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ABSTRACT

This thesis is concerned with the effect of input-output
behaviour on the computation of functions. We first introduce a model
called the sequential Turing machine, which reflects the restriction
on the input-output behaviour desired. This model is shown to extend
the more commonly used model, the on-line Turing machine, although
neither is a model of a universal computer.

We next study whether we can extend the power of sequen-
tial Turing machines by allowing input endmarkers. It is shown that
for every (computable) function, there is a (computable) sequential
function with such an extended domain which has the same output. The
function which has such a property is called a 'sequential approiima—
tion'. A function which further has the property that it makes the maxi-
mal amount of output for any input not containing the endmarker is a
'"maximally defined sequential approximation’'. Such a function always
exists,but need not be computable, even if the original is computable.

The concept of maximally defined sequential approximation
leads to the measurement of the sequential nature of a function in
terms of the two related functions. It is shown by construction that
a dense, infinite hierarchy based on this measure exists.

Classes of functions based on several time functions are
also investigated. The time functions are measured in terms of the
length of the input, the length of the output, the maximum of these

lengths, the length of the profile and the sum of the lengths. It is



shown that these classes are contained in one another in the above or-
der, with the exception of the first two which are incomparable.

We are principally interested in the classes defined for
time functions t which are small; that is, the case of 'real-time'
computable functions (when t(n) = n, for all n) and the case of 'linear-
time' computable functions (when t(n) = c.n, for all n). We show that
for the case of real-time computable functions, the containment is pro-
per. Also, by restricting attention to length-preserving functions,
we show that the first three classes are equal. For the case of
linear-time computable functions, the last three classes are shown to
be equal. Furthermore, we demonstrate that there exists classes
between these two traditionally studied classes.

Finally, we investigate the effect of using a sequential
Turing machine to compute a function in terms of the number of steps
used. It is shown that at worst a function will take the length of
the input times the time of computation on an unrestricted Turing
machine. Moreover, there exists a function for which this bound is

almost achieved.
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PREFACE

This thesis is largely self-contained, only the most basic
definitions concerning finite automata and Turing machines having
been omitted. It is organized so that the introductory material for
the whole thesis is contained in chapter 1. The remainder falls natural-
ly into two parts, chapter 2, 3, and 4, and chapters 5 and 6. In-
troductory material to each chapter is contained in the first section.
Chapters are subdivided into sections, which are numbered
sequentially within the chapter: e.g., section 2,3 is the third sec-
tion of chapter 2. Members of each section (definitions, theorems,
lemmas, corollaries) are sequentially numbered within sections: e.g.,

theorem 2.3.3 is the third unit in section 2.3.
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CHAPTER 1
INTRODUCTION

1.1 Background

The area of machine-based computational complexity
concerns the mathematical study of an abstract computer with one
or more of its resources restricted in order to gain insight and
knowledge into real-world computer problems. The restrictions
most commonly studied are the limiting of the amount of space
available for the storage of intermediate data, the limiting of
the time (the number of steps) within which a computation must
be completed, and the limiting of the manner in which the input
and output devices can be operated. The final alternative has been
traditionally studied in order to aid in the study of the second
alternative.

Two real-world cases for studying the limiting of the
manner in which the input and output devices can be operated
are the study of 'real-time' processes and 'on-line' (ongoing)
processes. In the real-world context, a process is 'real-time'
if the computer is providing output as fast as the input is being
supplied. An 'on-line' process is one in which the computer
provides all of the output defined by the input already supplied
before accepting the next input.

Historically, the concept of 'real-time' was one of the
foundations of the study of machine-based complexity theory.
Yamada [17] introduced the concept of real-time countable functions.
Essentially, a function f: N+>N (N is the set of natural numbers)

is real-time countable if f 1is strictly increasing and the sequence



o, with a£=l if n = f(m) for some m, and qi = 0 otherwise, is computable
on some machine such that each ai is produced on the ith step
of the machine. 1In [17], Yamada studied the properties of the
class C of real-time countable functions showing that C 1is closed
under the various operations used in standard recursion theory.
e.g., limited addition, composition, multiplication and limited
multiplication.
In another foundational paper [9], Hartmanis and
Stearns introduced the concept of real-time computable sequences,
as well as more general topics. Because of the fundamental nature
of this paper, we give it a more general discussion.
For a given T: N»N, denote by ST the set of all sequences & over

% 3 ; .
@),ﬁ’ such that there is some multi-tape Turing machine which produces

1

o in no more than T(n) steps for every n. Then, ST = SrkT , for

any number k > 0, This result will be referred to as the constant
speedup theorem for obvious reasons.

Hartmanis and Stearns next showed that for any T, ST is
recursively enumerable but not necessarily recursive. They showed when
two classes SU and ST for U and T real-time countable functions, are
not equal. Th;t is, if 0 < %i% T(n)/U(n) < ©, then Sy = S¢ and

T(n)) ™

A ¢ —ay - e s
if %%g;( T G ), then there is a sequence ln,SU - ST'

Finally in [9], Hartmanis and Stearns defined the related
notion of 'real-time' acceptance by a multitape Turing machine.

Essentially, a set A is real-time accepted if there exists a

1
We denote as [x the smallest integer greater than or equal to x.



multitape Turing machine which reads on every step and produces
a0orlif x # Aor x € A, respectively, immediately after receiving
the last input of x, for every input x. They showed that there
exists a context free language which is not real-time accepted by

any multitape Turing machine.

P.C. Fischer further studied the classes of sequences
generable in time T in [5]. He showed that if a sequence o is
generable by a multitape Turing machine in no more than T(n) steps
for each o, then o is generable by a multitape Turing machine in
exactly T(n) steps for each an. As a consequence, he concluded
that Sn = Srkn’ for every k > 0.

Rabin [12] showed that a Turing machine with two work
tapes can compute faster than one with only one work tape. Explicitly,
he showed that the set {uVYuRlue{a,b}*, vé{O,l}*, Ye{a,B} and

R . .
(al ay +e+ @ )y = a, +e+ 8y al} can be accepted in real time by

n

a Turing machine with twowork tapes but not by any Turing machine
with only one work tape. In each case, a separate one-way
nonwriting tape is used for input.

In [15], Rosenberg studied the class of sets acceptable
in realtime by a multitape Turing machine. He labelled these the
'real-time defineable languages' (RTDL). He showed that RTIDL is
a Boolean algebra: i.e., RIDL is closed under complementation,
intersection, and union. Rosenberg also showed other closure
properties (both positive and negative) about RTDL: e.g., RTDL is
closed under suffixing with a regular set; RTDL is closed under

minimization; and RIDL is not closed under concatenation nor

under the operation of closure. Finally, Rosenberg compared RTDL to



the traditional classes of formal languages, showing that RIDL is
incomparable to both the deterministic context free languages and
context free languages and that RTIDL is properly contained in the
class of context sensitive languages.

In [3], Cole showed for any deterministic context free
Tanguage L, there exists a one dimensional iterative array that
accepts L in realtime. He also showed that the language * =

R R
L = {XX | where (al ay oo an) =a ... a

a.} over an alphabet of at
n 271 :

‘least two letters, iévreal—time accepted by an iterative array, but
is not-a deterministic context free language. In the proof of this, Cole
exhibited an iterative array which operated in realtime and simulated
a deterministic automaton.
The slightly different notion of performing a real-time
simulation appeared in Fischer, Meyer and Rosenberg, [ 6]. 1In
this paper, the authors showed that a Turing machine having a tape
with two independent read-write heads can be simulated in realtime
by a Turing machine having ten tapes. 1In this case, Fischer et al.
meant that there exists a Turing machine with ten tapes which acts
on a step by step basis exactly as a Turing machine with two
independent read-write heads.
Hennie [11] was one of the first to exhibit a computation
2
which must take at least 0( -2 2) steps. To do so, he studied
(log n)
the 'on-line Turing machine' as a model: "Briefly, in an off-line
computation the entire (finite) string of input symbols must be
written on one of the machine's tapes prior to the start of the
computation, while in an on-line computation the symbols of the

input string are presented to the machine sequentially." Using

this notion of an 'on-line' Turing machine, Hennie showed that there



is a set which can be accepted in 0(n2) steps but not in less
2

0( ) steps. He also showed in [11] that an on-line Turing

maéiggengith two-dimensional tapes is faster than an on-line Turing
machine with one-dimensional tapes for a particular computation.
Atrubin [2] showed that iterative arrays can multiply
two binary integers in real-time. By this, Atrubin meant that
one digit from each operand (the low order digits first) would be
read on each step and the resulting output is generated immediately
after each input step. Thus, Atrubin was using an on-line model.
Atrubin's result should be compared with the results of
Cook and Aanderaa [4] in which they showed that binary multiplication
takes at least OG%;BaiIL—)_steps on any on-line multitape Turing
og log n
machine.2 By on-line, Cook and Aanderaa meant that the ith input
digit is available only when the i-1%t output digit is produced.
Finally, in [1] Arbib introduced the sequential functions
and related them to on-line machines. A function f is 'sequential'
if f can be applied to the initial segments of inputs and the output
so produced will always be useable as initial segments of the
respective output strings. Arbib simply states that a machine
is on-line if it is computing a sequential function.
The real-world sense of a 'real-time' process implies
that it is also an 'on-line' process. TFor set recognition

problems, the Hennie and Cook-Aanderaa model of an on-line Turing

machine is sufficient. It is interesting to note that for general

21n fact, they showed that any complex function takes at least

0(%8é9%g§—5) steps on any bounded activity machine. The given result

follows immediately.



transductions that only length-preserving transductions can be 'on-line'
computable according to the Cook-Aanderaa model. Atrubin bypasses

this problem for binary multiplication, which is not length-

preserving, by demanding that sufficient zeroes are placed on the

high order part of the input string so that all of the output

can be produced. Cook and Aanderaa, on the other hand, restrict

their attention to length-preserving binary multiplication: i.e., they
truncate  the output to force the lengths to be equal.

1.2 OQutline of Thesis

The purpose of this thesis is to try to model what is
meant by an ongoing process and by a real-time process for
general transductions. The main body of the thesis can be divided
into two parts. The first part consists of chapters 2, 3 and 4
and deals with the problem of modeling an ongoing process. The
second part, chapter 5, considers the problem of modeling a real-time
process.

Chapter 2 introduces the concept of a sequential Turing
machine and considers its computational power. A sequential
Turing machine is a Turing machine which computes a sequential
function f din such a way that for each initial substring of the
input the output produced before more input is read is exactly
f applied to the initial substring. The class of sequential
Turing machines includes as special cases the on-line Turing
machine (in the Cook-Aanderaa sense) and the'generalized sequential
machines' of Ginsburg and Rose [7].

In chapter 3, we consider the effect of permitting an

endmarker €q for computation by sequential Turing machines.



A function g-whose glphabet is extended to include an endmarker 0
is called an approximation of f if.for every input x, g(xeo) = f(x).
It is shown t@at fér-every (computable) function f, there exists a
(computable) sequential approximation of f£f. Furthermore, if a
sequential approximation g of f has the property that for each

input x the length of g(x) is maximal,g is called a 'maximally
defined sequential approximation' of f (m.d.s.a.). Each function

is shown to have a unique m.d.s.a.. However, there are computable
functions whose m.H.8.a. is not computable.

Two classes of computable functions with computable
m.d.s.a.'s are the sequential functions and the 'truly off-line'
functions. A 'truly off-line function' f is one for which the
m.d.s.a. of £ produces no output for any input without an endmarker.
Finally, it is shown that there is a computable function with a
computable m.d.s.a. which is neither sequential nor truly off-line.

In chapter 4, we study the difference between a function
and its m.d.s.a. We introduce a measure, Rf, which is the ratio
of the length of the m.d.s.a. to the length of the function for
all inputs not including the endmarker. For any function, except the
zero function f%’ which always yields the empty word X as

output, the ratio R_ lies between 0 and 1. For the classes of

£

s equential and truly off-line functions, R_. takes the extremal

f
values 1 and 0, respectively.

Next, we try to characterize the class of functions
for which R = 0 (resp. R, = 1). We show that there are functions
which are not truly off-line (resp. sequential) such that

Rf =0 (Rf = 1). This leads to the introduction of 'almost

truly off-line' functions (resp.'almost sequential' functions).



A function is 'almost truly off-line' if for any x not including

the endmarker €0 the!length of its m.d.s.a. at x is bounded by

a constant k independent of x. A function is'almost sequential'

if for all x the difference between the lengths of f(x) and

its m.d.s.a. at x is bounded by a constant k, independent of x.

The class of almost truly off-line functions (resp. almost sequential

functions) is shown to be incomparable to the class of functions
with Rf =0 (Rf = 1).

The class of bounded functions (functions with finite
range)is shown to be the intersection of the class of almost
sequential functions and the class of almost truly off-line functions.
We show that for any rational p, O<p<l, there is a bounded function
f such that Rf = p. We conclude chapter 4 by showing that the
hierarchy based on Rf is infinite and dense.

In chapter 5, we consider the effect of the input-output
behaviour on the time needed to compute the function. For any
strictly increasing function t: N+ > N+(N+ is the set of positive
integers) we introduce five classes of functions: It(n)’

Oy’ Ye(m)?

and T . 1 is the class of functions which can be
t(n) t(n),

Fen)
computed by a Turing machine M so that for any input of length n,

the number of steps M takes is bounded by t(n). Similarly, we

define Ot(n) where n is the length of the output, Mt(n) where n

is the maximum of the length of the input and the length of the
output, Pt(n) where n is the length of the output plus the number

of input symbols which do not immediately follow an output operation,

and Tt(n) where n is the sum of the lengths of the input and output.

We show that It(n) and Ot(n) are incomparable and that It(n) < Mt(n)



and Ot(ﬁ)?Mt(n)SPt(n)ETt(n)°

We next restrict attention to the case when t(n) = n
(i.e., the real-time case). It is shown that the above inclusions
are proper. We then select a subclass Sn of Pn as the most realistic
representative of ‘the notion of 'realtime'. Sn is the intersection
of the class of sequential functions and Pn' Sn contains all of
the generalized sequential machine mappings, but Mn does not. The
well-known class of length preserving real-time functions is shown
to be I n O0_ and a proper subclass of S .
n n n
For the linear-time case when t(n) = c+n, for some
constant c¢>1, Tcn = MCn' It is shown that for length-preserving
functions, T =T n0 .
cn cn cn
Finally, we show that there are bounded functions f such
>1.
that f ¢ In+c and f% In+c-1’ for every constant c>1
In chapter 6, we study the difference between the
computational speeds of off-line and sequential Turing machines.

2
We exhibit a function f such that f takes at least 0(——— ) steps

(log n)

on a sequential Turing machine and at most O0(n log n) on a off-line
Turing machine. We also show that for any computation, a sequential
Turing machine will take no longer than the length of the input
times the computation time of an equivalent off-line Turing machine.
We close chapter 6 and the thesis with some suggestions for

further research.
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CHAPTER 2

SEQUENTIAL TURING MACHINES

2.1 Introduction

In studying the area of machine-based complexity theory, omne
discovers two basic classes of multitape Turing machines which are studied.
It was noticed by Hennie [11], among others, that by restricting the classes
of Turing machines to those which have read-only input tapes and the
property that the k+15t input digit is available only when the kth out-
put digit is produced, better time bounds for a particular computation
could be proven. This restricted class generally is called the class of 'on-
line' Turing machines; the class for which no restrictions are applied is
called the class of 'off-line' Turing machines.

The purpose of this chapter is to indicate why this author feels
that the class of on-line Turing machines is too restrictive and to extend
this class to the more natural class of 'sequential Turing machines'’
without jeopardizing any previously proven result concerning on-line Turing
machines.

We first observe that the definition of an on-line Turing machine
restricts it to computing a function in a subclass of the class of computable
length-preserving functions. Hence, relatively simple computable functions,
such as gsm mappings, are not on-line computable. Also, it is shown that
there are computable length-preserving functions which are not on-line
computable.

From the author's point of view, a more natural restriction of the
computing power of Turing machines is to allow computation of only the com-
putable sequential functions discussed in Arbib [17. Intuitively, the

evaluation of a sequential function can proceed in an on-going process:
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i.e., f can be applied to initial segments of inputs and the output so
produced will always be useable as initial segments of the respective output
strings. If f is a sequential function and £(x) = y, then for any input
string z, f(x*°z) = y*w, for some output string w. It is shown that all
gsm mappings are sequential and that there are some functions which are not
sequential.

Finally, sequential functions are related to the 'input-output
profile' of a machine computation. Thus, sequential Turing machines are
those Turing machines whose input-output profiles define a sequential func-
tion. It is shown that for every computable sequential function there
exists a sequential Turing machine computing it; also, every on-line Turing
machine computes a length-preserving sequential function. Hence, we conclude
this chapter by showing the class of on-line Turing machines is a proper

subclass of the class of sequentially defined machines.

2.2 On-Line Machines

The word 'machine' will henceforth be used to refer to a Turing
machine. However, the concepts introduced in this chapter can be related
to any other class of automata which operate on a string input. In this
section, our interest is to review the definition of on-line machines, and
to indicate why it is felt that definition is too restrictive.

Definition 2.2.1 A machine is called on-line if during its computation

each input digit produces exactly one output digit and the k15t input
digit is available only when the kth output digit has been produced.
Notation If a function f is computable on an on-line machine, we say
that f is 'on-line computable'.

Remark 2.2.2 On-line computable transductions are length-preserving.

Proof: Obvious. O
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The concept of on-line machines has been used by various authors,

including Hennie [11], to aid in defining lower bounds for particular com-
putations. Most of these papers were concerned with recognition problems,
while we are interested in transductions. As defined by Hennie [1l1], a
machine accepts or rejects the substring already read by producing a 1 or O,
respectively; thus, the machine generates an output string of the same
length as the input string. Hence, a recognition problem is a length-
preserving transduction which does not require the knowledge of when the
end of the input string has been reached. It should easily be seen that
every decidable recognition problem is on~line computable. However, the
following theorem shows that every transduction is not on-line computable.

Theorem 2.2.3 There exist computable length-preserving transductions which

are not on-line computable.
Proof: By definition 2.2.1, an on-line machine requires that for all
n < m, the nth digit of the output string must be produced before the

t
m h digit of the input string is available. Hence, any computation which

demands knowledge of the mth digit of input before producing the nth
digit of output, for n < m, 1is not computable on any on-line machine.

Define the string reversal function Im:{0,1}* > {0,1}* as:
Im(A) = (A); Vx e {0,1}*%, Im(x*0) = 0°Im(x); Vx e {0,1}*,Im(x°1) = 1l+Im(x).

Im is seen to be computable on no on-line machine  since the
first output digit cannot be produced until the last input digit is
received. 0

Thé cémﬁoﬁ définitioﬁ of oﬁ—line maéhinés yiélas é pfoper sub~
class of the length-preserving computable functions. However, there are
other machines which compute in a sufficiently on-going manner to warrant
inclusion in any class of functions which purports to characterize the

1

intuitive notion of 'on-line'. One example of such machines, in the opinion
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of the author, is the class of generalized sequential machines (c.f. Ginsburg

and Rose [71]).

