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ABSTRACT

Impossibility to distinguish all different states of the cells
of a developing organism during a biological experiment motivates the
study of literal homomorphic images (total codings) of languages generated
by OL-systems and their subclasses, e.g. propagating or deterministic
OL-systems. In this paper the properties of corresponding families of
languages are studied and the relations among them and also their relatiom

to the families of context-free and regular languages are investigated.



1. Introduction Lindenmayer systems or L-systems were introduced in [7]

as a tool for modelling the development of filamentous organisms.

An L-system describes the development of a filamentous organism
which is represented by a string of symbols, each symbol representing a
state of a cell. Possible changes of states of cells, as well as their
divisions are described by a finite set of rewriting rules. Rules have
to be applied simultaneously to all symbols in the string to obtain a new
stage of the development of an organism.

OL-systems are models for the development without any cell inter-
action. Properties of OL-systems and OL-languages has been studied in
(81, [91.

When observing a cell in an actual experiment, usually not all
of its properties can be determined and two cells which look alike for an
observer may actually behave differently. Mathematically speaking, the
observation of a string of cells, under the assumption that each individual
cell (its state) is represented by a symbol gives us only a literal homomorphic
image (fh-image) of the string. The above motivated the investigation of
Lh-images (also called total codings in [11]) of OL-languages.

In this paper we are studying the descriptive power of Lh-images
of OL-languages and their various subclasses and their relations to
well known families of languages. For example, two problems which were
open for some time have been solved. It is shown that every CF language
which contains a nonempty string is Lh-image of an OL-language, and that the
family of the e~free regular languages is properly contained in

the family of the fh-images of languages generated by propagating



OL-systems with finite number of starting words (i.e. generated by

PFQL-systems).

To prove proper inclusion of certain families of languages
we are introducing a new concept of essentially deterministic languages.
We hope that this concept may help to attack rather difficult questions

of membership for similar types of languages.

In section 5 we briefly mention some closure properties of Lh-

images of OL-languages.

2. Preliminaries We shall assume that the reader is familiar with basic

notation and notions of formal language theory, e.g. [6].

Now, we review the definition of OL-systems and OL-Languages
and introduce some notation used throughout the paper.
Notation The length of a string o is denoted by |al|. The empty string
is denoted by €.

Definition 1 An OL-system G is an ordered 3-tuple (Z,P,0) where:

(1) L is a finite nonempty set of symbols called the alphabet.
*
(ii) P is the finite set of ordered pairs from L X I called the

*
productions. A production (a,0) where a ¢ £, oo ¢ Z 1is
usually written as a > Q.

*
(iid) 0 € X 1is the initial string.

Any OL-system has to be complete which means that for every

. ;
a ¢ L there must exist a string o ¢ LI such that (a,a) ¢ P.



Given an OL-system G = (L,P,d8), let a = a18y..08 5 8, € L and B € I%,

o is said to directly derive B (in an OL-system G) written o E=> B if

*
there exist 81,62,...,Bn € L such that B = 8182...Bn and

ay > Bl, a, > 82,...,an -+ Bn are productions in P.
k *
Let relation E> for k 2 0 be defined on Z as follows:
, 0 .
i) o E> B 1iff o = B;
k %
(ii) o E> B for k > 1 iff there exists Y ¢ 2 such that

- k-1
o §> Y and Y C B.

Let E>* be the reflexive and transitive closure of the relation

* -+
E> on L , i.e. O E>*B iff there exists k =2 0 so that o %> B. We say that o => B

iff a 5> 8 for some k = 1. Language L generated by an OL-system G is denoted

L(G) and is defined to be the set {a € 5 .o E>* ot.

Definition 2 An FOL-system G is an ordered 3-tuple (Z,P,F) where:

(i) Z and P are the same as in the definition of OL-system.

*
(11) Completeness and relations E>, %>, and E>‘ have the same

meaning as in the definition of OL-systems. FOL-language

%
L(G) is defined to be the set {o:0 > %, 0¢ F}.

Definition 3 Let G = (Z,R,F) be an OL-system or an FOL-system. G is

called deterministic (abbreviated D) if for every a ¢ I there exists

*
exactly one o € X such that (a,a) € R,

Definition 4 Let G = (Z,R,F) be an OL-system or an FOL-system. G is

called propagating (abbreviated P) if R ¢ I X Z+.



thation If an OL or an FOL~system has any or several properties defined
above, we compound their abbreviations together with OL or FOL, respectively.
E.g. G is a propagating deterministic FOL-system is abbreviated by G is

a PDFOL-system.

