On the Cuthill-McKee Algorithm
for Ordering Sparse Symmetric Matrices*

by
Wai-Hung Liu

Research Report CS-73-26
October 1973

Department of Applied Analysis & Computer Science
University of Waterloo
Waterloo, Ontario, Canada

* Work supported in part by a University of Waterloo Graduate

Bursary



ABSTRACT

In this paper we examine the popular Cuthill-McKee algorithm
for ordering sparse positive definite matrices. For a given matrix A,
this algorithm is designed to produce a permutation matrix P such that
AC = PAPT has a small bandwidth. If we exploit zeros to the left of the
first nonzero in each row of A, it has been observed that reversing the
ordering produced by the Cuthill-McKee algorithm is often very much better
than the original ordering. We prove that in general this reversed order-
ing is always at least as good as the original one in terms of storage and

operation count. Some numerical experiments are included.



1. Introduction

Consider the N by N sparse linear algebraic system

Ax = b (1.1)

where A is symmetric and positive definite. To solve (1:1), we may factor
A into the product LBLT, where L is unit lower triangular and D is a positive
diagonal matrix, and we then solve fy =b, Dz = y, and th = Z.

Let P be any permutation matrix. The permuted Tinear system

PAPY (Px) = Pb ' (1.2)

remains sparse, symmetric and positive definite. It is well known that
PAPT possesses a triangular factorization LDLT and the factorization is
numerically stable [8]. Thus, we might solve (1.2) rather than (1.1).
In this case, the relevant factors are L and D. It is well known that an
appropriate choice of P can result in a significant reduction on the amount
of storage and arithmetic operations required for its direct solution. This
remark assumes that some form of compact and efficient storage scheme is
used so that some of the zeros in A and L can be exploited.

A popular ordering strategy is the Cuthill-McKee algorithm [2].
Its primary aim is to produce a permutation matrix P for which

A = papT

has a small bandwidth. Following [2], we define the bandwidth of a symmetric

matrix M by

m = max{|i=j|: Mij # 0} (1.3)



Although orderings which minimize the bandwidth are often far from optimal
in the least-computation and/or least-fill sense, they lend themselves well
to convenient and efficient data management. |

In this paper, we present a detailed analysis of this widely
used Cuthill-McKee algorithm (CM) and its reversed scheme (RCM). We give,
in Section 3, the exact storage requirement and arithmetic operations
required to factor AC in terms of its profile structure. If we exploit zeros
to the left of the first nonzero in each row of the coefficient matrix, it
has been observed that reversing the ordering producéd by the CM algorithm
is, in certain applications, very much better than the original ordering.
See George [3] and Cuthill [1]. In Section 4, we prove that in general
this reversed ordering is always at least as good as the original one. For
certain classes of problems arising in the application of the finite
element method, we present bounds for the improvement. Some numerical
experiments are included. We discuss aspects of implementation in Section 5.

Section 6 contains our concluding remarks.



2. Some definitions

In this section, we introduce some definitions, notations and
simple results which are useful in subsequent sections.

Let A be a given matrix. Let

fi(A) = min{leij #0} , 1=1,2,...,N, (2.1)

that is, the column subscript of the first nonzero component in the i-th

+

row of A, We then define the envelope’ of A, where A is symmetric or lower

triangular, by

Env(A) = {(1,3)[F,(A) < § < i} (2.2)
and also the quantities
B.(A) = i-f.(A), i =1,...,N. (2.3)
It is useful to introduce the quantities

.

1(A) = [{k]k > i and A, # 0 for some & < i}, i =1,...,N. (2.4)

The number “i(A) is simply the number of "active" rows at the i-th step
of factorization; that is, the number of rows in the envelope of A, which

intersect column i. The following observation is due to George [4].

T 1t is slightly different from the definition given in [5], where the- envelope
for a general unsymmetric matrix is defined to be Env(A) u Env(Al).



Lemma 2.1
If the symmetric factorization of matrix A requires 6(A) multi-

plicative operations, then
]
‘2‘ Z M (A)+3].

Furthermore, it is an equality if A is assumed to have a full envelope.

It is easy to express the size of the envelope in terms of B; and

..I.