Definition 2.2.4 A generalized sequential machine (_gasm ) is a sextuple

S = (Q,Z,F,ﬁ,k,qo) where Q,Z,I' are finite nonempty sets (the states,
input alphabet, and output alphabet, respectively):

qq € Q 1is the start state;

§:Q x Z > Q 1is the next state function;

Y¥:Q x 2> I'* 4is the output function.

Definition 2.2.5 A gsm mapping f is a mapping from X* to I* defined

by a gsm S = (Q,Z,T,G,K,qo) such that:
(Vx € E¥)(Vy ¢ T*)[f(x) =y iff Y*(qo,x) =vyl.
The interpretation of £(q,a) = p and 7(q9a) = w is that S in
state q with input a may enter state p and produce word w . Gsm's are thus
simple devices and yet define functions not computable on any on-line
machine, as the following theorem shows.

Theorem 2.2.6 There exist gsm mappings which are not on-line computable.

Proof: We exhibit a one state gsm which generates a non-length-preserving

function.
Define s = ({q},{0,1},{a},8,),q) where:
6(q,0) = q = 8(q,1);
v(q,0) = XA (the empty string);
v(q,1) = a.
Then, f the gsm mapping defined by S is:
FQ) = A, (Vx € ZX)[f(x*0) = £(x) & f(x*1) = £(x)-al.
f 1is obviously not length-preserving and hence is not on-~line computable. O

The on-going nature of gsm mappings leads us to reject the technical

definition (2.2.1) of on-line computability as not completely capturing the
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intuitive notion. However, this attribute of gsm's does not depend upon the
fact that they have finite state memories. Therefore, definition 2.2.1
seems too restrictive. The next three sections are an attempt to extend the

notion of 'on-line' to fit our intuition more closely.

2.3 Sequential Functions

Intuitively, an on-going process is one which
produces. . an output for each input digit without worrying about any input
that follows. Thus, previous inputs strongly affect the output generated
by a specific input digit, but following inputs should have no effect on
the output. This nature is what we are attempting to formalize. We will
find it useful to shift primary attention to functions, rather than machines
in this section. We consider a class of functions introduced in Arbib [1].

Definition 2.3.1 TFor any function f:X* > I'* and for each string u ¢ I%,

if there exists a unique function fu:Z*-+ I'*, such that
(v e Z¥)[f(u*v) = f(u)'fu(v)], then f is called sequential.
Notation We will denote by Af the function which is formed from f and
the related fu by the following rules: Af(A) = £(A); and
(Vu € I#%)(Va ¢ X)[Af(ua) = fu(a)].

In essence, in the computation of f(a,a,...a.a.

1327 +833547 %)
Af(alaz...ai) denotes the output string generated during the time ay is
the most recent symbol which has been read.

From the discussion in section 2.2, it is likely that the class
of functions we are seeking will contain the gsm mappings, but need not

contain all of the length-preserving functions. The class of sequential

functions has these properties as will be shown in the next two theorems.
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Theorem 2.3.2 There exist length-preserving functions which are not

sequential.
Proof: Let I =1T = {0,1}, and define Im:IZ* > I'* as in Theorem 2.2.3.
We will show Im 1is not sequential,
By definition, Im(l) = 1, Im(10) = 0l. Hence, Im(10) # Im(1) *v,
for any v ¢ I'*. Hence, there is no way to define Iml(O). and Im is
not a sequential function. 0
Notation: For u,v ¢ L%, the left quotient of v by u,; u\v={¢w if v =uw, w e I*

undefined otherwise,

Theorem 2.3.3 The class of sequential functions properly contains the class

of gsm mappings.
Proof: Consider any gsm mapping f and the gsm S = (Q,Z,T,G,k,qo) defining
f. Given any input u ¢ I*, we define fu as the function defined by the

gsm S' = (Q,Z,F,S,A,G*(qo,u)). Thus, for any v € I¥*,

f(u*v) k*(qo,u'v) = X*(qo,u)'l*(S*(qO,u),v) = f(u)'fu(v). Therefore,

f(u-v) f(u)'fu(v), and f 1is sequential.

We now must show that there is a sequential function which is not
a gsm mapping. First, we note that if a gsm outputs exactly one letter from
its output alphabet per step, the machine is a finite automaton. Now con-

sider length-preserving binary multiplicatiodf, reading low-order digits on

the left. 1i.e. f;:Z* > {0,1}*, where I = {(;)lx,y e 10,1}*} as in [4].

1011
1001

x . .10011

)) = 1010, £,((g170))

e.g. fZ(( = 10100.
For u ¢ I*, we define a function fz :2% > {0,1}* as
u
Vv ¢ Z*)[f; (v) = f;(u)\fZ(uV)]. As long as f;(uv) = f;(u):w, for some
u
w e {0,1}*, then f;(uv) = fZ(u). f; (v), by definition of left quotient
u

*
Length-preserving binary multiplication is defined as the n low-order digits
of the product of two n digit binary numbers.
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and ff will be sequential. We know that in binary multiplication only
the n low order digits of the input words affect the n Iow order digits
of the output, and hence fg is sequential. Minsky showed that f is

computable on no finite automaton in [12]. We reproduce the proof for

completeness.

-

Suppose a finite automaton M = (Q,%,I',8,A,s8), (where Q| =k,

L = {(i)ri,j e {0,1}}, T = {0,1}) computes £

x
L o4o1
. 1,,24.2 _ .24 3441 |, L4i x, 0710771,
Consider ((274277)° =277 + 2 + 27, Hence fz((Oilol—ll)) =
= 0211 (reading the lower order digits from left to right).

Let i >k + 1. After reading , (811), M will be in some state q
#nd- 9411 have produced (i+l) zeroes. For each of the next (i-1) pairs of
zeroes, M produces a zero output. After receiving these input paris, M will
be in some state qq- Hence, X(ql,(i)) = 1. However, since i - 1 > k, one
state must have been entered at least twice. Thus, there exists a j < i - 1,
Oi—l

O1—1)) (remove the string of pairs of zeros

which causes M to go from the repeated state to the repeated state).

3
such that q; =<5*(q,(gj)) =§*(

3 3
Hence, A*(q,(031)) = M(q, (91 *Alay» (D)

= 091,
ot10d1 1413 i+4+1
[ % . ) = =
s N(s,(gigg3p)) = 01091 = 0T,
Now, (21+21+3+1)2 - 221 + 221+23+2 + 221+23+2
= 92114 3%, 52542y
> o 1HI*2 (49342, 52542, (as 123+ 2).
0 1071 1+5+2 011071

L
& fX((eilel)) = 0 # )\*(Ss(oilojl))’

X
a contradiction to M computing f%'
x
Hence, fQ is a sequential function, but not a gsm mapping.

Hence, the class of gsm mappings is a proper subclass of the class of

sequential functions. 0
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Although length-preserving binary multiplication is sequential,
the following remark shows that full binary multiplication is not.
Remark  Let I = {(g),(g),(é),(i)}, r = {0,1}.
Let (;) denote the string (il)(iz)...(in), where ai,bi e {0,1},
1 "2 n
and x = ajdpeeed s ¥V = blb2"'bn'
Define f :I% > I'* as fx((z)) = xxy (that is, normal binary

multiplication reading the input from lower order on the left to high order

on the right).

011

001)) = 00011.

For example, fx((
011
lll))'

011
111))

Now consider fx((gi)) and fx((

fx((gi)) = 011 and £°(( = 010101.

Thus, fx((gii)) # fx((gi))°u for any u ¢ I'*., Hence full binary multipli-

cation is not a sequential functiom. O

We now give a simple chéréctefizégién éf a seqﬁentiai fﬁﬁétioﬁ.
Notation For wu,v ¢ I*, uBv (u begins v) 1is written to mean
(aw ¢ Z*)[uw = v].

Theorem 2.3.4 A function £f:2% - I'"* is sequential if and only if

(Vu € Z¥)(vv ¢ I*¥)[f(W)Bf(uv)].

Proof: Suppose f is sequential. By definition 2.3.1, for every u e X%,
there is a function fu such that (yv € I*)[f(uv) = f(u)°fu(v)]. Hence,
we can conclude that (Vu ¢ I*) (W ¢ Z*)[f(u)Bf(u)'fu(v) = f(uv)].

Now, suppose that (Vu ¢ I¥*)(W e I*)[f(u)Bf(uv)]. We define
fu:Z* +> T%# for any u e 2%, as (W ¢ Z*)[fu(v) = f(u)\f(uv)]l. Since
f(u)Bf(uv), the left quotient will be defined; i.e. £(uv) = f(u)-w
for some w € I'*. Hence,

(Vu e %) (W ¢ %) [f(uv) = f(u)°fu(v)], and f is sequential. g
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We will generally find it more convenient to use theorem 2.3.4
when proving that a function is sequential rather than definition 2.2.1. We

end this section by exhibiting a closure property of sequential functions.

Theorem 2.3.5 Let g:I* > I'* and f:I'* > A* be sequential functions.

Then h = fog, h:l* > A*, is a sequential function.
Proof: Since g 1is sequential, then for any nonempty input words u and
v, gusv) = g(u)'gu(V)-

Thus, fog(u*v) = f(g(u)‘gu(v)).

Let w, = g€u), W, = gu(v), Wy sW,y € I'*,

Since f 1is sequential, then, for any input words over TI%,
f(wl'wz) = f(wl)'fwl(wz).

Therefore, for u,v e X*:

h(u*v) = fog(usv) = f(g(U)°gu(V))
= fog(u)'fg(u)(gu(v))
= h(u)‘hu(v), where hu(x) is defined gs fg(u)(x).
Therefore, h is sequential. 0

Having given an indication of the power and the limitation of
sequential functions, attention is turned to the construction of machines
which compute sequential functions. ArBib [1] defines the class
of machines as the class computing sequential functions; instead, we use the

relationship of input and output implied in the definition of sequential

functions,

2.4 Sequential Profiles and Input-Output Profiles

By studying the structure of the sequential function, we notice
that there is an inherent breakup of the output string by the input string.

This breakup reminds one of I0 profiles, [&J.
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Definition 2.4.1 TFor a sequential function £:%* > I* and input word

X = ...a (a, € ¥) the sequential profile of f with input x is the
n i

#1%2
string Ps(f,x) = Af(k)al Af(al)a2 Af(alaz)...an Af(alaz...an). (See section
2.3 for notation.)

Intuitively, the sequential profile of a function £ and input
word x is the string formed from the input word and output word, by placing

the input letter and the output newly determined by it in order.

Definition 2.4.2 An input-output (I0) profile [g] of a machine computation,

given the input word x = ajaye..a (a:.L € L) 1is the string

= % ]
PIG(M’X) Y31Y189Y9 123 Yo where vy € T'* and y; is
defined as the string of output generated by machine M between inputs a;

and a1 (ao =

a 1= A). (Note that-this .means that the last letter of i
will be written on the same machine step as the reading of ai+l')
Intuitively, the I0 profile is the only externally recognizable
description of a computation. It should be obvious how the two concepts of
I0 and sequential profiles are related to form the concept of a 'sequential

Turing machine'.

Definition 2.4.3 A (Turing) machine M computing a sequential function

f:X% » T* 1is called a sequential Turing machine if

(Vx ¢ Z*)[Ps(f,x) = PIO(M,X)].

Essentially a sequential Turing machine writes all of the output
defined by the input received at a given point in time before reading
additional inputs (we make the convention that it halts the first time it
attempts to read after the input has been exhausted). It should be noted
that it is the sequential relationship between the input and output, not
the sequential (i.e. step by step) nature of the operation of the control

unit, which makes a Turing machine a sequential Turing machine.
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We can generalize our definition to any other machine model by
replacing the word 'Turing' by the name of the model desired.

For example, a random access machine R computing a sequential
function £:X* - I* is called a sequential random access machine if

(vx € Z*)[Ps(fyx) = PIO(R’X)].

2.5 Sequential Turing Machines and Sequential Functiomns

First, we will show formally that every computable sequential
function is computable on some sequential Turing machine.

Theorem 2.5.1 If f£f:X% >~ I'* is a computable sequential function, there

exists a sequential Turing machine which computes £.

Proof: Since £ 1is a computable function, there exists a Turing machine M
with one work tape which computes f. Without loss of generality we may
assume that it has an input tape with endmarkers €3 and €, on the left
and right, respectively. We construct a sequential Turing machine T with

4 work tapes with M as a submachine.

At stage 0: T uses M to compute f()A) using the first tape and writes
the result, Yo» on the output tape. It also writes El Vg 62 on the
third work tape, where €1» €, are special markers. T also

places a marker €3 On the second tape, and positions the read head of the
second tape to the right of this marker. T then clears the first tape.

At stage i: T reads the ith input letter, a;s and puts it on the second
tape, followed on the right by a marker €4t T rewinds the second tape to

the position one to the right of the marker €. T lets its submachine, M,

compute f on the input on the second tape using the first tape. T writes
the result on the fourth tape surrounded by markers €5 and €g» oOn the

left and right respectively. After M is finished (by reading the endmarker

€4 and having completed the computation), T rewinds the third and fourth
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tapes to the markers € and €g» respectively. T reads along both
letter by letter until €, on the third tape is reached. T then copies
the letters on the fourth tape from the one at the same spot as the €95
until 6 is read, onto the output tape and the third tape replacing the
€y at the end. T next assures that the first tape is clear and the read
head of the second tape is over the marker €4

T halts when no further input is available.

Now, we show T is the machine we desire.. ,For .the empty input, T
outputs f()\) = Af()), by construction. Now, suppose T has output the
string f(alaZ"'an—l) after stage n-l., At stage n, T outputs the
string Af(alaz...an), as f 1is sequential and hence f(alaz...an) =

= f(alaz...an_l)Af(alaz...an). Hence, by induction T computes f. Also,

the TI0 profile of T for any input x = ajay...a is

Af(k)alAf(al)az...anAf(alaz...an), which is the sequential profile of f
with input =x. Hence, T 1is a sequentialiTuring machine which computes-

f. 0

Corollary 2.5.2 The class of generalized sequential machines is a proper

subclass of the class of sequential!Turing machines.. .
Proof: Immediate from theorems 2.3.3 and 2.5.1. U

We finally reach the point where we can prove easily that the
class of sequential Turing machines extends the class of on-line machines
without jeopardizing any previously proven result.

Theorem 2.5.3 The class of on-line machines is exactly the class of

sequential Turing machines .which compute length-preserving sequential

functions.
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Proof: Let M be a sequential Turing machine which computes a length-
preserving sequential function f£:X*% > T*, Since f 1is a length-preserving

sequential function, then the sequential profile of f with input

X = alaz...an, ai € 2, 1is Ps(f,x) Af(l)alAf(al)az...anAf(a

laZ"'an)

132...an) = bi’ bi € ' for all 1 < i < n. Since

where Af()) = A and Af(a

M is a sequential Turing machine, the I¢ profile of .M with iaput x

must be PIO(M,X) = alblazbz"'anbn’ where a; and bi are as in Ps(f,x).

Hence, M has the property that each input digit produces exactly one

output digit and the k+lSt input digit is read only when the kth output

digit has been produced. Hence, by definition, M is an on-line machine.
Now, suppose M is an on-line machine computing a function

f:¥* > T'*, By definition, ¥ must be a length-preserving function. Suppose

f is not a sequential function. Hence, there exists a u ¢ I*, sguch that

for all functions g, there exists a v ¢ Z+ such that f(uev) # f(u)+g(v).

. -+
That is, (du € Z*)(Vw ¢ T*)(@v ¢ I )[f(u*v) # f(u)*wl; otherwise we could define

a function g such that g(v) =w. Let u = a.a ceed , V=

122 cee@ .

an+1an+2 m

The I0 profile of M with input wue*v is

b ..ab

PIO(M,u'v) = a.b,a,b .ab ] P

1°122°2°* *2n°n%n+1

where bi el'y 1 <4 <mn, since M dis an on-line machine. Thus, the out-

put generated for input wuv 1is the string blb2"'bnbn+1bn+2"'bm' The IQ

profile of M with input u is PIO(M,u) = alblaZbZ"'anbn' Thus, the

output generated for input u 1is the string b1b2"'bn' Since M computes

f, flu) = blb b and f(u*v) = b

gr by

f(uev) = f(u)'bn+1...bm, a contradiction. Hence f must be sequential.

Now, we must show that for any input x the IO profile of M

b «..b

1b2'°'bn o+l ' But therefore,

with input x and the sequential profile of f with input =x are the

same. Suppose X = A. Since f is length-preserving, f£f(A) = A. Since
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M computes f, M outputs the empty string when no input is available.

Hence, PIO(M,X) = A = Ps(f,X). Now, suppose PIO(M,alaz...a.) =

= P (f »8;8 z.m;aj) = alblazbz"'ajbj’ where b Af(a ayeeedy ) and bi e T,

1 <1i< j. Since f is sequential, f(alaz---ajaj+1)=‘f(ala2-4»a.)Af(alaz---ajaj+l)
= blb2b3"'bjbj+l' Thus, Ps(f 231850008, aJ+l) = alblazbz.. .a, oJaJ+le+l

Since M computes £, then it must output blb2"'bjb' 1 for the input

...a a

2182

J41° However, M has outputted the string ble"'bj before

reading the input aj+l' Hence, bj+l is the only output following the
reading of aj+l' Hence, (M s3129 0002y a3+l) = a;b;...a, bJ J+lbj+l
= i i * =

Ps(f,al 203 aJ+1) By induction, (Vx e I )[PIO(M,X) Ps(f,x)].

Therefore, if M 1is an on-line machine, M is a sequential Turing
machine which computes a length-preserving function. O

'Corollary 2.5.4 The class of on-line machines is a proper subclass of the

class of sequential Turing machines.
Proof: Immediate from theorem 2.5.3, corollary 2.5.2 and the fact that some

gsm mappings are not length-preserving. 0

Notice that for any on-line computable function f, the
class of on line machines computing £ 1is the class of sequential
Turing machines computing f. It should also be noted that the class
of seuqential Turing machines can be directly associated with the class
of computing sequential functions. Hence, facts concerning the class
of sequential Turing machines can be couched in terms of the class
of computable sequential functions and be proven using functions
instead of machines. This approach is used in the next chapter to

study the problem of extending the power of sequential Turing machines.
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CHAPTER 3

SEQUENTTAL APPROXTIMATTONS

3.1 Introduction

In chapter 2; it was shown that there are some computable
functions which are not seéuential and hence cannot be computed on any
sequential Turing machine. The purpose of this chapter is to introduce
the concept of the approximation of one function by another and to
study the effects of this concept;

An endmarker €0 is added to the input alphabet and a
function g is said to be an 'approximation' of a function £, if for
any input x, g(xeo) = f(x); We will show that for any function f,
one can find a sequential function g which is an approximation of f.
Furthermore, for any computable function, there exists a sequential
Turing machine which computes an approximation of £. Thus, by
restricting the class of machines to the class of sequential Turing
machines little computational power is 1ost;

The obvious sequential approximation defined for each functions
turns out to be 'worst' in the sense that the output which is generated for
any input before the receipt of the input endmarker,is the empty string.
We next formalize what is meant by a 'best' approximation of a function
f as a 'maximally defined sequential approximation', abbreviated
m.d.s.a., of f. Intuitively, this is a function which generates at
least as much output for any input as any other sequential approxima-~
tion of f. Alternatively; it is shown that a m.d.s.a. of f is one
for which the amount of output generated for any input x is the
longest substring of £(x) which begins every string f(x°v); for any

nonempty input v. It is then shown that for any function £, there



25

exists a unique m.d.s.a. of f. However, it is shown that there is no
effective procedure for determining what the unique m.d.s.a. of a
function is; indeed; there is a computable function having a non-
computable m.d.s.a.