Definition 5 Let I, I' be finite sets of symbols. Literal homomorphism

* *
from I to I' , abbreviated %-homomorphism is a total function h: 2> T
*
extended to strings from I by:
(L h(e) = €;

(11) h(a B) = h(c)h(B) for a, B e I .

Note 1In [11] an %-homomorphism is called a total coding.

Definition 6 If L is a language over L and t is an f-homomorphism from

T to ' then t(L) is the set {t(a):x € L}.
Notation The family of languages of type X is denoted by éig, e.g. dﬁbF
is the family of CF (context free) languages.

We say that sets A, B are incomparable if A ¢ B and B ¢ A.

Definition 7 Letciix be a family of languages. The family of literal

homomorphic images (abbreviated fh-images) of oi%, denoted dfhx is the set

{e@):L 6022 and t is an f-homomorphism defined for all words of L}.

3. The fh-images of OL-languages and FOL-languages

Theorem 1 ‘QﬁhOL = °zﬁFOL'

Proof Let L = t(L(G)) where G

(z,P,F) is an FOL-system and t is an

* *
f~homomorphism, t:Z ~ I' . Let 0 ¢ F, 0 = 2;a,...3 where a, € ¥ for

i=1,2,...,n. Let al,al

1 2,...,a& be pairwise different symbols not in 2.



Construct OL-system G' = (Z',P',0') where L' = L U'{ai,aé,...,a;},

o' = aiaé...a& and P' = P U’{ai + B: B € F} u‘{aé +>€e: 3 =2,3,...,n}.

E3 &
Define f%-homomorphism t':(Z') ~ I' as follows:

(1) t'(a) t(a) for all a € I ;

(i1) t'(aﬁ) t(aj) for j = 1,2,...,n

Since system G is complete and we have constructed a production for each
symbol in I' - I, also G' is complete. From the construction of P' follows
that o Eb*B where 0 ¢ F if and only if o' E%+ B, Furthermore, t'(B) = t(B)

and t'(0') € F. So t(L(G)) = t"(LG")). O

Theorem 2 CZiOL i 5Z%OL'

Proof Inclusion of<ﬁﬁ0L in(iihOL is trivial, By theorem 1
the inclusion is proper since &be is not closed under union (see [9]),

and the closure of &thOL under union is obvious.

Theorem 3 <& CF " {e} g ;ﬁhOL.

Proof Let L be a CF language, L # {e}. Let G = (N,T,P,S) be a reduced
e-free CF grammar generating L (we allow the production S +~ ¢ if S does not.
occur on the right-side of any production). Construct OL-system

G¢' = (£,P',0) in the following way. Let I =T x (N u {e}). Let f be

%
the homomorphism on (N u T) defined by:

(1) £(a)

a for a € T;

(ii) f(A)

(al,A)(az,e)...(an,E) where aja,...a, is any fixed string
in Tt such that A =% alaz...an, al«,az,...,an € T, Such a string

obviously exists for every A € N because of the assumption above.



Let 0 = £(S). Finally construct P' :

(i) if A+ o ¢ P then (2,A) +~ f(a) € P' for every a € T;
(ii) (a,e) > € ¢ P for every a € T;
(iii) a~>aeP for every a € T.

Obviously, G' is complete and thus it is an OL-system. Let t be the
homomorphism defined by:
(i) t(a) = a for a € T;
(ii) t(a,X) = a for every a ¢ T and X e N U {e}.
Clearly t is 2~homomorphism and t(L(G)) = L(G).
It has been shown in [9] that JKGL and OZ%F are incomparable.

. ~g . .
Thus by Theorem 2 the inclusion of cp 10 OZ%OL is proper. g

Let the family of index languages [1] be denoted by:QCTNDEX

and let the family of context-sensitive languages be denoted bycgﬂés.

Using results from [2] we have the following theorem.

; o
Theorem 4 oy § =<Cinpex § “Ces®

Proof The family of FPMOL-languages defined in [2] is equal to the

closure of QZ%L under finite substitution. Literal homomorphism is a special

case of finite substitution and thereforechEOL c OC%MDL' It has been also
08 < [y~
shown in [2] that FMOL i‘gﬁaNDEX and by [1] INDEX icyfés. O



4. fh-images of propagating OL-languages In the proofs of Theorems 1 and 3

we used essentially erasing productions (i.e. productions of the form a - €).
Now, we will have to use a different techniques to prove some results on
literal-homomorphic images of POL-languages and PFOL-languages.