Hi o

; In fact, we have [1]:

|Env(A)| = ~+(2.5)

ne~1=2
™
+
=
"
N~
=
+
=

j=1 ] i

We remark here that the bandwidth defined in (1.3) is exactly the quantity

max B, while the number max u, is usually referred to as the wavefront or
; waverront

i
frontwidth of matrix A [4].

Assuming that A has the symmetric factorization LDLT, it is natural

to define

FiTd(A) = {(i,3)[A;5 = 0, Ly # O3 (2.6)

Since Fild(A) < Env(A) (see [5]), the main storage requirement to keep all
the nonzero entries of L is always less than or equal to |Env(A)|. In

general, zeros within the envelope may also be exploited.

U When the matrix A under consideration is clear from the context, we denote
by B; and u; the quantities Bi(A) and “1(A) respectively.



-5 -

To facilitate the discussion of ordering algorithms, we define

the symmetric graph G(A) = (X(A), E(A)) associated with the symmetric matrix

A. Here X(A) = {X .,XN} is the set of vertices, labelled as implied by Aj;

-I,-o
and E(A) is the set of edges where {xi,xj} e E(A) if and only if Aij # 0,
i > j. For any permutation matrix P, the graphs G(A) and G(PAPT) are structurally

identical, but the node Tabels in G(PAPT) have been permutéd according to P.



3. The Cuthill-McKee algorithm

The algorithm proposed by Cuthill and McKee [2] involves a direct
and fast method most easily described in terms of labelling the graph

structure associated with the matrix A, (that is, the unlabelled graph of

Step O Choose a starting node and relabel it 1.

Step 1 Let Q = {nodes which have been numbered but are connected to
olep [
unnumbered nodes}
= {X . 0X see.sX }
q] (]2 qu|
where node xq is numbered 9; in the CM ordering and .. =
i
9y <Gy < .un < qIQI' Number the neighbours of xq in order of

1
increasing degree, counting only those connections with unnumbered

vertices, then followed by the neighbours of x_ and so on.

9
Stop whenever all nodes have been numbered.

Step 2 Go to Step 1.

As remarked in [2], the Cuthill-McKee numbering scheme corresponds

T of the graph G(A) in a Tevel-by-level

to the generation of a spanning tree
fashion. In the case when G(A) has more than one connected component, the
process can be continued by selecting a new and unlabelled node to start a

new component. Henceforth, we assume that G(A) is connected, or equivalently

T A tree is a connected graph with N nodes and N-1 edges. A spanning tree
of the graph G is a subgraph of G, which is a tree and contains all N
nodes.




that the matrix A is irreducible. However, the results hold in the general
case.
We begin by showing that Aa satisfies the following monotone

profile property which is essential in subsequent discussions:

Lemma 3.1
Let Ac be the matrix ordered by the Cuthill-McKee algorithm. If
J <k, then fj < fk'
Proof It follows from the property of the Cuthill-McKee algorithm
that if fk < fj, then the node with Tabel k should be numbered before the
one with j.
Consider the storage requirement in factoring AC' The following
| theorem is a restatement, in our notation, of results in [5].
Theorem 3.2
Let A = LDL' with f,(A) < i. Then Env(L) is full.
It is straightforward to see that AC satisfies the hypothesis
of theorem 3.2, for if there is a row in AC with fi = i, the monotone profile

property of AC would imply that AC is reducible, a contradiction to our

assumption. The following corollaries are immediate.

Corollary 3.3

Let AC be factored into LDLT. The number of nonzero entries in L

is exactly |Env(AC)|.

Corollary 3.4

Let AC be factored into LDLT. The forward and backward solving

can be done in 2-|Env(AC)| - N arithmetic operations.



We now turn to the problem of estimating the amount of arithmetic
required for the symmetric factorization of the profile-orjented matrix AC'
The process can be defined by the following equations, for i = 1,...,N,

i-1

d.. = a,, - ) ai L (3.1a)
ii i1 =7 ik™ik

i (3.1b)
al. =a.., - ali R s J= foseensi-l 3.1b
1 1J k=max{f1,fj} ik"jk !
gij = aij/djj . j= fi""’1'1 (3.1¢)

It should be clear that (3.1) is simply a variant form of the conventional
defining equations for the Cholesky decomposition of symmetric matrices
(Martin, Peters, and Wilkinson [7]). Here in (3.1), zeros to the left of
the first nonzero in each row are exploited. In view of the monotone
profile property of AC’ (3.1b) can be rewritten in a more simplified form

as:

Jj-1
ajy = 85 - sz.a1k2jk’ Jo= fiail. (3.1b)

Recalling that B; = i—fi, we have the following theorem.