The concept of maximally defined sequential approximations
leads to the consideration of two interesting classes of functions:
the class of sequential functions and the class of 'truly off-line’
functions. Denote the m.d.s.a. of a function f as £. A function
f is sequential if and only if for all input strings -x, not contain-
ing the endmarker 60; %(x) = £(x). The opposite class of functions,
when %(x) = A for all inputs x not containing €g» is the class of
'truly off-line' functions. The string reversal function is an
example of a truly off-line functiom.

A function may be neither sequential nor truly off-line and
still have a computable m.d.s.a. We are thus led to investigate

methods of measuring a function in relation to its m.d.s.a. in the next

chapter.

.........

‘3.2 Approximations of Functions

At times, it has been suggested that by adding an endmarker
to the input alphabet and demanding output only when the endmarker is
read, we can show that.every computable function is on-line computable.
In view of definition 2.2.1, this stratagem is not applicable. How-
ever, by replacing the phrase 'on-line computable' by 'a computable
sequential function'; this intuitive approach will be valid.

We first must formalize what we mean by adding an endmarker

in function notation.

" Definition 3.2.1 A function f:I% > T% 4is said to be final w.r.t. ¢

0
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if ¢

€ 2 and (Vu e I*) (VW e L¥)[f(ue,) = flue,v)1.
0 | 0 0

In essence, <g is an dnput endmarker: once it has been
reached; no further output is generated. What we would like to show is
that for every computable f; there exists a sequential Turing machine
which uses an input endmarker and computes f; However; a machine
using endmarkers is not computing a function which has no endmarkers
in its domain; the machine is computing a similar function over an ex-
tended domain. We will call this function an 'approximation' of the

original function.

Definition 3.2.2 A function g:(Z v {eo})* > I'* is an approximation

% %
of f:X*% > T*% if <0 ¢ ¥, and (Wue3l )(wv e(ZL;{eo}) )[g(ueov) = f(u)].
‘Remark  Clearly, if g 1is an approximation of £, g is final w.r.t.
€
We now show that the suggestion made in the introduction of

this section is wvalid.

Theorem 3.2.3 For any function f:X% > T'* and <o ¢ L, there exists

a sequential function g:(Z U.{EO})* + TI'*, which is an approximation
of f£.
Proof: We define g by cases depending on whether €0 is in the input
string or not:
1) for x e I*, g(x) = A;
2) for x = ue W, where u e %, we (L U {eo})*, g(x) = f(u).
By (2), (Vu € I¥)(Vw ¢ (Z U'{eb})*)[g(ueow) = f(u)]. Hence,
g 1is an approximation of £. Thus, we need only show that g is
sequential.
We proceed by cases to show that (Vu ¢ (Z p'ieo})*)
(Vv ¢ (T U'{eo})*)[g(u)Bg(uv)] and hence by lemma 2.3.4; g is

sequential.



27

a) For u e I*, glu) = A by (1);
Hence, g(u)Bg(uv); since (Vw e T*)[ABwl. |
b) For u = Xeqw, X € v, we (2 U'{eo})*, gu) = f(x),‘ by (2).
Now, (Vv e (X U'{éo})*)[uv—=¢x§dwv§; thus, g(uv) = g(xeowv) =
= £(x) = g(u).
Clearly, g(u)Bg(u); thus g(u)Bg(uv) = g(u). Hence; by definition g
is a sequential approximation of f£. g

‘‘Corollary 3.2.4 For every computable function £:Z* > I'*, there exists

a sequential Turing machine which computes an approximation of f£.
 Proof: By theorem 3.2.3, for every function f, there exists a
sequential function g which is an approximation of f. Notice that
if f is computable, then g 1is also computable. Hence, by theorem

2.5.1, there exists a sequential Turing machine which computes g. 0

©'3.3 'Maximally Defined Sequential Approximations

The preliminary goal of this chapter has been achieved by
theorem 3.2.3. However; upon studying the approximation constructed,
one discovers that it is the 'worst' sequential approximation possible.
For example, consider any sequential function f£:2% » T#%, €0 ¢ L.
Define g: (T U'{eo})* > T* as (¥ e I*¥)[g(x) = f(x)] and
(W e Z%) (W ¢ (T U‘{eo})*)[g(xeow) = g(x)]. The function g is a
sequential approximation of £f. Also, for any input string not con-
taining the endmarker, the amount of output for g 1is always greater
than or equal to the amount for the function guaranteed by the comstruction
in the proof of theorem 3.2.3. Hence, g is a 'better' approximation of f.

The following definition formalizes what is meant by a 'best' approximation.

" 'Definition 3.3.1 A sequential function g: (X U'{eb})*'+ I'* ig a

" maximally defined sequential approximation (m.d.s.a.) of f£:Z% -+ T* if
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g 1is an approximation of f and for all other sequential approxima-
tions g' of f; (W e.Z*)[g'(x)Bg(x)];

Thus, a sequential function g 1is a m.d.s.a. of f if the
length of g(x) for all input strings x is greater than or equal to
the length of any other sequential approximation of £ on the same
input string x.

Using definition 3.3.1 to prove that a function is a m.d;s;a;,
one would have to test whether any other sequential approximation of
the same function has an output string of greater length. This would
be tedious, if not impossible. The following theorem offers a more
useful test of whether a function is a m.d.s.a., as only the function
being approximated is needed.

Theorem 3.3.2 A sequential function g:(Z U‘{eo})* - T'* dis a max-

imally defined sequential approximation of f:¥X* > T'* if and only if
g 1is an approximation of f and (Vu € Z¥)(Vb e T)(3v ¢ I%)
Cg(u)*bBf(uev) 1.

Eiﬂéﬁ: Suppose g 1is a m.d.s.a. of f; by definition, g is
sequential, final w.r.t. 0 and an approximation of £. Suppose that
(du € X*) (@b € T) (Vv € Z¥)[g(u) *bBf (u*v)]. Define a new function

gh: (T u'{eo})*'+ I* from g as follows:

g(y);

(y) 1if Jg¥y)I| > g

1) for ye (2 U'{eo})* such that uBy,g'(y)

2) for ye I u‘{eo})* such that uBy,g'(y)
g(u)*b, otherwise.
We will show that g' is an approximation of £ by showing
that (Vv € Z*)(Vw ¢ (T v {éo})*)[g'(veowik = g(veow)]. Since g is
an approximation of f; we know g(vgow) = f(v) and hence we will

have that g' is an approximation of f. 1If queOW, then g'(veow) =
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= g(veow), by (1). Now suppose. uBve

oWs since u € L*, there must

exist an x € % such that v = ux. Now, since g is an approximation
of f, g(veow) = f(v) = f(ux). Hence, 1g(ve0w)1 = [f(v)] > Jgw)],
by the assumption that g(u)*bBf(ux), for any x; Thus; by (2),

, g'(veow) = g(veow); Hence; g' 1is an approximation of f.

We now show that g'

is sequential by considering the two
cases for v e (X U'{eo})*.

a) uby. Thus, g'(y) = g(y), by (1). MNow, for ve (£ u{eg})
g'(yv) could be either of two values depending on whether

uByv or not.

i) If uByv, g'(yv) = g(yv) by (1). Since g 1is sequential,
g(y)Bg(yv); hence g'(y) = g(y)Bg(yv) = g'(yv).

ii) If wuByv, then yBu since uBy. Since g is sequential,
g(y)Bg(u) and g(u)Bg(yv). By (2), g'(yv) is either
g(yv) or g(u)*b. But g'(y) = g(y)Bg(u)Bg(yv). Hence,

g' (y)Bg(u)*b and g'(y)Bg(yv). Thus, in either case,
g' (y)Bg' (yv).

b) uBy and for v e (Z u {eo})*, we obtain three subcases.

i) le(y)| > lg(u)|. Hence, by (2), g'(y) = g(y). But since
g 1is sequential, g(y)Bg(yv) and lg(yv)| > lg(u)|. Thus,
by (2), g'(yv) = g(yv). Hence, g'(y) = g(y)Bg(yv) =
=g'(yv).

ii) lg(y)| < lg(u)] and Jg(yv)] < Jg(u)|. Hence, g'(y)

= g(u)*b and g'(yv) = g(uw)*b, by (2). Therefore,
g' (y)Bg' (yv).

iii) Jg(y)] < lg(u)] and Jg(yv)]| > Jg(u)l. Hence; g' (y)

= g(u)*b and g'(yv) = g(yv). Since g 1is a sequential
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approximation of £, g(yv)Bg(yveO) = f(yv). Since uBy, for some
we Lk, y= uw, Thus; g(u) *bBf (yv) = f(ﬁWv);v using the assumption.
Summarizing, g(yv)Bf(yv) and g(u)'be(yv); But; lgyv) | > ]g(u)l;
so lgyv)] = Ig(u)'bl; and we may concludé that g(u)'ng(yV);
yielding g'(y) = g(u)*bBg(yv) = g'(yv).

Hence; g' is a sequential approximation of f3; however;
g'(u) = g(u) bBg(w), a contradiction; as g was assumed to be a
m.d.s.a. of f. This concludes the only if half of the proof.

Now suppose a sequential function g:(Z U'{eo}**+ I'* 1is not
a m.d.s.a. of f:I* > I'* but g 1is a sequential approximation of £.

Since g is not a m.d.s.a. of £, there exists a sequential
approximation g' of f for which (du e I*)[g'(u)Bg(u)l.

Because g' is an approximation of f, g'(ueO) = f(u).

Since g' 1is a sequential approximation of f, (Vx ¢ Z*)[g'(x)Bg'(xeo) =
= f(x)]. Hence, g'(u)Bf(u) and (Vv ¢ I*)[g'(uv)Bf(uv)l. Also, since
g' 1is sequential, (Vv e¢ IZ*)[g'(u)Bg'(uv)]. Thus, (Vv ¢ IZ*)[g'(u)Bf(uv)].
Now, since g 1is a sequential approximation of £, g(u)Bf(u).
But because g'(u)Bf(u), either g'(u)Bg(u) or g(u)Bg'(u). By
assumption, g'(u)Bg(u); thus, g'(u) # g(u) and g(u)Bg'(u). Hence,
(3 ¢ T)(ay ¢ T*)[g'(u) = g(u)*bsyl. It follows that g(u)°bBg'(u).
And since g'(u)Bf(uv), for all v e€ I*, we obtain
(W ¢ Z*)[g(u)*bBf(uv)]. Thus, if g 1is a sequential approximation
of f, but not a m.d.s.a. of f, then (Hu ¢ I*)(db ¢ T)(W e I¥%)
[g(u)°be(uv)]; concluding the proof of the theorem. 1
Theorem 3.3.2 gives a useful characterization of a m.d.s.a.

However, it does not indicate when or under what circumstances a

"m.,d.s.a. is obtainable. Theorem 3.3.3 asserts the existence of a
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m.d.s.a. for every function, while theorem 3.3.4 shows that there can
be no uniform algorithm for constructing it.

‘Theorem 3.3.3 For every function f:2% =+ I'*, there exists a maximally

defined sequential approximation of f.
"fiééﬁ: For any f:X% - T'*, define a function g:(Z U'{eo})* -~ I'* as
follows:
l) For x = ue v, where u ¢ Z*; v e (X U'{eb})*, g(x) = £(u);
2) TFor x ¢ I*, g(X) =y, where y is the longest initial sub-
string of f(x) such that (Vw ¢ Z*)[yBf(xw)]. Such a vy
must exist since at least one substring of f(x), namely A,
satisfies the requirement that yBf(xw). Note that we claim
only the existence of the string, not an effective method of
finding it.
By (1), g dis an approximation of £f. By (2) and theorem
3.3.2, g will be a m.d.s.a. of f provided that g 1is sequential.

We proceed by cases to show this.

f(w),

f(w) s

a) If u-= L where w e Z%, z ¢ (Z U {60})*, g(u)

by (1). Now, for v e (X UA{eb})*, g(uv) = g(we,zu)

0
by (1). Thus, g(u) = g(uv) and g(u)Bg(uv).

b) If u ¢ I*, g(u) =y such that (Vw e Z*)[yBf(uw)]. For
ve (Zu {eo})*, we have two cases.

i) For v ¢ ¥, g(uv)Bf(uv), by (2) and g(uv) is the longest

initial substring of f(uv). From (b), g(u)Bf(uv), and

lg(u)l

IA

lg(uv)|. Thus, g(u)Bg(uv).

ii) For W W2, where w ¢ X%, z ¢ (T U'{eb})*, g(uv) =
= g(uweoz) = f(uw), by (1). But from (b), g(u)Bf(uw) and

thus g(u)Bg(uv).
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Thus, by lemma 2.3.4;_ g is sequential. D

As was noted in the proof; theorem 3.3.3 provides no a}gorithm
for constructing a m.d.s.a. of any given function! Theorem 3.3.4 shows
that no such algorithm can exist even if information about the func-
tion is available via an ‘oracle' or a method of evaluating f£.

" Theorem 3.3.4 There exists a computable function fE{O,l}* > {0,1}*,

for which there exists no computable maximally defined sequential
approximation.
‘Ezggﬁ; Let '{Mi} represent a canonical ordering of Turing machines.
Define f as follows:
£(}) = 0;
for x ¢ {0,1}*, £(1x) = 0;
for any n > 0, x e'{O,i}*,f(Onlx) =¢0 if Mh halts
started with a
blank input tape
in [x| steps
1 otherwise

Clearly, f is computable. Suppose g is a m.d.s.a. of f.
Then, g(Onl) =1 if and only if Mn does not halt when started with

a blank input tape. Hence, g 1is not computable, else the blank tape

halting problem would be solvable. g

" '3.4 Sequential and Truly Off-line Functions

In this section, we will study two classes of functions which
have 'natural' maximally defined sequential approximations. First,

however, we show that every m.d.s.a. is unique.

" Lerma ‘3.4.1 TFor any function f:5% > T%, the maximally defined
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sequential approximation of f is unique up to the choice of endmarker.

» re . . * > T% re
Proof: Suppose that glz(Z u {eo}é*ﬁ'T* and gz.(Z U {eo}) T% a
both m.d;s;a.'s of f. We consider two cases.

1 x = yegw, where vy ¢ Z%, w ¢ (2 U'{éo})*- Since 8y is an

approximation of f, gl(x) f(y); Since gé is an approxi-~
mation of f, gz(x) = f(y) = gl(x).

2) x ¢ X*, Since 8y is a m.d;s.a; of £ and 89 is a sequential
approximation of £, by definition 3.3.1, gz(X)Bgl(x).
Similarly, gl(x)Bgz(x). Hence, gl(x) = gz(x). Therefore,

(Vx ¢ Zu {eph*) g (x) = g, ()] g

~

"Néfafion Denote as f the maximally defined sequential approximation
of f.

In introducing the concept of a m.d.s.a. at the beginning of
section 3.3, it was noted that if f is a sequential function, the

m.d.s.a. of f agrees with f for all inputs not containing the end-

marker.

Theorem 3.4.2 Let f:Z% > T*, f is sequential if and only if

(vx ¢ IN[E@) = £(x)1.
" 'Proof: Suppose f 1is sequential. We know then that

(Vu € Z#%) (Vv ¢ I*)[£(u)Bf(uv)]. We define a function g which is

shown to be the m.d.s.a. of f.
1) For x e I*, g(x) = f(x).
2) For x = YEQWs where y e ¥, we (Zu {e D*, gx) = £(@y).
By (2), g is an approximation of f. We must show that g

is sequential.

a) For u e I*, g(u) = f(u), by (1). We get two subcases for

ve (2 U'{eb})*.
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i) For v e I*, g(uv) = f(uv). Hence g(u) = f (0W)Bf (uv) =

= g(uv);

ii) TFor vV = yeqw, where y e L%, we (Z U‘{eo})*,‘ g (uv)

I
[

g(uyeow) = f(uy); by (2). Thus, g(u) = f (u) Bf (uy)

g(uv).
b) TFor u = €W where y e I*, w ¢ (I U'{eb})*, g(u) = f(y),-

by (2). Also; for v e (T U'{eo})*, g(uv) = g(yeowv) = f(y),

by (2). Hence, g(u)Bg(uv).

We have so far shown that g is a sequential approximation
of f. Furthermore; (Vu € Z*%)[g(u) = f(u)l; thus, (wu e I¥)(Vb ¢ T)
[g(u)*bBf (u*A)]. Therefore, by theorem 3.3.2, g 1is the m.d.s.a. of
f. This concludes the only if part of the theorem.

Now, suppose that (Vx ¢ Z*)[f(x) = f(x)]; Since £ is
sequential, (Vue (Z U'{eé})*)(v-ve (z U'{eo})*)[§(u)3f(uv)] and hence,
(Vu e YW ve ZXH[f(u) = f(u)Bf(uv) = f(uv)] and f is sequential, [

Corollary 3.4.3 Let £f:Z*% > I'*, £ 1is computable and sequential if

and only if (¥x ¢ Z*)[%(x) = f(x)] and £ is computable.

Proof: From theorem 3.4.2, f is sequential if and only if

(Vx € Z*)[%(X) = f(x)]. The comstruction of g = f from f is clearly
effective. Therefore, if f is computable, E is computable. Con-
versely, if (¥x ¢ Z*)[f(x) = f(x)] and E is computable, then f

is obviously computable. 1l

' ﬁéﬁ;fk There are two cases if f:¥% > I'* dis either not sequential

or not computable to compare to corollary 3.4.3. First, if f is
computable but not sequentiél; % need not be computable and

(Ix ¢ Z*)[%(x) # f(x)1. Next, if £ 1is sequential but not computable,

A

then f is not computable and (Vx ¢ Z*)[f(x) = f(x)].
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Corollary 3.4.4 Let £:2% > T*. f is on-line computable if and only

if (¥x ¢ Z*)[f(x) f(x)' & lx] = |f(x)|] and £ is computable.
"Proof Immediate from theorem 2.5.3 and corollary 3 4 3 0

Theorem 3.4.2 gives an alternate characterization of the
class of sequential functions in termé of the class of their m;d;s;a;'s;
We now isolate a second class of computable functions having computable
m.d.s.a.'s.

" Definition 3.4.5.. A function f£:Z% > I'* ig said to be truly off-line

if (¥Vx ¢ Z*)[f(x) = AJ.

Essentially a function £ 1is truly off-line if for any
machine computing £, mno output can be made until all of the input has
been read. That is, f is truly off-line if the sequential Turing
machine computing £ produces its output only when the input end-
marker has been read. This should be compared to the case for
sequential functions. That is, a function f dis sequential if the
sequential Turing machine computing fA produces no output after the
input endmarker is reached.
"Reﬁéfk Clearly, the zero function, fk’ ((vx € Z*)[fk(x) = A1), .is
both truly off-line and sequential. This anomaly Wili lead to minor
complications in the next chapter.
'témmé 3;4;6 There exists a length-preserving function f:{O,l}* +'{0,i}*
which is truly off-line.
"éﬁééﬁ; Let f£:{0,1}* » {0,1}* be the string reversal function Im
defined in theorem 2.2.3. That is, £(A\} = A, (¥x ¢ {0, 13%)[£(x0) =
= 0°£(x)] and (¥x ¢ {0,1}%)[£(x1) = 1-£(x)].

