertices in G is denoted by IVGI and the number

of edges in G is denoted by IEG[.

Directed Graphl - a directed graph is a graph in which for each edge

e one of the ends is specified as the positive end pe and the other

as the negative end ne. We follow the notation:

[ ]

N
pe /; ne

The direction goes from pe to ne. e is an outdirected (indirecid) edge
incident to pe (ne). If vertex v = pe and vertex w = ne then e is a

directed edge from v to w.

Incidence - if e is an edge with ends v and w, then vertex v and

edge e are incident to each other as are w and e.

Adjacency - if e is an edge with ends v and w, then v and w are

adjacent to each other.

1. The term digraph may be used in place of directed graph.



Linear Graph - a graph is linear if it has no two edges with the

same pair of ends. That is, there is at most one edge connecting any
two vertices. A linear digraph is a directed graph such that there are

no two directed edges with positive end v and negative end w.

Simple Graph - a linear graph is simple if it contains no loops.

A simple digraph is a linear digraph which does not contain any directed

edge whose positive end is the same as its negative end.

Subgraph - a subgraph H of G is a graph for which VH € VG, EH < EG.
H is a proper subgraph of G if H # G. For any Y € VG, the subgraph
of G generated by Y, written G[Y], is the subgraph with vertex set Y and

the edge set those edges of G having both ends in Y.

Spanning Subgraph - a spanning subgraph H of a graph G is a sub-

graph H of G such that VH = VG.

Qutvalence (Invalence) - the outvalence (invalence) of a vertex v

is the number of edges with positive (negative) end v.

Valence - the valence of a vertex x is the sum of its invalence
and outvalence. In an undirected graph the valence of a vertex x is

the number of edges incident to x.

Regular Graph - a graph is regular of degree n if all its vertices

have the same valence, that valence being n. For example, a cubic graph

is a regular graph of degree 3.
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Path - a path is a sequence of the form P = (vo,el,vl,ez,...,en,vn),
where v, are vertex terms, e, are edge terms and € has ends in G

of 4 and Vel VP = the vertex set of the path P. EP = the edge set
of the path P. v, is the origin of the path and v is the terminus of

the path. A path containing only one vertex may be denoted as a set

with only one element, for example, the path {vo}.

Simple Path - if the vertex terms of a path P are all distinct

then P is a simple path.

Closed Path ~ a path P is closed if its origin is the same as its

terminus. Otherwise, it is open.

Length - the length of a path is the number of edge terms in the

path.
Directed Path - let E+P =. the set of forward edges of the path
P = {e : there is an edge term ej of P such that pej = vj_1 and e =
e.}.
3
Let E P = the set of reverse edges of the path P = {e : there

is an edge term e, of P such that ne, = v, and e = e, }.
J j j-1 3
A forward directed path is a path P for which E P = @.
A reverse directed path is a path P for which EP = @.

A directed path from v to w is synonymous with ‘'there is a forward
directed path with origin v and terminus w'. The term 'positive'
(negative') path may be used to denote a forward directed (reverse

directed) path.
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Connected Graph - a graph G is connected if every pair of vertices

in VG is joined by a path.

Distance - the distance between two vertices v and w is the length

of the shortest path joilning them if any.

Polygon - a polygon is a connected non-null graph each vertex of which

has valence 2. An "n-gon' is a polygon having n vertices.

Directed Polygon - a directed polygon is a polygon in which each

vertex has invalence 1 and outvalence 1. A directed polygon may also

be referred to as a positive or negative polygon.

(Directed) Circuit - a (directed) circuit is the edge set of a

(directed) polygon.

Complement - the complement G' of a graph G has VG' = VG but two

vertices are adjacent in G' if and only if they are not adjacent in G.

Bipartite Graph - a bipartite graph is a graph G whose vertex set

VG can be partitioned into two subsets V1 and V2 such that every edge

e in EG has one end in V1 and the other in V2.

Component — a component of a graph G is a maximal non-null connected

subgraph of G.

Cut Vertex - a cut vertex of a graph is a vertex whose removal
from the graph increases the number of components in the graph. If

v is a cut vertex of a connected graph G, then G - v is not connected.
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Nonseparable Graph -~ a nonseparable graph is a non-trivial connected

graph which has no cut vertices.

Block - a block of a graph G is a maximal nonseparable subgraph

of G.

Coboundary - let X £VG. The coboundary of X is the set of edges

in EG each having one end in X and the other end in VG - X.

Cutset - a cutset is a minimal non-null coboundary. That is, a

cutset is a coboundary which does not contain any other coboundaries.

Neighbourhood - the set of vertices adjacent to a vertex v is called

the neighbourhood of v. The set of vertices at a distance N from a

vertex v is called the Nth-neighbourhood of v.

Tree - a connected graph in which there are no polygons is called
a tree. A subgraph of G (where G is any graph) which is a tree is a

subtree of G.

Level in a Tree - the Nth-neighbourhood of the root vertex of a

rooted tree is the Nth level of the tree.