Theorem 3.5

The symmetric factorization of the matrix AC requires

N
) 61(61+3) arithmetic operations.
i=2

N —

e(AC) =



‘Proof From (3.1a) and theorem 3.2, we observe that a%j are all nonzero
at positions within the envelope of AC' Thus the products a%kzik and

a%kzjk appeared in (3.1a) and (3.1b)' respectively involve nonzero operands.
In performing the i-th step defined by (3.1a), (3.1b)' and (3.1a), it is

clear that:

a) to compute dii’ we need i-fi mul tiplicative operations;

b) for j = fi,...,i-l, a%j requires j-]-fi operations, making a
total of
ic] 1 o vys
L J--I-f_i = §(1_fi)(1-f1-3);
j=f.

i
c) to compute zij (3 = fi,...,i-l), we use i-f, operations.

Hence, for the i-th step, the number of arithmetic operations required is

M-, (1-,43) = 26, (8. +3).
1 N
Summing up, we can perform the decomposition process in 5 Y 81(81+3)
i=2

operations, since B] = 0.
It should be noted that for a general profile-oriented matrix,

%-'EZ 81(81+3) is an upperbound on the total arithmetic required for its
tr};ngu]ar factorization. Often, this turns out to be an over-estimate.
Only for monotone profile matrices whose triangular factors have full
envelopes is the operation count in theorem 3.5 achieved. As an immediate

corollary of this observation, we have the well-known result for band

matrices (Wilkinson [8]).



- 10 -

Corollary 3.6

The number of operations required for the symmetric factorization

of a band matrix with bandwidth m is bounded by %m(m+3)N.

Proof Set each Bi = m.



- 11 -

4, The Reversed Cuthill-McKee Ordering

In his study of profile methods, George [3] discovered the reversed
Cuthill-McKee algorithm which renumbersthe CM ordering in the reversed way.
Surprisingly, this simple modification often turns out to be superior to the
original one in several aspects, although the bandwidth remains unchanged.
The general superior performance of the reversed algorithm has been reported
in the thesis of George [3] and in the survey paper by Cuthill [1]. In this
section, we shall show that in general the reversed scheme is always at
least as good, as far as storage and operation counts are concerned.

As before, we denote by AC the matrix ordered by the Cuthill-

McKee algorithm. Let AR be the one obtained by reversing the ordering.

It is easy to see that

= PAP

A c

R

where

It is helpful to consider the labelled symmetric graphs

G(AC) = (X(AC),E(AC)) and G(AR) = (X(AR),E(AR)) associated with matrices Ac

and AR respectively. Let
X(AC) = {x],xz,...,xN}

and X(AR) = {,y] APEEER "yN}



-12 -

where X is numbered i in the Cuthill-McKee ordering and yj is the j-th
node in the reversed algorithm. G(AC) and G(AR) are identical structurally,

and X; and Yyoj+71 represent the same node in the underlying unlabelled

graph.
Lemma 4.1
If i <j <k and (AC)ki # 0, then there exists an r < i such
that (AC)jr # 0.
Proof Choose r = fj(AC)' Then nodes xj and X, are connected, and it

follows from the moncotone envelope property of AC that

r = fj(AC) < fk(AC) < i

The following result is central to much of the subsequent analysis
in this section.
Lemma 4.2

Let A. and AR be defined as above. For j = 1,...,N,

C

uN-j'ﬂ (AR) < BJ (Ac)-

Proof From the definitions in (2.3) and (2.4), it is sufficient to show
that if (AR)N~1+1,N—j+1 lies within the envelope of row N-i+1 in A, where
N-i+1 > N-j+1 (that is, N-i+1 is an active row during the (N-j+1)-st
step of factorization), then the entry (AC)j ; satisfies the relation
'FJ.(AC) < i < j.