Suppose f were not truly off-line. Therefore,

(Ix ¢ Z*)[f(x) # A1, Let %(x) =y, yeI't. Since f is sequential,
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(Vb e'{O,l})[%(x)Bf(xb)]. Hence, yBO*f(x) and yBlef(x). Since
vy # A by assumption; y .begins with botha 0 and a 1, a con-

tradiction. O |
"iéﬁﬁétégéli There exists a length-preserving function £:{0,1}* > {0,1}*

which is neither sequential nor truly off-line.

proof: Conmsider f£:{0,1}* » {0,1}* defined as:

1 £Q) = A
2) TFor X e'{O,l}*, f(0x) = 0x;
3) For x e {0,1}*, f(1x) = Ip(ix).

By (3), f£(1) = Im(1) 1 and f(lO)*fIm(lﬂ) = 01. Hence,
f()BE£(10) and f 1is not sequential. By (2), £(0x) = 0x = £(0)x,
for any x ¢ {0,1}*. Thus, (Vx ¢ Z*)[0Bf(0x)]. Suppose %(O) = A.
Then, by theorem 3.3.2, (dv ¢ {O,l}*)[f(O)ﬁf(Ov)], a contradiction.
So, f 4is not truly off-line. 0

The function f defined in lemma 3.4.7 has the property that
for one half of the inputs, f has a sequential nature, while for the
other half, f has a truly off-line nature. There are functions for

which this is not true and which still satisfy lemma 3.4.7. In the

next chapter, we will show that there exist functions such that for any

rational constant p-between 0 and 1, and for all inputs, the-portions of the

output before and after the endmarker are p-and l-p, respectively.

" 'Remark  For the function f defined in.lemma.3.4.7;

f:{O,l,eO}*-+ {0,1}* is defined as:

a) fO) = A
b) for x eA{O,l,éo}*, f(eox) = 23
¢) for x e’{O,l}*, %(Ox) = 0Ox;

d) for x = ueyv, vhere u e {0,1}%, v e>{0,1,€0}*, £(0x) =



e)

)

%(Oueov) = %(Ou) = Qu;
for x e {0,1}*, g(lx) = X3
for x = ue

N where u e'{O,i}*, v e'{O,l,éO}*, f(lx) =

= %(lueov) = f(1u) = Im(lu). [

37
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CHAPTER 4
A CLASSIFICATION OF FUNCTIONS BY THEIR MAXIMALLY

DEFINED SEQUENTIAL APPROXTMATIONS

4.1 Introduction

In chapter 3, we showed that the concept of a m.d.s.a
leads to the classification of functions as sequential, truly
off-line, or neither. 1In this chapter, we study the problem of
measuring a function in terms of its m.d.s.a. and studying the
results of this measurement.

We first define a measure R_ based on the function f

f

A
and its m.d.s.a. f . Intuitively, Rf is the average ratio of

N
the length of f(x) to the length of f(x) over all inputs x.
It is shown that for any function f other than fA (the zero
function), 0 < Rf <1.

For truly off-line and sequential functions, Rf has

the extremal values 0 and 1 , regpectively. Unfortunately, Rf
may also be 0 for a function which is not truly off-line, or 1
for a function which is not sequential. This phenomenon leads to
the introduction of the class of 'almost truly off-line' functions
and the class of 'almost sequential' functions.

A function f 1is almost truly off-line if there exists
a constant k such that the amount of output generated by ? before
the receipt of an endmarker is always bounded by k . As was the
case for off-line functions, there is a function f which is
not almost truly off-line but for which R_ = 0 . Furthermore,

£

there is an almost truly off-line function f for which Rf z0 .

A parallel class of almost sequential functions is

introduced next and analogous results are obtained. Indeed, the



function f which is almost truly off-line but for which Rf'=‘O
is also almost sequential. We shoew that 'bounded functions' (i.e.
the functions with finite range) are both almost sequential and
almost truly off-line, and conversely.

Finally, for 0 < p <1 , we define Cp as the class
of functions for which Rf < p . By construction, we can show
that for any rational constant p between O and 1 , there is
a function £ such that Rf = p . Hence, the hierarchy of

classes defined by Cp is infinite and dense.

4.2 Measuring the Sequential Nature of a Function

In this section, we consider the problem of measuring a
function in relation to its m.d.s.a. and in particular, the classes

at each end of the scale.

The most obvious method of measuring the sequential nature

of a function p 1is to compare for each input the length of £(x)
and ?(x) . By definition 3.4.5 , if h: Z* - F* is truly
off-line, (¥x ¢ Z*)[ﬁ(x) = A] , and hence (¥x ¢ Z*)[Iﬁ(x)l = 0].
Thus, if h: I* > T'* is truly off-line, (¥x ¢ I*)[h(x) =z A=
(|ﬁ(x)|/|h(x)|) = 0]. Now let g: I* -~ T'* be sequential. By
theorem 3.4.2 , (¥x ¢ I*)[g(x) = g(x)] . Hence, if g: I% - T'%
is sequential, (¥x e I*)[g(x) = A = (|§(x)|/lg(x)]) = 1].
Finally, consider the function £: {0, 1}* - {0, 1}*
defined in lemma 3.4.7., (¥x ¢ 0-{0, 1}¥%) [f(x) = %(x)]; thus,
(¥x ¢ 0+{0, l}*)[(I?(x)|/|f(x)l) = 1]. Now,
(¥x e 1-10, 1}%)[2(x) = A]; thus, (¥x € 1-{0, 13 [(|T) ]/
[f(x)]) = 0] . Thus, for any meaningful measure of the sequential
nature of a function, all of the input words x for which
f(x) 2 A must be considered in the ratio. Definition 4.2.1

reflects all of these considerations in formalizing the measure.

39
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= < and
Definition 4.2.1 Let f: I* > T% . Let M, {x] |x| <n

f(x) # A} and m be the total number of words in Mn . For

&
1 lELELL F f, define a real
each n , let Rf(n) =— I . oY s

T XeM ‘f(x)\
n

number Rf = lim Rf(n)

n-ro

Remark  For the zero function , fA s Rf is undefined, as
A

m_ =0 for all n . This is not a surprising occurrence since
n

fk is both sequential and truly off-line.
Remark it should be noted that Rf may not be defined for some functions,
although it is in all cases that follow.

Remark In the case that m is bounded independently of n ,

then f: X% > T* is truly off-line.

Proof Since m is bounded independently of n , then for some

ny (¥n > nO)[Mn = Mho] . Therefore, (¥x ¢ Mno)[f(x) = A]

A A

(¥x ¢ M_)[£f(x) = A\] . Suppose x e M . Since f
%o %o

(¥y € I*)[xBy = %(X)B ?(y)] . Choose a y ¢ I* such that

Hence,

is sequential,

N
ly| > n, - Then, £(y) =X, as v ¢ Mn and consequently,
A

0
A
?(x) = . Thus (¥x ¢ I*)[f(x) = A] and f is truly off-line. []

As a consequence of the preceding two remarks, the

nontrivial cases occur when f(x) # X infinitely often, i.e. when

m is unbounded. Lemma 4.2.2 shows that for any f other than

fA , Rf lies in a well-defined range.

Lemma 4.2.2 For every function £: I* > T% , f=# £ , 0 < R_ <1

2? £ :
~
Proof Since f 1is the m.d.s.a. of f and the length of a
string is nonnegative, O < lESElL

|£(=) |
|f(x)| >0 41f x ¢ Mn). Therefore, O

<1 for all x e Mn (as

x|

< % <m (as
xth|f(X)l n



41

IA

M| =m ). Thus, 0 <R_(n) = = I £ < 1. We thus
o n £ Wy f(x)
n £eM

n

lim Rf(n) <l. @

n-—>-ow

conclude that 0 < Rf

As has been noted, the class of truly off~line functions should lie
at the low end of the scale formed at Rf, while the class of sequential
functions should lie at the high end. Theorems 4.2.3 and 4.2.5

with thedir corollaries will prove these facts formally.

Theorem 4.2.3 Let f: £~ > T * be any function. £ is truly off~line

if and only if f = f; or for some number 0, (Yo > no) [Rf(n) = 0].

Proof: Suppose f is truly off-line. If £ = f,, we are dome.

Otherwise, by definition 4.2.1, (Vx ¢ & %) [f (x) = A]l. Since f # f),

(Eﬁ%)e *) [f(xo) # A]. Hence, Mn is not empty for n > IXO

. _ ) _1 2 (x)
Choosing nO = lXO! we obtain for any n > Ny, Rf(n) = " XgMn £ (x)

1 0 , ,
== §€Mn T§7§7T (as f 1is truly off-line)

n

_ L .
= n_ §€Mn (0) (as |f(x)| >0 if x € Mn)

0 (as m > 0).

Now suppose f is mot truly off-line. Then f # fy, and

(I eZ*) [%(x) # A]. Choose a word y «¢ =¥ such that xBy and Iyl > ;.

Since £ is the m.d.ssa, of f, ?(x) B%(y)B f(y) and hence, ?(y) # A

and f(y) # A. Let n, = ly|. Hence, 7y ¢ Mo, m > 0 and n, 2 n

1™ 10
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1 ?<x>‘
But, Rf(n) - m %eM f(x)
1 ]
, 1 £ ()
mnl [ £ ()
> 0. n}
Corollary 4.2.4 If f: I* 5T* is truly off-line, either f = f)
or Rf = 0,
Proof: Immediate. O

Two observations about the above characterizations of truly
off-line functions can be made before proving the parallel results
about sequential functions. For theorem 4.2.3, it is not necessarily
true that (¥n=0) [Rf(n) = 0] as Rf(n) may be undefined because Mn is
empty for some values of n, In Corollary 4.2.4, even if Rf =0, f
need not be truly off-line., 1In this case, the limit may approach

0, although for no n is Rf(n) = (., This case and its parallel for

seqquentiall functions will be investigated. more fiully.later.

%*
Theorem 4.2.5 Let f£: I =T be any function. £ is sequential’ if

\Y4

and only if f = fy or for some number 0y, (yn no)[Rf(n) = 1].

Proof: Suppose f 1is a sequential  function. If f = fy, we are

done. Hence we assume that (Hko €z®) [f(x0)¢k]- Let IXOI =n Now by

0°
theorem 3.4.2, (¥x € Z*) [%(X) = f(x)] and hence, (¥Vn = nO) (Wx € Mn)

[ £ x)] = |f®)|] and m > 0.
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L NS
Hence, for n = ngs Rf(n) == §€Mn -+Ez;7+

n

1 ' ,
= ;; §€Mh (1) (as |f(x)|#0 if xeMn)
— (by definition of Mn)
n
= 1 (as m_# 0).

Now suppose f is not sequential. Then, f # £, -and
Gx, « ) [%(Xl) # £(x;)]. Since (¥x € I*) [£(x) B £(x)], then:,

f(xl) % A. Let n, = max (lxll, no); thus x

1 <M . Let M = M- {xl}.

1 1 1

1 HSI! 12x )|
m e [£(x)]| o L
n; n, lf(xl)

Hence, Rf(n) =

1 £ . 1 B A
< = 3 + 1 (as £ &) |=]f)])
mnl XeM |f(x)| mnl T??EIST- '
m_ -1
_n
- Loy i |%(Xl)| (as M|=m_-1)
mnl mnl f(xl)| nq
m -1 1
< ™M +m— (as B < |EE)]D
n 1 1
m 1
Bl
= 1 . O
Corollary 4.2.6 If f: Z*+F* is sequential either f = fy or Rf =1,

Proof: Immediate. O

We notice that, as was the case for truly off-line functions,
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we cannot use an if and only if condition in the statement of corollary
4,2.6. That is, there is a function f which is not sequential and

for which R. = 1., Since the two ends of the scale formed by R

are
f

£
exactly parallel in nature, we will prove results about each in parallel,

rather than investigating- each individually.

4.3 Almost Truly Off-line Functions

Lemma 4.3.1 proves formally the existence of functions which

show that knowing the value of R_ is not sufficient for deciding

f
whether f 1is truly off-line.

Lemma 4.3.1 There exists a function f: {0,1}* > {O,l}* which is

not truly off-line but for which Rf = 0.

Proof: Let Im: {0,1}* +{0,1}* be the string reversal function as
defined in theorem 2.2.3. Consider f: {0,1}* - {0,1}* defined by
(Vxe{O,l}*) [f(x)=1.Im(x)]. For example, £f(A) = 1, £(0001) = 11000,
and £(1010110) = 10110101.

Now we define a function g: {O,l,eo}* + {0,1}* which will
be shown to be the m.d.s.a. of f.

1) For xe {O,l}*, g(x) = 1.

*
2) For x = wey, where we{0,1} , y 6{0,1,60}*, g(weoy)

]
)=
»

Im(w).

We first show that g is sequential.

a) For x 6{0,1}*, g(x)'= 1. We get two cases:
i) For v ¢ {0,1}*, g(xv) = 1 = g(x). Hence g(x) B g(xv)
ii) For v = we,y, where WE{O,l}* and vy €{0,1,¢ }*,

g(xv) = g(xweoy) = 1, Im(xw), by (2). Hence, g(x) = 1 B 1, Im(xw) = g(xv).
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b) For x = wey Y where w e{O,l}* and ye{0,1,¢ 1*, gx) =
1.Im(w) by (2). For ve{O,l,eO}*, by (2), g(xv) = g(weoyv) = 1.

Im(w) = g(x). Again, g(x) Bg(xv) and g must be sequential.

Now by (2), OVXE{O,I}*) [g(xeo) = 1.Im(x) = £(x)]. Thus,
g is a sequential approximation of f.
Now by (1) (Wxe {O,l}*) [g(x) = 1]. Consider g(x).0.
f(x1) = 11Im(x), by the definition of Im. Hence g(x).0 B f(x1). Now
consider g(x).1. £(x0) = 10 Im(x), by definition of Im. Hence,
g(x).1 B £(xQ). Hence, (¥x é{O,l}*)OVbe'{O,l})(}ve{o,l}*) [gx)sb B f(xv)].

Thus, by theorem 3.3.2, g 1is the m.d.s.a. of f, i.e. g = £. Since

%(W) =g@) =1, @x {0,1Y") [£x) # 2] and £ is not truly
off-line.

Now consider R_. = lim L z %(X)

f m %eM f(x)
n>® n n
» n+l

Note that for any n, Mn = {x| |x| < n} and m = 2 - 1. Also,
Wx € Mn) []?(x)|=l] and |f(x)| = 1 + |x|. Furthermore, there are

2" words of length i in {0,1}*.

T £ (x)
Hence, Rf = 1lim o §€M '+f?§7+
n>® n n

1 o ot
= 1lim —F—— I = (by above)
oo 2n+1_1 -0 (1+1)
n
. 1 3 -2 v
< 1im e T+ n <as can be verifiej)
N> 2 -1
by the reader.
. 3
< lim ———— = 0.
D)

n—>oe
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By lemma 4.2.2, R_ > 0; hence, R, = 0, although f is

f f

not truly off-line. [J

Note that the function f in lemma 4.3.1 has the property

that |2(x)|

. ¢ *
1, for all inputs x€f0,1} . Any function having the properties

that I?(x)l

IA

k, for all inputs x, and that as the length of the
input x increases, the length of f(x) increases, could have been
used in the proof. This observation motivates the following definition

of almost truly off-line functions.

*

Definition 4.3.2 Let f: I >r*. £ 1is said to be almost truly off-line

if (Wx ¢ Z*) [}?(x)] < k], for some integer constant k > 0.
Remember that a truly off-line function can be described
by the sequential  Turing machine M which computes its m.d.s.a.;
that is, f 1is truly off-line if M outputs nothing until the
receipt of the input endmarker. We can make a similar description

*

for almost truly off-line functions. For any f: I +T*, let M. be

f
the sequential  Turing machine computing ?. Then, f 1is almost
truly off-line if M. outputs at most k digits of f(x) for any input
x before the receipt of the input endmarker.

It should be noted that every truly off-line function is
an almost truly off-line function and we have just seen that the
converse does not hold.

It is now natural to consider the class of almost truly
off-line functions as a possible characterization of the class of
functions for which Rf = 0. Unfortunately, as we.will see in lemma

4.3.3 and corollary 4.4.5 below, the characterization fails in both

directions.
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Lemma 4.3.3 There exists a function £:{0,1}* - {0,1}* which is

not almost truly off-line but for which Rf = 0.

||
Proof: Define £:{0,13* > [0,1}* as (¥x ¢ (0,13") [f() = 1% o2 |
where a” = a...a. That is, £ dis the function which outputs a 1 for

n times

every digit read followed by 2" 0's, if the whole input word is of

length n.
0 8 8 0256

For example, £(0) = 1° 0% = 0; £(10101101) = 1% 0* =1

Define g: {O,l,eo}* > {0,1}* by cases as:

1) For x e {0,1}", g(x) = 1‘X|;

2) For x =w €9 ¥ where w ¢ {0,1}*, v 6{0,1,601*, g(x) = f(w).
By (2), g 1is an approximation of f. We now show that g 1is
sequential by cases.

a) For x € {O,l}*, g(x) =1 [x‘. We get two cases for
v € {O,l,eo}*:

|xv| _

1) v e {0,117, gxv) = 1 =l g vl g(x)'llvl.
Hence, g(x) B g(xv).
ii) v=w €y Y where w ¢ {0,1}%, y ¢ {0,1,60}*,

|| x|

g(xv) = glxwe y) = £(xw) = 1|le 0% = 1|x| 1IWl 02 =

lw| 2|le
g(x) + 1! 0 . Hence, g(x) B g(xv).

b) For x =w € Yo where w e{O,l}t vy ¢ {0,1,60}*, g(x) = f(w).
%
For v € {O,l,eo} g(xv) = g(weoyv) = f(w) = g(x). Hence, g(x) B

g(xv) and g is a sequential approximation of f£. Now (Y ¢ {0,1}*)

x| w0 201 |x

[g(x) = 1'7!. Consider g(x)»0. Then f(x0) = 1 0 =1 1
2|x0|. Hence g(x)-0 B £(x0). Consider g(x)°'1 = llx‘l. Then f(x) =
x| 2%l . .

1 0 and, g(x)*1 ¥ £(x). Again, by theorem 3.3.2, g is the



m.d.s.a. of f. i.e., g = %.
Now consider Rf. As before, Mn = {x| leﬁtﬁ. Hence, mn=2
Also, ¥x ¢ {0,1}%, lgx)] = |x| and |£(x)]= |x]| + Z!Xl. Note again

that there 2° words of length i in Mn' Hence

1 ‘%(x)l
Rf - %&& m %EM f(x)
n n

n
“lm o ik op
2 -1 i+2
1
< lim —(— ,2 i
n>o 2n+l_l i=0
2
R el
@ -1y 2
Since (V¥x €{0,1}%) [l%(x)] = |x| ], there can be no bound

on the length of ?(x). Hence f 1is not almost truly off-line,

although Rf =0. 0O

Thus, it seems that there is no simple characterization of
the functions £ for which Rf = (. However, the class of almost
truly off-line functions will be wuseful in establishing the

hierarchy of functions defined in section 4.5.

