On The Complexity of

Matrix Multiplication

by
Robert L. Probert

Department of Applied Analysis &
Computer Science

CS-73-27

University of Waterloo
Waterloo, Ontario, Canada

(:) University of Waterloo, Waterloo, Ontario, Canada



ON THE COMPLEXITY OF MATRIX MULTIPLICATION

by

Robert L. Probert

A Thesis

Presented to the

University of Waterloo

in Partial Fulfillment of

the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Mathematics

Department of Applied Analysis and Computer Science
Faculty of Mathematics

September, 1973



ii

ABSTRACT

On The Complexity of Matrix Multiplication

In this thesis, we examine the difficulty of computing any set
of bilinear forms, in particular the product of two matrices. This
difficulty is expressed in terms of the number of multiplications
required (multiplicative complexity) and the number of additions and
subtractions required (additive complexity) by any algorithm which
does not exploit the commutativity of multiplication of matrix
elements We show that the multiplicative complexity of (m, n, p)
products (matrix products of the form Amannxp) is identical to the
multiplicative complexity of (u, v, w) products where (u, v, w)
is one of the six permutations of (m, n, p) . Thus, (2, n, 2)
products require [7n/2] wmultiplications, whereas (2, 3, 3)
products require 15 multiplications. A straightforward method is
presented for deriving algorithms for related computations from a
~given algorithm such that no more multiplications are employed. A
lower bound is obtained on multiplicative complexity of (m, n, p)
products, of m.X(do + dl - 1) multiplications, where
= max {m, n, p} and dO’ dl are the two other dimensions.
Evidence is presented that multiplicative complexity decreases for
fixed dimension product as the three dimensions approach equality.

In the second half of the thesis, the additive complexity
of (m, n, p) products using a fixed set of or number of multipli-

cations is studied. A simple graph-theoretic model is given which

exactly represents the addition/subtraction steps used by bilinear
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matrix multiplication. algorithms. Operations on the graph represen-
tation of an algorithm for (m, n, p) products produce the appropriate
5 related algorithms with all steps specified, Additive complexity

is found to be greatest when the middle dimension is largest. The
model enables solving for the additive complexity of a problem in
terms of a discovered additive complexity of a related problem. By
this additive symmetry, inner products and matrix-vector products
require n-1 and mn-m additions or subtractions respectively.
Additive symmetry also yields a proof of the exact additive complexity
of (2, 2, 2) computations using 7 multiplications steps. The main
result is that 15 additions/subtractions and 7 multiplications are
necessary and sufficient to compute the product of matrices of order
2. Finally, we show that the graph representation model is useful

for studying the additive complexity of linear schemes which compute

a restricted class of linear forms.
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CHAPTER I

Lo INTRODUCTION:

The complexity of matrix multiplication is the subject of
this thesis. In particular, we study the difficulty of computing the
product of non-square matrices when using a member of a particular
class of algorithms or schemes. The complexity or cost of a computa-
tion will be measured as either the number of multiplication "steps",
or the total number of addition and subtraction "steps" used in the
computation. We will be interested in searching for less: costly
algorithms and in finding exactly how many of each of multiplication
"steps'" and addition or subtraction "steps' are necessary. The major
results involve complexity relationships between six related matrix
multiplication problems. Given any one problem, the five related

matrix multiplication problems are called the five symmetric problems

of the given one. Thus, the theorem which explains the relationship
among the exact numbersof multiplication "steps" used for symmetric

problems is called the Multiplicative Symmetry Theorem. Similarly,

the relationship between the total number of addition and subtraction

"steps'" used for symmetric problems is given by the Additiwe Symmetry

Theorem.
In this introductory chapter, we outline the present state
of research on the problem, state the scope and goals of this work,

and give a brief list of notational conventions.



1.1 A Brief History

A comprehensive survey of the development of the study of
arithmetic problems from a computational complexity viewpoint is
presented in [K1l]. We present here only those results which have
immediate relevance to the study of the additive and multiplicative
complexity of matrix multiplication. For more information see [B2],
[K3] or [K4]

One of the first such results is contained in a 1954 paper

by Ostrowski [Ol1].

n
Theorem 1.1.1: Any computation of Z r.a; where
i=0

I f Q, =¢¢ , r, # 0 , which employs only addition,subtraction, and
multiplication steps of the form Mi = u,v, where one of ug, vy
is independent of the parameters 3gs *cts A and the other factor
is either, - one of .{aO’ ceey, an} » or the result of computing
a previous step, must use at least n additions or subtractions.

Computations which obey these restrictions are called

totally linear computatioms. Subsequent research has been conducted

by Kirkpatrick [K1] , .i. Morgenstern [Ml, M2, M3], and others into
the problem of computing linear forms using essentially totally linear

schemes. A linear form is basically a set of sums each of the form

n

Z c Xy where the xi’s are indeterminates and the ci’s take on
i=1

scalar values. 1In Chapter VI, we define the class of linear forms



Lmn of n sums in m indeterminates Xps ttty X and show that a
simple computation graph representation of algorithms computing these
linear forms captures the additive complexity of the associated com-
putation. However, the bulk of the thesis is concerned with treating
the complexity of matrix multiplication.

We refer to the computation of the product of two matrices

A B =Y as the computation of an (m, n, p) product where
mxn nxp mxp

the lefthand matrix is (mxn) , and the righthand matrix is an (nxp)
matrix. Then, the multiplicative complexity, h!(m, n, p) of

computing (m, n, p) products is the smallest number of multiplica-
tions of the form Pl'P2 , Where Pl, P2 are possibly polynomials in

the matrix elements {a,.|a,, € A} u {b,,|b,. ¢ B} , which can be
11 1] 1 1]

used to compute AB =Y (A, B, Y are matrix variables, not particular
matrices).

In general, an algorithm o for (m, n, p) product will
not be multiplicatively optimal. We denote the set of t multipli-~
cations used by any algorithm o for (m, n, p) products by
M ='{M1, LRI Mt} . Then, the additive complexity of computing an
(m, n, p) product by means of a fixed set M of t multiplications

is denoted [ZXm, n, p, M) . Then, the smallest possible number of

addition/subtraction steps which form and eombine a set of

t multiplications to compute (m, n, p) products is denoted

a,(m, n, p, t) .




For example, (m, n, p) products are computed by the
classical algorithm in mnp multiplication steps and mp(n - 1)
additions/subtractions. Thus, ﬁﬁi(m, n, p) < mp and
Cl(nb n, p, t) <mp(n - 1) where t = mnp .

One of the first results on the multiplicative complexity
of matrix multiplication was presented by Winograd [W1l, W2].

An arithmetic scheme for computing (m, n, p) products is

the sequence of operations fi = fj 'op! fk where 'op' is one of
the four binary operations, '+', '-', 'X', ':' | Ag well, j.k < i
and each f is an indeterminate, a scalar - .walue, or the result of
an operation which appears earlier in the sequence. Finally, each
element of the (mxp) product matrix appears as some fi .

By employing an argument based on the number of independent

colums in the matrix X , Winograd proved [W2]:

Theorem 1,1.2: Any arithmetic scheme for computing the

matrix-vector product Xm vy for general X and y requires

xn” nxl

mn  multiplications/divisions. In our notation, Qh((m, n, 1) >m .
Thus, the classical method of computing the product of a
matrix by a vector is an optimal arithmetic scheme with respect to
the number of multiplications/divisions used.
The question arose whether multiplying matrices of order
n could be accomplished using fewer multiplications then employed

by the classical algorithm (which uses n3 multiplications).



Winograd [W2] found an algorithm which computes (n, n, n) products

in approximately half the multiplicative- cost of the standard

algorithm and about twice the additive cost:

n
Form each inner product p = Z aibi as
i=1
n/2
P = izl(aZi t )81 ¥ Py) ~asfyy g “ by - By

3

. . . . n 2
inspection, this computes (n, n, n) products using 7?-+ n

multiplications and 2n3 additions/subtractions. Note that the
improvement in multiplicative cost is gained at the expense of an
increase in the total number of arithmetics used.

We further refine the class of algorithms being studied
by not allowing the operation of division. Such algorithms are

called polynomial algorithms and all algorithms will be understood

to be polynomial algorithms for the remainder of the thesis unless
otherwise stated.

At this stage, Winograd and Strassen observed that results
on the multiplicative complexity of a particular matrix multiplication
problem could be used to yield upper bounds on the multiplications

required to compute general (n, n, n) products [W2, S1].

Theorem 1.1.3: If for some k there is an algorithm

which computes (k, k, k) products in & multiplications without
exploiting the commutativity of multiplications of matrix elements

(which may then themselves be matrices), (n, n, n) products can be



log, (R)
computed in (n ] total arithmetic operations.
3

As a corollary, Winograd proved that if c?ﬂkk, k, k) < %?—,
then there is some d < 3 such that (n, n, n) products can be
computed in C?(nd) arithmetics. Strassen [S1] discovered such a. d by
finding a 7-multiplication:alggrithm for (2, 2,-2) products which does not
exploit_commutativity (we denote this algorithm by ug); thus, one such d
is log 7=~ 2.81 (all logorithms in this thesis and in most of the.
literature-on .algorithm analysis are taken to base 2).

By analysis of his algorithm Strassen also showed [S1]

log 7

Theorem 1.1.4: Fewer than 4.7 n™ total arithmetic

operations are required to compute (n, n, n) products.

If we examine Strassen's algorithm dS we will observe that
all multiplications are of the form ngaij}' Iﬁbij} . Thus, Og
does not depend on the commutativity of multiplicatdion of matrix
elements. In Chapter II we define a class NC of such algorithms;
algorithms outside this class are not studied at all in this thesis.
Winograd's corollary to Theorem 1.1.3 justifies this position in the
following sense: for any scheme at all which computes (n, n, n)
products in t multiplication steps, there eiists an algorithm in NC
for (n, n, n) products using approximately 2t-_multiplication
operations. In asymptotic terms, this difference is insignificant.
As well, the added restriction on structure seems vital for proving

non-trivial lower bounds.



Hopcroft and Kerr [H1] obtained 671&(2, 2, 2) =7 by

proving (for algorithms in NC)

Theorem 1.1,5: 671L(m, 2, n) < I(3m + max {m, n})/21 ;

Mz, 2, n) = /21 5 9N, 2, 3) = 15 .

We illustrate the general method of Hopcroft and Kerr for

(m, 2, n) products in Section 3.1 where a 26-multiplication algorithm

is given for (&, 2, 4) products.
Thus, @S is multiplicatively optimal for (2, 2, 2)
products over all algorithms in NC . For this particular problem,

Winograd [W3] has shown that even algorithms designed to exploit

commutativity must use at least 7 multiplication steps.



1.2 Bilinear Chains and Fast Algorithms

In [F1] C. Fiduccia catalogues multiplicatively fast
algorithms for computing the products of matrices which have special -
forms, and conjectures qu(n, n, n) = 2n2 + (9'(n) multiplications.
In the smae paper, Fiduccia points out that the number of independent
rows should be considered as well as columns to obtain lower bounds
on the multiplicative complexity of matrix-vector multiplication. In

[F2], Fiduccia defines bilinear chains, a subclass of algorithms in

NC . Multiplication steps in a K-bilinear chain which computes

.‘} : . ’ ’ - 3 i 1
manﬁxp are of the form otK{aij} Ji({bij} . OtK{Xi} is merely a.

linear combination over K of elements X, . Then, any (m, n, p)
product can be encoded as a matrix-vector product for complexity

analysis purposes. ' Biduccia proves [F2]

Theorem 1.2.1: One can compute Xy (matrix-vector pro-

ducts) with t multiplications' by a K-bilinear chain if and only
if X -D = CUB where B, C, D are fixed matrices and U 1is a

txt diagonal matrix with entries in Ji k{xij} .

Thus, searching for faster bilinear chains for (m, n, p)
products is equivalent to encoding the problem as a matrix-vector
product Xy and then decomposing X into a product of 3 simple

matrices. Fiduccia also points out that we can equivalently decompose

X into the sum of t matrices of rank 1 and verify such decompositions



by inspection, thus avoiding considering products at all.
By showing that NC contains no faster algorithms than
those which are essentially bilinear chains, and applying Theorem 1.2.1,

we show in Chapters II and III (and also in [Pl])

Multiplicative Symmetrv Theorem (Theorem 2.3.4):

Over the class of algorithms in NC , if (u, v, w) is any permuta-
tion of (m, n, p) , qqt(u, v, W) = Oht(m, n, p) . As well, given
any algorithm in NC which computes (m, n, p) products using ¢t
multiplications, we can construct an algorithm in NC for (u, v, w)
products using no more than t multiplications.

At about the same time that this theorem was-derived [Pl],
Hopcroft and Musinski [H2] and Dobkin [D1], using different techniques,
independently discovered and proved essentially the same result.

As a corollary of the Multiplicative Symmetry Theorem and

Theorems 1.1.5 and 1.1.2, we have

Corollary 1.2;2: N (m, 1, n) = 67“‘1, m, n) = mn .
I, 0, 2) =M@, 2, 2) = [70/2} .
MG, 3, 2) = Y@, 3, 3) =15 .

Kirkpatrick [K2] showed using independence arguments that

67n5m, n, p) >m(n + p - 1) . Thus, we have
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Corollary 1.2.3: i (m, n, p) > m  (dy +d; - 1) where

m = max‘{m, n, pt , dO’ d1 are the other 2 dimensions. The best

lower bound known for c}ﬂ(m, n, p) is given by Dobkin [D1]:

Theorem 1.2.4: C?fL(m, n, p) >m + mp + np - (m+n+p) + 1.

Thus,‘?ﬁlﬁn, n, n) z_3n2 - 3n+ 1 is the best lower bound known on
the multiplicative complexity of general matrix multiplication.
The state of the art regarding the additive complexity of

matrix multiplication is even less advanced. Winograd [W3] has shown

Theorem 1.2.5: Any polynomial scheme to compute (m, n, 1)

(matrix-vector) products pust employ at least m(n - 1) additions/
subtractions. Thus, the classical algorithm is additively optimal.

In Chapter IV we give a graph-theoretic representation of
addition/subtraction steps used by bilinear chains.to compute (m, n, p)
products. We show that the additive complexities of the 6 related
problems are fixed once a set of multiplication is chosen for any one
problem. In Chapter V, this intimate additive relationship is employed

to yield the following theorem:

" Theorem 1.2.6: 61(2, 2, 2, 7) =15, i.e. bilinear chains

which compute: (2, 2, 2) products using only 7 multiplications must

use 15 addition/subtraction steps, and this bound is achievable.
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In section 5.1, Theorem 1.2.5 in proved as an immediate
corollary of the results in Chapter IV on additive symmetry.

Finally, the best lower bound known on the additive
complexity of general (m, n, p) products is due to Kirkpatrick [K1]
and is (m + p - 1)(n - 1) by independence arguments. We make a
strong case in this thesis for referring to additive complexity of
(m, n, p) products only when the number of multiplications which

can be used is a parameter of the problem as well as m, n, p .
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1.3 Notational Conventions

The following table lists in approximately alphabetical
order each symbol used followed by a brief description of itg meaning and
the number of the section(s) in which the symbol is defined. For a
proper definition of the symbol and its uses, the reader should refer

to the designated section.

Symbol Meaning Defined in Sec.
A,B,C,+-. matrix variables

aij’ bij’ cij,o-- matrix element variables

A (m, n, P, M) the smallest possible number of 1.1

addition/subtraction steps which
can be used to compute (m, n, p)
products using the multiplications
given in the set M

Czﬂm, n, p, t) the smallest possible number of 1.1
addition/subtraction steps which
can be used to compute (m, n, p)
products using a set of t multi-
plications

o an algorithm for computing
(m, n, p) matrix products

o¥ a symmetric algorithm of o , 4.2
i.e. if o . computes (m, m, p)
products, o%* computes (n, m, p)
products

this notation merely signifies that
4, o', a" were derived somehow
(usually by the methods of 3.1)
from o

d the algorithm discovered by Strassen 4.1
to compute (2, 2, 2) products



Symbol

C ik

Iz

=

F*

13

Meaning Defined in Sec.
the algorithm discovered by 5.3
Winograd to compute (2, 2, 2)
products
the algorithm discovered by Hopcroft 6.3
and Kerr to compute (m, 2, n)
products

an edge in graph Gi
the set of all edges of G,

the connection matrix for the component 4.2
Gi of an addition flow representation
F

the element in the j-th row and k-th 4,2
colum of ,» a connection matrix for

some graph G ., T = the coefficient

of the term represented by

the k-th source vertex in the sum repre-
sented by the j-th sink vertex of G .

ceiling of x : the smallest integer > x

E(A) 1is the set of elements which form 2.1
the entries of the matrix A

A E B where A, B are matrices if 2.1
and only if E(A) = E(B)

the unique addition- flow representa- 4.1
tion of the algorithm .

the symmetric representation of F . 4,2
If F = <Gy5 Gy, G3> ,
T D D

F* = <G), G5, Gy
the transposed representationiof F . 4.3
If F =<6, G, G>,
T T T T

= >
F <Gy, G5 G
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Symbol Meaning Defined in Sec.
FS, FW the addition flow representations of
Og» O respectively
Lx] floor of x : the largest integer < x
Gi the i-th component in an addition flow re- 4.1

presentation F = <G,, G,, G,> , an acyclic,
directed, multi-sink, multi=source flow

graph
Gu the addition flow graph for o , a linear 6.2
algorithm which computes linear forms
Gz the graph Gi with its source nodes 4.1, 4.3
relabelled sich that each label a,. is
replaced by the label as; - If
i =3, the sink nodes I are relabelled
as above.
GD the directional dual of G , i.e., G with 4.1
all edge directions reversed
H(Y) the head of the directed edge Y . 4.2
ij,k sybscript variables
2 a linear form, i.e., a set of distinct, 6.2
non-trivial sums
% the linear form of the 4 final sums of 6.2
S . .
elements in MS which as computes
A the 4 final sums of multiplications in Mw 6.2
W ..
Whmph:aaw computes
_ A,n isomorphisms which label each vertex in any 4.1
addition flow representation F
Lmn o, -thecclass of all:linear formé of “h- Sums 6.2
over m indeterminates
L»‘ h . .
JﬁK{aij} ; e ie; of all combinations 9445 where 2.1
1]

log x logorithm to the base 2 of x



Symbol

(m, n, p) product

ml.(ms n, P)

m_, dO’ d1

NC

15

Meaning Defined in Sec.
a matrix product of the form
A times B
mxn nxp

the smallest number of multipli-
cation steps which can be used by
an algorithm in NC to compute
(m, n, p) products

the i-th multiplication step of an 2,1
algorithm

the set of multiplications used by 2.1
¢}
the set of multiplications used by 4.1
o

S

the multiplication set used by O 5.3
the set of multiplications used by 6.3

Oy to compute (3, 2, 3) products

the set of lefthand and righthand
factors respectively, of the multi-
plications in M

the largest, the two remaining ones 3.2
respectively of the three matrix
product dimensions m, n, p

the class of all algorithms o which 1.1, 2.1

compute (m, n, p) products without
exploiting commutativity of matrix
multiplication

the set of all paths from a particular 4.2
source vertex to a chosen sink vertex
in a flow graph

one such path in P
a chain of primitive instructions each 2.1

of which is a binary operation other
than division, or a scalar multiplication
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Symbol " Meaning Defined in Sec.
¢i the i-th step in the algorithm 2.1

Q the field of rationals

Ri the souree set of Gi 4.1

Si the set of sink vertices in Gi 4.1

t the number of multiplications used by a

matrix multiplication algorithm

T the group of all transformation which act 5.2
on matrix multiplication algorithms to give
new algorithms, generated by four types of
elementary row and column operations

T some transformation in T 5,2
T(Y) the tail of the directed edge Yy : = 4.2

v a vertex in a graph

VG the set of vertices in a graph

Wy the weight assigned to the edge Yy in 4,1, 4.2

flow graph G

X, Y, Z matrix variables

X, ¥V, 2 vector variables
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THE MULTIPLICATIVE SYMMETRY THEOREM1

In this chapter we introduce two classes of matrik multipli-
cation algorithms and demonstrate their "equivalence". This equiva-
lence is utilized to obtain the main result, the Multiplicative
Symmetry Theorem which states that the multiplicative complexity of
(m, n, p), (n, my p), (p, my n), (m, p, n), (n, p, m) and (p, n, m)
matrix products is identical. As immediate corollaries, we can
extend various known  non-trivial achievable lower bounds on the

multiplicative complexity of matrix multiplication problems.