For this (AR)N-1+1,N-j+1’ we can always find a variable YN-k+1

such that



-13 -

N-k+1 < N-j+1 < N-i+]
and
(ARdNoi+1 Noke 7 O

N-j+1

1
|
|
|
|
\
-

N-i+1 | ==g-

\
]
N-k+1

This means that we have a k such that
i<js<k
and

(Ac)i,i = ARNCieq Noker 2 O

By lemma 4.2, there exists a node Xy in G(AC) with the properties:

r <i < jand (AC)j,r # 0.

P Y )

(9]

§ pmge-e
\

\
N
r

Hence the corresponding entry (AC)j ; lies within the envelope of AC'
The result then follows.



- 14 -

We are now at a position to compare the general performance
of the Cuthill-McKee and its reversed algorithms in theoretical terms.
Theorem 4.3

|Env(AR)] < |Env( C)|‘

Proof Use lEnv(AR)| =
1

and |Env(Ac) |

NE~12 = 2
-
. —v
]
I=
]
g
+
=

—le

and apply lemma 4.2.

Theorem 4.4

|F111(AR)| < IFi]](AC)|.
Proof Let n(A) be the number of nonzeros in the Tower triangle of the
original matrix A. The symmetric factorization of AC yields a full
envelope, so that IFi]I(AC)| = |Env(AC)| - n(A). On the other hand, we have
|F111(AR)! < |Env(AR)| - n(A). Together with theorem 4.3, we obtain the

desired result.

Theorem 4.5
e(AR) < e(AC).
Proof On combining lemma 2.1, lemma 4.2, and theorem 3.5, we have
]N-l
e(AR) £ ?kz_l Uk(AR)[Uk(AR)+3]
1 N
= e(AC).

Here the transformation k = N-i+1 is used.



15 -

Example 1

Tc illustrate the results in this section, we choose the unlabelled
star graph with N nodes. The best possible CM ordering is to start with
one of the "planet" vertices. Both orderings for N = 7 are shown in

Figure 5.1 below.

D D
® (@ ® O
(2) (&)
O (© O, (2)
® ®

CM ordering RCM ordering
X X X X
XX X XXX X X X
X X X X
= X X =
AC AR X X
X X X X
X X X X XX XXX
X X X X

Figure 4.1 Orderings for star graph with 7 nodes

It is clear that for the star graph with N nodes,

|Env(AC)l - [Env(Ap)] |Fi]1(AC)| - IFi]](AR)I

N§3 i = LiN-3)(N-2)
IRE I '

and 8(A

c) - 6(A

RV E
This example shows that the RCM algorithm can be significantly better than

the CM strategy.



- 16 -

Example 2

We now analyse some examples that arise in the application of
finite element method; Consider the mesh obtained by subdividing a unit
square into n2 small square elements of sidé %3 and the finite element
systemJr associated with it. We number the nodes starting at the Tower left

hand corner using the CM algorithm. The case with n =4 is given below.

21 22 23 24 25

13 14 15 16 20

7 8 9 12 19

3 4 6 11 18

1 2 5 10 17

Figure 4.2 4 by 4 regular mesh ordered by CM algorithm

It is not difficult to see that for n = 2,

(i) |Env(A)] = 1+ kg](4k2+5k)
= Zn(n+1) (2n+1)+ 30 (n+1)+1
(i1) |[Env(Ac)| - |Env(Ap)| = 2n(n-1)

+ A finite element system or mesh system of equations associated with a mesh
M is any N by N symmetric positive definite system Ax = b, with the

property that entry Aij is nonzero only if unknowns X; and Xj are asso-

ciated with nodes of the same mesh element of M.