Spanning Tree - a spanning subgraph of a graph G which is a tree is

called a spanning tree or spanning subtree of G.

Rooted Tree - a rooted tree is a tree with one vertex, the root,

distinguished from all the other vertices.
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Endpoint - an endpoint of a graph G is a vertex whose valence = 1.

Branch - a branch at a vertex v of a tree T is a maximal subtree
of T containing v as an endpoint. The number of branches at v is equal

to the valence of v.

Centre - every tree has a centre consisting of either omne vertex
or two adjacent vertices. If the centre consists of two adjacent
vertices it is also called a bicentre. The centre is obtained by re-
peatedly removing the endpoints of the tree until there is finally only

one vertex or a pair of adjacent vertices left in the tree.

Embedding - a graph is said to be embedded in a surface S when it

is drawn on S so that no two edges intersect.

Planar Graph - a graph is planar if it can be embedded in the

plane. A plane graph has already been embedded in the plane. This

may be called a planar embedding of the graph.

Regions - we refer to the regions defined by a plane graph as its

faces, the unbounded region being called the exterior face.

Planar Map - a planar map is a connected plane graph together with

all its faces.

Cyclically k—connected Graph - a graph G is cyclically k-connected

if for any coboundary 86X such that G[X] and G[VG-X] each includes a

polygon, [5Xl 2z k.
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Adjacency Matrix - the adjacency matrix A = [aij] of a labelled
graph G with n vertices is the nxn matrix in which aij =1 if v is
adjacent to vj and aij = 0 otherwise. For a labelled digraph aij =1
if there is a directed edge from v, to vj in EG, otherwise, a;. = 0.

]

The adjacency matrix of a digraph need not be symmetric.

Incidence Matrix - the incidence matrix B = [bij] of a labelled
graph G with n vertices and m edges is the nxm matrix in which bij =1

if vertex vy is incident to edge e, and bij = (0 otherwise.

J

Mapping - let G and H be graphs. Let f be a correspondence
associating with each edge or vertex x of G a unique edge or vertex
fx of H and satisfying the following two conditions:

i) If x is in VG then fx is in VH.

ii) Let A be an edge in G with ends x and y. Then either
fx = FA = fy or FA is an edge of H whose ends are fx
and fy.

f is a mapping of G into H. If the mapping is 1 -1 then f is a
mapping of G onto H. We will refer to fx as the image of x under
the mapping f£f. Moreover, if the mapping f is 1 - 1 and v = fx, then
x will be called the preimage of v under the mapping f in order to

stress that something is being mapped onto v.

Isomorphism -~ a 1 - 1 mapping of a graph G onto a graph H is an
isomorphism and if such a mapping exists G is isomorphic to H. If
f is an isomorphism of G onto H then f relates vertices of G to vertices
of H, and edges of G to edges of H. Moreover, if edge A in EG is inci-

dent to a vertex v in VG then fA is incident to fv in H.
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Automorphism - an automorphism of a graph G is an isomorphism of

G onto itself. The set of all automorphisms of a graph G is denoted by
A(G). A(G) is a group, called the automorphism group of G. The identity
mapping of a graph G is an automorphism of G, called the identity auto-
morphism or the trivial automorphism of G. A graph with a non-trivial
automorphism is a symmetrical graph, otherwise the graph is asymmetrical.
A graph such that every permutation of the vertices is an automorphism

is called a full symmetric graph.

Partition - a partition on a set is a subdivision of all the elements
~in the set into disjoint subsets. That is, a partition on a set is a
collection of subsets of the set such that every element in the set is

placed in one and only one of the subsets.

Automorphism Partitioning — the automorphism partitioning of the

vertex set of a graph G is a partitioning of VG into sets S S

1? 22 o

Sn such that for all v and w in Si there exists an automorphism f in

A(G) such that fv = w.
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APPENDIX B : REPRESENTATIONS OF CUBIC,
CYCLICALLY 4-CONNECTED PLANAR GRAPHS

The representations contained in this Appendix have been generated
using the representation routine described in Chapter III. The graphs
are all cubic, cyclically 4-connected, planar graphs. Each graph is
first shown as a hand-drawn planar map and is then shown in the form
of a planar representation generated by the representation routine.

The graphs are listed according to the number of regions in the planar
map. A detailed flowchart of the representation routine is given at

the start of the Appendix.
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APPENDIX C : SOME GRAPH REPRESENTATIONS

The graphs contained in this appendix were chosen at random
from several of the references on graph theory and graph-theoretical
applications listed in the bibliography. Each graph is first shown
as it was originally pictured and then it is shown in the form of
a graph representation generated by either the General Representation
Routine or the Tree Representation Routine. These representations
indicate that by using these routines it is possible to obtain
comparable, if not better, representations than the original hand-
drawn versions. The Tree Representation Routine was used for all
the graphs which are trees. The postediting facilities were used

in creating most of the representations.
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