2.1 Algorithms and Bilinear Chains

Basically, there are two possible approaches for proving
lower bounds on multiplicative complexity depending on the definition
of the class of algorithms under discussion. Typical of the first
approach is that of Winograd [Wl] in which an algorithm a is

defined as follows:

This chapter was presented at the Symposium on Complexity of
Sequential and Parallel Numerical Algorithms, May 16-18, 1973
at Carnegie-Mellon University, Pittsburgh, Pennsylvania, U.S.A.
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Let the number of steps in d be denoted by N and label
the steps 1,2,:++,N . Let Q represent any field (for .example,
the field of rational numbers).

Denote by ed(j) the evaluation of d at the j-th step,
i.e. the expression computed by d at step j

An algorithm o is defined as follows: Either

e, () € Q U-{all’."’amn’bll’...’bnp} where the aij’s and bij’s

. . S fa = . ) ' s . . < 4
are indeterminates, or ea(J) e (Jl) op eu(jz) where 31235 <3

) |

and o is either '+', '-!' or 'X' ; division is not allowed.
s b 3

Then, o is said to compute the product matrix YmXp of AanBnXp
if Hjl,jz,---,jmp such that ea(jk) = Y.q where k = (r - 1)p + s.

In other words, each evaluation consists of a scalar from Q,
an indeterminate, or the sum, difference, or product of earlier
evaluations. The algorithm computes the right answer if each element
in the product matrix appears at some steps as an evaluation. Lower
bounds on multiplicative complexity are obtained by using independence
arguments as in [W1], [W3], [F1].

Note that this definition of a computation permits inter-
mediate evaluations of the form Pl(aij, bij)'Pz(aij, bij) where
Pl,P2 are polynomials of arbitrary order in the indeterminates with
rational coefficients. Obviously, such evaluations are capable of
exploiting the commutativity of the multiplication of matrix elements,

i.e. aijbkz = kaaij for all 1<i<m 1<3j,k<nmn,1 <4<p.
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Conceptually, we may think of the indeterminates as taking on trans-
cendental values; thus, since multiplication occurs over the real
field, it is a commutative operation.

Since in this thesis, however, we consider only those
algorithms for matrix multiplication which do not eﬁploit commuta-
tivity of multiplication, we modify Winograd's definition of algorithm

and consider only algorithms in the class NC defined as follows:

An algorithm o is in the class NC (for Not Commutativity
exploiting) if and only if o« computes product elements without -
assuming that intermediate product terms aijbkﬂ commute. -Thus for
each Yrs , all terms arﬁbls are cqmputed in the'sequence of evalu-
a#}ons which & wuses to compute Vo (termsiofkthéjform bijakz may

appear as well; however, they must cancel out in computations of the ’s).
P y P Yrs

Unless otherwise stated, we will use "the multiplicative
complexity of a computation" to refer to the minimum number of mul-
tiplication steps required to perform the computation by an algorithm
in NC . As well, it is understood that multiplication of an
evaluation by a scalar from Q is not to be considered a multiplica-
tion step; for example, ed(k) = rijeu(ﬂ) where £ < k is not
counted in determining the multiplicative complexity of an algorithm

a if rij e Q.

Example: The following algorithms both compute the
matrix product of two (3%X3) matrices "faster" than the usual brute-

force method which uses 33 = 27 multiplications. The first method
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belongs to NC , the second, a typical inner-product algorithm,
presumes commutativity of multiplication of matrix elements and hence

is not in NC .

‘Method 1: To compute A3X3B3>’<3 » proceed as follows.
a a
Let A = all al2 B = (bll blz b13)
] ’ > — s
1 21 722 1 b21 b22 b23
831 %32
A, = (a a a )T B, = (b b b,,)
2 13 723 337 > 2 31 732 33 :

Then, use the algorithm given in [H1] to compute A in 15 multi-

181
plications (which is optimal). Compute A2B2 in 9 multiplications

(also optimal) and set AB = AlBl + A2B2 at a total cost of 24

multiplications.

Method 2: The well-known 'fast" inner product algorithm of
Winograd ([W1l], [W4]) uses only three multiplications fewer than

brute force. For example, if C = AB , compute c s 1 < i,

3x3 ij =

b..b + a.,.b . FEach

323, a8 (3 +by)(ay, #b1) - a2y, - byybys +oagsba,

cij requires 2 unique multiplications, namely (ail + sz)(ai2 + blj)
and ai3b3j . There are three multiplications each of the form
a;12:9 » and bljb2j . Therefore, the total number of multiplications

in Method 2 is (9 X 2) + 3 + 3 = 24 multiplications. Thus,



21

exploiting commutativity in this way affords us no saving over Method
1, an algorithm in NC .

In fact, no algorithm for multiplying 3%3 matrices has
been found, including algorithms which ekploit commutativity, which
employs fewer than 24 multiplication steps!

The second approach to the problem is due to Fiduccia [F2]
and characterizes a matrix multiplication algorithm d as a bilinear
chain ¢ .

We will often refer to the matrix-vector product which
corresponds to a given matrik multiplication problem. In order to
make precise this correspondence, we define:

the tensor product Am’

® B as C where
xn T

X8 my xXns

Citk, j+p 25 5Pk41,pr1

: _ (A O
and the direct sum Amxn ® BrXS as C(m+r)x(n+s) = (0 B> .

Then, if IS stands for the identity matrix with s 1’s , we have
I ®8A=A® .- ®A, s times. Finally, if B has the s
s rXs

columns bl,"°;bs , define k(B) as

k(B) = [b{,---,b:]T , i.e. an rs-column vector.
Lemma 2.1.1(Fiduccia): If B has s columns, let

d=«x(B) , C= IS ® A . Then, the set of entries of AB is identical

to the set of entries of Cd .
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Essentially, this lemma has reduced the matrik multiplication
problem to a matri#—vector multiplication problem. Since this idea
of entry equivalence is central, denote the set of elements of the
matrix result AB by E(AB) . Define AB E cd iff E(AB) = E(Cd)
Let R be a ring with a unit and let K be a subring of
the centre of R such that ar = ra for all (a, r) in KXR . Let
X = (kij) be a matrix variable which ranges over a non-empty subset
S of R™" and y = (yl,---,yn)T be a vector variable over
R = R" . 0 1is an algorithm for the matriﬁ-vector product Xy

if o computes E(Xy) from E(X) u E(y) for any pair (X, y) in
SxR™ . Define LK(E(X)) as the set of all linear combinations
m*n
Z WX, of E(X) (Here, X is (mxn), with fixed wi’s in K .)
i=1
A K-chain ¢ for E(Xy) is a finite sequence ¢l,-°- such

that for each z ¢ E(Xy) there is a p such that ¢P = z where

each ¢k is either in E(X) u E(y) or

¢k = r¢i where r ¢ K, or
¢ = 9y 'op' ¢j for i,j <k and ‘'op' e {'+', '-', 'x'} .
The chain ¢ dis K-bilinear iff whenever ¢k = ¢i X ¢j s

¢, € Ly(E(X)) and ¢j € L(E(v)) .
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In this chapter and the neﬁt; we will study arbitrary
algorithms in NC . However, in studying the additive complexity of
computing a set of bilinear forms (Chapters Iv; V and VI), we will
make various restrictions upon the algorithms under consideration.
Unless otherwise stated, all these algorithms will be K-bilinear
chains for arbitrary K . However, the lower bounds on e, 2, 2, 7)
are proved for K-bilinear chains where K = {0, 1, -1} and then
extended to hold for K-bilinear chains where K < Z , the ring of

integers.
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2.2 Equivalence of Bilinear Chains and NC-Algorithms

It can be seen that NC properly contains the class of
bilinear chains. First, every bilinear chain is an algorithm which
does not exploit commutativity and therefore is in NC . Also,
algorithms in NC may compute polynomials of arbitrary degree in
the indeterminates whereas-this is not possible for bilinear chains.
However, we are able to demonstrate that this ektra capability of
algorithms in NC provides no saving in multiplicative complekity
for the matrix multiplication problem. Thus, for our purposes, the
class of bilinear chains and NC are computationally equivalent.

The following two lemmas are straightforward modifications

of results for algorithms which exploit commutativity given in [W2].

Lemma 2.2.1: If o dis any algorithm in NC which
computes (m, n, p) matrix products and Ml"."Mt are the results

of the multiplications in o , then the partial result computed

1 at the jth step, ed(j) » is of the following form:

t m n n
q + 'Z QM + ) Jroa.+ ) 5 s

.a.. ..b..
i=1 i=1 j=1 M 42y =1 T

where q and the qi’s . rij’s , and sij’s are all in Q .

Proof: Obviously, ea(l) € QU {all,"-,bnp} and
therefore is of the required form. Suppose for all steps j < &

ea(j) is of the required form. If ed(ﬁ) is a multiplication, then

_ . - . + .
eu(l) Mk for some k . Otherwise, ea(ﬁ) ea(Jl) * ea(JZ) for
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jl,j2 <L, i.e.

_ t _
ed(ﬁl) = (q(l) * q(z)) + izl(qél) * Q§2))Mi

1 . (2) (1) (2)
+ (r . )a, . + (s, .. )b,
121 le F13 7% 121 ng °i 1]

which is of the required form.

Lemma 2.2.2: Let o be an algorithm in NC which
computes (m, n, p) products, and t multiplication steps. Then,
there exists an algorithm o' with no more than t multiplication

steps, such that each multiplication is of the form:

(121 ler” 13)(121 351 1] 13)

and such that o' computes the same matrix product. (Recall that
the number of multiplications in an algorithm does not count multi-
plication by a scalar from:Q:, e.g. rijaij is not counted as a
multiplication if rij is in Q .)

Proof: Let the functions Li ,» 1 =0,1,2,3, of polynomials

in the a..’s and b.,.’s be defined as follows:
1] 1]

Li : Q[all’“.’amn’bll’”.’bnp] into Q[allﬁ"'sbnp]
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such that if u ¢ Q[all,---,bnp] , then Lo(u) = the constant term of

u ,

Lﬁ(u) = the term in u which is linear in the aij’s , i.e.
11
) g..a,.
i=1 j=1 4 H
L?(u) = the term in u which is linear in the bij’s .
L2(u) = the term in u of the form
. S.. a,.b s
i=] j=1 k=1 g=1 DJKALITRE

and L3(u) what remains, i.e.

Ly(w) = u- Ly L?(u) - LE(u) - L, (u)

Suppose ea(j) = ea(Jl)'ea(Jz) = uev .

e () = Lo Ly + Ly (v - Ly(v)

+ (u - LO(U))LO(V) + (u - Lo(u))(v - LO(V))

The only multiplication which is counted is the final:one. Thus, we
can construct a new algorithm % such that g has the same number
of multiplications as o , computes the same product, and if

e (j) =uv, then L. (u) =L.(v) =0 . Therefore, if e  (j) = u*v ,
OI.O 0 0 ozo

then L2(u°v) = Li(u)'Li(V)
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~15

By Lemma 2.2.1, if e, (JO) =

a . b,. , 1)
0 g=1 4

then Gn) = q4 + Z q;M, + z z r, z E (2)
> Soy0 0" 421 =1 421 ¢ i=1 j= 11JlJ

n k
5 to (1) and (2), we have QZlaigbKj = iZlqiLz(Mi)

Applying L

Then, set M, = u,*v, . Thus,
i i'i
n t t A B
a,,b,, = Lo(u,v,) = Lo (u, ) L (v,) .
QZI 12723 izlql 2( i 1) izlql 1717 14

Note that q = (ql,---,qt) is a function of i and j
Hence, to compute yij for 1 <i<m,1<i<p, an

algorithm o' suffices which computes the t multiplications
Ll(ui)'L?(vi) . Note that no multiplications are required to compute

Lﬁ(ui) and Lz(vi) » and since o ¢ NC and o contains u, v,
L (u ) = z Z 1J 1J and L (v ) = z § 1J 13 . Thus, the
i=1 j=1 i=1 j=1
algorithm o' has only multiplications of the required form and
computes the same matrix product as o
The above lemma is a formal proof of the intuitively obvious
observation made in [H1], namely that since constant terms and terms
higher than quadratic do not appear in the product to be computed,
these terms need not appear in intermediate calculations. Thus, an

equivalent algorithm exists with the same number of multiplications
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whose multiplication steps are the product of a linear sum of ai.’s
with a linear sum of bij’s

But this algorithm satisfies the definition of a bilinear

chain. Thus, we have

Lemma 2.2.3: For any algorithm o ¢ NC which computes

B using only t multiplication steps, there exists a bilinear
mxn nxp

chain which computes E(Xy) where X = Ip ® A and vy = (b{,---,bg)T
using no more than t multiplications, and conversely.

Hence, the two distinct models of computations are equivalent
for the purpose of studying multiplicative complexity of matrix
multiplication.

In the next section, we exploit this equivalence to prove

the invariance of multiplicative complexity over symmetric computations.
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2.3 The Multiplicative Symmetry Theorem

To prove the main result that the 6 related matrix products

are equally multiplicatively complex, we use a theorem of Fiduccia

[F2]:

Theorem 2.3.1: There is a K-bilinear chain for E(Xy)

with t multiplication steps iff there is a K-bilinear chain for
E(XTZ) , where 2z ranges over R" ,» with t multiplication steps.

The consequences of this result are illustrated in Chapter III:
for now, we need only the statement of the theorem to prove a result

about symmetry in NC .

Lemma 2.3.2: Matrix products of the form A B
—_—— mxn NXp

require t multiplications by algorithms in NC iff products of the
form C D require t multiplications to be computed by an
nxm mxp

algorithm in NC .

Proof: By Lemma 2.2.3, there is an algorithm o € NC

which computes A B in t multiplications iff there is a

mxN NXp
bilinear chain using only t multiplications which computes E(Xy),
where Xy 1is the corresponding matrix-vector product.

By Theorem 2.3.1, this chain exists iff there is a bilinear
chain for E(XTz) with t multiplication steps where 2z ranges
over R" . Note that XT is of the form IP ® Cnxm and 2z 1is of

T T,T

the form (dl,---,dp)
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Again by Lemma 2.2.3, this chain exists iff there is an
. . ] P . »
algorithm o' NC which computes E(Cn><m mxp ) where C,D are
matrix variables (as are A, B, X) with exactly t multiplication
steps.

Hence, (m, n, p) products require the same number of

multiplications as (n, m, p) products.

Lemma 2.3.3: For any algorithm o with t multiplica-
tion steps which computes matrix products of the form A B s
mxn nxp

there exists an algorithm o' which computes matrix products of the

form C D using the same number of multiplication steps.
Pxn nxm
Proof: Note that simply computing C_ D as
_— pPxn nxm

T, T,T . . . .
(b'¢cH) via algorithm o will not work since we are not allowed to
assume element multiplication is commutative; element products
d31%0x

is to collect the multiplications Mi of algorithm o where o is

do not necessarily equal Clkdji . What we can do, however,

applied to a computation of the form A B . The matrices A
mxn nxp
and B are DT and CT respectively. For each Mi in o ,

construet the ''reverse" ﬁ. multiplication as follows: If

AR b
(121 le 1Jaij><121 521 1J 13) » then set

n n
< z E s..b, >< z z ) . Now, if we combine these

i=1 j=1 13743 i=1 j=1 1J 13
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multiplications exactly as o does, we get an element of the product

matrix C D =7 .

pPxn nxm pPxm
More formally, an element zij in CD is found as follows:
. t
If o computes z,. (in AB) as ) .M, where
Jjt j=1 11

. ) t ~
r, e K={0, 1, -1} , then let a' compute z,., (in CD) as Z r.M,.
i ij 4o 14

The example in the next section will illustrate this procedure.
The main result on the symmetry of the general matrix
multiplication problem follows immediately by alternating applications

of Lemmas 2.3.2 and 2.3.3.

Theorem 2.3.4 (Multiplicative Symmetry Theorem): Matrix

products of each of the following forms have the same multiplicative
complexity, i.e. require the same number of multiplications to
compute:

(nxm) (mxp), (pxm) (mxn), (mxp) (pxn),

(nxp) (pxm), (pxn) (nxm), (mxn) (nxp)

Theorem 2.3.4 can be used to extend known results for lower
bounds for matrix products. For example, we can extend the results

of Hopcroft and Kerr [H1] as follows:

Corollary 2.3.5: Algorithms which compute matrix products
of the following forms must contain at least 15 multiplication steps:

(3x2) (2x3), (2x3)(3x3), (3x3)(3x2) .
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Corollary 2.3.6: Algorithms which compute matrix
products of the form (2x2)(2xn), (nx2)(222), or (2xn) (nx2)

require [7n/27 multiplications.