..'[7

n
(111)  o(Ac) = ] (4k*+10K%+3k+1)
k=1
= 0P (n+1)? + 3n(n+1) (2041) + 3n(3n+1)
(iv)  o(A)-0(Ag) = 5§n® + 3n® - L,
In table 4.1 we have tabulated the amount saved for different
values of n.
Problem Storage Operation Count
n N=(n+1)2 CM .| 4RCM- [Sawing | % saved CM RCM Saving | % saved
2 9 36 32 4 111.11 93 71 22 23.66
41 25 171 147 24 114.04 726 530 196 27.00
8] 81 997 8851 112 |11.23 7324 5812 1512 20.65
16| 269 6665 | 6185 480 7.20 89336 77736 | 11600 12.99
3211089 48401 | 46417 | 1984 4,10 1231088 | 1140816 | 90272 7.33
Table 4.1 Theoretical amount saved for the reqular square mesh
Example 3
The savings in example 2 are not particularly impressive. We

now consider the same model problem with triangular @lements (that is,

each sml1l square in figure 4.2 is subdivided into two right triangles),

and its corresponding mesh system.




- 18 -

Quadratic interpolation is first used, where each triangular
element has three vertex unknowns and three edge unknowns. The corres-
ponding CM ordering for n = 2 is given in figure 4.3.

15 17" 22 24" 25

130 14™N\J9)  20™\ 23 |

6 : g 82T
3 4 7 12 16
1 2 5 0 11

Figure 4.3 2 by 2 regular right triangular mesh with
element 2-6%1 ordered by CM algorithm
Experients using different values of n are tried. The result tabulated
in table 4.2 shows that substantial savings in computation and storage

can be achieved if RCM rather than CM algorithm is used.

T We adopt the notation in [3], where the two-part hypenated name refers
respectively to the degree of the polynomial and the number of nodes
associated with the element.



- 19 -

Problem Storage Operation Count
n N=(2n+1)2 Nonzeros CM [RCM [Saving | % saved CM | RCM Saving} % saved
2 25 96 176 | 153 23 13.07 820| 589 231 | 28.17
3 49 207 498 | 380| 118 23.70 3168 1782 1386 | 43.75
4 81 360 1024 | 735 289 28.22 78241 3940 3884 | 49.64
51 121 555 1918 [ 1295 | 623 32.48 | 18316] 8126 | 10190 | 55.63
6] 169 792 3102 | 2019| 1083 34.91 | 34096 (14042 | 20054 | 58.82
71 225 1071 4822 | 3025 | 1797 37.27 | 60764123497 | 37267 | 61.33
8| 289 1392 6922 | 4241 | 2681 38.73 | 9742635808 | 61618 | 63.25
9| 361 1755 9744 | 5837 | 3907 40.10 |153332|54124 | 99208 | 64.70

Table 4.2 Experimental savings on the reguiar right
triangular mesh with element 2-6.

In case of cubic interpolation with each element having ten

nodal unknowns, the savings are even more dramatic.

would be numbered by the CM ordering as shown below.

28 33 34 A3I_47 48" 49
25 27N32°  39) 4T\ 45* 46
23 24°  26™\_38] 35* 40"\ 44T
10 T8 15" T6|~36 37 %2

6 1 8N\ 11* 13} 222\30* 314
4 1 5 712 19 21 29 1
1 7 3" 9 171820

Figure 4.4 2 by 2 regular right triangular mesh with
element 3-10 ordered by CM algorithm

The mesh with n =2



- 20 -

As before, we tabulate the storage and operation requirements for the two

algorithms using different n.

Problem Storage Operation Count
n N=(3n+1)2 Nonzeros CM RCM | Saving| % saved CM | RCM |Saving|% saved
2 49 312 628 | 490 138 21.98 5491| 3136 2355| 42.89
3 100 684 1978 | 1252 726 36.70 | 24564| 9429 15135} 61.62
4 169 1200 4516 | 2518 | 1998 44,24 | 73595|22046| 51549| 70.04
5 256 1860 8566 | 4396 | 4107 47.95 {170809|436241127185( 74.46
6 361 2664 14452 | 6994 | 7458 51.61 [340101(77574|262527 | 77.19

Table 4.3 Experimental savings on the regular right triangular

mesh with element 3-10.




=21 -

5. Implementation

In [3], George has advocated the use of profile methods instead of
band methods. In fact, it is possible to save about one-third of the
storage and to half the computation required to perform the factorization
in many cases of practical interest.

Corollary 3.3 strongly suggests the use of Jennings' profile
storage scheme [6] in connection with the CM ordering (see [5]).