4.4 Almost Sequential Functions

We now turn our attention to the other end of the scale
formed by Rf. We will parallel the lemmas and definition for the

case Rf = 0 by symmetric results when Rf = 1. Our first result

48
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shows that there are non-sequential functions for which Rf = 1.

* *
Lemma 4.4.1 There exists a function f: {0,1} - {0,1} such that

f dis not sequential and Rf = 1.

Proof: Consider the function f defined as (Vx 61{0,1}*) [f(x) = x-11 .
We define a function g: {O,l,eo}* > {0,1}*, which is shown

to be the m.d.s.a. of f.
1) For x ¢ {0,1}%, g(x) = x;

* #*
2) for x =w €9 V> where w ¢ {0,1} , v ¢ {O,l,eo} , g(x) = w-l.

By (2), g(w eo) = g(w €0 y) = f(w). Hence, g is an
approximation of f. We show g is sequential by cases.
a) TFor x ¢ {0,1}%, by (1), g(x) = x. We consider two

cases for v ¢ {0, 1, 60}*.

i) TFor v « {O,l}*, g(xv) = xv, by (1). Hence, g(x) =
x B xv = g(xv).
ii) For v = w €9 Vs where w €{0,1}%, y e{O,l,eo}*, g(xv) =
g (xw €0 yv) = xwl, by (2). Hence, g(x)Bg(xv).
b) TFor x = w €7 where w é{O,l}*, vy ¢ {O,l,eo}*, g(x) = w.1,
by (2). Hence, for v 61{0,1,60}*, g(xv) = g(w € Y V) = w.l = g(x),
by (2). Hence, g(x) B g(xv).
Thus, (Vx E{O,l,eo}*)(VV 6{0,1,60}*) [g(x) B g(xv)] and
g 1s a sequential approximation of f.
Now, by (1) for x ¢ {O,l}*, g(x) = x. Consider g(x)-0 = x0.
f(x1) = x11, by definition. Hence g(x)'0 B £f(x1). Now consider

g(x)*1 = x1. £(x0) = x01, by definition. Hence, g(x)*1 ¥ £(x0).
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Therefore, by theorem 3.3.2, g 1is the m.d.s.a. of f, i.e., g = £.
Since £(1) = g(1) = 1, and £(1) = 11, @x (0,1} Fx) # £(x) 1.

Hence, f 1is not sequential.

Note that for any n, M_ = {x] |x| < n} and m =2 "-l.
Also, (Vx « Mn)[‘%(x)l = |x| & |[fx)] = |x|+1] .
Therefore, R, = lim 1 % %(X)
£ o> m xeM f(x)
n n
. 1 n 2i-1
=Hrn 5 ilo i (by above)
2 -1
n i
_ 1 i 27
B %lm 2n+1_1 iEO (2 i+l )
1 L R
=i Gl T ik )
2 -1
> lim 1 (2n+l—l -3 2 ) (as in lemma 4.3.1)
T e 2r1+l_l 1+n U
n
32
= lig (1 - )
n> (2n+l-1)(l+n)
n
32
=1-1lim —F = 1. [
n>o (2n+1—l)(1+n)

Note that for f as defined in lemma 4.4.1, (¥x €{0,1}*}
[|f(x)[ - [f(x)| =1] . We could replace f by any function which
had the properties that (Vx ¢ Z*) [lf(x)‘—l%(x)]ﬁk,for some k] and that
|£(x)| increases as |x| increases. An interesting e%ample of such a

function is full binary addition.
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Definition 4.4.2 TLet f£: 3° »T*

. £ is said to be an almost sequential

function if (¥x e %) [fx)| - \?(x)l < k] , for some constant k.
As was the case for almost truly off-line functions, we

can describe an almost sequential function in terms of the sequential

Turing machine which computes its m.d.s.a. Let Mf be the sequential

Turing machine which computes %. An almost sequential function is a

function for which Mf produces all but at most the last k digits

of the output for any input before receiving the endmarker. 1In lemma

4.4.3, we show that the class of almost sequential functions does

not contain the class of functions for which Rf = 1.

* *
Lemma 4.4.3 There exists a function f: {0,1} - {0,1} which is not

almost sequential but for which Rf = 1.

Proof: Consider f£: {0,1}* > {0,1}" defined as (¥x ¢ {0,1}%) ,
zlx‘ lX!
[f(x) =0 1 1.
We now define a function g:{O,l,eo}* - {O,l}* which is
shown to be the m.d.s.a. of f.

x|
1) For x ¢ {0,1}*, g(x) = 02 H

|w]
#*

2) For x = w €Y where w ¢ {0,1}%, y 6{0,1,60} , g(x) = 02 l‘wl.
By (2), g is an approximation of f. We now show g 1is

sequential by cases. ] |
X

a) For x € {0,1}*, by (1), g(x) = O2 . We consider two
cases for v ¢ {O,l,eo}*: x| ] ] o]
N XV X X Vi_iy =
i) v e {0,1} , glxv) = 0 = O2 02 (2 L

zlxl (2|V|—l).

g(x) 0 Hence, g(®B g(xv).

ii) v = weYs where wé{O,l}*, y 6{0,1,60}*, g (xv)
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5]
gxw o y) =0

It

1IWI _ Ozixi(oz‘xi (zlwi_l)) llwl

2!X|(2|Wl_l)) 1[W!.

g(x) (0 Hence, g(x) B g(xv).

b) For x = w € Vs where w ¢ {0,1}%, y EA{O,l,EO}*,

vl

g(x) = 0 A

For v ¢ {0,1,60}*, g(xv) = g(W€OYV) = g(x).
Hence, g(x) B g(xv).
Thus, (Wx ¢ {0,1,60}*)(VV 6{0,1,60}*) [g(x) B g(xv) ] and

g 1is a sequential approximation of f.
||

Now consider g(x)-0 = 02 0. Then, f(x) =
|| | x|
O2 v l|X| # 02 *+ 0v, for any v ¢ {O,l}*. Thus,
| x|
g(x).0 B £f(x). Consider g(x)-1 = 02 1. Then, f(x-0) =
|x[+1 || | X
02 1lxl+l # 02 *l-v, for any v ¢ {0,1} . Thus, g(x)*B £(x-0)

and (Vx ¢ {0,11%) (b ¢ {0,1}) @v € {0,1}*) [g(x)-b B £(xv)] .

Again, using theorem 3.3.2, g is the m.d.s.a. of f. i.e., g = %.

Now, (V¥x 6{0,1}*) [fx)] - |%(x)[) = zlxl + |x| - zlxl = |x|1.

Hence, f 1is not almost sequential.

As before, M = {x] |x] <u}l, m = oo+l 1, I?(x)l = ZIXI

and |f(x)]| = 2|X|

- 1 £(x)
Hence, Re = BB ™o e %@ﬂt

+ |xl.

= 1im 1 3 21 21
2n+l_l i=0 21+1
i
1 i 27 i
“Hp g i @ - )



53

= n

g ) 202 - iZo 21 -

o 2771 2741

1 n+1 n2+n
> %&Q n+l_l (27 -1 - 5 ) (as in lemma 4.3.3)
n +n
=dm (1-,eh gy )
n +n
=1- lim
> (2n+l_l),2

= 1. [J

We have shown by lemmas 4.3.3 and 4.4.3 that if f 1is

a function such that R, = 0 (R

£ = 1), it is not necessarily true that

f
f dis almost truly off-line (almost sequential). We wish to know

if the respective converses are true.

*
Lemma 4.4.4 There is an almost sequential functiom f: {0,1} - {0,1}%*
such that Rf +£ 1.

Proof: Consider f: {O,l}* - {0,1}* defined as:

I) For x € {0,1,)}, £(x) = X;
II) For x =i v j, where i ¢ {0,1}, § ¢ {0,1},
v € {O,l}*, f(x) = ij.
Intuitively, f(x) equals the first and last letters of x if
|x| = 2,f(x) equals )\ otherwise. We define a function g:{O,l,eo} - {0,1}*

which is shown to be the m.d.s.a. of f.

1) TFor x ¢ {0,1,x}, g(x) = 2

2) TFor x

LT where w € {0,1,)\}, v € {0,1,60}*, g(x) = A3

It

3) For x = ivj, where i,j ¢ {0,1}, v 61{0,1}*, g(x) = i;
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*
4) TFor x = ivje,.w, where i,jc{0,1}, ve{O,l}* We{O,lEO}

0
g(x) =1 3.

By 2) and 4), g is an approximation of f. We show g 1is
sequential by cases.

a) For x ¢ {0,1,)\}, g(x) = A. For v 6{0,1,60}t ABg (xv).
Hence g(x) B g(xv).

b) For x = w €y V> where w ¢ {0,1,)\}, v € {0,1,60}*,
g(x) = A, and hence (Vx « {0,1,60}*) [g(x) B gxv)] , as in (a).

¢) For x = iwj, where i,j €{0,1}, w ¢ {0,1}*, g(x) = 1i.
We get two cases for v ¢ {0,1,60}*. |

i) v € {0,1}*, g(xv) = i, by (3). Hence g(x) B g(xv)

ii) v=2znpn €. vy, wherem ¢ {0,1}, z ¢ {O,l}* vy e {0,1,50}*

0
g(xv) = g(iwjzmeoy) = im, by (4). Hence, g(x) = iBim = g(xv).

d) TFor x = iwjeoy, where i,je{0,1}, we{O,l}i v 6{0,1,60}*,
g(x) = ij. For ve{O,l,eO}*, g(xv) = ij = g(x). Hence, g(x) B g(xv)
and g dis a sequential approximation of f.

Now, if ¥ €{},0,1%, g(x)-0 = 0 ¥ £(x) = X and g(x)-1 =1
B f(x). If x=41 u j, where i,j¢{0,1} and ue{O,l}*, then g(x)*0 = i0.

Now £(x1) = il and g(x)°*0 B f(xl). Similarly, g(x)-1 =‘il B £(x0)

Again using theorem 3.3.2, g is the m.d.s.a. of f. i.e., g = %
Now, (¥x ¢ {0,1}%) Ex)]| - I?(x)l < 1] . Hence, f is
almost sequential. Now, Mn =‘{x|2slxl§n}, som = 2n+l -4 if n = 2;
n
'? x) ]
= = - 1
my = my 0. Also, (¥x € P&Q [T¥%§$+— 5
Thus, R, = lim +— 3 £0)]
7 ptw  m xeM
n n £f(x) |
nil 2n+1_4
= 1lim 27 =4 igl G =% U

n—>o

i0.
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Notice that the function f defined in lemma 4.4.4 is
also almost truly off-line, because for all x,l?(x)' < 1. Hence,

corollary 4.4.5 follows immediately from lemma 4.4.4.

Corollary 4.4.5 There is an almost truly off-line function f:

{0,13* > {0,13" such that R_ # .

We note that any function f: 1* 5T such that Hk30)
(VxeZ*)[|£(x)|<k] will be both almost truly off-line and almost
sequential. Since we desire that Rf =0 if £ 1is almost truly
off-line and Rf =1 4if f dis almost sequential, it is not surprising
that the Rf measure does not fully characterize these notions. We
are thus led to consider removing all functions £:2%>1* such that
(HkZO)(Ver*)[If(x)| < k] from the classes of almost truly off-line
and almost sequential functions by altering the appropriate definitions.
Note that in doing so, however, that the class of almost truly
off-line (almost sequential) functions would no longer contain the
class of truly off-line (sequential) functions. e.g., fk’ would then
be both truly off-line and sequential but neither almdst truly off-line

nor almost sequential.

4.5 A Dense Hierarchy of Functions

The function f defined in lemma 4.4.4 had the property
that Rf = L. It is natural to wonder if for any rational constant

/q, such that 0 < < q, there is a function f such that R =2
pid P plq £ q

P/q
Definition 4.5.1 formalizes the concept of a bounded function,
which is shown in theorem 4.5.2 to be exactly the intersection of the

class of almost truly off-line functions and the class of almost

sequential functions.



% %
Definition 4.5.1 A function f:XI -+ ' is said to be bounded

*
if there exists a constant k such that (¥x X ) [lf(x)‘ék].
Remark A function f is bounded if and only if f has finite

range.

* *
Theorem 4.5.2 A function f: ¥ [ is bounded if and only if

f is both almost sequential and almost truly off-line.
*
Proof: Suppose f is bounded. By definition 4.5.1 (¥x € %)
*
[If(x)lsk]. Since % is the m.d.s.a. of f, (Vx € T ) [0 s|%(x)| <

|£(x)|1- Thus, (¥x eZ*) [l?(x)lsk] and f is almost truly off-

line. Also, (x ¢ Z*) [‘f(x)|—|%(x)|Sk] and f is almost
sequential.

Now, suppose f 1is almost sequential and almost truly
off-line; thus, (Vx ¢ Z*) [l?(x)|5k0] and (Vx « Z*) [E&)]| -

I?(x)ls kl]. Thus, (Vx e Z*) [lf(x)lSk0+k]J and f 1is bounded. [

Lemma 4.5.3 Let p and q be integers such that 0<p<q and ¢>O0.

* *
Then, there exists a bounded function fp/hF{O,l} -+ {0,1}  such that

R =5
f .
P/q ¢
Proof: We let = q = p+tr, r20. We define a function fp/q

{0,1}* +’{0,1}* as follows:
I) For x € {0,1,)\}, £(x) = X;

*
II) For x = iwj, where i ¢ {0,1}, we{0,1} , j <{0,1},

.T L, - .
j, where i is i i ... 1

n times

_ 4P
fp/q(X) *

That is, for p =1, q = 2, £f; is the function defined.
L 2 = Ll

in lemma 4.4.4.

56
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For example, if p = 2, q = 5, f.,.(01101) = 00111,

2/5

(011010) = 00000, f (011011) = 00111, f

(10)= 11000.

/5 2/5 2/5

3 o * * .
We now define a function g: {O,l,eo} +~ {0,1}, which

is the m.d.s.a. of £ . il.e. = %
p/q » 87 Yp/q

1) For x € {0,1,A}, g(x) = X;

m

*
2) For x=w €y Vs where we{0,1,)}, ye{O,l,eO} , g(x) = A

3) For x = iw, where i «{0,1}, we{0,1}+, g(x) = iP;

4) TFor x = ivjeyy, where, i,j¢{0,1}, We{O,l}*, ye{O,l,eo}*,
g(x) = ipjr.

Since the proof that g is the m.d.s.a. of fp/
completely parallels the proof in lemma 4.4.4, it will be
omitted.

*
Note that (Vx <{0,1}) [pr/q(x)]Sq]; hence, f is
a bounded function.

As before M_ = {x|2<|x|<n}, hemce,m = 2""1-4 if

A
n>2; my = m = 0. Also ¥x ¢ Mh) [pr/q(x)l =p & lfp/q(x)l = q].
% ‘
R C o 14 _1____ 3 Lp/q(X)
Hence, Re T q ReM £, (x|
p/q n '"p/q
2n+l_4
. 1 P
=1 ———— L
a8 2n+1__4 i=1 q
= P
= § g

Lemma 4.5.2 forms the foundation of the proof of theorem
4.5.4 which shows the existence of a dense, infinite hierarchy
of classes of functions based on the measure Rf.

Notation We denote by Ct’ for t a real number in the open interval

(0,1), the class of functions f such that RfSt.
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Theorem 4.5.4 The hierarchy defined by Ct is dense and infinite.

Proof: For all p and q, as in lemma 4.5.3, fp/q € Ct if and
only if t 2-% . U

We observe that it was the study of the bounded functions
which led to the proof of the existence of the dense, infinite
hierarchy. It is natural to wonder if functions with infinite
range (hence not bounded) could have been used in place of the

f 's.

p/q

Lemma 4.5.5 Let p and q be integers such that o<ps<q and q>o. Then,
* *
there exists a function h , : {0,1} - {0,1} such that h is
p/q p/q

not bounded and Rh = %- .
p/q

Proof: We will define functions f and g which will be shown
to be the desired h and ﬁ . Let r = q-p and define
p/q p/q
. * * *
£: {0,1} - {0,1}" as: for all x ¢{0,1} , where x = a; ay...a,
_.P_P P _Tr T T
and a; € L, f(x) a;” ayn e.e.oat a;t a, ...oa . Note that
f 1is not a bounded function since for any x, the length of f(x)
is q times the length of x.
% o+
We now define a function g:{0,1,e,} = {0,1} which is
shown to be the m.d.s.a. of f.

*
1) For x ¢ {0,1} , where x = a;a, -.. a and aiez,

= p p b
g(x) = a;s a, ... 8 .

* *
2) For x = wey, where we{0,1} , ye{O,l,eO} , g(x) = f(w).
By (2), g 1is an approximation of f. We show g is

sequential by cases.



*
a) TFor x ¢ {0,1} , where x = aja8y .- @, 3, € %,

1

*
g(x) = alp azp ves anp, by (1). We get two cases for ve{O,l,eO} .

*
i) For v €{0,1} , where v=b b, ... b, biel, g(xv) =

P_ P P, P P p
a;7a," ... a, b1 b2 v bm , by (1). Hence g(x) Bg(xv).
ii) For v = we Ly, where w = blb2 e bm, bieZ and
%
_ _ . P. D P, D, P P
y € {O,l,eo} y g(xv) £ (xw) a; a,” ... a bl b2 e bm .
r r T, T, T T
a; 8y, ... @ b1 b2 .o bIn » by (2). Hence, g(x) Bg(xv).

b) For x = yeoY» where We{O,l,eO}*, g(xv) = £(w),
by (2). Hence g(x) Bg(xv).

Hence, g is a sequential approximation of f. For xe{O,l}*
and X=aja, .. @, aiez, g(x) = alpazP ven anp. Consider g(x)-.0
and f(x.1). f(xl1) = alpazp ces anp’}palfézr ces anrl?, and hence
g(x)-0 B £f(x1). '

Similarly, g(x)-1 B: f(x0). Again, by theorem 3.3.2,
g is the m.d.s.a. of f. 1i.e. g=%.
Now, M =" {x|1<]x|=n & x 6{0,1}*}. Hence, m_ = 2= -2,

Yn, and (Vx ¢ Mh) [l%(x)|= p+ If(x)|=q).

.1 ‘?(x)
f %%g My %eMn f(x)

Hence, R

]

e
=

™
Qo
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We conclude this chapter by some observations concerning
the hierarchy defined by Ct' It is not known whether for every
real t in the open interval (0,1) there is a function in c, but

'in no ¢ for ty < t. Secondly, it is not known whether the

t’
hierarchy Ct bears any meaningful relationship to other known
hierarchies. Finally, we note that theorem 4.5.4 can be stated
intuitively as: if a sequential Turing machine is used to compute
functions, for any rational p, there are functions for which a
fraction p of the output cannot be made until after receipt of
the endmarker. This result should be contrasted with theorem 3.2.3

which shows that all computable functions can be 'computed' on

some sequential Turing machine.
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CHAPTER 5

CLASSES OF TIME~BOUNDED FUNCTIONS

5.1 1Introduction

We now turn our attention to the study of time-bounded computa-
tion of functions. Most authors who have investigated this area have re-
stricted their attention to the class of length-preserving functions, which
includes the class of recognition problems. This restriction has led to
two basic problems.