If we examine the proofs of Theorem 2.3.1 and Lemma 2.3.3,

we have the following result:

Corollary 2.3.7: Given any algorithm o which computes

(m, n, p) products, we can construct bilinear chains of equal multi-
plicative complexity which compute (p, n,-m), (n, p, m), (m, p, n),
(p, my, n) and (n, m, p) products.

Thus, the lower bounds of Corollaries 2.3.5 and 2.3.6 are

achievable.
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CHAPTER IIT

IMPLICATIONS OF MULTIPLICATIVE SYMMETRY

In Sections 3.1 and 3.2 we eiamine two straightforward
applications of the Symmetry Theorem:

1) transforming fast algorithms for a particular problem
into fast algorithms for symmetric computations - specifically,
constructing from a fast algorithm for (4, 2, 4) products fast
algorithms of equal multiplicative complekity for (2, 4, 4) and
(4, 4, 2) products, and

2) deriving a new lower bound on the multiplicative com~
plekity of non-square (m, n, p) matrié multiplication, namely the
product of maﬁl{m, n, p} and one less than the sum of the two
smaller dimensions.

In Section-3.3, we ruminate on the possible behaviour of
lower bounds for the general matrix multiplication problem in

light of the Multiplicative Symmetry Theorem.
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3.1 Deriving Symmetric Algorithms - An Example

Corollary 2.3.7 asserted that given an algorithm d , which
computes (m, n, p) products using t multiplication steps, we can
construct algorithms which compute (n, m, p), (p, m, n), (m, p, n),
(n, p, m) and (p, n, m) products using exactly to multiplication
steps. Clearly, to illustrate the procedure it suffices to derive
algorithms for (n, m, p) and (p, m, n) products from o , since
the remaining algorithms can be obtained by repeating the procedure.

We first present a. 26~multiplication algorithm d for
(4, 2, 4) products obtained from the construction given in [H1] for
fast algorithms which compute (m, 2, n) products. Then, as an
example of the general technique, we adapt the techniques of Fiduccia
[F2] (c.f. Theorem 2.3.1) to obtain a 26-multiplication algorithm o'
(the symmetric algorithm to d ) for (2, 4, 4) products, and then
apply Lemma 2.3.3 to derive from d' a 26-multiplication algorithm

a" which computes (4, 4, 2) products. In this example of deriving

algorithms from an (m, n, p) algorithm, m happens to be the same
as p ; the technique, however, will be seen to be independent of the
values of m, n, p .

The following 26-multiplication algorithm d computes

matrix products of the form A4x232x4 . The letters Ai’ B., Ck’ etc.

J
refer to the structure of the multiplication in relation to the

seven multiplications in some variant of Strassen's algorithm. In

their paper, Hopcroft and Kerr defined a group of product-preserving
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transformations of algorithms for matrix multiplication. Thus, the

seven letters designate the seven equivalence classes of multiplica-

tions in Strassen's scheme.

The multiplications of o are listed below.

Ay apy(byy +by)

By (ayy = agpibyy

Cp  (apy — ayy)by,

Dy ayy(byy +by))

Ep  agybyg

F1 231by45

Gy (agy +ajp)(byy = byy)

Ay gyy(by, +b,,)

(a5
(a3
(ay,
(a3,
(agy
(agy
(a3,

(ay,

By (a4 = aydbyy, (a9
€y  (aggtajy-a;y=a5)) (bygbyy) (ayy
Dy (aggmayy) (byg¥b,gbyy=byy)
C, (apgtaggta y-a, -agy-ay,
D +b

G (

6 (a, +a

s (Bpptaggay) (byy+by,

s (agp +a) by, -

22)
239 T 8y Fa) by, +b,,

11te91784178,,) (by=byy

) (b

211P227P147b5,)

-b 2 2+b

399) (byy +b,5)
ay1)(byq + by,

agy) = a9 (byy

399) (byg + byy

a

89 = 841 T 23p) (byy -
a,1)(byg +bygy -

399) (by, + b,,)

2y1) (byy, + By))

agy = ay)(byq

211P227b5,)

- b23)

24)

Table 3.1.1: Multiplications in o

+b

-b

b

-b

21

12 ~

22 T @3y " 350 (b4

14

12~
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Each diagonal element is computed from two multiplications;
symmetric off-diagonal elements are computed in pairs from three

additional multiplications. For example, if we let C denote the

4x4

product matrix A4X2B2><4 , then the elements €112 995 Cqp > and

1 of C are computed from the multiplications Al’ Bl’ Cl’ Dl’
E2, F2, and G1 as follows:

€11 = 811P11 F Bpobyy = A T By
Cpp = 851Pqp F aybyy = —Cy + Dy
€12 = 7By Dy + Fy, -G
= ma11Pyy FagoPyy T apPyy — apgbyy +aggbyy +oaggby,
T ay1P11 F 2g1P1y T apiPyy Foayibyy < agabyg +oagyby,
= 211519 * 215099
C21 = —Al + Cl + El + Gl

ay1by7 + ap5b9

The algorithm uses 8 multiplications to compute the four diagonal
elements, as well as 18 multiplications to compute the six pairs of
off-diagonal elements. The total number of multiplications used is
therefore 8 + 18 = 26 .

The next step is to transform o into o' via Lemma 2.3.2
such that d' computes (2, 4, 4) products using exactly 26
multiplications. To do this, we first must characterize o in terms

of the following decomposition theorem:
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Theorem 3.1.1 (Fiduccia): There exists a K-bilinear

‘chain ¢ for E(Xy) with t :multiplication steps iff there exist
fixed matrices vy, with elements in X and a (tkt) diagonal

matrix U with elements in.(iK(E(X)) such that

X = Wov

Actually, Fiduccia's result is slightly different,
characterizing X as WOV + H . Our class of algorithms allows
operations on zero matrices. Thus, X = 0 implies U = 0 which
in turn implies H = 0 , yielding Theorem 3.1.1.

To make use of this theorem we first must find the matrix-
vector product which corresponds to a (4, 2, 4) product. By

Lemma 2.1.1, this is Xy where X and y are defined as follows.

Let
A . .
. A . .
X=1,8 80 =\, A .
. A
(where '.' stands for the appropriate sized 0 matrix)
. _ T
Furthermore, let y = k(B) = (bll’bZl’bIZ’b22’b13’b23’b14’b24) .

Then, Xy has the product form (16x8) (8x1)
Now, we construct the (26%26) matrix U by placing along
its diagonal the contents of the left bracket of each multiplication

of o in order as it appears in Table 3.1.1, and zeros everywhere
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else. In other words,

where Mi is obtained from Mi by deleting the entries from
LK(E(y)) , 1l.e. M? is the left factor of multiplication Mi . For

L
example, A1 = alZ(bll + b21) . Hence Al =a;, -

The matri% W will specify which Mi’s will be used to
calculate an element of Xy and ekactly how these intermediate results
will be composed. The matrik V will operate on y to provide the
elements from LK(E(y)) which make up the righthand component of

each original Mi . For X16*8y8*1 , the matrix V26><8 will be:
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11
By
1
¢
11
D
1
1
K
1
1
Fy
1 -1
¢y
11
A
2
1
B
2
-1
C,
-1 -1 1
D,
1 1
E,
v = 1 1
F,
1 -1
)
1 -1 1
As
-1 1
Bs
1 -1
Cs
1 1 -1 -1
D,
1 1
Eq
1. . 1
Fq
121 1
Gy
1 -1
€4
1 11 1 -1
D
_1 4
;G4
-1 1
G5
-1 -1 1 .
6

where the letters on the right indicate which multiplication of o
has its right component equal to that row multiplied by y . For
example, multiplying the first row of V by the column vector vy

yields
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(1,1,0,---,0) (b T

11’b21""’b24)

=b,, +b ,

11 21

the right side of multiplication Al , as eépectedl In fact, the
product Vg is a 26-element column vector which contains the right-
hand components of each multiplication of d in order. Thus, the
product UVy yields all the multiplications of d in the order in
which they are listed in Table 3.1.1. The (16%26) matrik W is
given below. The 4(j-1) + i the row of W encodes the combinations
of the multiplications in d which are used to compute Zij in the

(16X1) wvector Xy =

(2110291023107 05240
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For example, to compute Z,q in Xy we need to scan the

4(3-1)+2 =10 th row of W to see which multiplications of

o

are required and, also, to see how these multiplications are combined.

Row 10 suggests

N
1!

23 = Dy + Ej — A+ Gy

251 (byy + byp) +agybyg = (agy = ay,)(byy +byy - by,

+ (ay; +agy = ay,)(byg - byy = byy)

a21b13 + azzb23 as required.

Multiplying the 10th row by U results in the following 26-element

vector u :

(0,0,0,Di,Ei,O,---,0,—A§,0,---,O,Gg,O,---,O)
Multiplying u by Vy yields
DY (b, +b..) + EX(b..) - Al(b, #b..-b. =b..) + GZ(b..b..~b..)
1712 22 1723 3Y713 723 12 "22 3713 "12 22

which is exactly the previous computation of Zgg -
Thus, Xy = WUVy and this leads directly to the required

decomposition of X ; namely, let y range over the subset

'{el,---,es} of R8 , then we have

X = XI = (WUOV)I = WUV .

-b

22)
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For example, x., = a

12 = Xg, = Xge = Xjg g3 hence, the decomposition
b

12 54

should assign a;, to each of these four xij’s .
X = (W, ,w cee W YUV, 0y Vst ,v )T

12 11°712° >71,26 1227222 >726,2

T

(1°a12,1°(a11 - alZ)’O""’O)(l’O""’—1)

B )

%54 (y5aVspe e aWs 0V (v ,Vags e eV )
= may * 1y, +ap,)
= aj, = Xy, as expected.

Similarly, X9 = X13,8 = a5, and in general, Xi+4k,j+2k = Xij

for k = 0,1,2,3

Thus, we have decomposed our encoding X of the matrix
multiplicand A dinto three component matrices W,U,V such that U
is a diagonal matrix, and W,V contain only elements in
k = {0, 1, -1}

Now, we are able to complete step two of the ekample, namely
to derive an algorithm a' to compute a (2, 4, 4) product. For
now we have a decomposition of matrices of the form (8x16) ;

XT = (WUV)T = VTUWT because of the nature of U,V, and W . More

precisely,
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There is a small problem here, however, in that we do not wish a
decomposition of thé pérticulaf‘matrik AT s rather a decomposition of
all (2*4) matrices, bésed on O ; This problem is easily solved by
replacing each aij in U by aji 3 therefore, call this modification

of U,U' . To understand this, note that (let v!. =v,, , w'. = w..)
i ji ij ji

( )U (! T

1 1 .o ' . '
V212222 " oV 260U Wy s Wag 1)

T
= (V12’V22’.."v26 2)U(l,l,0,"',0)
’

T

(1a03"';_1)(alza(a11 - a12)’.'.’0)

D)

where the actual element in the second row, first colummn of 14 e A2><4

is ayy - Replacing U by U' , however we have

T
' . ¢ ' ' ' . s o '
(Vo127 57y 26)U" (g5 swyg )

3 L B — L N T
- (130: s 1)(3219(311 321), ,O)

= a5, as required.

Thus, to compute a matrix product A find the -~ ..:.

%4844

equivalent matrix-vector product Xy where X = 14 ® A2X4 s

= K = PR T = T'T
y = k(B) (bll’b21’b31’b41’b12’b22’ ,b34,b44) as Xy =VU'Wy.
Note that each element in the 8-element column vector z = Xy is a

unique entry in the product matrix C2x4 = A2x4B4x4 . cij is then

found by computing the 2(j-1) + i the entry in =z . This, in turn,

is obtained by multiplying the product of the 2(j-1) + i th row of

v with U' by Wy .
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We now compute Cyg = a21b13 -+ a22b23 + a23b33 + a24b43 to

illustrate the procedure. First, note that c is the

23
2(3-1) + 2 =6th entry in z . Thus, to see which multiplications
are involved, scan the 6th row of VT s i.e. the 6th column of V ;
1’s occur in the columns of VT which correspond to elements of

U' El’C D A3,C3,D » —1’s in those columns corresponding to

GZ’GS and O0’s elsewhere (Mi in U' is obtained from Mi in U

by replacing each ajk by akj). Therefore, let the vector

|

[=
|

t 1 s 1
= (Vg1:V622 " "3V, 26)0

(0,---,a

232" 231318977817 7854,8,472,1,0,0,

-(a 0, a, +a

21781372171 535373555 2473147393°31378 40" 0"

—(a a14+a24),0)

As before, WTy yields a 26-element vector whose entries are the
righthand components of the multiplications to be used by a' ; thus,

. . . i ] .
the set of multiplications used by o' to compute A2x4B4><4 is

exactly E(U'WTy) . In particular,

T

Cyy = u'Wy
853 (B3 #bygtbagthy,) + (ayqtay -a;i-ay )by + (agg-a)q)e
(b13) = (ayytajg-a ;) (byy=byg) + (ay5may)) (-bys) +
(a

13729472147899)bg, + (373731 ,) (b, 0) - (8 5-a;,+a,,) (by,-Db, )

a23b33 + a21b13 + a22b23 + a24b43 as required.
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Thus, if we let o' be the algorithm which combines the
multiplications given by E(U'WTy) according to the entries in VT s
we have accomplished the second stage of the example, i.e. we have
constructed an algorithm d' which computes (2, 4, 4) products
using exactly the same number of multiplications as 0o uses to
compute (4, 2, 4) products. Moreover, the construction is well-
defined once d is known. We should also note here that the number
of additions/subtractions employed by algorithms for symmetric problems
is not necessarily constant. The effert on additions/subtractions
is explained in Chapter IV.

The third and final step in this example, is to find o
which computes (4, 4, 2) products from the algorithm o' just
constructed for the (2, 4, 4) case. Clearly, if we assumed all
multiplications commute, we could easily apply d' to the transposed
multiplication problem and transpose the result as an algorithm with
no more multiplications than d' . However, this is taboo in NC .
But, by the techniques of Lemma 2.3.3 we are able to construct the
required o" from o'

Suppose we wish o' to compute

= T = T . n
A2x4 =D and B4x4 C” . Since o

C4X4D4x2 = Z4><2 . Let

€ NC , we must not assume each
intermediate product dijckk in the computation of AB commutes.

However, we can sum these products as if they did commute. In fact,

1"

. s a . . T
if o sums the reversals of multiplications in U'W'y exactly as
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o' sums the originals, the result computed by o" will be the
reversal of a'’s computation and, therefore, the desired result.
For example, let C' = AB , Z = CD . Then, to compute

Z d » collect those multiplica-

32 = 31919 T e3pdyy + cgqdgy +cq.d,,

tions Mi which o' uses to compute céB and form the correspond-
ing reverse multiplications as in Lemma 2.3.3 (the multiplications

M, are given in Table 3.1.1).

A

Summing the reverse multiplications Mi as o' sums the

Mi , We obtain

(byy#b,gtbaglayg + byglaygtay -asy-ay3) + (b3 (ag3-a,,)

= (by;=by3)(ayytajgmagg) + (by3)(ayz-ay,) + by, (a)5ta,, -2, -a,,)

-a., ta

+ byl (aygmay,) - (by,~b,5) (aygmay tay )

= b3qayg *+ bygay) + byqay, +byqa,,

Finally, substiting aij = dji s bij = cji s, we get

d

cq3dgy + cgydy,y Fcgpdyy +cg,d,,

=z as required.

32
Since all we modified in o' is the order of the multipli-

cands, o'' uses exactly as many multiplications, and additions/

1

subtractions to compute (4, 4, 2) products as o' does to

calculate (2, 4, 4) products.
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Thus, we have 26-multiplication algorithms for the symmetric
problems: (4, 2, 4), (2, 4, 4) and (4, 4, 2) matrix multiplication.
It is not known if these algorithms are optimal; obviously, by the
» 1

Symmetry Theorem, if any of o , o "

» & 1is optimal, they all are.

Note the two references to additive compleiity of o' in
terms of that of d , and of d" in terms of d' . We have mentioned
that the additive complexity of algorithms for (m, n, p) and
(p, n, m) products is invariant. This fact, together with the exact
relationship between the additive complexities of (m, n, p) and
(n, m, p) products is thoroughly investigated in Chapter IV.

Since we have utilized no specific features of this example
to illustrate the algorithm construction process, the process itself
is completely general, i.e. we have demonstrated a simple method for
building algorithms for (n, m, p) and (p, m, n) products from an
algorithm for (m, n, p) products such that the new algorithms are
of exactly the same multiplicative complexity as the original. By
combining the above processes in appropriate ways, we can obtain

algorithms of equal cost for the remaining symmetric problems, namely

(m, p, n), (n, p, m), and (p, n, m) products.
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3.2 A New Lower Bound for Non-square Prodicts

In this section by applying the Multiplicative Symmetry
Theorem, we show that the product of the maximum dimension with one
less than the sum of the other two dimensions yields a new lower bound
on the multiplicative complekity of non-square matrix multiplication.

First, we note the following theerem due to Kirkpatrick [K2]:

Theorem 3.2.1: Any algorithm over

Q[all,---,amn,bll,---,bnp] , where Q , aij s bij are defined as

before, which computes the matrix product A B , must employ at
mxn nxp
least m(n + p -~ 1) multiplication steps.
Actually, Rirkpatrick's theorem is phrased in terms of
independent variables in a field and active *-operations, but if we

restrict the class of algorithms to those which do not use division,

we obtain Theorem 3.2.1.

Corollary 3.2.2: If we consider only algorithms in

NC , an (m, n, p) product requires m(n + p - 1) multiplications.
This is an obvious corollary, but is included to emphasize
the difference in models.
As an immediate consequence of the Multiplicative Symmetry

Theorem (2.3.4) we have
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Theorem 3.2.3: Any algorithm in NC which computes

(m, n, p) products must use at least mx(d0 + d1 - 1) multiplications
where m is the largest dimension, d0 and dl are the two smaller

dimensions.

Proof: By Theorem 2.3.4, the same number of multiplica-
tion steps is required to compute (m, n, p) and (mx, dO’ dl)

products where m_o, d0 s dl are any distinct choice of m, n, p .