Let the set of all e-free regular sets be denoted byc§£

REGULAR®
Theorem 5 <L peayrar § Chpror”
Proof Firat, we will describe the proof informally. Let M be a finite auto-—
maton accepting L in qz: A finite automaton can be represented by a state

REGULAR®

diagram in the usual manner as in [6]. We will construct a PFOL-system
generating encodings of all possible paths in the state diagram leading
from the starting state to a final state. Each path is encoded by a string
of pairs such that the first components of the pairs are the labels of
the edges on the path and the second components are the nodes of the path
except of the first one (starting state). The set of starting strings
of the constructed PFOL-system will be the set of encodings of all shortest
paths (i.e. without any loop) from the starting state to a final state.
Productions of the PFOL- system will allow to add the encoding of any loop
wherever it is possible.sz—homomorphism t will map a pair onto its first
component and thus will map an encoding of a path generated by the PFOL-
system to a string of L.

Now we proceed with the formal construction. Let L be an e-free
regular language. Let M = (K,Z,é,qO,F) be a finite automaton accepting
L (see [6], p.26). We can suppose without loss of generality that §(q,g) = ¢
for all q € K, and q, 4 8(q,a) for any a ¢ X, q € K, Let R be the set of

all strings o satisfying the following conditions:



(i) o (al,pl)(az,pz)...(an,pn) where n 2 1, a; € Z, p; € K for

i=1,2,...,n;

(ii) Py € (qo,al) and Py € (pi—l’ai) for 1 = 2,3,...,n;
(iii) if i # j then 1 # pj for 1,y = 1,2,...,n;
(iv) p, € F.

Let Pq be the set of all strings P satisfying the following conditions:

(1) B (bl,rl)(bz,rz)...(bm,rm) where m > 1, b, € z, r, € K for

i=1,2,...,m

(ii) r) € G(q,bl), r, € a(rihl’bi) for i = 2,3,...,m;
(iii) if i # j then r, # X for i,j = 1,2,...,m;
(iv) r =4q.

*  _%
Clearly,R and Pq are finite for any q € K. Define f2~homomorphism t:(Z X K) » X
by t((a,q)) = a for every a ¢ L, q € K. Let G be an FPOL-system,

G = (£ x K,P,R), where

P={(a,q) > (a,qQ)a : a€ %, q € K, Pq’# ¢, o € Pq} U

{(a,q) > (a,q):a € I, q € K}.

*
From the construction of G follows that if o E> B where o ¢ R then
*
(qo,t(B))|ﬁ-(q,€), q € F and if (qo,Y)lﬁ-(q,e) where q ¢ F then there

*
exist o ¢ R and B such that o g B and t(B) = v. O

Now, we will study properties of Lh-images of propagating
deterministic OL-languages. It has been shown in [9] that OL-languages
do not include all e-free finite sets. However, we will show that all e-free
finite sets, denoted by Ji;INITE’ are included in 2h-images of the simplest

type of OL-languages, namely in f£h-images of PDOL-languages.



<

Theorem 6 oé:FINITE ¥ °“wPDOL"

Proof Let A = {al,a un} be a finite subset of I where I is a

2’-00,

finite alphabet. Let a , where 55 21 forl <1is<n,

17 ailaiZ"°aisi

and a,, ¢ L for1 £ 1 <mn, 1< j < Sy We may suppose without loss of

ij

i < < < -—
generality that s; < 8.4 for 1 £ 1 £ n-1.

IA

= H < i < <
Let A {bij,' 1<i<n,1<2]j

distinct symbols. We construct OL-system G = (A,P,0) where

si} be a set of parwise

and
1

P = {bij > bi+1j t:1<4i<n,l1

= byybyo- by

IA

i s si—l} U

u {b, > b, b eee b, : 1 <1 <n-1}
1si 1+lsi i+lsi+l 1+1si+1

v {bnj - bnj 11 <4< sn}.

*
Clearly, G is PDOL-system. Now, we define f-homomorphism t, t : A ~ Z*,

t(bij) = aij for1<i<n,1<3j<s Then, obviously t(L(G)) = A.

i

Notation The number of elements of a finite set A is denoted by |[All.
For a language L, the subset of L {a ¢ L : |a| = n} is denoted

by L(n).

Lemma 1 Let L be an hPDFOL-language. Then there exists a constant c

(independent on n) such that for every n

L ®

< c.