First, this restriction has led to the study of a function's com-
plexity mainly in terms of the storage and retrieval of the data needed in
the computation of the function. There are two other factors that con-
tribute to the difficulty of computing a function: the size of the output
and the off-line nature of the function. In [81, Hartmanis has approached
the study of the effect of the size of the output of a function on its
complexity; however, no instances are known of the study of the contribu-
tion of the off-line nature of a function to its complexity. In this
chapter, we will be more interested in the effect on the complexity of a
function of these two factors than in the effect of the need for storage
and retrieval of data.

A second consequence of the common restriction to length-preserving
functions is that the measure of the complexity of a function is related only
to the length of the input. It seems natural when discussing the com-
plexity of functions in general to take into account the nature of the
output as well.

These measures are especially interesting for the case of a

'real-time' computation. Intuitively, a function is real-time computable if
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the input is read as fast as possible and the output is produced as fast
as possible. This intuitive meaning of real-time is the motivation for
finding a more general means of measuring the complexity of a function.
The primary purpose of this chapter is to introduce and to
study several classes of functions whose complexity is measured in dif-
ferent ways. Five methods of measurement are used: the length of the
input, the length of the output, the maximum of the length of the input
and the length of the output, the length of sequential profile of the
m.d.s.a. of the function (counting overlapped input and output letters
as 1 in the length), and the sum of the length of the input and the length
of the output.
We will say that a function f dis 'input-bounded t(n) - com-
putable', if there exists a machine M ‘which computes f in at most
t(n) steps, where n dis the length of the input. We denote the class of

input-bounded t(n) - computable functions as It(n)

We make similar definitions for output-bounded t(n) - computable
functions, maximum-bounded t(n) - computable . functions, profile-bounded
t (n) - computable functions, and total-bounded t(n) - computable functions.

We d i
e denote the corresponding classes as ot(n)’ Mt(n)’ Pt(n)’ and Tt(n)

respectively.

We consider thelattice structure of these classes, along with
I n o and I 0 - i i .
£ (n) £ () n t(n)‘U £ (n)’ under set-theoretic containment

For any monotonically strictly increasing function t, I n 0t <

£ (n) @ S Tem)’
e " %) €%’ T FO%m) %t £ L@, Tem S Lemy Y Oy,

Ocem) S Tem) Y Pem) SMem) S Pem) S T,

We next investigate the case when t(n) = n, (i.e., the '"real-time"

case). For this case, the inclusions stated above are shown to be proper.
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Furthermore, there is a gsm mapping f: {0,1¥~> {0,1}* such that £ ¢ Mn. '
However, if g is a gsm mapping, g ¢ Pn. Since the author is of the opinion
that gsm mappings satisfy the intuitive notion of a real-time computable

function, we are led to reject the classes In, On, and Mh as represen-

tatives of the concept of real-time computable functions and focus at-
tention on Pn'

The class of real-time functions should include only sequential
functions. However, Pn includes nonsequential functions while In does not.
We are thus led to consider restricting Pn to the class of functions
which are both sequential and profile bounded. We denote this class as Sn'

We next consider our classes of real-time functions in comparison
to the more common definition, which is limited to.the 'essentially length-
preserving' functions. We show that the class of essentiélly length-
preserving functions which are sequential and profile-bounded real-time
computable (denoted Snz) is exactly the class In n On’ which is the more
common class investigated. From these considerations, the author is of

the opinion that Sn fully characterizes the class of real-time computable

functions.
We next investigate the classes of 'linear-time computable ' fyupc-
tions: (i.e., t(n) = c.n). For this case, T = M. “and the
c.n c.n
lattice collapses to five classes, Ic.n n Oc.n’ cun’ Oc.n’ Ic.n U Oc.n and

Finally, we study the problem of how the off-l1ine nature of a
computation affects the complexity classes, It is shown that for any
constant ¢ > 0, there exists a function f such that f ¢ Mﬁ+c’ but
f ¢ Mn+c—l' This result, which holds for all classes in the lattice con-

tained in Mh and Mn shows that there are infinitely many distinct clas-

+c?

ses between real-time and linear-time.
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5.2 Time-bounded Computations

We now turn out attention to the problem of measuring the dif-
ficulty or 'complexity' of a function in terms of the number of steps a
machine computing the function takes to achieve the result. Most authors
who have previously studied this area have been interested in recognition
problems, generation problems or length-preserving transductions. Note
that both recognition problems and generation problems can be stated as
length~preserving transductions in the following sense. ‘A recognition
problem over some finite alphabet ¥ is a mapping from I* to {0,1}*
with a 0 or 1 produced for each new input letter read depending upon
whether the substring already read is rejected or accepted, respectively.
For a generation problem, the input letter is ignored in the computation
and is used only as a counter of how many digits of output are to be
produced. Thus, a generation problem is mapping from I* to I'* with
an input letter read before each output letter is produced.

In order to measure the complexity of a function £, we associate
a step counting function tM(x) with a machine M computing f. Because
of the bias towards length-preserving transductions, the variable in which
tM(x) is expressed usually is considered to be the length of the input.
However, we are interested in general transductions and we are led to con-
sider new ways of measuring the complexity in terms of =x and f£(x).
Since it is not clear exactly in which way the measure should be made, we
will introduce five alternatives.

Before doing so, we first clarify our concept of the operation of
a machine and of the step counting function, tM(x). We consider the machine
to have a read-only one-way input tape and a write-only one-way output tape,

as well as work tapes. The machine begins operation with the input tape
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positioned so that the read-head is located one square to the left of
the first input letter and with the output tape positioned so that the
write-head is over a blank square. We make the convention that the
machine acts as though the square to the left of the start of the in-
put word always contains an endmarket Eps regardless of what is really

present. To the right of the input word is an endmarker ¢, which acts

0
as an end-of-file marker. For the case of a sequential Turing machine,
€y may be regarded as an input causing the machine to halt immediately
upon reading it. For the off-line Turing machine, € must be in the
machine's alphabet to allow for additional computation after encounter-
ing 60.
We make the convention that a machine halts if there is no
transition specified for the current state-symbol(s) configuration
and that the machine must read all of the input string, including €y
For I0~profiles (see section 2.4), we make the convention that if €0
appears on the right end of the profile, we do not record it.

The number of steps tM(x), taken in the computation of a machine
M with input x, is the number of state transitions M goes through before
halting. Hence, tM(x) > |x| + 1, by the above discussion. We as-
sume that an input letter and the last letter of the preceding output
string can be overlapped in the same step, with the input available on
the time step and the output produced between time steps.

For example, if the IO~profile of a machine M with dinput x is
BH)(M,X) = b0 ay b1 az b2 a3 b3, we would have the following timing if

output occurred at every possible occasion.
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Input a; a, ag €
Time 0 1 2 3 4
Output l bo | bl ‘ bz\ b3\

In this case, tM(a1 a, a3) =4, 1In a sense, our machine model is
a Moore device. 1In order to simplify our definitions, we will use the
following notation to indicate the synthetic lengths of strings.
Notation For an input string x, we let KI(X) = |x[ +1. We add 1
to the length of the string in order to reflect the fact that the end-
marker €0 must also be read by the machine.
Notation For an output string £(x) produced by x, we let
L) = |\|EG)[+L, if EO\) = A

[£(x)] otherwise

If E(X) = )\, it is not possible to produce an output before the
first input has been read. Since such an output could have been over-
lapped with the first input (between times 0 and 1) and could not be
produced, the timing would be off and we compensate by adding 1.
Notation The synthetic length, Kp(x), of the sequential profile of

the m.d.s.a. of f with input xe . will be the sum of the number of

0

output digits and the number of input digits (including eo) not over-

lapped (i.e., do not immediately follow an output in the profile).

For example, if PS (f, xeo) =a; a, bl b2 b3 a, b4 € bS’
1p(x) = 7, (where f:I* - T%, a; « z, bi e T). 1If
£ = = . *
PS (f, xeo) b0 a; bl a, b2 €gs 1p(x) 3, (where f:I* - T#*, a, € T,

bi e T). Note that in the last example all of the inputs including the

final €y are overlapped by an output digit.

Definition 5.2.1 A function t:N+ - N+ is a limiting function if t is

monotonically strictly increasing and (Vn€N+) [t(n)>n].
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Definition 5.2.2 For a limiting function t:N+ - N+, the class It(n) of

= {f|there

input-bounded t(n)-computable functions, is defined as It(n)
exists a machine M which computes f:X*%»I'* guch that
(¥n €N+) ¥x € Z*)[KI(X) < n=2 tM(x) < t(n)ll}.

The class It(n) is the complexity class which is normally de-

fined in previous works.

Definition 5.2.3 For a limiting function t:N+-+ N+, the class O

t (n) of

output-bounded t(n)-computable functions is defined as O = {fl there

t(n)

exists a machine M which computes f such that (vn & N})

(¥x € I%) [Zo(x) <n =)tM(x) < t(n) 1}.

Ct(n) is obviously the class of t-honest functions [14]. Since
we are measuring the complexity of a function in terms of the length

of its output, the off-line nature of the function and the storage-

retrieval of data are the remaining factors which make one function more

complex than another.

Theorem 5.2.4 For any limiting function t:N+ - N, ,

O%hm ¢ o)

Proof: For any limiting function t:N+ -+ N,, there exists a real-time

countable function (cf [17]) g:N++-N+ such that (Vn'e'N+)[t(n) < g(n)]l,

We define f:3* +,{l}* as (Fxe ZH[fRE) = lgCCI(X))]. That is, pro-

duce g(|x} + 1) 1's for an input =x. Thus, Ko(x) gCKI(x)), since

1Bf()). Since g 1is real-time countable, there exists a machine M

computing £ such that ¥x ¢ Z*)[tM(x) = g(@I(x))].

lThe class of real-time countable functions as introduced by Yamada
[171, map from N to N. In order to change to N,, we make the obvious
changes. That is, if g':N >+ N is real-time countable,we define
g:N, > N, as g(n) =g'(n-1) + 1.



Hence, if we choose any x €I* and let n, = x| + 1,

we have [£ (x) < n & t(nd) < gl = g€ () = £y ()], and it
follows that £ ¢It(n)' Furthermore, (ane N+)(Vxe 7%)

[ﬂo(x) < ng = tM(x) = g(@I(x)) =’CO(X) < nl]. Thus, f e On, and
hence, f ¢ Ou(n) for any limiting function ,u:N+~> N+; therefore,

fe Ot(n). N

Before showing that it is also true that It(n) ¢ Ot(n)?
we indicate a problem with the class Ot(n)'
Lemma 5.2.5 Let £:*~> T'* be a bounded function. There exists no
limiting function t:N+-+ N; such that f£ e ot(n)'
Proof: Since £ d1is a bounded function , there exists a nonnegative
k such that #x ¢ Z*)[!f(x)l < k], Let M be any machine comput-
ing f£. Now, #¥xc¢ Z*)[tM(x) > x|l ] since M must read all of its
input. Hence, if f e O

t(l’l)’ (VXE Z*)].—]X] < tM(X) < t(k)], a con-

tradiction. [].

Th 2. F limiti f ti t:N N, I 0 .
eorem 5 6 For any limiting function N, . (n) #. '« (n)
Proof: Since £ the zero function, is a bounded function, then

fk ¢ Ot(n) for any limiting function t:Eu > N+, by lemma 5.2.5.
However, we can construct a machine M which simply reads the input
and halts on encountering €5° Hence, (¥n € N.i.) Fx € %)

[KI(x) < n=» tM(x) < n], and for any limiting function t:N » Nk? £
+ A

The next theorem is a stronger version of theorem 5.2.6.

Theorem 5.2.7 For any limiting function ¢t:N; » N., there exists an

¢ . % > * €
unbounded function f:{1}* > {1}* such that f ¢ ot(n), £ It(n)_

Proof: We proceed as in theorem 5.2.4 to find a function f:N+;+ N+

and a machine M which computes ‘£ such that t(fb(x))(tM(x)élt(fI(X)).

3 [

68

It(n)' .
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Stage i, 1 2 1 On each step, M reads one input symbol while simul-

taneously computing t(i+l). When the computation of t(i+l) is
finished, M writes exactly t(i+l) 1l's on a work tape. After doing

this, M outputs a 1 and goes to stage i+l. M halts when €0 is read.

Note that while M is computing t(i + 1) and writing the
t(i+1) 1's at least t(i + 1) inputs will be read. Furthermore,
tM(x) = KI(X), for all x. Also, note that M will produce ar-
bitrarily long output strings for long enough input strings and. f
will be unbounded.

M produces i output letters in more than t(i + 1) steps,
by the above observation. Hence, if we choose x sufficiently

long so that stage 1 is completed and choose n, to be [|f(x)]| +1

1
we obtain [Zo(x) <n = i+1 & t(nl) =t(i+1) < tM(x)] and
f ¢ Ot(n)' Furthermore, (¥n eN+)(Vx e I*) E@I(x) SI1=?tM(x) =’
EI(X) =n < t(n), for any limiting function t:N* - N+] and f ¢ It(n)'
Remark From theorems 5.2.4 and 5.2.6, we know that It(n) 0 Ot(n) %
Tem £ T ¥ %@ ™ Loy " %cm) F0%m % e ¥ Oty

We have noted that the class It(n) seems too restric-

tive and by lemma 5.2.5, there are functions which are not in Ot(n)’
for any t . Hence, we now consider three classes based on a combina-
tion of the length of the input and the length of the output. We

will leave the discussion of the intuitive meanings to the next sec-

tion.

Definition 5.2.8 For a limiting function t:N+ > N*, the class Mt(n)

of maximum-bounded t(n)-computable functions is defined as Mt(n) -

{f| there exists a machine M which computes £f:2% - T* such that

(Ve N) (¥x € I¥) [max'(zi(x), L) <0 () < t@l}.
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{£]

Equivalently, we could define Mt(n) as Mt(n) =

there exists a machine M which computes f:I* > I'* such that

Fne N)@xe MR ) snsl & <n) P& < c@I}

Theorem 5.2.9 For any limiting function t:N+ - N+, It(n) v Ot(n) c

Mt(n)'

© Prooft Let £:Z% > T*, Suppose f ¢ It(n)’ then there exists a
machine M such that (¥n € N—‘F) (¥x € Z*)[’«@.I(x) < n = tM(x) < t(n)l.
Hunce, @n < N+) Ux € Z*)[KI(X) <n & Ko(x) <n =\,L1(x) <ns

tM(x) < t(n)]l. and £ € Mt(n)' Similarly, if f€¢ O €

t(n)’ £ Mt(n).D

When the classes Mt(n) and It(n) u Ot(n) are equal is dis-
cussed later in this chapter.

Definition 5.2.10 For any limiting function t:N+—> N+, the class Pt (n)

of profile-bounded t(n)-computable functions, is defined as
Pt(n) = {£| there exists a machine M which computes £:I* > I'*, such

that #n € N+)(Vx€ Z*)[«@p(x) < n=)tM(x) < t(n)1}.

Theorem 5.2.11 For any limiting function t:N+ - N+, Mt(n) < Pt(n).
Proof: By definition, if KP(X) < n, then Ko(x) < n. Suppose
«KI(X) =m+k>n and Ko(x) = k < n. Then, at least m input let-
ters could not be preceded by any outpu‘t letters in Py (E,x). Hence,
-ﬂp(x) >m+ k > n., Hence, §ne¢ N+)(Vx €. Z*)[KP(X) <n %‘KO(X) <

n & KI(X) < n)l. But if f e Mt(n)’ then (gn e N+) Ggx € I¥)

Le, (x)

IA

n &,@I(x) <n =?tM(x) < t(n)]. Hence, #Fnce N_I_)(Vxe %)

IA

[,(’,P(x) n 2> (,Ko(x) <n &,@I(X) <n)=> tM(x) < t(n)] and f ¢ P .

(n).

We will again leave the discussion of when Pt (n) = Mt (n) to

the next sections.

Definition 5.2.12 For any limiting function t:N+ > N+, the class of

Tt (n) total-bounded t(n)-computable functions, is defined as Tt(n)

{f| there exists a machine M which computes f:X* > I'* such that



(¥n e N,) (¥x ¢ z*)[.ﬁl(x) + Ko(x) S, (x < @i

Theorem 5.2.13 For any limiting function t:N+ - N+, Pt(n) = Tt(n)'

Proof: Let f:I*% - I'*, TFor any input x ¢ I*, KP(X) < KI(X) +

ﬁo(x). Suppose f € Pt(n)' Hence, n ¢ N+)CVX € Z*)[ﬂp(x) <n=>

IN

tM(x) t(n)].Hence, ®x € Z*)U’,o(x) + KI(x) <n =)17_P(x) <n =

IA

tM(X) t(n)] and f ¢ Tt(n)' g

We can summarize the theorems in this section in the fol-

lowing diagram, where a line connects two classes if the lower class

is contained in the upper.

Tt(n)
ft (n)
Tt (n)
////%t(n)f“ t (n)
It () t(n)
7

Lty " Cen).

5.3 Real-Time Computations

In the real-world sense, a real-time computation is one in
which the output must be generated as quickly as the input is en-
tered. For example, consider a process control unit for a nuclear
reactor. Time in such a sensitive application is of the essence to
ensure the safe usage of the reactor. However, for any given input,
more than one command from the control unit may be issued. Thus, the
common restriction to functions whose length of output is at most one
greater than the length of input does not seem to capture tﬁe real-

world sense.

71
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In this section, we propose to try to choose the proper
class of functions which best fits our intuitive notion of a real-
time computation. To do so, we will study the classes introduced in
section 5.2 with t(n) = n. We first give an intuitive definition of
each class.

A function f 1is input-bounded n-computable if there exists
a machine computing f which reads on every step and halts if the
endmarker is encountered. Obviously, an input-bounded n~computable
function cannot have an output whose length is more than one
greater than the length of the input.

A function f is output-~bounded n-computable if there exists
a machine computing f which writes during everystep (except perhaps

the first) and halts after producing the last digit. Note that fk is

not output-bounded real-time computable by theorem 5.2.5.

A function f 1is maximum-bounded n-computable if there exists
a machine computing f which reads on every step and halts on
reaching the endmarker in the case that the length of the input is
greater than the length of the output or which writes on every oc-
casion (except perhaps the first) and halts after producing the last
digit, otherwise.

A function £ 1is profile-bounded n-computable if there
exists a machine computing f which reads immediately on producing the
last digit (if any) of the output string produced by the previous in-
put string and produces an output digit at every possible occasion.

The concept of total-bounded n-computable functions cannot
be expressed in terms of the operation of the IO of the machines com-

puting them.
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We now show that the inclusions shown in the previous sec—
tion are proper for the real-time case.

Theorem 5.3.1 I u O #M
n n n

Proof: We define a function f£:{0,1}* » {0,1}* such that half of the
inputs are longer than the outputs and half are shorter.

. £Q) = s

2). for xe I*, £(0x) = A;

3). for x€ L%, x =a, a, a, ... a, a; € {0,1},

17273

f(lx) = 11 a; a; a8, a, ... 3, a.