‘Remark 3.2.4: The choice m = m o, n-= d0 s P = d1
where m is the largest dimension, and d0 , d1 are the two smaller
dimensions in the unordered triple [m, n, p] gives the best lower

bound obtainable by the method of Theorem 3.2.1. We need only observe

that

do(mk + d1 - 1)

mxd0 + dO(d1 - 1)

f_mxdO + mx(dl - 1) since d1 >1, mxlz dO

mx(d0 + d1 -1

And similarly, dl(mX + d0 -1 f_mx(d0 + dl - 1) .

As an example of this, observe that (2, 4, 4) products
require at least 4(2 + 4 - 1) = 20 multiplications, whereas
Kirkpatrick's lower bound is 2(4 + 4 - 1) = 14 multiplications.

This lower bound may not be optimal; the best algorithm to date, o'
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in Section 3.1, uses 26 multiplications. We can, however, show that
Theorem 3.2.3 does not necessarily produce achievable lower bounds
by examining computations of (2, n, 2) products for n > 3 .
Kirkpatrick's lower bound is 2(m + 2 - 1) = 2n + 2 multiplications.
The new lower bound is n(2 + 2 - 1) = 3n multiplications, an
improvement. However, by Corollaries 2.3.6 and 2.3.7 of the Multi-
plicative Symmetry Theorem, r7n/i] multiplications is an achievable
lower bound. In particular, for (2, 3, 2) products, Theorem 3.2.3
yields a lower bound of 9 , but 11 multiplications are required.
Clearly, further refinements of the bound of Theorem 3.2.3 are

required.
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3.3 Other Ramifications of Multiplicative Symmetry

The previous sections illustrated some immediate applications
of the Symmetry Theorem, namely a construction for deriving a variety
of equicomplex algorithms for five related problems from a known
algorithm for a particular problem. Extensions of the relatively few
known lower bounds on non-square matrix multiplication problems were
also made. As well, multiplicative symmetry presents less concrete
implications for our understanding of lower bounds.

For example, Theorem 2.3.4 corrects an invalid intuitive
feeling that one dimension in particular is the primary contributor
to the multiplicative complexity of (m, n, p) products; for
example, n , the number of terms involved in brute-force inner-
product multiplication, or m , the first dimension, as in
Theorem 3.2.1.

Suppose we denote the multiplicative complexity of (m, n, p)
products by a lower bound functiom c71\ﬁm, n, p) . Note that
multiplicative symmetry implies that C?1L is a symmetric function.

That C?ﬂ\ is not linear in the product m*n°*p of the
dimension variables is well known and can be proved by examining the
special problem of (n, n, n) products. By Strassen's result [S1],

C?“&n, n, n) f_c'nz'82 where c¢ 1is a constant. Thus, for suitably
large n , 57ﬂjn, n, n) < n3 which proves ‘aﬂ( is not simply linear

in the dimension product.
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We can gain further insight into the nature of 57ﬂ_by
fixing m, n, p 1in examples such as the following.

Example 3.3.1: @8, 2, 2), (16, 2, 1), and (4, &, 2)

products all have 32 as the product of their dimensions. By [Wl],
47“&16, 2, 1) = 32 . However, by Corollaries 2.3.6 and 2.3.7,
57ﬂ£8, 2, 2) = 28 . Finally, since o' in Section 3.1 computes
(4, 4, 2) products in 26 multiplications, 607&4, 4, 2) < 26.

Upon closer inspection, we note that with the dimension
product fixed, the greater the disparity among the sizes of the
dimensions, the greater the number of multiplications which are
required. Put another way, the more symmetric two matrices A and
B are in size, the lower the multiplicative complexity. This

suggests the following

‘Conjecture 3.3.2: Given any pair of triples of integers

my, 05 Py and My, Pys T, such that m NPy = WyD,P, = d , then
if ¢ = 95 s Iml—cl + Inl—Cl + lPl‘Cl > Imz—c| + ]nz—cl + lpz‘cl
implies %(ml, n, pl) > ﬂ'lt(mz, D, P2) .

In order to avoid degenerate cases, we restrict m, T, 1

to be integers > 2 . This is necessary since independence arguments

have shown that if 1 dimension, say m , is 1 , then

64npn,rh p) = np . Thus, in our example, let m = 32,

1—p1=n2=1’m2=16,p2=2. Let C=V332. Then
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lml—c] + |n1—c| + |p1~c] > |m2~c| + Inz—c| + Ipz-cl and yet
%ml’ nl, Pl) =%.(m2, n2, P2) = 32 ,

A consequence of the conjecture would be

Corollary 3.3.3: ¥ mp=a ,%lm, n, p) =M, 4, d)

implies m=n=p=4d .

Thus, for a fiked dimension product, square matrix multipli-
cation would be least multiplicatively complex.

We feel that ﬁyngm, n, p) allocates weight to each dimension
variable corresponding to its size in relation to the other dimension
variables. This is supported by Theorem 3.2.3, but as yet is an
open problem.

Theorém 1.2.4, the best lower bound-known, supports
Corollary 3.3.3, since its bound is essentially mn + np + mp . By
employing partial differentiation, we cam show that -% +-l +-% is
minimized for m=n = p with mnp fixed. Since mnp 1is a fixed
product, mn + np + mp is also minimized for m=n =p .

The next two chapters will focus on the additive complexity

of matrix multiplication.
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CHAPTER IV

THE ADDITIVE COMPLEXITY OF MATRIX MULTIPLICATION

In this chapter, we investigate the nature of the additive
complexity of computing (m, n, p) products using a fixed number t
(perhaps ‘7ﬂjm, n, p)) of multiplications. For this purpose, we
present a simple graph-theoretic model which exactly characterizes
each step in an (m, n, p) computation; in particular, the model
encodes addition/subtraction steps in a natural way. For purposes of
transforming representations of computations into representations of
related computations, the model contains certain canonical features
which allow us to obtain relations between the additive complexity
of symmetric computations (for eiample, of (m, n, p) and (n, m, p)
products). 1In section 3.1, we noted that a" for (p, m, n)
products uses exactly the same number of additions/subtractions as

U:'

for (n, m, p) products. Generalizing these results, we are
able to relate the additive complexities of the five associated
computations to the additive complexity of a given (m, n, p) com-
putation. This result is called the Additive Symmetry Theorem.

Note that the term "algorithm" used in reference to additive
complexity will not refer to an arbitrary member of NC , but rather to
a K-bilinear chain where K , unless otherwise specified, is a subring
of the centre of any ring with a unit. Again, the reader should be able
to persuade himself that the results on additive complexity as well as
those on multiplicative complexity hold for computations of any set of

bilinear forms, although the results are described solely in terms of

matrix multiplication.
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4.1 Additive Complexity: Addition Flow Representations

As noted in Chapter I, by the additive complexity of a
matrix multiplication problem, we mean the least possible number of
additions and subtractions necessary to multiply matrices using no
more than t multiplications. To investigate the additive complexity
of (m, n, p) computations using any set of t multiplications, we
will wish to examine the number of additions/subtractions used by a
particular algorithm for (m, n, p) products. Thus, we will wish
to optimize the number of additions/subtractions used to form the
factors in a fixed set of multiplications and to combine the
calculated products to form the product elements.

We present a natural graph-theoretic model of computation
which lends itself to this type of investigation. Essentially, the
model consists of an ordered triple of three graphs <G1, G2, G3>
such that G1 encodes the addition/subtraction steps used to form
lefthand-factors of the fixed- set of multip%ication steps, G2
encodes the addition/subtraction steps used to form the correspond-
ing righthand factors, and G3 represents exactly how to combine

the results of the multiplications to form the elements in the

product matrix. More formally:

Given an algorithm o which computes (m, n, p) products

using the t multiplications M ='{M1, M,, ***, Mt} , an addition

flow representation of o , denoted Fa » 1s an ordered triple
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<G1, GZ’ G3> where each Gi is an acyclic, multi-source, multi-sink
flow graph with vertex and edge sets denoted VGi’ TGi, respectively.
As well, if the source and sink set of each Gi is denoted Ri’ Si’

respectively, then

mn , IRZI = np , !S3| = mp ,

IS =|R3|=t’

2|

3) there exists an isomorphism A which labels the vertices in

Ve v VG2 U VG3< as follows:if the dith evaluation in o is
denoted e (i) , and o computes the product A B =Y s

o mxn nxp mxp
then

a) Rl = D\(all)’“.’)\(amn)} ’ Rz = {A(bll)’“"x(bnp)} )
b) ea(j) = ea(jl).ea(jZ) if and only if X(ea(j)) € R3 (in
other words, the t multiplication steps,

M= {Ml,Mz,---,Mt} are represented by the t vertices in

c) Sl =M, S2 =M (i.e. Sl’ 82 represent the set of left-
hand and righthand factors respectively of the multiplica-
tions M ='{Ml,~-°,Mt}),

, . (s + .

e) for each evaluation ea(J) of the form eu(Jl) + ea(Jz)

there exist unique edges Yl’ YZ in one of the graphs such

that Yy has edge weight 1, Yo has edge weight 1 or -1

depending on whether ed(jz) is added to, or subtracted
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from ed(jl) . As well, the "tail" of edge Yy » written
T(Yl) is the vertex representing ed(jl) . Similarly,

- 3 n " .
T(Yz) = R(ea(Jz)) . The "heads" of Yqs Y,s Wwritten H(Yl),
H(Yz) are the same vertex, namely k(ed(j)) s
and f) for each evaluation ea(j) of the form r’ed(k) where

is a scalar, there is a unique edge <Y with edge weight r,

such that H(y) = X(eu(j)) and T(y) = A(ea(k))

Basically, an addition flow representation is a modification
of the "computation tree'" of an algorithm. To illustrate the
differences, we present a typical computation graph representation
for Strassen's algorithm ds given in [S1] for computing

AyyoBowy = Youy (g 1is K-bilinear where K = {0, 1, -1})

The 7 multiplications, '{Ml,'°',M7} = MS » used by 05 are

M (217 + ayp)(byy + by5) Mg (ayy +ap))by,

) (ay) + ayy)byy Mg (mapy +ay)(byy +by))
My agq(byy = byy) My (agy = ay))(byy + b))
M, 35y (=bqq * byy)

We may think of dS as computing (2, 2, 2) products in
three stages, forming lefthand and righthand factors of the multi-
plications in MS » calculating the actual values of the Mi , and
finally combining these values to yield the yij s 1 <i,j<2,
Accordingly, we could represent the first stage by graphs Gl’GZ as
follows:
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In this graph, as in any graphs presented in the remainder of the
thesis, all edges are directed downwards. Note we do not include

Mg = a;; and MZ = a5, in the sink set Sl of Gl . This

indicates that as uses no intermediate calculations to form these

factors. A dashed line indicates an edge weight of -1 . Thus,

o computes Mg as

S —ay1tay; -
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This graph represents a slightly devious way o_ could compute

S
. ’ R _
M? = b11 + b22 . As illustrated, as computes M6 = b11 + b12 s
then M§ = b12 - b22 » and finally Mﬁ = ME - Mg . Once again,

since as needs no intermediate calculations to compute Mg = b11

and M§ = b22 » vertices representing M? and M? do not appear in

the above "computation graph". Finally, suppose we let the values of
the seven multiplications in MS be represented by seven vertices

in a final "computation graph", Gy . Then, if Og
yij’s from these values exactly as given in [S1], G

drawn as

computes the

3 would be
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For example, o computes

g as M. +M -M_ +M, . Clearly,

1 4 5 7

Y11

since each evaluation in an algorithm is defined as at most a binary

operation, the computation of Y11 by as actually involves three

steps, namely:

X —= er + Mﬁ s
Z = X - M5 s
yll =z + M7

This sequence of operations should properly be represented by
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However, since the meaning is clear, we will represent such a left to right

sequence of operations as in G, , i.e. as

3
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Note that the above representation <G1, G2, G3> of algorithm

for the following

as required, S, g Mg ,

Q is not an addition flow representation of o

S S

reason. Although R3 =.{Ml""’M£} = MS

52 ; Mg . Before justifying the definition oﬁégpe model by proving
the main result of this section, namely that given any algorithm a
which computes (m, n, p) products using t multiplication steps,
there is an algorithm & which computes (m, n, p) products in t
multiplications using no more additions/subtractions than d , such
that G has a unique addition flow representation, we illustrate

part of the technique by constructing from <G G,> , the

1> G2> 63
addition flow representation ﬁ = <§l, é2’ &3> of an algorithm a

which computes (2, 2, 2) products by the 7 multiplications in

S

MS , and uses exactly the same number of additions/subtractions as

ag . As well, &S will be K-bilinear.

Clearly, G3 satisfies the definition of the third graph

of an addition flow representation. Therefore, set 63 = G3. Glis

. a oL
merely Gl with S1 = Sl u {MS’ Mi} . Thus, we have
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where we have inserted 2 edges, one from a1 to Mg » and one from
a,, to Mi . By the definition of an addition flow representation,
this modification corresponds to inserting 2 trivial evaluationms
into Og of the form ea(J) = 1'ea(k) where ea(k) =a;;, or

ea(k) = a5, - Clearly, the modified algorithm & uses no more

S

additions/subtractions than Og to compute lefthand factors.

Similarly, we can modify G2 by introducing trivial scalar multi-~

plications of intermediate calculations into the algorithm.
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Again trivial scalar multiplications corresponding to the circled

sink vertices MR, M%, M?, Mg » are added to algorithm o_ with no

S

increase in the number of addition/subtraction steps used to form

righthand factors. Clearly, a. (o

S S with the above scalar multi-

plications added) computes (2, 2, 2) products using the multiplica-

tions in MS and no more addition/subtraction steps. Also, since

= = A=A ol A) 1 1+ -
S1 Mg s 82 Mg , F <Gl’ G2’ G3 is an addition flow represen

tation for as .
This is a simple example, but the method is clearly

generalizable to any representation <G1, G2’ G3> for which
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S1 ; M; . Sz'g M3 s, Or S3';'{y11,"',ymp} . Before we can apply

this simple construction, however, we need to show that there is no
loss in generality in studying the additive complexity of (m, n, p)
products with a fixed number t of multiplications, over only those
algorithms which have addition flow representations. Accordingly,

we prove

Theorem 4.1.1: For any K-bilinear -0 which computes
(m, n, p) products in t multiplications and a additions/
subtractions, there is K-bilinear chain & which performs the same
computation in t multiplications and no more than a addition/

A
subtraction steps and o has an addition flow representation.

Proof: Ideally, we would like to show that NC-
algorithms are not additively faster than K-bilinear chains; however,
this equivalence remains an open problem. We concurnwith A. Borodin
who conjectured the two classes of algorithms are not additively equi-
valent. However, it may be possible to show that any computation in
NC of a set of bilinear forms which uses t multiplication steps and
a addition/subtraction steps can be simulated by a K-bilinear chain
(where K < Q ; the field of scalars for the NC-computation) using
t multiplication steps and about 3a addition/subtraction steps.

Since o is K-bilinear, we let 0 be & with undesirable

properties removed, by the same technique as in the construction of the
addition-flow representation of &S .
By the bilinearilty of O (where o is initially defined as

o ; the set M of multiplications of & initially defined as M), the

computation performed by & may be divided into four disjoint stages:
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~

1) form lefthand factors of the t multiplications in M

b

2) form righthand factors of the t multiplications,

N

3) compute the t values of M ='{ﬁi,~--,Mt} R

4) compute the mp product elements .{yll"'.’ymp}

from the multiplications in M. Thus, we can partially define
G1s Gp» 63> By Ry =fapg,cia by Ry = by, )

Ry é'{ﬂi,"',ﬁt} = M. However, i ner modifications to G may be

required to enable the construction of an addition flow representation

N

N
F for o
~ . » 3
First, o may not contain non-essential intermediate

calculations, for example, 0y may compute an evaluation e (j)
0

which is not a product element and yet is not re-used in any sub-
sequent evaluation. However, by the construction of o , such

N
evaluations are deleted. Note that 0 may contain inefficient or

A
unnecessary evaluations. For example, one could compute N% = a;y

by forming e&(Jl) =a;y + 851 > e&(J) = e&(Jl) - , where a

%1
single trivial scalar multiplication ea(j) = 1°a11 would suffice.
However, this is necessary to allow the study of general algorithms.
Thus, we can now ensure that Sl’ SZ’ S3 may be defined such that

~ L

~ R

’ S3 E {yll’”.’ymp} .

Secondly, o may use an evaluation which is either a left-
hand factor, a righthand factor, or a product element as an inter-

mediate calculation in the subsequent computation of another lefthand
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factor, righthand factor, or product element respectively. Then, by
adding ‘trivial scalar multiplications to o (as was done to construct
&S from Og in the illustration) we create a new evaluation which
can be represented by a new vertex in the appropriate sink sget.

(c.f. G2 in the example). Therefore, modify & accordingly.

L

. . o ~ R, s
Finally, if some (Mj) or (Mk) is a single aij or

bij element respectively, and 0 does not yet contain a correspond-
ing evaluation, insert a trivial scalar multiplication corresponding
to this term. Repeat this procedure until G contains all such
trivial evaluations. Then, each such evaluation can be represented
as a vertex in the appropriate sink set of an addition flow represen-—
tation (c.f. Mg , Mi in 61 of the ekample).

We claim the resulting & (no addition/subtraction steps
have been added in these final modifications, only trivial scalar
multiplications) has an addition flow representation. But this is

N
obvious from the bilinearity. of o and the above constructions.

Thus, the theorem is proved.

By Lemma 2.2.3 we have

I Soeny T

Corollary 4.1.2: Given “any algbrithmnud ¢ NC which

computés  (m, n, Py’ products using t kmultiplicétion'steps;(wﬁere

multiplication'by an elemént “of“a ring” K with unit is not counted)
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there exists a K-bilinear chain which computes (m, n, p) products
in no more than t multiplication steps (but possibly many more

additions/subtractions) which has an addition flow representation.

By Theorem 4.1.1, we need not study the additive complexity
of computations of sets of bilinear forms over all possible bilinear
algorithms, but rather only over all bilinear chains which have an
addition flow representation. This restriction will allow us to treat
computations by operating on flow representations in very simple ways.

Thus, in the remainder of the thesis, unless otherwise
specified, we use the term "algorithms'" to mean "algorithms which have
an addition flow representation'. In other words, we will focus on

bilinear chains to study additive complexity.

Note that an algorithm has a unique addition representation.

Lemma 4.1.3: The addition flow representation Fu of

an algorithm for (m, n, p) products is unique.