The scheme stores the rows of the envelope of the lower triangle of co-
efficient matrix A in a linear array. An additional N auxiliary address
pointers are needed to locate the positions of the diagonal elements in the
main storage array. Thus, the data structure of the scheme requires the
computation of these N extra pointers. We point out, however, they can be
obtained as an immediate byproduct of the CM ordering process.

This can be best explained in terms of the spanning tree asso-
ciated with the CM algorithm. To set up the address pointers, it is suffi-
cient to know the number of locations required for each row in the envelope.

Note that the storage for row i is exactly 1-fi+1. It is easy to see that

fl(AC)

and for i #1

fj(Ac)

spanning tree associated with the CM order. We use example 2 with n =2

Jj, where Xj is the direct ancestor of node X; in the

to illustrate this observation.



- 22 -

fy =1
7 8 | 9
foo=f, =f =1
fo=f =2
1 > 5 5 6
f, = fg =3
fo = 4

Figure 5.1 Spanning tree associated with the CM ordering
for the 2 by 2 regular square mesh.

Hence, the address pointers can be readily obtained during the CM ordering
procedure.

To implement the RCM algorithm, it is also attractive to use
Jennings' scheme in view of theorem 4.3. Extra work is needed to set up

our data structure for the coefficient matrix. If we define

%;(A) = max{JIAij # 0}, 1=T1,...,N
that is, the column subscript of the last nonzero component in the i-th row

of A, then

f.(A,) =N

j " g A

C)+1, J=T1,...,N.

We can establish the address pointers for the main storage of AR without
much difficulty by keeping track of the quantities zi(AC).

One final remark is that we should use equations (3.1a), (3.1b)
(instead of (3.1b)') and (3.1c) for the symmetric factorization of the
matrix AR. In that case, the number of operations for the decomposition is

N-1
exactly given by %—kE] uk(AR)[uk(AR)+3].



- 23 -

6. Conclusion

Evidently, in the context of profile or envelope methods, the
RCM algorithm compares favourably with the original CM ordering. Thus-far .
we have not brought into the discussion of the execution time in performing
the two ordering algorithms. But, there is little doubt that the two
strategies under consideration require approximately the same amount of
work. In exchange for the extra but comparatively insignificant effort
to reverse the ordering and to set up the address pointers for the data
management, there is the possibility of substantial reduction in cost of
storage and factorization. Moreover, we are guaranteed that the RCM
ordering is at least as good, provided we exploit all the zeros to the left
of the first nonzero in each row of the matrix.

The savings obtained in example 3 are dramatic. This demonstrates
that in practical applications it is possible to reduce over half of the
storage requirement and to save over three-quarters of the operations
necessary for the symmetric decomposition. Our study provides strong argu-
ments for using the RCM algorithm. Since the CM algorithm is a popular
ordering scheme (particularly in structural analysis applications), our

investigation in this paper is of practical interest.

Acknowledgement

The author would 1ike to thank Professor Alan George for his

many helpful discussions and criticisms.



- 24 -

References

[1]

(2]

[3]

[4]

[5]

[6]

(7]

[8]

E. Cuthill, "Several strategies for reducing the bandwidth of
matrices", in Sparse Matrices and their Application, edited by
D.J. Rose and R.A. WiTloughby, Plenum Press, N.Y., 1972.

E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric
matrices", Proc. 24th National Conf., Assoc. Comput. Mach., ACM
Publication P-69, 1122 Ave. of the Americas, New York, N.Y., 1969.

J.A. George, "Computer implementation of the finite element
method", Stanford Computer Science Dept., Technical Report
STAN-CS-71-208, Stanford, California, 1971.

J.A. George, "A survey of sparse matrix methods in the direct
solution of finite element equations", Proc. Summer Computer
Simulation Conference, Montreal, Canada, July 17-19, 1973, pp.15-20.

J.A. George and W.H. Liu, "Some results on fill for sparse matrices",
submitted to SIAM. Numer. Anal.

A. Jennings, "A compact storage scheme for the solution of
symmetric simultaneous equations", Comput. J. 9(1966), pp.281-285.

R.S. Martin, G. Peters, and J.H. Wilkinson, "Symmetric decomposi-
tion of a positive definite matrix", Numer. Math. 7(1965), pp.362-383.

J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,
London, 1965.




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