That is, if an input begins with a 0, no output is made.
If an input begins with a 1, each letter of the input is produced
twice in the output string. Thus, tM(Ov) > (|ov]| + 1), tM(lv) >
(2. |1v] + 1), for any v & {0,1}*.

then (¥n. € N,)

t(n)’ 0 +
¥x € {O,l}*)E@I(x) = no=% tM(x) = t(go)]. Thus, (2.|kv| + 1) < tM(lv) <

Suppose f € 1

t(lly] + 1). Hence, t(no) > 2no + 1 and f ¢ In. Suppose f € Ot(n)’

Then Cvnl e N+)(Vx € {0,1}*)Eﬁo(x) < =?tM(x) < t(nl)]. Furthermore,

™
ZO(OV) =1. Cdnsequently, (|ov] + 1) < tM(Ov) < t(l) and t must be
unbounded. Hence, £ é,Dn.

Now, we construct a machine M which computes f. TIf the
first input is a 0, M reads the input string and halts when % is
encountered. Now, KI(OV) = |Ov| +1 and KO(OV) = 1. Hence, max
C@I(OV), KO(OV)) = ZI(OV) and by construction tM(Ov) = EI(OV). If
the first letter of the input string is a 1, M reads on every other
step and produces two copies of the input in between. M halts if

€ is encountered. Now, KI(IV) = |1v| + 1 and KO(lV) = 2.]1v]| +1

0
Hence, max (£;(1v), £,1¥%)) = £,(1¥) and by construction t, (ly) =

Zo(lv). Furthermore, tM(X) =1 = KI(K) = KO(X). Hence, (¥ne N+)
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(vx € {0,1}%) (max (L (x), £ ((x)) < n St (x) = mx(L(x), 4&) <
n] and f eMn. g

Theorem 5.3.3 M # P .
n n

Proof: We define a function f:{0,1}* - {0,1}* such that for some in-
puts x,,ﬂo(x) <«KI(X) and tM(x) >fﬁl(x).
. £Q) = Xx;

2). for xe {0,1}*, f(x0)

f(x);

f(x)01

3). for xe {0,1}*, f&x1)

f 1is the gsm mapping which outputs a 01 for every 1 in
the input string and ignores the 0's.

Let x = 00L. Hence, f(x) = 01, and Ps(g, X 60) = OOlOle0
Furthermore, LI(X) = 4, ﬂo(x) =3 and ﬂp(x) =5, Let M be any
machine computing f. M must perform the three reads before any
output could be generated (or else M would not be computing £). Since
two outputs are produced, tM(x) > 5, Thus, choosing x = 001 and

n, = 4, we obtain [max(@l(x), ﬂo(x)) =4 < n

1 & tM(x) > nl] and

fy¢ Mn.

We now construct a machine which computes f:inaﬁp(x) steps

for an input x.

. s .th |
Stage i, i > 0 M reads the i~ input letter a - If a; Seq M
halts. If a; = 0, M goes to stage 1 + 1. If a; = 1, M pro-

duces a 0 followed by a 1 and goes to stage i + 1.

Now, for any x € {0,1}*, let k > 0 be the number of 1's
in x and j 2 0 be the number of Q's in x. Then the number of out-
put digdts is 2,k. The number of unoverlapped input digigs is
PS(E, X 60). is j + 1, since there are k + j + 1 input digits
(including 60) and only k outputs are followed by an input letter
in PS(E, X 60)’(E(X) = f(x), as f 1is sequential). Thus, Zb(x) =

2.k + 3§ + 1.
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Now, by construction M takes 2.k steps to produce the output.
0f the inputs (including eo) j + 1 are not overlapped in a step with
an output produced by the previous input. Hence, tM(x) =2k+j+1=

%) [} =
ﬁp(x). Thus, (¥n¢ N )(¥Fx €I )E@P(x) <n =, (x) Zp(x) < n] and
f eP . [
n

Theorem 5.3.4 P # T .
n n

Proof: We will define a function £: {0,1,s}* > {0,1}* from a
function which Hartmanis and Stearns[9] showed not to be in In'

We define f:{0,1,s}* > {0,1}* as:

1). for xe {0,1}*, £(x) = O’Xl +
2). forx=uvswy, where u€ AU {0,1,gl*g
v €{0,1}*, we {{0,L}*e¢ g}*, y €{0,1}%,

£ = fol®ly, i y = In(v)
lel+l, otherwise

We will call the strings over {0,1}* which are surrounded by
s's or surrounded by an endmarker and an s as (0,1)-words. Thus,
f is the function which produces a 0 for every input letter and a 0
or 1 if the last (0,1)-word is the mirror image (reversal) of some

previous (0,1)-word.

Now, (¥x ¢ {0,1, s}*)[g(x) = O‘X‘] and ¢¥x ¢ {0, 1, s}*)

~ N
[f(x ed) = f(x)]. Also, if x = @] @y «es @, Ps(f, X eo) =
a; 0a, 0 ay ... Oa, 0 e, i, where i ¢ {0,1}, Hence, Kp(x) = |x| +2
(JEx)| = |x| +1 and the first input is not overlapped). Also,

KI(X) + Zo(x) = 2.]x| + 3.
Now suppose f¢ Pn' Thus, there exists a machine T with d
states, M tapes and at most a choice of k symbols per square on the work

tapes and T produces £(x) for an input x in at most »@p(x) steps. Now,
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as in [9], we can bound the number of past histories T can look up in

(24 + 5)m

i+ 2 steps by d.k Suppose T has been operating for

some number of steps and has an s under its read-head. There are 2*
i
possible (0,1)-words of length i and 22 subsets of these words

that T may have to look up to see if the last (0,1)-word is the
mirror image of one of these words. Now, if x dis of length i, then
T must produce the final digit of f(x) in at most i + 2 steps.
Now, for large enough i, 22l > d.k(21+5). But then T could not compute
f(x), a contradiction. Hence, f ¢ Pn'

We now define a machine M which computes f in 2.|x| + 3 steps
for any input =x.

Stage i > 1 M reads an input. If the input is e, the machine goes to

0
the end-routine. If not, M copies the input onto a buffer2 and a

work tape and produces a 0 before going to stage i + 1.

End-routine M begins comparing the reverse of last (0,1)-word from
one of the work tapes to the (0,1)-words in the buffer. When it reaches
the end of each (0,1)-word from the buffer, M outputs a 1 if the
last (0,1)-word is the reverse of the (0,1)-word from the buffer.
Otherwise, it returns to the end of the last (0,1)-word and tries the

next (0,1)-word from the buffer. If it depletes the buffer, it pro-

duces a 0 whether the word is the reverse of itself or not.

For the end-routine, 2.|x| + 1 steps are taken. We can however

use the techniques of the constant speedup of Hartmanis and Stearns [9] to

get |x| +' 1 steps. Hence, (¥xe {0, 1, s}*)[tM(x) = 2.|x]| +2< ZI(X)+KO(X)].

2Fischer, Meyer and Rosenberg have shown that a buffer can
be simulated by a Turing machine with enough tapes without loss of time
in [6].
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Therefore, ®n e N)®x ¢ {0,1,s})[ (x) + £ )< a Dt (x) <
KI(X) + Ko(x) <n] and f ¢ Tn. O

We make two notes concerning theorems 5.3.3 and 5.3.4.
First, note that Tn contains some nonsequential functions. The
real-world sense of Yeal-time' implies that all of the result for a
given input is produced before the next input letter is read. Thus, a
realistic representative of the class of 'real-time' computable functions,
should be limited to sequential functions. We thus reject the class
Tn as too broad a class.

In theorem 5.3.3, we showed that there is a gsm mapping f
such that f ¢ Mn' As was the case for an on-going process, in the
author's opinion the class of gsm mappings should be included in any
class purporting to represent the concept of 'real-time'. Thus, we
are led to reject the class Mn as too narrow a class.

Theorem 5.3.5 Let f:¥% - I'* be a gsm mapping. Then, f € Pn.

Proof: 1In operation a gsm computes a gsm mapping in fp(x) steps, if
we allow an input to be overlapped with the previous output letter.
Obviously, we can comnstruct a Turing machine which matches the speed of
a gsm while computing f. Hence, there exists a machine M such that
¥x ¢ Z*)[tM(x) = l%(x)] and hence, (y¥n ¢ N+)(Vx ‘€ Z*)[fé(x) <n-=>
tM(x) <n] and f € Pn. O

We now show that Pn’ like Tn, is too broad a class.

Theorem 5.3.6 There exists a nonsequential function f:{0,1}* - {0,1}*

such that £ ¢ Pn'

Proof: Consider £:{0,1}* > {0,1}* defined as:

1). for x =i, £(A) = A;

2). for x = u.0, where u € {0,1}*, f(x) 0.f(u);

3). for x

u.l, where u € {0,1}*, f(x)

il

1.f£().



78

That is, f is the mirror image function as defined in
theorem 2.2.3. Now, we know that f is not sequential and
g:{O,l,eO}* ~ {0,1}* 4is defined as: (¥ ¢ {0,1}*)[g(x) =\ &
%(x eo)' = f(x)]. Hence, for x ¢ {0,1}, PS(E, X eo) = x € f(x) and
Ep(x) = 2.|x| + 1. We define a machine M which reads the input tape
and copies it input by input onto a work tape. When ¢ is encoun-

0

tered, M -copies in reverse from the work tape to the output tape, then
halts. Since the read-head of the work tape is over the last input let-
ter, M produces f(x) for an input =x. Furthermore, tM(x) = the
number of reads executed plus the number of writes = (|x| + 1) + |x| =
2.|x| + 1, for any x e {0,1}*. Hence, (¥n e N+)(Vx € {0,1}*)[£p(x) <
n =%tM(x) = Kp(x) <n] and f ¢ Pn' O

Since Pn is the smallest class we have defined that con-
tains the gsm mappings, we will limit Pn to the sequential functions.
Notation We denote as Sn the class of sequential functions £ such
that f ¢ Pn'
Remark If f is a gsm mapping, f ¢ Sn.
Proof: By theorem 5.3.5, f ¢ Pn if £ 4is a gsm mapping. By
theorem 2.3.3, every gsm mapping is sequential. [I.

We are interested in showing that the class Sn contains
those functions which were considered to be 'real-time' computable by
previous authors. We note that this implies that the functions are

'length-preserving' in the following sense.

Definition 5.3.7 A function £f:¥*%* > [* 1is called essentially length-

preserving if @Jce,Z*)[EI(x) = Ko(x)].
We use 'essentially length-preserving' instead of 'length-

preserving' because we allow one output to be produced before any



79

input is read. That is, we allow both Moore and Mealy type computa-
tions to be essentially length-preserving.

Notation We denote the class of essentially length-preserving functions
f such that f£ € In (Oh, Mn, Sn’ Pn) as Iﬁ (Oﬁ, Mﬁ, Sﬁ, Pﬁ )

Essentially, Iﬁ is the class of functions previous authors

normally called 'real-time' computable. We first show that for essen-

tially length-preserving functions, the classes Mﬁ, Iﬁ, Oﬁ are the same
class.
Theorem 5.3.8 Mg = I£ = OK.
n n n
£

n

Proof: Since I ¢ M and 0 ¢ M , it follows that I MK and
—_— n n n n n n

Oﬁ < Mﬁ. Now, suppose f ¢ Mﬁ. That is, #xe Z*)E&I(x) = Ko(x) =
max(ﬂ,I(x), «@O(x))]. Since f ¢ Mn’ #n e N+) Wx ¢ Z*)Emax(f{[(x),
ﬁo(x)) =;CI(x) <n= tM(x) <nl} and fe Iﬁ. Similarly, f e Oﬁ if

fe Mg. O
n

2
We now characterize In'

Theorem 5.3.9 I£'= I noO..
n n n
Proof: By theorem 5.3.8, I£ = OK = Iﬁ n Oﬂ. Furthermore, IK cI
— n n n n n n
and Oﬂ € 0_. Hence, Iﬁ = IE n OE cI noO_.
n n n n n n n
Now suppose f eIn n On’ f:2% - I*., We need only show that

f 1is essentially length-preserving. Since f ¢« In,(ano <. N+)
(¥ eZ*)ECI(x) < n, %'tM(x) < no]. Now, tM(x) z,&I(x) for each x,
since M must read every input letter and €9 before halting. Thus,
letting ng = !LI(x) we obtain (_Vno € N+) (¥x ¢ Z*)[}KI(X) =1, => tM(x) <
n =,€I(x)]. Hence, (¥x ¢ Z*)E&I(x) < tM(x) s,&I(X)], and we can con-
clude that (¥x ¢ I¥)[t,(x) =L (x)].

Now, since f.e On, (ane N+) (¥x € Z*)[ﬂo(x) < 1y %tM(x) <

nl]. But M must produce every output letter. Therefore tMCx) = Jf(x)].
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If E(A) = A, then M cannot produce the first output until during step
2. Thus, tM(x) > K(ﬁx). Replacing n, by ﬁo(x), we obtain (an € N+)
(¥x € Z*)[Ko(x) =0 ==tM(x) <y = Ko(x)]. Hence, (¥x € Z*)[KO(X) <
tM(x) < Ko(x)] and we can conclude that (¥x € Z*)[tM(x) = zo(x)].
Therefore, (¥x € Z*)E@I(x) = tM(x) = ﬁo(x)] and f dis es-
sentially length-preserving. [l
We now will prove a theorem which will be useful in proving

that S contains Iﬂ.
n n

Theorem 5.3.10 Let £:2* - %, 1If f ¢ In’ f is sequential,

Proof: Suppose f were not sequential. Therefore, by theorem 3.4.2,
(Hx1 € Z*)[E(xl) # f(xl)]. 9onsider tM(xl). At best, M must read
KI(xl) times. But there must exist some string we It such that
f(xl) = vw, where v 1is the string produced by M before reading €
or f(xl) = f(xl). Thus, we can conclude that tM(xl) >,€I(x1). Let~
ting x = x; and n =‘@1(X1)’ we obtain (ne N )@E x e I¥)
Eﬁi(x) £n & tM(x) >n] and f ¢ In’ a contradiction. [J

Corollary 5.3.11 Pﬂ # IK
n n

Proof: Since In I, Iﬁ contains only sequential functions. How-
ever, theorem 5.3.6 exhibits an essentially length-preserving function

f such that £ ¢ Pn' 0

For some functions £ which are almost sequential but not se-
quential, we will find that,KI(x)< tM(x) s,&I(x) + ¢, for all x and
some constant c¢. These classes are studied later.

We are now in a position to show that Sn contains Iﬁ.

Theorem 5.3.12 I n 0 = SZ.
n n

n

Proof: Let £f:2*% > [*, Suppose f ¢ In n On' Hence, f ¢ In and f

is sequential by theorem 5.3.10. Since I _nO_ cP , then I nO <c S
n n= 'n n n~- "n
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By theorem 5.3.9, I_n O0_ = Iz no £ and therefore, I n O0_ ¢ SK.
n n n n n n— "n
£
Now suppose £ ¢ Sn' Thus, f 1is sequential, essentially
length-preserving and is contained in Pn' Consider PS (f, x 60) =

YO al yl az y2 e an yn EO Yn+1 , where x =

a; 8y «ev @5 3, € L, f(x) =
Yo Y1ttt Ypu and Yy € T*, Since f is sequential, E(x) = f(x)
and E(x) =Yg Yy vt Yoo Ypag T A. Suppose Yo = A. That is,

E(A) = \A. Hence, Ko(x) = |f(x)| +1l = !xl +1 = KI(X) for any x,
since f 1is essentially length-preserving. Thus, ]f(x)l = |x| and
Iyil =1, 1 <1i<n. Thus, all but the first input (including &0) is
overlapped by an output, and ﬂp(x) = |f(x)| +1 = Ko(x) = KI(X).
Suppose ¥, # A. Since f(\) = E(A), KI(A) =1= KO(A) = |y0|. Hence,
|Ex)] = |y0 1 ...vyhl =1+ ]yl Yy e yn|. Since f is sequential
Iyi| =1,1 <1i<n. In this case every input (including eo) is over-
lapped and Kp(x) = [f&®)] = Ly&x) = £, ().

Since f ¢ Pn’ CFnO € N+)(Vx € Z*)[KI(X) = Kp(x) < n,
tM(x) < n0] and f ¢ In' Furthermore, (an € N+)(Vx € Z*)[Ko(x) =
ﬂp(x) <n, =t (x) < nl] and f ¢ On' d.

Thus we can conclude that Sﬁ is the class of 'real-time'
computable functions to which other authors have referred. Since the
author is of the opinion that 'real-time' does not necessitate limit-
ing attention to length-preserving functions and by virtue of the above
theoren, Sn is the class which should be referred to as the class of

real-time computable functions.

5.4 Linear-Time Considerations

In the previous section, we showed that the containments
proved in section 5.2 are proper containments for the case when t(n) = n.

However, by limiting attention to essentially length-preserving the
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smaller classes were shown to be equal. In this section, we show that
the larger classes are equal for the case when t(n) = c.n, for some

constant c¢ > 1.

M
c.n c.n, for c¢ > 1.

Theorem 5.4.1 T =P
c.n

Proof: We know that M c P cT s, by theorems 5.2.11 and
—_ c.n c.n c.n

5.2.13. Thus, if we show that T c M , we will be done.
c.n c.n
Suppose f ¢ Tc o Hence, there exists a machine M such
that (¥n € N+)(Vx € Z*)E&I(x) +4@0(x) < n.=?tM(x) < c.nl. Now, for
any x € ¥, KI(X) +«&O(x) < 2.maxQﬁI(x),fﬁo(x)). Therefore (¥n € N+)
(¥x 62*)[max(&1(x), Z.O(x)) <n =?«'lI(x) +£0(x) < 2.n =)'tM(x) < 2.c.n].

Hence, f£ ¢ M2cn' Now, by the constant speedup theorem of Hartmanis and

Stearns(2]1, M =M and fe M . [
cn 2cn cn

Since Ic 0 and 0c o are incomparable by theorems 5.2.4

and 5.2.6, Icn n Ocn = Ic.n %.Ic.n v Oc.n and Ic.n n Ocn 7 Oc.n S

Ic oY Ocn' By a trick similar to the one used in the proof of theorem

5.3.2, we show that I v o g M
c.n c.n c.n

.

Theorem 5.4.2 1 uo # M

c.n c.n c.n’ for ¢ > 1.

Proof: We define a function f:{0,1}* » {0,1}* such that for some in-
puts, the length of the output is far greater than the length of the
input and for the rest of the inputs, the length of the output is bounded.

1). for x

[}

A, £(x) = Ay

2). for x Ov, where v e {0,1}*, f(x) = 0;
3). for x = 1lv, where v e {0,1}*, f(x) = 12
Therefore, for x = Ov, where v ¢ {0,1}%, Zo(x) = 2. Now,

tM(x) ; KI(X) = |x| + 1. Suppose f ¢ Oc.nf Thus, (¥n ¢ N,)

¥x ¢ {O,l}*)[ﬂo(x) =2<n ==tM(x) < c.n]. Choosing n =2 and x

such that |x| > 2.c, we obtain (I x ¢ N+)(H X € {0,1}*)[ﬂo(x) <né&
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tM(x) 2 |x| +1 > 2.¢c = c.nl, a contradiction to fc¢ OC 0" Now sup-

pose f eIC ' Thus, (¥n eN+)(V X € Z*)E@I(x) < n%tM(x) < c.nl.