G!>

3 1’ "2 73

are addition flow representations for o with representation

. = T 1 '
Proof: Suppose Fu <G1’ G2’ G,> , and Fu <G,, G

-1
s A°l

isomorphisms A,ﬁ respectively. Then, for 1 <i < 3
maps VGi onto VGi . As well, each pair of isomorphic (under
A°u_1) vertices represent a unique evaluation in d ,» and so,
adjacencies and edge weights are preserved by AOﬁ_l . Therefore,

except for a possible relabelling of the edges in their component

graphs, Fa and F& are identical.



70

Although an algorithm has a unique representation, the same
representation can represent many algorithms depending on the method
of traversing the graph, since each computation involves a path from

source vertices. We define the standard algorithm with representa-

tion F = <G1, G2, GBZ- to be the algorithm which follows the four

stages of computation in order. 1In any Gi we define the height of
an intermediate vertex. = to be the length of the longest path from
any source vertex to that vertex v . Then, the standard algorithm
computes the intermediate calculations represented by intermediate

vertices in ascending order of height in a left to right order among

vertices of equal height for G1 , then G2 , and finally G The

3 -
multiplications represented by R3 are calculated before G3 is
processed.

Thus, instead of studying the class of algorithms which
compute (m, n, p) products, we investigate without loss of generali-
ty, the number of additions/subtractions represented by addition
flow representations. For ease of reference, we denote the number of
addition/subtraction steps in an algorithm by nadds'(d) .

nadds (Gil-’ nadds (F) denote the number of additions/subtractions

represented by graph Gi and representation F respectively.

Clearly, nadds (o) nadds (Fa)

3
z nadds (G.)
. i
i=1

The number of additions/subtractions represented at a

particular non-source vertex v in some Gi is clearly
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indegreei (V) - 1. Thus we have
Lerma 4.1.4: The number of additions/subtractions used
by algorithm d with addition flow representation Fa = <Gl, G2, G3>
3
is ] [ITe | - |ve | + |,
i=1
3
Proof: . nadds (o) = Z nadds (Gi)
i=1
And, nadds (G.,) = Z (inval (v) - 1)
i
veVG,-R,
ii
since dinval (v) = 0 for v € Ri’ = Z inval (v) - 21
veVG,—R, veVG,—R,
i1 i’i
since ) inval (v) = ]TGil, = ITGi} - IVGiI + ]Ril

veVG,-R,
i1

and the lemma is proved.

Thus, the number of addition/subtraction steps represented

by ﬁS is

3
L tire] - v, ] + [r, )

(12 - 11 +4) + (14 - 13 +4) + (12 - 11+ 7)

18 additions/subtractions as expected.
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4.2 Symmetric Addition Flow Representations

The values of the source and sink sets in a flow represen-
tation exactly specify the parameters of the problem. For example,

given a canonical representation F = <G G,> , the standard

1> G2 G5

algorithm with representation F computes (m, n, p) products

using t multiplications, where t = |R3l ,
7, |- 12, \? &, | %, |
n = |——] , m = » P =
IS3| n n

Therefore, it is not surprising to find that operations on addition
flow representations produce flow representation for matrik multi-
plication problems with modified parameters.

One such operation on F 1is taking the symmetric

representation F* to F .

Given an addition flow representation F = <Gl, G2’ G3> s
the symmetric addition flow representation F* is defined by
T D D T | s
F* = <Gl, G3, G2> where G1 is Gl transposed, i.e. each vertex

. . . . . T
in G1 is associated with a vertex in G where each occurrence of

1
aij in the vertex name is replaced by aji for 1 <i<m,
1<j<nmn. G? denotes the directional dual of G; with relabelling

s . e D
of the sink and source sets appropriate to the position of Gi

within the ordered triple F#* (the directional dual of G is G

with edge directions reversed). To illustrate how the problem
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parameters are altered, suppose we are given an addition flow repre-
sentation F = <Gl’ G2, G3> of an algorithm d which computes
(m, n, p) proddects using t multiplications. Then,
s = Isyl = IRgl = ¢, [R] =, [R)] =np , and |s,| = mp .
We shall show that the standard algorithm with addition flow
representation F#* = <GE, Gg, Gg> computes (n, m, p) products
using t multiplicationms.

First, however, consider how the parameters are modified by

the symmetric canonical representation. Clearly, F* would corres-

pond to algeritbms using t multiplications since if F* is written

<G§, G, G&> , |s#| = [sll =t, |si| = [Ry] =t , and
|R§| = lSzl =t . Also, Rf represents the entries of an (nxm)
. s s . . % R
matrix, since aij in Rl is replaced by aji in R1 . Since
% = = % ? .
|R2] |S3| mp and R2 contains a bij for each yij in S3 s

R§ represents the entries of an (mxp) matrix. Finally, Sg
represents the entries of an nxp matrix since |S§| = ]RZI = np
and each bij in R2 is replaced by yij in Sg . Thus, the
symmetric addition flow representation has appropriate structural
properties for the study of symmetric computations.

A symmetric algorithm a* to a given algorithm d which
computes (m, n, p) products using t multiplications is an

algorithm constructed from o by the techniques given in Section 3.1.

In other words, by Lemma 2.2.3 and Theorem 3.1.1 we can decompose a
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given o into matrix products WUVy . Then, 0% is an algorithm
which computes (n, m, p) products in t multiplications as
VTU'WTy where all matrices are defined and illustrated in Section 3.1.

Immediately from the definitions we have

Lemma 4.2.1: Every addition flow representatiop has a
unique symmetric flow representation. Every algorithm has a symmetric
algorithm associated with it, and this symmetric algorithm will
generally be not unique.

The last assertion follows from the fact that the
constructions of Section 3.1 do not constrain addition, subtraction,
or scalar multiplication steps.

We proceed to show that the standard algorithm with canonical
representation Fg = <G$, Gg, G2> is a symmetric algorithm to the

algorithm o with canonical addition flow representation

F, = <Gy, Gy, Gy> .

One of the invariant properties of flow graphs Gi under
transposition and directional dual is the connectedness of a
particular vertex pair in RiXSi . We tabulate this information in
a matrix Ci defined as follows:

Given a canonical addition flow F = <Gl’ G2, G3> , for

each component graph Gi of F we define a connection matrix 'Ci

with dimensions lSi|X]Ri| where Tip has value z II w_ where
) pep YeP
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P is the set of all paths P from r, to sj (rk € Ri , éj € Si),

P 1is the set of edges ¥ which form P , and WY is the scalar
weight assigned to edge Yy . For purposes of generality, we allow
wY to take on arbitrary non-zero values; however, we need consider

only values of 1 or -1 . If wY is not specified, it is assumed

to be 1 . 1If G) is empty, Itjk is set to 0 .

To illustrate this simple concept, consider T, in the
connection matrix @2 for @2 of the addition flow representation
for &S given in Section 4.1. There are 2 paths from r, = b12 to

sl = M‘? , namely Y13 and Yo*Yy -
Therefore

< = w_ °w,  +w °w, =114 1(-1)
12 Y1 Y3 Yo Yy

=0 .

If we examine M? = bll + b22 s we see that the above computation of

T, serves only to indicate that no b12 term appears in Mi .

Using the notion of connection matrices, we can now prove

Lemma 4.2.2: Let o be an algorithm which computes
(m, n, p) products using t multiplication steps. Let
Fa = <G1, G2, G3> be the unique ... =~ - addition flow representa-
tion for a . If X,y are defined as in Section 3.1, then the

matrices W, U, V such that Xy = WUVy may be found directly from Fd.
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Proof: Suppose 0. computes Amannxp . By Sectiomn 3.1,

X=1,8A,y=«(B)
Let Xy be the mn row vector (ril),---,r;i)) where
&)

ri € Rj . Let Ci be the connection matrix for Gi .

Then, Clxl yields the left sides of the multiplications

Ml""’Mt in order. Therefore, let Utxt be given by
- 1 @ (1)

Upg T g ynts e ey X

uij = 0 for i# 3.
Similarly, V = €, where the r(z) are specified in order of
: ? txnp 2 3j
occurrence in £(B) . Finally, wﬁpxt = ‘03 with the same type of

(3)

restriction on Sj . Clearly, as in Theorem 3.1.1, Xy = WUVy .

Thus, by simply altering the connection matrices appropriate-
ly, we can obtain an.::ni::" addition flow representation whose
associated algorithm is a symmetric algorithm to d . The following
lemma demonstrates that symmetric addition. flow representations

modify connection matrices in the required manner.

Lemma 4.2,3: Let o be an:-algorithm which computes
. R . i = < N
Amannxp using t multiplications Let F Gl’ G2, G3 be the
. addition flow representation of o . Then, the symmetric

flow representation F#* = <G$, Gg, Gg> represents an algorithm q%*

which is a symmetric algorithm to o (i.e. computes (n, m, p) products

in t multiplications).
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Proof: Let (n, m, p) products be represented by products
= ' = : =
cnmemxp Y' . Let X I ®C, . » ¥ = k(D)

Recall that by the definition of the symmetric flow, for
% % = i i
aij € Rl’ cji € Rl s R2 S3 with each yij in 83 replaced by
% = i ! % Sk R%
dij , and S3 R2 with bij replaced by yij . S S R3 and

Sl’ R3, 52 have identical corresponding entries. Thus, for

F® = <G{, G%, G§> , the connection matrices are ‘Cl,‘Cg,‘Cg where

T

l"CZ’ 03 are connection matrices for Gys Gy G3 in F respectively.

By Lemma 4.2.2, Xy , where E(Xy) = E(¥') , may be computed

as W*U*V*y vwhere

1 @ 1) ..
E3 = X * e e
Y4 (o175 ©557s =vts gy 1)
1 : O * = n .
where x; is x, with 25 replaced by cji > udy 0 for 1i+# .

But this U%* is just U calculated from o as in Section 3.1 with
transposed entries, and by our conventions, is denoted U' . By

T T
Lemma 4.2.2, Wk = C2 and V* = C3 .

a* with symmetric flow representation F* computes Xy as

Therefore the standard algorithm

T T
AR VURy = '
WrU*Viy CZU C3y . But 0o computed E(A annxp) as WUVy where

W= C3 s V =T, . Therefore o* computes E(Xy) as

CgU“ng = VTU'WTy . Therefore o* 1is a symmetric algorithm to O

as required.
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This completes the justification of addition flows as a
model for analysing the complexity of symmetric computations. The
above results show that the addition flow models contain all the
information about multiplicative complexity contained in previous models
(such as the matrix product decomposition of Section 3.1) as well as
encoding all the non-multiplication steps in algorithms.

The next section focuses on the additive complexity of

symmetric addition flows.
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4.3 The Additive Symmetry Theorem

Thus far, only Lemma 4,1.5 has dealt specifically with addi-
tive complexity. Before we proceed with the main result, we need to
present an addition flow analogue to the construction of Lemma 2.3,3.

A transposed addition flow representation FT of a canonical

representation F of an algorithm o which computes (m, n, p)

products in t multiplications, where F = <G1, G2, G3>,is given by
T T T T T
= < > v i i
F G2, Gl, G3 where G3 is G3 with each yij in S3
replaced by yji and Gf s Gg treated similarly.

By an argument based on connection matrices as in the

previous section, or merely by inspection, we have

Lemma 4.3.1: If o computes (m, n, p) products in
t multiplications and a additions/subtractions, then the standard
algorithm with addition flow representation (FG)T computes
(p, n, m) products in t multiplication .and a addition/-~ _: -
subtraction steps .

Comparing symmetric flows we obtain

Lemma 4.3.2: Let o be an algorithm for computing
(m, n, p) products in t multiplications and a additions. Then,
the standard algorithm with canonical flow representation (Fa)*
computes (n, m, p) products using t multiplications and

a+ (m - n)p additions/subtractions.
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Proof: Let F = <G1, G2’ G3> be the addition flow
representation of o , F#* = <Gi, G;, G§> be the symmetric flow
representation to F . Then, if o* dis the standard algorithm with

canonical representation F* ,

3
z [nadds (G%*) - nadds (G.)]
i=1 * +

D = nadds (a%) - a

Clearly, mnadds (Gf) = nadds (Gl) . Therefore

3
D = ) [nadds (G%*) - nadds (G,)]
i=2 * *

Expanding nadds (Gi) by Lemma 4.1.5, we have

3 3
D = iZZ[|1‘G§| - IVG§| + |R§|] - iZz[|1“ci| - |VGi| + lRi|]
But, |TG| = |r03| , ]FG§| = |r02| . Also, IVG§| = IVG3| ,
]VG§] = ]VG2| . Therefore
D = |ry| + [R&[ - |R,| - |R,]
But |R§| = |53| = mp , and |R§| = !Szl =t . Therefore
D = mp+t-np-t

(m - n)p as required.

The following lemma provides the final connection between
addition flow representation operators, and derivations of equicomplex

algorithms for symmetric problems from o for (m, n, p) products.
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Lemma 4.3.3: Suppose 0 1is an algorithm for (m, n, p)
products with addition flow representation Fu = <Gl, G2’ G3> . Then,
if O is any algorithm for one of the 5 symmetric computations
({2, m, p), (p, m, n), (m, p, n), (n, p, m), (p, n, m) products)
which is derived from o by the techniques of Section 3.1, there
exists an addition flow representation FO which is found by taking
a sequence of transposed or symmetric representations of Fa such that
% » the standard algorithm represented by FO » performs the same

AN

computation as a (i.e., computes the same sums of the same multi-

3 - ~
plication as o ).

Proof: By Lemma 4.2.3, if we derive a (v, u, w) pro-
duct algorithm 0y from an algorithm aj for (u, v, w) products
by the technique in Section 3.1, then, the standard algorithm O

with addition flow representation (F& )* has an identical set of

multiplication steps to that of Oy and, as well, computes the same
sums of multiplications as ai . By Lemma 4.3.1, and an examination
of the construction of Section 3.1 based on Lemma 2.3.3, the analogous
result occurs when we derive an algorithm oy for (w, v, u) pro-
ducts from an algorithm uj for (u, v, w) products. 1In other

. . . T
words, the standard algorithm with representation (Fa ) uses the

J

same multiplication steps as oy and computes the same sums.of these

multiplications as o, -
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But any derivation in Section 3.1 is simply an alternation
of constructing symmetric and transposed algorithms. This, the
corresponding alternating sequence of constructing symmetric and
transposed flow representations of Fd results in the desired
canonical representation F0 .

Thus, we have a strict predicatable relationship between the
number of additions/subtractions in a derived addition flow repre-

sentation and the number of additions/subtractions in the original

algorithm. A stronger form of this statement is

Theorem 4.3.4 (Additive Symmetry): Let 0o be.an addi-

tively optimal t-multiplication (bilinear) algorithm:for (m, n, p)
products with (unique) addition flow representation

Fa = <Gl’ GZ’ G3> . Then, let O be an algorithm derived from o
to compute (u, v, w) proddcts, one of the 5 symmetric problems to
(m, n, p) products. Let F be the addition flow representation
derived from Fa according to the derivation of o from d .
Then, the standard algorithm % with representation % s 1is

additively optimal over the class of all algorithms in NC for

(u, v, w) products which use the t multiplications of @

Proof: By Lemma 4.3.3, 0, computes (u, v, w)
products using the t multiplication steps of a . By alternating
applications of Lemmas®4:3:1.and-47372 according to the derivation

of F from Fa » we see that the value nadds (o) - nadds (ao)
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is calculable and equal to x , say. Clearly, this rprocess is
reversible, i.e., assume nadds (&) < nadds (ao) , or in other words
that % is not additively optimal. Then, the cost of performing
the "reverse" operations on representations to get an algorithm a

1

for (m, n, p) products is (-x) . 1In other words,

nadds (?l) nadds (&) - (=x)

< nadds (do) + x
= nadds (a) - x + x

= nadds (o)

Therefore, nadds (dl) < nadds (@) . But this contradicts d’s
additive optimality. Therefore ao for (u, v, w) products is
additively optimal.

Thus, if any of the 6 related algorithms are additively
optimal, they all are. If we are given an algorithm o which is
not known to be additively optimal for its set of multiplications,
we may be able by transforming Fu to either prove its optimality
by the Additive Symmetry Theorem or to find an improvement of a
derived algorithm, and pass this improvement back to o via a
sequence of operations on addition flow representations. For this
purpose, a table of the corresponding additive complexities are given

below.
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Corollary 4.3.5: Suppose a given algorithm o computes

(my, n, p) products using a additions and subtractions. The

additive costsx , of each of the derived representations of Fu

is:z.

~. fp, n, m} — a
(n, p; m):=—> a+ (p - n)nm
(m, p, n) == a+ (p - n)m
(p, my N) —— a+ (m - n)p

(n, my p) = a+ (m - n)p

Proof: The respective additive costs.-follow from.
appropriately alternating applications of Lemmas 4.3.1 and 4.3.2.
For example, if Fa is the addition flow representation of d s by
Lemma 4.3.1, (Fd)T represents the computation of (p, n, m)
products using a additions/subtractions. By Lemma 4.3.2, ((Fd)T)*
represents the computation of (n, p, m) products using (p - n)m
more addition/subtraction steps, i.e. altogether using a + (p - n)m
additions and subtractions. The remaining 3 cases are proved
similarly.

Implications of this result are presented in the next

chapter.
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CHAPTER V

IMPLICATIONS OF ADDITIVE SYMMETRY

In this chapter we apply Additive Symmetry to obtain
immediately (previously known) additive complexities for inner products
and matrix-vector products of n-1 and mn-n additions/subtractions
respectively. The main result is that 15 addition/subtraction steps
arernecessary and sufficient to compute (2, 2, 2) products by 7-
multiplication algorithms. ("necessary" holds only for K c 7).

For convenience, we denote the additive complexity of
computing (m, n, p) products employing a set M = {Ml, ceny, Mt} of
t multiplications by 6Z(m, n, p, M) .

Note that M implicitly contains gsufficient information to
yield the parameters m, n, p of the matrix multiplication problem
in the correct order. For example, since M computes each element in
the product matrix, the lefthand factors of multiplications in M
encode the first two parameters as the highest row and the highest
column index, respectively, on individual terms. Thus, we can denote
the additive complexity of a related problem by 6l(u, v, w, M) where
(u, v, w) 1is a permutation of (m, n, p) , since M encodes all the
parameters of the original problem ((m, n, p) products). More
precisely, Cl(u, v, w, M) 1is the additive complexity of computing
(u, v, w) products using a set M of multiplications derived from

M by the method illustrated in Section 3.1.
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Finally, for any positive integer t , (1 (m, n, p, t)
denotes the additive complexity of computing (m, n, p) products
using no more than t multiplications. In particular, if
t = oYﬂﬂm, n, p) , then &L(m, n, p, t) dis the number of addition/
subtraction steps required by any multiplicatively optimal algorithm

for (m, n, p) products.
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5.1 Immediate Applications of Additive Symmetry

By Lemma 4.3.3, rather than studying algorithms derived
from a given algorithm o , we can restrict our investigation to
addition flow representations derived from the representation F of
0 . Moreover, a nice feature of flow representations is that the
operations * , T are clearly reversible. In other words,

(F¥)* = (FT)T = F . Thus, the order of derivation of an addition
flow representation F (derived from F) does not affect the additive
cost of the computation represented by F relative to the additive
cost represented by F . We illustrate this iR the following

example.