Proof Since any hPDFOL-language is the union of a finite number of hPDOL-

languages, it is enough to prove Lemma 1 for hPDOL-languages.
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Let L = t(L(G)) where G = (£,P,0) be a PDOL-system with
|1Z]] = m and t be an 2-homomorphism.
i =
Case 1. Suppose there exist ul,az,...,um+le L(G) such that aj aj+l

and |&jl = | | for j =1,2,...,m. Since G is a deterministic system

%41

with only m different symbols in its alphabet, we have Iall = |B| for every

B such that a, =7 B and since t is length preserving homomorphism,

1
l]L(n)II =0 for n > Iall. In this case ¢ = max{L(j):l <j < ]all} + 1.
Case 2. Suppose that for any Oy 50y sesnsl g in L(G), aj => aj+l for
j=1,2,...,m implies |am+l| > Iall.
Th () > 0
en, clearly,||L Il < (m+2) for everyn 2 1.
<, R . <
Lemma 2 OZiREGULAR is 1ncompar§ble tooZZhPDOL and toc;ﬁhPDFOL' Also;xf%F
is incomparable t°<thPDOL and tochhPDFOL'
Proof Let G = ({a},{a + aa}, a), and let t be the identity. G is
n
an PDOL-system, t is an 2%-homomorphism, and t(L(G)) = {az :n = 0}
which is neither regular nor context-free language.
Let L1 = a+b+. Clearly, IILfn)|| = n-1 and therefore by Lemma 1,
Ll is neither in Sé%PDOL nor lntiehPDFOL' [
Theorem 7 oLy onpor, § ohproL’
Proof The inclusion is trivial. It is proper by Theorem 5 and Lemma 2. ]
Theoren 8 oLy o 5 oZppor- :
Proof Inclusion OfOZShPDOL in OZ%POL is trivial, In the proof of the

Lemma 2 we have shown that the language L1 = a+b+ is not in o hPDOL However,
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L, is generated by POL-system G = ({a,b},{a > aa, a> a, b > bb, b > b, ab};

thus L, is in aﬁ?OL and also in 023

1 hPOL* o

Now, we will show the proper inclusions of hPDOL in‘ifhPDFOL and

Of(;ngOL in ai%PFOL' To do so we will first define and study properties
of "essentially nondeterministic' hPOL-systems and '"essentially determinis-
tic" hPOL-languages. Informally, an OL-system G is essentially nondeterministic
with respect to f-homomorphism t, if there is a symbol in alphabet of G
which occurs in infinitely many words of L(G) and from which we can
derive in k steps,for some k = 1,two strings o, B such that t(a) # t(B).
Language L is an essentially deterministic hPOL-language if there
is no POL-system G and f%-homomorphism t such that G is essentially non-
detemministic with respect to t and L = t(L(G)).
After showing some properties of essentially deterministic

languages we will exhibit two essentially deterministic hPDOL~languages

whose union is neither in(iﬁhPDOL nor in éfﬁPOL'

Definition 8 POL-system G = (I,P,0) is an essentially nondeterministic

hPOL-system with respect to f-homomorphism t if there exists a € X and

*
V1Y, € L so that a occurs in infinitely many words of L(G), a E>k Yq»

k
a3 Y, for some k > 1 and t(Yl) # t(Yz)-

Definition 9 Language L is an essentially deterministic hPOL-language if

for every pair of POL-system G and #-homomorphism t, such that L = t(L(G)),

G is not an essentially nondeterministic POL-system with respect to t.
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Let L be an essentially deterministic h-POL language,
L = h((G)) for POL-system G and homomorphism h. We will show in
Lemma 4 that L can be expressed as the union of finite number of hPDOL-
languages, each of them generated by a system preserving the structure of
derivations in G, We will need this in the proof of Lemma 9. We first
need the following auxiliary result.
Lemma 3 Let G be an POL-system, G = (I,P,0). For any ¢ > O there
exists jc > 0 such that for any o ¢ L(G) either ¢ %> o with i < jc or
there exists B such that [B| 2 ¢ and © ES B Eﬁ* O,

Proof Let n = ||Z]|]| and let jc = nc+l. Suppose that o ¢ L(G) cannot

| * :
be derived within jc steps from ¢ and that o £ g =" o where [B| < c. System