Now, for x = lv, where v e {0,1}%, aﬁo(x) = 2IXI + 1. Now, tM(x) >

|x|

Ko(x) = 2IXI + 1. Choose x such that c.(|x| +1) <2 + 1. Such

an x obviously exists. Choose n =«C1(x). Thus, (@n e N;)Gﬂx<s k)

[x|

E&I(x) <n & tM(x) > 2 +1 > CJLI(X)], a contradiction to f ¢ IC 0

Now, we construct a machine so that f e Mi.n'
Step 1 M reads the first input. If it is an € g it halts. If it is
a 0, it goes to O-routine. If it is a 1, it goes to l-routine.
O-routine Output a O and read the input tape until the €9 is reached
and then halt.
l-routine For each input, use a real-time counter [17] to write the
2IXI 1's. From Yamada's work [17'], we know there exists such a counter.
Now we bound tM(x), for each x. If x =X, M executes
step 1 and halts. Thus, tM(A) = 1. Now, LI(K) =,£0(X) = 1. DNow, if
x = Ov, where v {0,1}*, M executes step 1, overlaps the 0 output
with the next read. M then simply reads and tM(x) = |x| + 1 steps.
If x = Ov, where v e {0,1}%, KI(X) = |x] +1 22 and &O(x) = 2,
Hence, KI(X) = max(EI(x), Ko(x)). Also, tM(x) = KI(X). Finally,
suppose x = lv, where v ¢ {0,1}*. M executes step 1, and starts

outputting 1's using the real-time counter. Thus, tM(x) = ZIXl

+1 =
zo(x). Now, if x = lv; where v ¢ {0,1}%, EI(x) = |x| +1 and
to@ = 21 1. Hence, i) = max(¢ (0,8 (o).

Therefore, (¥n ¢ N)(¥x ¢ {0,1}* fmax (£ (x), £,(x))<n -t () =
max(zl(x),,zo(x)) <c.n] and f € Mc.n. 0

As was the case for theorem 5.3.8, we would expect to find a

subclass of functions for which I =20 =M, If this were the case,
cn cn cn
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linear time could be represented by one class.

Definition 5.4.3 A function f:I* - I'* is called linear if (ﬂbl > 0)

C!cz > 0)(¥x € Z*)[KI(X) < cl.ﬁo(x) & Ko(x) < cz.ZI(x)], where ¢ &

c, are positive real numbers.

Notation We denote the class of linear functions f such that f ¢ Ién

I11n

lin lin
(Ocn’ Mcn) as  lo.on (Oc.n’ c.n)'
lin lin lin
Theorem 5.4.4 M = I = 0 , for ¢ >1.
en cn en

Proof: Since 1 cM and O c M , it follows that Illnc Mlln and
—_— cn - n cn = c¢cn cn = “cn

Ollng M . Now, suppose f:X* > % and f ¢ Mlln. That is, (¥x ¢ I%*)
cn cn cn

[KI(X) < QIKG(X)] . Thus, max(ZI(x), Ko(x)) < clﬁo(x). Since f ¢ Mcn’
(Vo e N) (¥x € 2#) [max (€ (x) £ (x)) < cL)(x) < n =)tM(x> < cn].

Therefore, (¥n~ e N,)(¥x ¢ I*)[L.(xX)< —E-ﬁ?t (x) <cn] and f < O
+ 0 cl M

Using the constant speedup theorem [91], OCcln = Ocn' Now, if cq

then max(ﬁl(x), Zo(x))= Ko(x). "Since f ¢ Mcn’ (¥n ¢ N+)(Vx € I¥)

ln
‘<l,

cc

[max(ﬂl(x), ﬁo(x)) = Ko(x) <n =§tM(x) < cn] and f e Ocn'

By replacing Ko(x) by KI(X) and clﬂo(x) by CZKI(X), we can
show that Mlln = Illn 0
cn cn

We now show that for linear functions, all of the linear-time

classes are the same.

Theorem 5.4.5 I n O = T s for ¢ > 1.
cn c.n cn
Proof: By theorem 5.4.4, Illn = Olin.= Ilin n Olln. Furthermore,
—_— cn cn cn cn
e ooldn g
cn cn cn cn

Now suppose f € ICn n Ocn’ f:2* > I*. VWe need only show that

f 4is linear. Since f ¢ Icn’ (Vno € N+)(Vx € Z*)E@I(x) <n

0 => tM(x) <

c.nOJ. Now, tM(x) > zo(x) for each x, since M must produce all

of f(x). Suppose Ko(x) > c@I(xl) for some ;. Choosing n, =

ﬂI(xl), we obtain C!no € N+)CHX1€ Z*)Eﬂl(xl) < n, & cny = c.KI(xl) <
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'&6(X1) < tM(xl) , a contradiction. Similarly, a&I(x) < czo(x), for

all x and f is linear. [

4 £
Corollary 5.4.6 I n Ocn = Tfn, for ¢ > 1.

Proof: If f is essentially length-preserving, f is linear. By
a '
theorems 5.4.1, 5.4.4 and 5.4.5, IZ no = Mz =T .0
cn cn cn cn
We can conclude that for the commonly studied functions, the
linear-time classes are all the same. We complete this section with
the problem of when real-time classes and linear-time classes are equal.
Remark For generation problems, we know that I n O =1 no .
_—_ n n cn cn
Since generation problems can be stated as essentially length-preserving
functions, we note that for generation problems, all of the classes are
the same. However, we also know that there exists recognition prob-
lems for which I nO_# I n O . Also, we note that a recognition
n n cn cn
problem can be stated as a bounded function (@ 1 or O output for the
whole string). Thus, the context free language shown in theorem 5.3.4
could be used to show that Tn # Tcn' Thus, we can conclude that in
general, for all of the classes defined, real-time and linear-time are

different qualities.

5.5 The Effect of the Off-line Nature of a Function

We observed in the introduction of this chapter that the
off-line nature of a function could affect its complexity. In this
section, we will study this effect for input-bounded, output-bounded
and maximum-bounded classes. We first prove a lemma that will be the
basis of our main result in this section.

Lemma 5.5.1 Let £:X* > T* and M be any machine computing f.

Then, (¥x ¢ Z*)[tM(x) > x| + ([f(x)] - l;(x)|)].
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Proof: We know that for any x ¢ I*, If(x)l - lg(x)l is the amount
of output that can be made only after M reads the endmarker €9
Since M must also read all of the input and €02 the lemma follows im-
mediately. [

We now show that there exists classes between In and Icn'

Theorem 5.5.2 For any integer ¢ =21, I

C
ntc-1 i3 In+c'

Proof: Let f:2% > T%, If fe I (¥n ¢ N+)(Vx € Z*)E@I(x) <

n+c-1°
n= tM(x) < nte-1 < n+te] and f ¢ In+c'

We now define an almost sequential function f:{0,1}* -
{0,1}* which satisfies the conditions of this theorem.

1). For xe {0,1}*, such that [x| < ¢, f(x) = Im(x)
(where Im is as defined in theorem 2.2.3).

2). For x = a, a, ... av, where ve {0,1}* and for
1<1ic<e, a, < {0,1}, f&x) = va,a,_ ; ++- 2, ag.

For example, for c = 3, £(011101) = 101110, £(0101101)=
1101.010.

Now, we define a g:{0,1,e.}* + {0,1}*.

s€
I). For x e {0,1}*, such that |x| < c, g(x) = 23
II). For x = 8, @, +.. 8V, where v ¢ {0,1}* and for
1 <i <e¢, a; € {0,1}, g(x) = v;
III). For x = u €9 Vs where u e {0,1}*, we {0,1, eo}*,
g(x) = £(u).

Since similar proofs can be found in chapter 4, we state with-

out proof that g = f, the m.d.s.a. of £f.

Now, for any =x I%, ]f(x)! - ]f(x)] <¢ and £ dis al-
most sequential., Also, for any x such that |x| > c, ]f(x)] - Ig(x)l = ¢,
Thus, we can choose an Xy such that ]xl[ > c and an n, = lel

and obtain Cﬂnl €N )Cixl € 2*)[£I(X) <y & tM(xl) > lx] +c =
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@I(x) + c—i) = + (c-1)1, for any machine M computing £. There-

fore, f ¢ In+c—1'
We now define a machine M which computes f in no more

than Ix[ + 1 + ¢ steps for any input x.

Stage 1 M reads the input tape. If the input is €q° M goes to

stage 3. If not, M puts the input letter on a work tape and using

a counter decides if ¢ dinputs have been read? If not, return to the

start of stage 1. If ¢ inputs have been read, go to stage 2.

Stage 2 M reads the input and copies it onto the output tape if it

is not € When €5 is reached, go to stage 3.

Stage 3 Copy the c¢ digits on the work tape in reverse order onto

the output tape and halt.

M can execute each stage in 1 step for each iteration.

Hence, (¥x e'{O,l}*)[tM(x) = |x| +1 + c¢]. Therefore, (Vn ¢ N+)
(¥x ¢ {0,1}* )[KI(X) < n= tM(x) = ]x| +1+¢ = KI(X) +¢c<n+c]
and f ¢ In+c' 0

Corollary 5.5.3 For any integer c¢ > 1, 0n+c—l g On+c, and Mn+c-l % Mn+C'
Proof: The function defined for theorem 5.5.2 is length-preserving
and for x e {0,1}%*, EI(X) = ﬂo(x) = max(KI(x), Ko(x)). Hence, the corol-
lary follows immediately. [J

We should note that the off-line nature of a function has no
equivalent effect for the profile-bounded classes since Kp(x) already
compensates for it by including ]f(x)] —]g(x)l.

The results of sections 5.4 and 5.5 lead one to using either
Mt(n) or It(n) for t(n) > n. It is only in the case of n-computable
functions that the profile-bounded functions can lend any insight into

the complexity of functions.

We could decide if ¢ dinputs are read by using ¢ states
for stage 1 and advance to the next state for each input read.
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CHAPTER 6
RELATED TOPICS

6.1 Introduction

In this chapter, we consider problems which are related to the
two central problems discussed in this thesis: i.e., the concepts of
'ongoing processes' and 'real-time computations'. In section 6.2,
we show first that if a function f is computable on an off-line
machine in t(n) steps, then f dis computable on a sequential Turing

machine in at most n.t(n) steps, for each input of length n. Next,

we show that there is a function f such that £ . In log n’ but f
. 2 - 8 . v
takes at least o n_ > steps on a sequential Turing machine.
- \(log n) ;

In aect;on 6;3, we discuss some open problems and some future

research areas.

6.2 Comparison of Off-line and Sequential Turing Machines

In chapter 2, we introduced the sequential Turing machine and
showed that it was not a model of a universal computer: that is, the
class of sequential Turing machines does not strongly (i.e., without encodings)com
pute all of the recursive functions. In this section, we answer the o
related question: '"Is there any difference between the amount of time
(number of steps) a sequential Turing machine takes to compute a func-
tion and the time an off-line Turing machine takes for the same func-
tion?"
Remark Since we do not put any restriction on our off-line model,
every sequential Turing machine is an off-line Turing machine. We
can conclude 1ﬁnediately that for any function £, there is an
off-line Turing machine which computes f no slower than any

sequential Turing machine can compute £.
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In this section, we will assume that we are dealing with
input-bounded t(n) - computable functions. We will henceforth ab-
breviate 'input-bounded t(n) - computable' by 't(n) - computable’.

Theorem 6.2.1 Let £:%X* > ['* be a sequential function. If f is

t(n) - computable on an off-line Turing machine M, then f is (; t(i)) -
computable on a sequential Turing machine. =0

Proof: We describe the operation of T, a sequential Turing machine.

T will use one work tape as a dummy input tape to M, which T wuses

as a submachine.

Stage 0 T wuses M to compute f()A) using the blank dummy input

tape. The result is produced on the output tape and on a dummy output

tape.

h

Stage 1 > 0 f reads the it input letter a, and adds it to the

dummy input tape. M then is used to compute f(al ay .- ai) from
the beginning using the dummy input tape. The output letters produced
by M are compared to the letters on the dummy output tape. When
output letters not on the dummy output tape (i.e., letters of Af(a1 3y e ai)),
are encountered, T produces these on the real output tape arnd also
adds them to the dummy output tape.

Since f 1is sequential, each state 1 is possible and T
does compute f£. Also, T 1is obviously a sequential Turing machine.
Now for each stage i, T takes t(i) steps to compute f(a1 ay ee- ai).
By the results of Fischer, Meyer and Rosenberg [ 6 ], we can assume that
the dummy input and output tapes are buffers and no rewinding is neces-
sary. The reading of a; can be overlapped with the reading of the
first input on the dummy work tape. Thus, tT(x) < ; t(i). 0

i=1
Corollary 6.2.2 If f is sequential and linear-time computable on an

off-line Turing machine, £ is O(n2)k— computable on a sequential Turing

machine.
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Corollary 6.2.2 represents the worst possible comparison be-

tween off-line and sequential Turing machines. For a polynomial

n n
t(n), X (t(i)) is a polynomial, and for exponential t(n), Z (t(i))
i=0 i=0

is exponential in the same base. Thus, for functions which take at
least exponential time, the speed of computation is: the same up to a
constant factor.

Hennie [11] has shown that the above difference is almost
achievable for one function.

Theorem 6.2.3 [Hennie] There exists a function f£:{0,1,2}* - {0,1}%*

such that f is O(n.log m) - computable on an off-line Turing machine,
2
and takes at least o {—2— ) steps on a sequential Turing machinme.
(log n)
Proof: The set A defined by Hennie [11-] is the basis of f.

We will say that x € A if

a). x =v2, for v e {0,1,2}*

b). The preceding sequence v consists of a number of
identical-length blocks of 0's and 1's, consecutive blecks separated
by single 2's.

c). The total number of blocks received so far exceeds
Zk, where k is the number of 0O's and 1's in each block.

d). The pattern of 0's and 1's that appears in the very
last block to be received matches the pattern of at least one of the

first 2k blocks.
‘Then, f£:10,1,21* > {0,1}* ie definedfor x = vi, where

v e {Q,1,2}*, 1 ¢ {0,1,2}, as £(x) = £(v).l, if x e A.

Hennie showed that for any sequential Turing machine which
2

computes f, must take at least ()( L

) steps and infinitely many n.
(log n)
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Now, to show that f 1is 0(n log n) - computable on an off—-
line Turing machine, we need only sort-merge the entire input string
if it has more than Zk blocks and has the right format. Since we can
also assume that we have an index to the sorted string without loss
of generality, we can tell when one of the first Zk blocks matches
one of the later blocks from the index vector. The sort will cost

“0(n log n) steps, and checking the index vector takes another

0(n log n) steps. U ~

We observe that the above theorem holds because sorting
is not a sequential function. Thus, we cannot sort on the sequential
Turing machine except for blocks already received. Consequently, al-
though computing a sequential function, an off-line Turing machine can
use nonsequential functions as an aid in the computation.
Remark Since the function used in theorem 6.2.3 is a length-preserving
function, we could have replaced 'sequential Turing machines' by ‘on~
line Turing machines' and 'input—bounde&' by 'maximum-bounded' and
still have a valid theorem.

We can thus conclude that sequential Turing machines are
neither as computationally powerful as off-line Turing machines nor
as fast for some functions as off-line Turing machines.

6.3 Further Research

In this section, we discuss problems which are suggested by
the results in this thesis. First, we know that by theorem 3.3.4 that
some computable functions have a noncomputable m.d.s.a. We also noted
that the classes of sequential, truly off-line, almost sequential,
almost truly off-line and bounded computable functions had computable

m.d.s.a.'s. By the Rice-Myhill-Shapiro Theorem, there is no decision -
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procedure to-decide’ whenn@' computable: function-has a.computable
m.d.sia:-
Next, in section 4.5, we exhibited a dense, infinite hierarchy
of functions. Does this hierarchy have any close relationship to the previously
discovered hierarchies? The author conjectures that no such relationship
does exist.
In section 5.3, we introduced the class of profile-bounded
n-computable sequential functions, Sn' We characterized the essential-
ly length-preserving functions belonging to Sn as exactly the inter-
section of the input-bounded and output-bounded n-computable functions:
i.e., as the class of 'real-time' computable functions as traditionally
studied. Note that we can characterize Pn in terms of the length of
the profile and the class of sequential functions by the fact that
Ps(g,x) = Ps(f,x). However, we caqnot characterize Sn by restricting
the length of the profile to only include the endmarker €9 and the string
preceding it. Denote the restricted length as fCS(x) and Cn as
the class defined for fﬁs(x). Clearly, S < Cn c Pn.

We can show that Cn # Sn by considering the following func-

tion: for x = A, £(A) = A; for x . {0,1}, £(x) = xx; for x = a; va,, -

f(x) = a; a; a,. Now, f 18 obviously not sequential and f ¢ Sn. How-
ever, we can construct a machine which reads the first input letter

and outputs the first letter once before the second read and once after
the second read. When 60 is encountered, M produces the last<output.
Thus, M takes |[x| + 2 steps to compute f(x) and ZS(X) = |x| + 2.
Hence, f ¢ Cn. We conclude by asking: '"Is there any characterization

of Sn’ which will enable us to study it more readily?"

Our last conjecture is that there exists a function f such
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that f is linear-time computable on an off-line Turing machine, while
any sequential Turing machine computing f must take at least O(n log n)
steps for an input of length n. The results of Cook and Aanderaa

L4] would possibly be applicable in proving this conjecture.

This conjecture can be compared to the results of L. Stockmeyer
and M.J. Fischer [16]. They showed that for a multiplication~like se-
quential function f which takes t(n) - steps on an off-line Turing machine
there is a sequential Turing machine which computes f in 1log n.t(n) steps.
Finally, we note that the meaning of 'simulation' has not
yet really been decided. Like the concept of 'on-line' and 'real-
time', simulation has some relationship to the IO-profile of a machine

computation. Exactly how to tie simulation into the present frame-

work is an area to be studied in the future.
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APPENDIX

A.1 Turing Machine Model

A multitape Turing machine M has a one-way read-only input tape,

a one-way write-only output tape, and k work tapes, for some k. M is
represented by specifying: Q -~ a finite set of states;
2 - an input alphabet;

r

I

an output alpabet;

A - a work tape alphabet;

and a set of quintuples of the form
(q,(ao,al,...,ak),(bo,bl,...,bk),(mo,ml,...,mk),q'),

where qeQ, aOEZ, aieA for 1<i<k, boe(F v{\b, bieA for 1<ick, moe{N,R}

mie{N,R,L} for 1<i<k. (where N means no move, R means a move to the

right, and L means a move to the left)

The interpretation of a quintuple as given above is that a machine
in state q with symbol a, under the read head of the input tape and a;
under the read head of work tape i, 1si<k, performs the following steps:
(i) if boeFl, b0 is written on the output tape; (if b0=k,
the output tape does not move; otherwise, it moves to the right)
(ii) replaces a; by bi on work tape 1, 1l<ic<k;
(iii) moves the input tape in direction mos and work tape i

in direction m,, 1<i<k;

and (iv) enters state q'.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