Example 5.1.1: Given a (bilinear). o which computes

(m, n, p) products using the t multiplications in

M= {Ml, cen, Mt} and a addition/subtraction steps, we wish to
determine the additive cost of a derived algorithm o for (p, m, n)
products. Let F be the addition flow representation of o .

Then, the standard algorithm for F where F is either (F*)T or
(((FT)*)T)* computes (p, m, n) products using t multiplications.

If F is computed as (F*)T , then

nadds (ﬁ) nadds [(F*)T]

nadds (F*) (by Lemma 4.3.1)

a+ (m - n)p (by Lemma 4.3.2)
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If £ is ((EH*D)* , then

nadds (ﬁ) = nadds [(((FT)*)T)*]
= nadds [((FH)*)T] + (m - p)n (by Lemma 4.3.2)
= nadds [(FT)*] + (m - p)n (by Lemma 4.3.1)

= nadds (FT) + (p -n)m+ (m - p)n
(by Lemma 4.3.2)

= mnadds (F) + (p - n)m + (m - p)n
(by Lemma 4.3.1)

a+ (m- n)p as before,

Thus, the additive cost of the derived algorithm o for (p, m, n)
products is a + (m - n)p and is independent of the order in which
o is derived, as expected.

As well, we can easily use the Additive Symmetry Theorem
(4.3.4) to show that the size of the inner dimension in any of the

six related or symmetric matrix multiplicative problems directly

affects the additive complexity.

" Lemma 5.1.2: For any set M ='{Ml, ceey Mt} of t
multiplications which can be used (by K-bilinear chaing) to compute
(m, n, p) products, éZ(u, v, w, M) is largest for all permutations
(u, v, w) of (m, n, p) when v = max {m, n, p} , and smallest

when v = minA{m, n, p} .
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Let v = max'{m, n, p} . Then, since u<wv

and w<v, (u-v)w<0 and (w - v)u <0 . Let

a/(us V, W, M) =a

QA (w,
A,

and Ay,

Similarly, if v =

additions/subtractions. By Corollary 4.3.5,

v, u, M)

I
D

b

a/(W, ua,

=a+(u_

u, w, M)

w, v, M) = (v, w,

min {m, n, p} , (u -

Let CZ(u, v, w, M) = a . Therefore, by

&(Vs u, w, M), av("’h u, v, M), a‘(UQ W,

v, M)

v)w

u, M)
v)u

required.

vw >0 and (w - v)u > 0.

Corollary 4.3.5,

v, M), Q,(V, w, u, M) za.

This lemma supports the intuitive feeling that for a fixed

number of multiplications, the size of the inner product directly

influences the additive complexity of a matrix multiplication problem.

In other words, for a given (possiblyuoptimal) set of multiplicationms,

derived computations of a few additively complicated product elements

have higher additive complexity than derived computations of a large

number of product elements each of which are sums of relatively few

terms.
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A final application of Additive Symmetry is to any problem
which is one of the five symmetric problems to a computation which has
a known additive complexity. In particular, the following application
of Corollary 4.3.5 was suggested to the author by C. Fiduccia.

There are some matrix multiplication computations, for
example, computing (n, 1, 1) and (m, 1, n) products, which can be
carried out without employing any additions or subtractions. Since
0 1is a trivial lower bound on the additive complexity of any matrix
multiplication problem, computations which achieve this lower bound
are optimal. Then, Corollary 4.3.5 yields the additive complexity
of any symmetric problem.

For example, Winograd [W2] and others have shown that the
obvious algorithms for (n, 1, 1) and (m, 1, n) products are
multiplicatively optimal.

1
Let M, Mz be the respective multiplication: sets. Then,

A, 1, 1, MO
A, 1, n, ¥)

52(n, 1, 1, n) = 0, and similarly,

Am, 1, n, m) = 0 . Hence we have

Lemma 5.1.3: (13 n, 1) (inner) products and (m, n, 1)
or (1, n, m (matrix vector) products require n-1 and mi-n

additions/subtractions respectively.

Proof: By Corollary 4.3.5,
A, n, 1, M= /f(n, 1, 1, M) + (a - 1)1

=0+ (nn-1)=n-1 as required.
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Similarly,

G, 0, m, ) = G, 1,0, ¥) + @ - Dn

0+ (mh - n) as required.

The above additive complexities are not new, and have been
proved by + .~ -< independence arguments. However, they are
immediate from the additive symmetry results.

In the next two section$,we obtain the additive complexity
of (2, 2, 2) products for any K-bilinear algorithm where K is a

subring of the centre of Z (the integers).
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5.2 Transformations of Fast (2, 2, 2) Algorithms

Recall from ‘Chapter I that:a fast algofithm for (m, &, p)

products is a K-bilinear chain: -which uses-fewer than mnp multi-
plications to compute (mj A, p) -products? “TPhus, fast (2,2, 2)
algorithms are mul€iplicatively.optimal by Theorfem 1.1.5 and use
exactlky 7 multiplications.

Following [H1] and [H2], we define a group T of trans-

mations on algorithms which compute Y

BoxaBaxa = Yaxg -
Let Z be the ring of integers. Then, T 1is the group

of transformations T : {a..} - !jf'{a..}
ij Z 1ij
and by} > &fz{bij} ,

which is generated by transformations that act on A and/or B in
one of 4 ways:
1) dinterchange 2 rows of A, 2 columns of B , or both

columns of A and both rows of B ;
For i'# i,

2) add (subtract) row i of A to (from) row j of A ;

3) add (subtract) colummn i of B to (from) column j of B ;

or 4) add (subtract) column i of A to (from) colum j of A

and subtract (add) row j of B from (to) row i of B .

Intuitively, if o dis an algorithm for (2, 2, 2) products,
h multiplicati M. of i1l be of the f Ef{ } ?é{b }
each multiplication ; of a wi e of the form 7 aij Ay TUE

This restriction is necessary to prove lower bounds.
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For any transformation T e , T(o) is the algorithm obtained from

0. by replacing each multiplication Mi = M§~M§ by

T(M,) = T(Mi)*T(M?) i

For purposes of generality, we may note that T may be
defined as the group of transformations over the computation

A B =Y with no change in the above definition. However, we
mx2" 2%n mxn

will only be interested in the case m=n = 2 .,

For notational convenience we define type-1 and type-2

multiplications.

First, as in [H1], define an equivalence relation between

multiplications as

I L, L
Mi _TMj if HT € T such that T(Mi) = (Mj) .

Then, a type-1 multiplication is any Mi which is

T-equivalent to ajq -

A type-2 multiplication is any Mi which is T-equivalent

to all+a22 .

Note that these definitions invite a generalization to

type-n multiplications (equivalent to + -+ + a

a; *ay, o) 10

algorithms for general (n, n, n) products. However, the general

case appears too difficult for present techniques.
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In any case, for (m, 2, n) products, we can classify all
possible multiplications as being either type-l or type-2. An
informal classification scheme is to check M? for "diagonality",

i.e.

ajq + a1 ~ 8y, is diagonal, whereas

a + a + a

11 12

W W
fl

21 ~ a5, is not.

Diagonality implies that we cannot simultaneously affect all terms of
Mi by a transformation in T . Therefore, diagonal multiplications

are type-2; all others are type-l.

Thus, an essential observation about the group T is that
its transformations must preserve the type of multiplications (by
the group property). In [H2], Hopcroft and Musinski prove the

following theorem:

Theorem 5.2.1: Given a 7-multiplication (fast) {0, 1, =1}-

bilinear -0 which computes: (2, 2, 2) proddcts, there exists a’transfor-
mation T in T such that T(d) = Og » i.e. if M is the set of
multiplications of o , TM) = MS . Thus, Strassen's algorithm
is unique to within a transformation of T .

Moreover, if we examine MS (given in Section 4.1), we
note that M1 = (a11 + a22)(‘bll + b22) is type-2 and all 6 other

Mi’s are type-l multiplications. By Theorem 5.2.1 then, any fast



95

(7-multiplication) algorithm for (2, 2, 2) products must contain
6 type-1 multiplications, and 1 type-2 multiplication, namely

-1 , . .

T (ml) . This observation is central to the analysis incthe next

séction of the additive complexity of fast (2, 2,:2) -¢omputations.

In order to justify relating Theorem 5.2.1 to bilinear

chains with integer coefficients in Lemma 5.3.13, we note

Corollary 5.2.2: Given any K-bilinear algorithm o ,

where K is a subring of the centre of Z , the field of integers,
such that d computes (2; 2, 2) products using 7 multiplications
and a addition/subtraction steps; there exists a {0, 1, -1}-

bilinear algorithm o which computes (2, 2, 2) products using 7

multiplications and no more than a addition/subtraction steps.

Proof: By the definition of K-bilinear chains in
7
Section 2.1, each product element yij is computed as kzlngk where

‘{Ml, oo, M?} is the set of 7 multiplications used by & . Taking
all q modulo 2 (possibly changing signs, but not adding operands

7
. N = ] ] ) -
in the sum) yields Vi3 kzlq M where q', e {0, 1, -1} . Now,

we can rewrite each Mk as di-K‘{aij}'CZiK'{bij} as before, by
using as coefficients, the original coefficients modulo 2, possibly
with sign changes, where K' = {0, 1, -1} . Call this new bilinear
algorithm a - clearly O uses no more than 9 additions/subtractions

as required.
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Finally, note that the transformations generating T act

as linear transformations on sums of ai.’s and bij’s . Therefore,

for any constant c¢ and &(A) € ‘;ﬁfaij} , T eT implies that

T(c*2(A)) = c*T(R(A)) .

Then, by the group property of T , and since multiplications
Mi’Mj € MS where i # i cannot be written as Mi = c'Mj for any

constant c¢ , we have

Lemma 5.2.3: For any K-bilinear chain o for (2, 2, 2)
products which employs the 7 multiplications in
M, = {M,, -+, M7} , 1# j dimplies that Mi # c'M? for any

constant c¢ .
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5.3 The Additive Complexity of Fast (2, 2, 2) Computations

Winograd [W4] and Hopcroft and Kerr [H1] have shown that

Strassen's [S1] algorithm o_ is multiplicatively optimal for

S

computing (2, 2, 2) products. A natural related problem is whether

Og is additively optimal.

By inspection, 0g uses 18 addition/subtraction steps:

5 additions/subtractions to form each of ML

¢ and Ml; (lefthand and

righthand factors respectively of the 7 multiplications in Og ),

and 8 additions/subtractions to compute Yij » 1<i, j<2, from

the 7 multiplications. In fact we note that since each Mg and Mg

involve 5 different sums, at least 5 addition/subtraction steps are
. . L MR .

required for computing each set M, , g of expressions. We

generalize this notion in the following obvious lemma.

n
We define a sum to be an expression of the form S = z C.X,

where n > 1 , each c; is a non-zero constant, and the xi’s are

non-zero, distinct terms.

S is a trivial sum if n = 1 , and a non-trivial sum

otherwise.

Two sums S S are distinct if neither sum is a constant

1° "2

multiple of the other.

Then, we have

Lemma 5.3.1: At least a addition/subtraction steps

are required to compute a distinct, non-trivial sums by any scheme
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which employs only addition, subtraction, or multiplication by a

constant.

Proof: Each non-trivial sum cannot be obtained by
multiplication of a constant by a term. Each sum requires at least
1 addition or subtraction. Since the a sums are distinct, a
dddition/subtraction steps are required.

Thus, at least 10 addition/subtraction steps are required
to form lefthand and righthand factors of the multiplications in MS'
Let FS = <G1, GZ’ G3> ,be the addition flow representation

of Og (Gl, G,, G3 are drawn in Section 4.1). By the Additive

Symmetry Theorem (4.3.4), we have

Lemma 5.3.2: If Gi is a component in an addition
flow representation <Gl’ Gy G3> , 1=2 or 3, then nadds (Gi)
is minimum if and only if mnadds (Gg) is minimum.

In particular, G3 of FS represents an additively

optimal computation if and only if Gg represents an additively

optimal computation. G3 and Gg are drawn below.



99




100

D
nadds (G,) |FG3| - ]vc3| + |53|

= 5 .

. . D .
By inspection, G3 represents the computation of

Tlbyy +by5)5 (Byg = Byy)s (byy +byy), (byy +byy), (<byy +by,), by, byl

a set of 5 non-trivial, distinct sums, using 5 addition/subtraction
steps. Therefore, Gg represents an additively optimal computation
by Lemma 5.3.1. Hence, G3 represents an additively optimal compu-
tation by Lemma 5.3.2.

But G3 represents a scheme to compute yij » 1 <i,j <2,
from multiplications in MS . Therefore, 8 addition/subtraction
steps are required for any computation of yij’s from multiplications
in MS , and we have

Lemma ‘5.3.3: aqae, 2, 2, M) = 18 .

In other words, for Strassen's [S1] choice of multiplica-

tions, the obvious algorithm ©_, is additively optimal. To test

S

whether MS is as good a good a choice of multiplications for

(2, 2, 2) products as possible, by Theorem 5.2.1 we need examine

only sets of multiplications which are transformations of MS .
During such investigations, a fast algorithm for (2, 2, 2)

products which used only 16 addition/subtraction steps was found.

Winograd [W5] improved upon this by discovering essentially the
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following 15-addition/subtraction algorithm Cor

Compute A Y as follows:

2x2B9x2 =

2x2
Form 51 © 81ty 85 € by = by
Sy * Sy T2y S¢ © DPyy S5
S3 ¥ a2y - ay 87 Py = by
R V) Sg < 8¢ = Py

using 8 additions and subtractions.

Then calculate the following 7 multiplications:

M1 < 82.56 M4 < s3-s7

Mg M ¢ omagthyy Mg < 81°85
My = a19%byy Mo < 54Dy
My * agysg

S10 < M3~ M 514 ¢ 813t ¥
Si1 ¢ M % §15 ¢ S1p My
512 © si1 v Y 516 © S12 T Y5
S13 € s11 t ¥

Then, Y11 = %10 Vig T 814
Y21 T %15 Y22 T %16

Accordingly, we have



102

Lemma 5.3.4: Strassen's [S1] algorithm 05 is not

additively optimal for fast (2, 2, 2) computations.

Corollary 5.3.5: de, 2,2, 7 <4, 2, 2, M) <15,

Thus, there are sets of 7 multiplications which can be
formed and combined to yield (2, 2, 2) products using only 15
addition/subtraction steps.

The reader may verify that the set Mw of multiplications
may be written Mw = T(MS) where T € T 1is defined as follows

1 <14,j<2):

Let T, : a, > a,

0 ° %1 i1 T 32 "1 i2 i1 °®
byy 7 DBy by big > By by
Tyt a7 2y ; T3 # by ™ by = by
232 7 3
by 7 by Ty 2 B35 > by
by ¥ by b1 7 by

Then, set T = oT T, +T. T

TyoT3Ty T Ty -

Note that T maps the product elements yij » 1 <i,j <2

E

computed by o, into the following form:

S
Vi1 7 Yio

Yio T Vi1 T Yo
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Consequently, any algorithm for (2, 2, 2) products which uses the
multiplications in Mw must compute the product elements in a manner
For example, o uses only 7

addition/subtraction steps to form the yij’s from its set of multi-

essentially different from g -

plications; 05 uses 8 additions and subtractions to form the yij’s

from MS .

By employing O recursively as in [S1], we can obtain a
new upper bound on the number of total arithmetics necessary for

computing (n, n, n) products.

Lemma 5.3.6: Two matrices of order n can be multi-

plied in approximately 4.57 nlog 7

total arithmetic operations (all
logarithms, unless’otherwise-specified, are’base 2 3-log 7 is:
appreximately 2.8).

Proof: Let CM(n)

R CA(n) be the multiplicative and

additive cost respectively, of multiplying two nxn matrices where

n = m°2k using algorithm O - Then, C (m-2k) = 7 C (m°2k 1) and
CM(m) = ms . Thérefere, C (m~2 ) 3 k .
C,m2%) = 7.0, (2" + 15(m-zk H? and ¢, @ = nm-1) .
Therefore, CA(m-Zk) = 7km2(m - 1) +15m Z 7k_ 4t i-1
1—1
= 7 m (m -1 + %? 2 k z (—)

7km2(m - 1) +5 m27k -5 m24k

2 (m + 4)75 = 5+45
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Thus, the total arithmetic cost of using dw is mz((Zm + 4)7k - 5'4k).
Then, imbed matrices of order n into matrices of order m2k by
setting k = [logn ~ 41 , m= fn2_k1 . Then, the total number of
arithmetics needed is < 7k m2 2(m + 2)

K@ + 1% 2m2F + 3)

k
7 _ (n2 + 2n2k + 22k)(2n + 6'2k)
23k -

A

= ZnB(%)k + 10 nz(%)k + 14 n(-;-)k + 675

Since 16 2k <n, 14 n(%)k + 6°7k < .898 nz(%)k . Therefore the
total number of arithmetics is

<2225 + 10.898 0 ("

[ch)log n-k + 10.898(%)10g n—k]7log n

log 7

A

max [2(—?—)t + 10.898(57’-)1:]11
4<t<5

log 7

4.57388 n

since the expression is convex in this region (this value occurs at

t =4).

Thus, implementin recursively rather than a_, saves
P g8 Oy y

log 7

S

about .13 n arithmetic operations. Indeed, if we implement

o, in a slightly different manner [F3] than done for o

- in [S11],

S

. . log 7 s A
we arrive at a saving of about .15 n™ & operations. This is
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achieved by letting k = llogn - 5.04] , m = rn'Z_k] (5.04 = log 33).
This kind of a priori implementation must necessarily be

less than optimal most of the time, since m , and k are chosen

without considering any numerical properties of n . For instance,

if n 1is a large power of two, we can search for optimal choices of

log 7

m , and k by tabulating the coefficients of n as follows.