. . * *
G is propagating, therefore, for any string Yy, such that 0 = vy = B, we

1

have |y| < ¢. There are less than nc+ different strings of the length

*
smaller than ¢ over I and therefore there exist il >0, 12 >0 and § ¢ L

1 i Jomip1 * i j.-i,-1 *
such that © =$ § =§ § §;=Ah=% B=> 8. Thus also o =% ) =E==i=> B = a.
j-ip i .
S B -4 Bl => a. If |Bjl< ¢ then

Let Bl be the string ¢
*
we can repeat the process above until we obtain B' such that © £ g =" q

and |B'| = c. a

Lemma 4 Let L be an essentially deterministic hPOL-language. Let
L = t(L(G)) where G is a POL-system and t is an %2-homomorphism. Then there

exist n 2 1, f-homomorphismus t' and PDOL-systems Gl’GZ""’Gn such that

n

L= U e(t'(L(G,))) and if a > B for some § 21, 1 <i<n, acL(G) then
i

'@ 2 ' (®).
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Proof Let G = (£,P,0). We may suppose that every symbol of X occurs
in some string of L(G).

Suppose that for a in I there exist two productions a - o, a > B
in P, o # B. Suppose, also, that a occur in infinitely many words of L(G).
Since L is an essentially deterministic hPOL-language, for any k 2 0
and Y,, Y, € Z+ if a=>a 5» Y, and a = B k. Y thenlt(Y )y = t(y,)

1> '2 G 2 G G 2 1 27"

Hence, system G' = (I,P-{(a,0)},0) also generates language L(G).

By finite number of repetitions of the deletion of one of the
pair of the considered productions we can obtain system G1 = (Z,Pl,c) and

Zl,Zz such that:

(1) L. nI =¢,r =25 U3l

17 %2 1- %2
(1) L(G,) = L(@G) .
(iid) There is exactly one production in P1 for any symbol of 22.
(iv) Symbols of Zl occur only in finite number of words of L(G)«
@) a%-»leiffa%e.

Let A= {a : @ € L(6) - I;}. By (iv) A is finite. Let c = max {lalia ¢ A} + 1.
By Lemma 3 there exists constant jc such that any o € L(Gl) either can be
derived from ¢ within jc steps, or there exists B such that {B] 2 ¢ and

3

. .
o==38 T o Therefore, A c {a : 0 = o, 0 < 1 < jc}.

SR Gy ;
Let B = {a:lal 2 ¢ and © ES al. Let C = {a:0 Eg a}. Clearly,
, 1 1
B and C are finite,B ¢ C, Let G, = (Z,Pl,a) for every a ¢ L(Gl). We have
i .
L(Gl) = JgB L(Ga) ufa :o Ei a, 01 x jc}. Let P' be any fixed subset

of Pl such that there is exactly one production in P' for every symbol of .
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fisN 1T +y _ +
By (iii) P' n (22 X 22) = Pl n (22 X T

2). Let G& = (Z,P',a) for every

o€ L(Gl). Clearly,G& is a PDOL-system for every o ¢ L(Gl). Since Gl is a
propagating OL-system L(Gd) [= ZZ for every a € B, Hence,

- ' - ' .o L .
L(Ga) = L(Ga) for every a ¢ B and L(Gl) ugBL(Ga) u {oto = a, 0 <1< jc}

g
i .k k
U ! . i < < g + = => .
oo LEY v {o:0 é> a, 0 <1 Jc}, and if a = B then o g, B
1 o
m m m
11 1 o o o
Let o € C, and let (al,az,...,aj ),...,(oc1 20ig 3e e 50y ), where

m > 1, be all sequences of strings of L(Gl) such that.:

(€8] o

i
=> < < < < -] e
: uj+l for 1 <1 < ms 1 =<3 jC 1;

[ AR N

o

(ii) o, = J, a% =0 forl=<is<m,
5 o

c
For every o ¢ G andall i, 1 < 1 < m ,we can easily construct a DPOL-system

G: = (Fi,Pl,wl) and %-homomorphism t' such that :
o a’ o’ a

1 . il - 4 = i
(i) If wa.Gi B for 0 £ j < jc 1 then t'(R) aj+l'
o
(ii) For any 0,8 € L(G' ), o = B iff o => B.
‘ o ' i
Gy, Gu
k o fl k ]
Thus, if a =? B for some i,k 2 1, 0 € L(Gi),then t'!(a) E> t'(B).
Gy 1
m
U i
= = = !
Let n = I m. Then L(G) = L(G)) = Y.(Y t" LG ))),
0eC
and if o 5? R for some i,k 2 1, a € C,then t(a) %> t'(B). a
G
o

We have shown that any essentially deterministic hPOL-~language

can be expressed as the union of a finite number of deterministic languages.
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However, there are essentially deterministic languages which are not
n
deterministic, i.e. for which n > 1 is necessary. {a3 in =2 1} v
{ b®%2d%:m > 0} u {a} is such a language as will follow from Lemma 9.
Also,there are deterministic languages which are not essentially deterministic,

e.g. a+ is such a language.