For n = 2P very large, the additive cost of employing

Ol recursively is essentially mz(m + 4)7k . Then, if we examine

only values of m which are powers of 2, say m = 2+ , 1 >0,

c, (") = w’(m + 4771
n’(n+4) log 7
.
‘m3 log 7
Similarly, CM(ZP) =—gn 8 and the total arithmetic cost is
7

4 P
SA(Z ) + CM(2 ) .

Table 5.3.7 gives the additive, multiplicative, and total

arithmetic cost of multiplying 2Px2P  matrices using Ot for
m=2" » 0<1i< 8, as a coefficient of nlog 7. 7P
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Choice of m Add. Cost Mult. Cost Total Arith., Cost
1 5.0 1.0 6.0
2 3.43 1.14 4.57
4 2.61 1.31 3.92
8 2.24 1.49 3.73
16 2.13 1.71 3.84
32 2,19 1.95 4.14
64 2.37 2.23 4,60
128 2,63 2.55 5.18
256 2.96 2.91 5.87

Table 5.3.7
Cost of Implementing o For m92k =n = 2P Matrix

Multiplication As m Varies (k = logn - log m) -
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By inspection of Table 5.3.7, m =1 minimizes CM(ZP) s
m= 16 minimizes CA(ZP) , and m = 8 minimizes the total number of
arithmetics.

The questions naturally arise whether this observation
holds when we allow any choice, not only Zi » for m and whether
these choices of m minimize costs for arbitrary (nm, n, n) products.

To answer these questions we perform a general analysis of
the multiplicative and total arithmetic cost functionms, m37k and
m2((2m + 4)7k - 5°4k) ,» as suggested by P. Fischer [F3], in an effect
to discover the best dynamic (as opposed to a priori) strategy for

choosing m .

Lemma 5.3.8: Given arbitrary n , the multiplicative
cost of computing (n, n, n) products by O is minimized by
recursing (ml = [nf27 , «--, mg = fmi/21) until m, = 1, 3, 5, 9,

13 or 17.

Proof: (1) Suppose at some stage m 1is even. Then,
we wish to compare CM(m°2k) and CM(%~2k+l) to discover whether

we should continue recursing.

7

I
=

CM(m°2k)

-%‘m3°7k for all n >1

W

om k41
CMGE 2 ) B
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Therefore, it is multiplicatively less costly to compute (n, n, n)
products with m' = %-, k' = k+1 , by O whenever m is even.

(2) Suppose m is an odd number at some stages of recurs—

ing, and m > 23 , i.e. m = 23 + x for even x .

k
CM(m-Z ) = m 7

k

(23 + x)3°7

(12,167 + 1587 x + 69 x° + x°) 75

The multiplicative cost of using Oy with m' = 5 k' = k+1 ,is
k! 7 3 .k
LS = —_ 3
CM(m 27) 3 (m+ 1) 7
= (12,096 + 1512 x + 63 x° + £ x0) 7"

which is less than CM(m°2k) for all x .

Combining (1) and (2), we have that CM(m'Zk) can be

improved upon by recursing one level for m > 23 , and for all even

m .
(3) Suppose m is odd and m < 23 . Then, we wish to
compare CM(m°2k) and CM((EL§;19-2k+1) , i.e. m3°7k and

Z-(m + 1)3'7k respectively. Also, this tests only whlether an
8

improvement is obtained by recursing just one level. Clearly, by

(L), if EL%—l'2k+l is an improvement, and o ; 1

is even, then

E—z—£'2k+2 will be a further improvement. Table 5.3,9 lists various
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choices for m' which could be used to compute (n, n, n) products
where n f_m-Zk and m=2i+1, 1<41i<10 . Beside these choices

are given the associated multiplicative costs as the coefficient of
k

7
m' k! CM(m-Zk) CM(m"Zk')
m= 3 2 k+l 27 56
1 k+2 49
m= 5 3 k+1 125 189
m=7 4 k+1 343 448
2 k+2 392
1 I+3 343
m=9 5 k+1 729 875
m =11 6 K+l 1331 1512
3 2 1323
"m=13 7 k+1 2197 2401
m = 15 8 k+1 3375 3584
1 k+3 2401
m= 17 9 k+1 4913 5103
m= 19 10 k+1 6859 7000
5 k2 6125
m= 21 11 k+1 9261 9317
3 k+3 9261

Table 5.3.9
-Lowest Multiplicative Cost Obtained by

Usi_ng"OLW with Various Choices of 'ﬁ'ﬁ:(best choice(s) underlined)



110

Thus, for example, it is less costly to use O

matrices of order 3'2k+2 than to multiply matrices of order 11°2k

to multiply

(k > 0) . 1In particular, it is multiplicatively optimal to compute
(11, 11, 11) products as (12, 12, 12) products when dW (or as)
is used. By inspection of Table 5.3.9, the lemma is proved.

Note that there are two values 7, and 21 for which recurs-
ing further leads to an equally costly implementation. Thus, we could
have equivalently asserted that a multiplicatively optimal dynamic
strategy is to continue recursing on m' as long as m' is even
m'>23, or m' =11, 15 or 19. Also, by (1) in Lemma 5.3.8,

CM(ZP) is minimized for an implementation of O with m=1 .
Similarly, by considering the total arithmetic cost

function CT(m°2k) = mz((2m + 4)7k - 5°4k) , W& can prove

Lemma 5.3.10: The total number of arithmetic operations

involved in computing (u, n, n) products by O is minimized by an
implementation n §_m°2k » where m is found by iterating:
m = (n/21, ..., mog = rmi/21 until
1 m, <13,
2) m, 1is odd and m, < 33,
i i—

or 3) m, is 31 .
i
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Proof: The lemma is proved by showing that recursing

even one level obtains an improvement for m > 37 and for m = 2i ,

i >7 . Recursing two levels obtains an improvement for m = 35 and
m = 31 . For example, computing (n, n, n) products with m = 31
uses (63,426)7k - (4805)4k total arithmetics. Computing by uw
with m' = 8 , k' = k+2 wuses (62,720)7k - (5120)4k total arith-
metics, fewer for all k > 0 .

As a corollary of Lemmas 5.3.8 and 5.3.10, we have

Corollary 5.3.11: Given any integer p , aw computes

(2p, 2p, 2p) products with the fewest multiplications and fewest
total arithmetics for m =1, and m = 8 respectively.

Saving half the total arithmetics using even the best
dynamic strategy is an extremely slow process, crossing over at
approximately p = 10 for n = 2P . We can obtain a uniform lower
bound, however, on the total arithmetic cost of using Oy with the
best dynamic strategy.

Assume that n £falls somewhere in the interval between
2P_1+1 and 2P for P > 6 . There are 16 different possible choices
for m ; therefore, divide the interval into 16 sub-intervals each
of which is associated with a unique value of n obtained by recurs-

ing using best dynamic strategy. The sub-intervals, together with

associated m and k wvalues are:



2P g C<n<33nl oo PPt gy ko

2Pl 0P8 41 << 2PTL 4 9P , m=17, k=
2PL 4 9P 41 << 2P 4 P , m=9, k=
2P 4 200P75 41 < n < 2P7L 4 3.9P70 , m=19, k=
and so on, until

2Pl 4 130P70 41 <n o< 2P 4 1400P70 , m=15, k=
2Pl 4 1442P™ 41 < p o< 2P , m=8, k=

The number of total arithmetics employed is constant
throughout each sub-interval; therefore, when this number is
. . . log 7 . . .
expressed as a coefficient times =n » the coefficient will
largest at the lower end of each sub-interval (and conversely,

smallest at the upper end).

Since we are using the strategy of Lemma 5.3.10, m <

Thus, as n < m°2k increases arbitrarily, so does k . The

asymptotic cost with respect to total arithmetics of using Oy

nZCm + 475 .

log 7

The coefficient of n™ in this cost is

nZ(m + 4)757lo8 n

For example, for m = 33, and arbitrarily large n 5_111'2k , the

112

p-6

P-5>

p-4

be

33 .

is

worst
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case occurs when n = 2p_1+l s k=p-6 . Then, logn = p-1 (all
logs are to base 2): The total number of arithmetic operations used
is

332 (70)7P7®

76230 777 ;log n
- 7log n }

76230 log 7
— n

75

4.5356 n10g / , about 4,54 nl'Og 7 .

For m=19, k=p-5, n=2"1 422" 41  the coefficient of

nlOg 7 in the number of total arithmetics is
-*25&7“ "192(42)
- N = ===z = =~ 4.5368 ot about 4.54.
s 74.17

The other values of m yield coefficients of n10g / which are

smaller than 4.54. Thus, we have

Theorem 5.3.12: Using best dynamic strategy, o, can
be used recursively to multiply two matrices of order n in about
log 7 . . . .
4.54 n total arithmetic operations in the worst case.

The final result in this section is that O computes

(2, 2, 2) products in an additively optimal manner over all possible

fast algorithms.
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First, we show that o computes lefthand and righthand sides
of the multiplications in as few addition/subtraction steps as possible,

namely 8. Let K= {0, 1, -1} , Z be the integers.

‘Lemma 5.3.13: If o dis a fast, K~bilinear chain for~’.

(2,.24t2)w products withladdition-flow representation

F'=4<G1;'G21,G3> , then nadds (Gl) 24 .

Proof: Let M be the set of multiplications of o and

recall that MS is the set of multiplications in [S1] used by Og for

(2, 2, 2) products. Then, by Theorem 5.2.1, there is a transformation

TeT such that T(M) = M

-1
transformation TO = T in T such that

g Since, T is a group, there is also a

M = TO(MS) .

Thus, M = {TO(Ml), TO(MZ)’ ey TO(M7) | Mi € MS} . By the definition
of T in Section 5.2, TO preserves the type of a multiplication.
Therefore o has 1 type-2 multiplication, namely TO(Mi) , and 6

type-1 multiplications, TO(Mi) » 2<1i<7 . Also, since T is a

~ group, TO(Mi) # TO(Mj) for i# j .

Now, each T is a linear transformation. Therefore, since

L L
Ml'M]§+M4’

L
T = ToOM) + T, Q6



Similarly,
_ L L
T, (4) T, (M) - T (%)
and TO(Mi) = TO(ME) - TO(M%) i

Since TO(Mi) is a type-2 sum (T-equivalent to
is the sum or difference of 2 or 3 terms.
Suppose TO(Mg) contains 3 terms. Since

L L
TO(Ml) = TO(MB) + TO(
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L
ajy ¥ ay,), T

L L L
M4) , at least one of TO(M3) . TO(M4) must

contain at least 2 terms, i.e. at least one is a non-trivial sum.

Similarly, at least one of TO(Mg) s TO(Mg) and one of

TO(ME) . TO(M%) must be a non-trivial sum. Therefore, at least 3

L . s ;s
of the type-l1l sums in M  are distinct non-trivial sums.

Since the

. . . L .
type-2 sum is non-trivial as well, M~ contains at least 4 non~

trivial sums. By Lemma 5.3.1, mnadds (Gl) >4 .

Suppose. TOCM?) contains 2 terms. TO(Mi) can be written

in only 1 way as the sum or difference of 2 trivial sums.

at most one of the following pairs of sums,
L L
[To(M9), TH01)]
L L
L L
[T (M), Ty Q)]

can be a pair of single aij terms.

Therefore,
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Therefore at most 2 of the 6 type-1 . sums can be trivial sums.
Therefore at least 4 of the type-l1 sums are non-trivial. As well,
TO(Mi) is a non-trivial sum, and all TO(M?) are distinct by
Lemma 5.2.3.

Therefore ML contains 5 non~trivial, distinct sums. There-
fore by Lemma 5.3.1, mnadds (Gl) > 5 . Thusjfine either case,

nadds (Gl) > 4 as required.

Corollary 5.3.14: If F = <G1, G2, G3> represents a fast

K-bilinégr chain fer (2, 2, 2) products, nadds (GZ) >4 .,

" Proof: Assume nadds (Gz)ﬁ}. Since F represents a
X T _ 4 I AT

fast (2, 2, 2) algorithm, by Lemma 4.3.1 F = <G2, Gl’ G3> does
as well. But nadds (Gg) = nadds (GZ) < 3 , contradicting

Lemma 5.3.13. Therefore nadds (GZ) > 4 as required.
By inspection of the proof of Lemma 5.3.13 and by consider-
ing a transposed representation noting that reversing matrix indices

does not affect the number of distinct non-trivial sums, we have

"Corollary 5.3.15: If F= <Gl’ G2, G3> represents a fast

K-bilinieaw ‘¢lpain o, for (2, 2, 2) products, nadds (Gl) = nadds (G2)

= 4 only if the type-2 multiplication of o is the product of a sum

involving exactly 3 34 terms and a sum involving exactly 3 bi

J
terms.
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Thus, dw forms lefthand and righthand factors of its 7 mul-
tiplications in an additive optimal manner over-all possible sets of 7
multiplications, meeting the lower bound of 8 addition/subtraction
steps given by Lemma 5.3.13 and Corollary 5.3.14. We can easily show
now that Opr combines the multiplications in MW to form the

product elements yij » 1 <1i,j <2, in an additively optimal way
over all .Ksbilineat: .chains for (2, 2, 2) products. In other words,

MW is as good as any set of 7 multiplications for (2, 2, 2)

computations.

Lemma '5.3.16: If F = <Gl, G2’ G,> represents a fast K-bi-

3
linear chain.for (242,2) products, then nadds Gy) > 7.

Proof: Consider the symmetric representation

T D D

F* = <Gl, G3, G2> to F . F* represents a fast algorithm for

(2, 2, 2) products by Lemma 4.2.3. Therefore, by Corollary 5.3.14,

nadds (Gg) > 4 . However, by Lemma 4.1.5.

D
nadds (G;) = |I'G3| - |VG3| + |s3|

S Tegl - [ve,] + [sg] > 4

(|I'G3

= |veg| + [Rg1) + |sg] > 4 + IRg| .

Now, |TG3| - IVG3| + |R3| = nadds (G3) by Lemma 4.1.5, and for fast

(2, 2, 2) products, R3 =7, S3 =4 ,
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.. nadds (G3) +4>4F7. e nadds (G3) > 7 as required.

Thus, from the above and Corollary 5.2.25 we have

Corollary 5.3.17: Any fast Z-bilinear chain to- compute

(2, 2, 2) products must use at least 15 addition/subtraction steps,
or employing our notation, 6212, 2,2,7) >15 .

Since o, meets this lower bound on additions/subtractions,
O is an additively optimal fast algorithm for (2, 2, 2) products.

Combining Corollaries 5.3.5 and 5.3.17, we have the main result.

Theorem 5.3.18: A @, 2,2,7) =15, i.e. 15 addi-

tions and subtractions are necessary and sufficient to compute the _:
product of matrices of order 2 using no more than 7 multiplications.

Thus, as an immediate corollary, we have

Corollary 5.3.19: The obvious way of computing

(2, 2, 2) products (8 multiplications, 4 additioms) is optimal with
respect to total arithmetics.

Of course, this does not hold for (n, n, n) products;
the obvious method uses 2n3 - n2 total arithmetics, whereas by
Lemma 5.3.6, 4'57n2'82 total arithmetic operations suffice.

The additive complexity of the more general problem of
computing (m, 2, n) products by Z-bilinear chains-is an. open problem,
as is the additive complexity of fast (2, 2, 2) computations by

algorithms in NC .
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As a final application of the addition flow representation
model, note that the standard algorithm for each of the five repre-
sentations derivable from FW is an additively optimal fast algorithm
for (2, 2, 2) products. As well, we can employ the model and apply
the results in Section 5.2 to characterize all additively optimal
fast (2, 2, 2) algorithms. We do not include the arguments

involved, since they involve tedious case by case analysis.

Recall that by Corollary 5.3315, any additively optimal
algorithm contains exactly 1 multiplication which is the product of
a sum of 3 aij terms and a sum of 3 bij terms. We can also show
that exactly 2 multiplications must be trivial products, one non-
trivial multiplication must have a trivial lefthand factor, one non~-
trivial multiplication must have a trivial righthand factor, and so
on, Similarly, by considering symmetric representations, we can
characterize the manner in which additively optimal fast algorithms
combine their multiplications to form the product elements. A

generalization of the method may be useful for more general problems.
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FINAL OBSERVATIONS

In this final chapter, we observe that changes in the number
of input parameters for matriﬁ multiplication do not necessarily
affect the multiplicative complexity of the problem, and show that
fixing the number of inputs and at the same time increasing the size
of the product of the three dimensions causes a strict increase in
complexity. The second section introduces the topic of linear
algorithms and modifies the definition of addition flow graph (c.f.
Section 4.1) to obtain a useful model for the computation of linear
forms by such algorithms. In the last section, we attempt to define
the relationship between the number of multiplications employed and
additive complexity. As well, the additive complexity of fast

computations of (3, 2, 3) and (3, 3, 3) products is investigated.

6.1 Multiplicative Complexity: The Number of Tnputs

Some simple problems in analysis of algorithms such as
polynomial evaluation [Bl] have been shown to have multiplicative
complexity linear or at least less than quadratic in the number of
input parameters of the problem. This is likely to be dependent on
the linear format of these problems. The number of inputs in

(m, n, p) matrix product computations is n(m + p) ; a natural
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question is whether the multiplicative complexity of matrix multipli-
cation is a linear function of this number.
The best lower bound known (Theorem 1.2.4) for (m, n, p)

products namely,
"a(m+p) +mp - (m+n+p)+1

is essentially of this form. By Remark 3.2.4, and the multiplicative
symmetry theorem (2.3.4), we know that the multiplicative complexity
of problems with n(m + p) , m(n + p) , and p(m + n) inputs is
identical. Thus, rather than fixing the dimension product as in
Section 3.3, we may fix the number of inputs to a matrix multiplication
problem and study the effect on multiplicative complexity of varying
the product of the dimensions.

First, recall the well-known technique of block multiplica-

tion of matrices.
Lemma 6.1.1: CZ?l(klm, kzn, k3p) 5_k1k2k367ﬂjm, n, p) .

Proof: First, we show that C?ﬂlm, kn, p) f_kaﬁtm, n, p).
Given matrices Akan’ BknxP ,ﬁ;gt; CQ be the submatrix of A given
by
for 1< £ <k.

‘i3 T %i,n@-1)+

Similarly, let Dl be given by
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15 = Pn(i-1)+i,]

Then, compute A*B as
k

) C,D
g1 AR

using kM(m, n, p) multiplications. Thus, ‘7ﬂjklm, kzn, k3P).i
kSl m, o, kyp) . But, by Theorem 2.3.4, ’M(klm, n, kyp) =
57ﬂ5n, klm, k3p) . Therefore by performing block multiplication, we

have

A\ (eym, kyn, kep) < kkI(m, m, kyp)

kyk M (m, n, kyp)

Repeating the above, 57n§klm, kzn, k3p) 5_k1k2k§4ﬂpn,rh p) as

required.

For example, as a corollary of Theorem 1.1.5 and the above

lemma, we have

Corollary 6.1.2: Ff\a, 2n, p) < n|pmt max {m, p}
2

Now, consider (km, n, kp) and (m, kn, p) products.
Clearly each involves the same number of inputs, namely kn(m + p) ,
although the dimension products kzmnp ,» kimp differ (we assume

k > 2) . We have
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Lemma 6.1.3: m(km, n, kp) >m(m, kn, p) for all

k>2 and k>n.

‘Proof: Assume n =1 . Then, by Theorems 1.1.2 and
2.3.4, dﬂ((km, 1, kp) = kzmp . By Lemma 6.1.1, m(m, k1, p) <
kéhl(m, 1, p) = kmp . Thus, the result holds for n =1 and all
k>2.,

Assume n > 2 . Then, by Theorem 1.2.4,
q'ft(km, n, kp) > kzmp + kn(m+p) ~k(m+p) ~n+1

For k>n , this is ~ > knmp + k(n - 1)(m+ p) - n + 1

-~ > knmp

But, by Lemma 6.1.1, ’}71(m, kn, p) < kﬁ?\(m, n, p) < kmp . Thus,
”ﬁl(km, n, kp) > ah’[(m, kn, p) for all k >n > 2 .

This restriction, k > n , is very undesirable, since it
seems likely that it is necessary only that k > 2 to obtain this
strict increase in multiplicative complexity. However, the restric
restriction was necessitated by the lack of a better lower bound

than Theorem 1.2.4.
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Morgenstern [M1, M2, M3]; Kirkpatrick [K1], and others have
studied the problem of computing various sets of sums using algorithms
which employ only addition, subtraction, and multiplication by a
constant. In this section we present examples which indicate that
addition flow graphs are useful for studying the complexity of a
small subclass of such computations.

| Recall the definition in Section 5.3 of a sum S as an

n
expression ) c;X; where the xi’s are indeterminates and the ci’s
i=1

are non-zero constants.

Then, a linear form £ is a set of distinct, non-trivial
sums (this definition is somewhat anomalous - c.f. 5.3 for the
definition of "distinct, non-trivial" sums). The class of linear forms

of n sums in m indeterminates is denoted Lm .
H

For example, in the computation of (2, 2, 2) products by

Strassen's algorithm, if MS =‘{Ml, M2, ey M7} is regarded as a-set

of indeterminates, then a, computes the linear form

S

QS = {(Ml + M4 - M5 + M7), (M3 + MS)’ (M2 + M4), (Ml + M

of 4 sums in 8 addition/subtraction steps. Here, &

3~ My + M)}

s € L74

Algorithms which employ only addition, subtraction, and
multiplication by a constant to compute linear forms will be referred

to as linear algorithms.

Clearly, given a linear form & , we can analyze a linear

algorithm o for computing £ by studying its corresponding addition
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flow graph Ga , since linear algorithms correspond exactly to non-
multiplication stages of matrix multiplication algorithms. Thus we

can define: the restricted addition flow graph, denoted Gd , of a

linear algorithm d which computes a linear form £ ¢ L 0 is the
directed acyclic graph defined as for addition flow representations
(cf. Section 4.1). The m source vertices represent the m inde-
terminates, the n sink vertices represent the sums in % , and
intermediate vertices represent intermediate calculations by o (as
in addition flow representations). Since this model is a submodel of
addition representations, we can restrict our study of the additive
complexity of linear forms to the study of restricted addition flow
graphs.

The additive complexity of a linear form £ , denoted
6212) » 1s the fewest number of addition and subtraction steps which
can be used by a linear algorithm to compute £ . Thus, by Lemma
5.3.2, for example, CL(QS) =8 .

Note that the flow graphs defined in Chapter 4 are not
necessarily restricted addition flow graphs. Since linear forms
contain no trivial sums by definition, each sink vertex of a flow
graph for computing any linear form must be connected to at least one
vertex (possibly itself) which has invalence greater than one. Thus,

for example, @l in section 4.1 is a flow graph which is not a

restricted flow graph.
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If o 1is a linear algorithm for computing £ € Lm,n , let
Ga be the restricted addition flow graph for d . By the same
reasoning as above, GZ (the directional dual of Ga) will be a
restricted addition flow graph only if the sink set of Gg contains
no vertices connected only to vertices with invalence less than 2 ,
i.e. only if the source set Ru of Ga contains no vertices which
are connected only to vertices with outvalence less than 2.

Accordingly, define Gg to be GD with such vertices and
all edges adjacent to those vertices removed. Then, Gg represents

the computation of a set of nommtrivial sums. ‘However,:since these

sums are not necessarily distinct, Ga may not be a restricted
addition flow graph.

Therefore, given Ga » let C be its (n X m) connection
matrix. Let C be C with all columns which contain only 1 non-zero
element removed. Then, C*% = (E)T and the number of distinct,
non-trivial sums represented by G§ is

P = the number of pairwise distinct rows of C*
= the number of pairwise distinct columns of C .
Thus, Gg represents a computation of a linear form, denoted &%

H

such that % ¢ Ln .

oP
To illustrate the approach, consider the following flow

~ graph G3 of the addition representation F

W for % glven in

Section 5.3.
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22

Y11 Y12 I21

Clearly, G3 represents the computation of the linear form RW

consisting of the 4 distinct, non-trivial sums labelled Y110 Y190
Y915 Yoo of the 7 indeterminates labelled Ml’ Mz, seey M7 . Or,
we could write zw = {(M3 - M), (Ml - M, + M+ M6), (Ml--Mz-l-M4 —M7),

- M, + M, + M5)} - Since My , M, , M, in Ry are comnected

only to vertices with outvalence < 1 , they will not appear in Gg

given below.
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Then, lﬁ

= {(72 + y3 + Y4), (-Yl - YZ - Y3 - Y4)s (Y3 + Y4), (YZ + Y4)}

By analogy to results in Chapters 4 and 5, we have

Lemma 6.2.1: If o computes 2 € Lm n and has
3

restricted addition flow graph Ga , then nadds (Gd) is minimum

if and only if  nadds (Gg)& is minimum (c.f. Lemma 5.3.2).

Corollary 6.2.2: If 2 ¢ L then
m,n

QLo = () +n -n .
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Proof: Let o be an optimal linear algorithm for

computing & . Let G be the restricted flow graph of a . Then,

CZ(%) = nadds (d) = nadds (G) = |TG| - |vG| + |R| . By Lemma 6.2.1,
Q%) = nadds (G*)

= rex| - [ver| + ||
= It6| - |ve| + [R| + [s] - |R]
= nadds (G) + |s| - |R]

since % € L . = (W) +n-n as required.

m,n
Corollary 6.2.3: L e L and 2* ¢ L implies
m,n n,p

(&) > m+p-n

Proof: By Lemma 5.3.1 and the definition of a linear

form,

Aex > p .

AG*) +m-n

L]

By Corollary 6.2.2, CZ(R)

" >2m+p-n .

In other words, at least whp-n addition/subtraction steps
are required to compute a set of n non-trivial distinct sums from
m indeterminates, where p . is the nulbet 6f distinct columns Ta-the

modified connection matrix C . For example, QS is a set of 4 sums
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of 7 indeterminates. The ‘corresponding € has '5 -distinct
columns; thus, zéke;L4,5' By Corollary 6.2.3, 62(28) >7+5~-4=238,
Since Og uses only 8 additions/subtractions, (ZZQS) = 8 , Similarly,
for Qlw,m=7,n=4,but p=4.Therefore,a(2,w)_>_7+4—4
= 7 . Since dw achieves this lower bound, (jl(%w) = 7.

Thus, this trivial lower bound is quite sufficient for
treating some simple linear forms. For larger forms, in particular
for forms for which n > m , the bound is useless. Of course, in the
special case of computing product matrix elements from a set of t
multiplications, the number of multiplications will always be larger
than the number of elements of the product matrix by Theorem 1.2.4.
Hence, we can apply Corollary 6.2.3 to the last stage in the compu-

tation of matrix products. This is attempted in the next section.
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6.3 An Additive/Multiplicative Complexity ""Trade-off"

Until Strassen [S1] discovered a means to multiply nxn
matrices in asymptotically less than n3 total arithmetic operations,
many researchers thought that the total arithmetic cost was invariant,
and in fact was O(n3) . Thus, a saving in multiplicative cost
achieved by an algorithm such as Winograd's [W2] "inner-product"
algorithm, would be offset by a proportionate (and usually greater)
increase in additive cost. Then, the classical algorithm, which
employs 2n3—n2 total operations, would be essentially optimal with
respect to total arithmetics.

Of course, this is not the case, since using a Strassen -

log 7

1ike implementation of Oy We need only 4.57 n total arithme-

tics by Lemma 5.3.6, and by a dynamic implementation strategy, only

4.54 o087

(Corollary 5.3.12).

By Lemma 5.3.10, the total number of arithmetic operations
is lesswhen recursively employing o tham.when employing the classical
method to multiply two matrices of order n for all n > 35, n = 31,

or n even and n > 14 . To see this, set m=n , k = 0 . Then,

the total arithmetic cost of using O with this implementation is

n? (Q2m + 4)7° - 5.45)

=n’@n-1) ,

the cost of computing (n, n, n) products with the classical algori-

thm.
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For example, the total arithmetics used by a classical

scheme to multiply two 14X14 matrices is (n = 14)
n2(2n - 1) = 5292 total arithmetic operations.

By Lemma 5.3.6, employing Oy with m=7, k=1 costs

m2((2m + 4)7k - 5.4k) = 5194 total arithmetics.

Thus, even for matrices as small as 14x14 , total arithmetic cost
is not independent of the number of multiplications used, but can
actually be reduced by decreasing multiplicative cost.

Of course, recursively implementing O costs asymptotical-

ly fewer arithmetic operations (4.54 n2'8

) than the number of addi-
tion operations alone (n3 - nz) used by the classical method to
compute (n, n, n) products. Thus, from some value of n onwards,
a reduction in multiplication costs achieved by a recursive implemen-
tation of an algorithm (here, aw) will result in a concomitant
saving in additive cost. 1In fact, the classical algorithm uses no
more additions/subtractions than an implementation of aw for
n<24,0r n odd and n < 45 . Thus, for these "small" computa-
tions a complexity trade-off may: exist between multiplicative and
additive complexity.

To give the simplest example, 6212, 2, 2, 8) = 4 whereas
({2, 2, 2, 7) = 15 by Theorem 5.3.18.

The best . lower bound known on the number of additions/

subtractions required by algorithms to compute (m, n, p) products



133

using any number of multiplications was proved by Kirkpatrick [K1]

using independence arguments and, as stated in Section 1.2, is

m+p-@-1) . @
When m=p =n , this bound becomes
2
2n” - 3n + 1 . (2)

In the remainder of this section we consider the multipli-
cative/additive trade-off involved in computing (3, 2, 3) and
(3, 3, 3) products by known bilinear algonithms,

The classical costs of computing these products are 18
multiplications and 9 additions/subtractions for (3, 2, 3) products
and 27 multiplications and 18 additions/subtractions for (3, 3, 3)
products. Hopcroft and Kerr [H1] give the following algorithm, O
which computes (3, 2, 3) products using 15 multiplications and 43

additions/subtractions and they show that

q is multiplicatively

optimal. The 15 multiplication steps of 0y are

M (apy - oAby Mg (agy = ag))byg

My apy(byy +byy) My (agy a0 (byy +byy + by +byy)
My ay;byy Mg (ay; + a5y = ap5)(byy +byy +by)
M, ayoby, My (agy +ay; = a;) = ayy)(byy + b))
Mg agy(byg +Dyq) Mo (ayp * a3y (byy +byy + byg +by5)
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M1 (ayp + agy = ag)(byy + byg 4 byy)
M5 (ay + agy = ay = ay) by +by)
M3 (a1 + agy) (byy - by3)
My (agp tagy)(byy +byy)
Mg ()7 + a3 gy +by9)

Denote by M, the set .{Ml’ M,, } . The first

LN Mls
stage of Opr s forming M; » and the second stage, forming Mﬁ , each
require and can be done in 11 addition/subtraction steps. The

computation of the yij , where 1 < 1i,j < 3, from the multiplications

in Mﬁ , may be thought of as the computation of a linear form

P
I}

H {(Ml + Mz)’ ('Ml - MA + M8 + M9)’ ('Mz - M6 + M13 - Mla)’
(-M2 - M3 + M7 - M8), (M3 + M4), (-M4 - M5 + Mlo - Mll),

(M =My - Mg+ M), (M - Mg+ My - ML), (Mg + M)}

= {yy15 v215 Y315 Y10 T9os Y3 Y135 Y30 Y33

Since QH contains 9 sums in 15 "indeterminates", and ‘C
contains)Pedistinet column, by Cowmollary 6.2.3, " - ,
CZ(QH) >15+ % -9 =15
Since 21 additions/subtractions are used, we cannot be sure

whether Oy is additively optimal even for the above choice of

multiplications, although the above argument proves
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Lemma 6.3.1: AG, 2, 3, M) > 37 .

0f course, there is likely a better choice of multiplications
than M; for computing (3, 2, 3) products. By (1),
61(3, 2, 3, t) > 5 where t 1is any positive integer. If we set
t =‘7ﬂ13, 2, 3) = 15, then it is obvious that some multiplications
in an additively optimal 15-multiplication algorithm must appear in
more than one of the 9 sums. In fact, the reader can show that at
least 3 multiplications must contribute to more than one sum. Thus,

the final stage of an optimal (3, 2, 3) computation involves at

least

iI5+43-9=09 addition/subtraction steps.

Since additions/subtractions are employed as well to form
some lefthand and righthand factors of the multiplications in a

multiplicatively optimal algorithm, we conjecture
e, 2, 3, 15) > 33 .

The value of 62(3, 2, 3, Mﬁ) and CZKB, 2, 3, 15) are
interesting open problems.

Now, consider (3, 3, 3) products. The bound (2) gives
10 addition/subtraction steps as a lower bound on 6213, 3, 3, t)
for any t .

Let M be the set of multiplications used in Method 1 in

Section 2.1 to compute (3, 3, 3) products. Then, noting that 9
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additions/subtractions are necessary to add the elements of the inter-

mediate 3X3 matrices in method 1, we have

‘Remark 6.3.2: @G, 3, 3, M

]

QaaG, 2, 3, ¥

+3, 1, 3) +9

" >37+ 0+ 9 =46,

There likely are additively better 24-multiplication
algorithms for (3, 3, 3) products, although 62(3, 3, 3, 24) is
unknown. If we let t = ‘7ﬂﬂ3, 3, 3) , then the values of t , and
CZ(3, 3, 3, t) are open problems.

We can apply our knowledge of addition flow representations
(c.f. Chapters IV and V) to specifically attackl the complexity of
(n, n, n) products as follows. Recall in Section 5.3, that
CZ(Z, 2, 2; 7) was achieved when an algorithm dw was found with
addition flow representation Fw = <G1, GZ’ G,> where G3 was given

3

in Section 6.2 and Gl’ G2 can easily be drawn. The "nice" feature

of FW is that

nadds (Gl) = nadds (GZ) = nadds (Gg) .
so that whatever sequence of operations *, T on representations

were applied to Fw » the resulting representation F had the

property that nadds (F) = nadds (Fw) . Accordingly, we make
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" Conjecture 6.3.3: Given an algorithm o which computes

(n, n, n) products in t .multiplications, such that F = <Gl, GZ’ G3>,

CZ(n, n, n, t) = nadds (o) dimplies

nadds (Gl) = nadds (G2) = nadds (Gg) .
Note that the converse does not hold; FS is a suitable counter example.
If this conjecture is -valid, we have c2itab
Conjectured Corollary 6.3.4: A @, o, n, t) >

4t - 3t, - n2 where t

1 1 is the number of multiplications which ¢

contribute to the computation of exactly one product element.

Proof: Assume o 1is an additively optimal algorithm
over all algorithms which compute (n, n, n) products in t multi-
plication steps. Let F = <G1, G2, G3> be the addition flow

representation of o . Then, by Corollary 6.2.3,

2 .
nadds (G3) >t+t- t1 - [S3| = 2t - t1 ~n where tl is the sume of

the' number of columns in the ¥omnection matrix -€ -containing only one

FaY

non-zero entry, and the number of redundant (non-distinct) columns in C.

nadds (G;) = nadds (G,) = nadds (G];)
= nadds (G;) + |s3| - |R3|
> 22t--"t, - n2 + n2 -t
2 1
= t-t
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Therefore
nadds (o) = mnadds (Fd)
3
= . z nadds (G.)
.- 1
i=1
> t-t, +t-t, +2t -t —n2
- 1 1 1
2 .
= 4t -~ 3tl -n as required,

If true, Corollary 6.3.4 implies that an asymptotic lower
bound on additions/subtractions is the number of multiplications

employed. For example, if we use all n3 multiplications of the

classical method to compute (n, n, n) products, set t = t, = n3 .

1
Then, by Corollary 6.3.4, CZjn, n, n, n3) > 4t - 3tl - n2 = n3 - n2

as eﬁpected. Compare lower bound (2) which essentially states that
the asymptotic additive complexity is bounded below by 2n2 . By
Theorem 1.2.4, %(n, n, n) > 3n2 -3n+1. Let t =9h’L(n, n, n) .
Then, Corollary 6.3.4 yields Cl(n, n, n, t) >t k$3n2 , which would
be an improvement on (2). Unlike (2), as well, Corollary 6.3.4
bounds the additive complexity of small computations when only fast
algorithms are employed.

If we reconsider (3, 3, 3) computations, we know that

19<t =‘ﬁﬂ(3, 3, 3) £ 24 . Then, estimating that t, < 8 , we can

1 —

conjecture, using Corollary 6.3.4, that
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(L3, 3, 3, t) > 4t - 3t; - 3%

> 419 - 3.8 - 9

= 43

In any case, the above observations suggest that additive
complexity depends on the number ofmmultiplications used. This
dependence is much more pronounced for small matrix multiplication
problems. Thus, we suggest the term "additive complexity of matrix
multiplication", especially when applied to small matrix products,
must be qualified by one of the following phrases:

1) ‘"with respect to the set M of multiplications",

or 2) "with respect to any set of t multiplications".
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