Notation For any language L, min{|w|:w € L} is denoted by min(L).

Definition 10 Let G = (I,P,0) be an OL-system. A symbol a in I is called

useless if L(G) < (T-{a})*.

Lemma 5 Let L1 and L2 be infinite languages over ZI and Z;, respectively,

where Zl n 22 = ¢, Let min(Ll) > 1 and min(Lz) > 1. If Ll U L2 = t(L(G))
where G = (I',P,0) is a POL-system without useless symbols and t is an
2-homomorphism, then T is tha union of two disjoint alphabets Fl and T2,
t(Fl) = Zl, t(Fz) = 22, and for each a ¢ Fl’ or a € F2 there exists ka >0
such that if a %9 o for j < ka then o € PI, or o € F;, respectively; and

k
if a Eg o, then o € FZ or 0. € FI, respectively.
Proof Let Ll U L2 = t(L(G)) where t is an L-homomorphism and
G = (I',P,0) is a POL-system without useless symbols. Let Fl = tnl(Zl),

F2 = t_l(ZZ), where t—l is the inverse of homomorphism t, Clearly Fl n F2 = ¢,
and any string of L(G) is either in TI or in F;.

Assume a € Fl. Since a is not a useless symbol and since
max(Ll) > 1 and max(Lz) > 1, there exist ao,B € PI, which are not both
empty, such that caB € L(G). It is also clear that for any k > 0 we
cannot derive from a in k steps a string which would contain symbols of
both Fl and F2.

Before we complete the proof we need to prove two auxiliary

assertions.
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Assertion 1. There is no k = 0 such that a %9 Yy € FI and also

k. +
a §> Yo for Y, € Fz.

Suppose the negation of assertion 1 is true. Let al, Bl be strings
k k k k
£ X, £ ]
such that o E> al, B G> Bl. Then caR §> “1F161 and also aaPR §> ulYZBl

However, o, Bl cannot be both empty and therefore either alYlBl or alYZBZ

contains symbols from both Fl and Fz which is a contradiction.

Assertion 2, For every a in Pl there exist o in F; such that a z>+u.
Suppose there is a symbol a ¢ Fl such that if a %9 Y for k 2 0
k
then Y ¢ FI. Since caf € L(G) there exists kl 2 0 such that © E% aal.

Language L, is infinite and so for any j 2 0 there exists ;¢ L2 such that

+
2

2

o %? Y', £ 2 j and €(Y') = vy Let § € T, be a string which can be derived

from 0 using s steps, s 2 kl. Hence, O %9 § e F; and also
k s=k -k s~k -k
3 L —_ +
= (=) ' ' = ' S e !
o] G oaf T o dlB where 0O S ; o'y, a=z= 0y, B G ; B',and o, € Fl.

However, |o| > 1 and system G is propagating. Therefore, we would be able
to derive from ¢ in s steps a string containing symbols from § and from -

al which 1is a contradiction.

For any a ¢ I, let A = {k 2 1:a %? a for some a in F;}.

From Assertion 2 follows that A.a is nonempty for any a ¢ Fl. Let ka = min Aa'
It follows from Assertion 1 and from the definition of Aa that ka has all
required properties.

If a € Fz then we can repeat the proof above replacing everywhere

I, by I; and Pl by T,. ]
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Lemma 6 Let Ll’ L2 be essentially deterministic hPOL-languages,

+ + + + )
Ll < Zl’ L2 c 22 and Zl n 22 = ¢. Let min(Ll) = m1n(L2) > 1, 1If Ll U L2
is in OZ;POL then Ll u L2 is also an essentially deterministic hPOL-
language.
Proof Suppose that Ll U L2 € OZ%POL but L1 u L2 is not an essentially

deterministic hPOL-language. It means that there exist an fhomomorphism t
and a POL-system G = (I',P,0) such that G 1s an essentially nondeterministic

system with respect to t and L, u L2 = t(L(G).

1

By definition of an essentially nondeterministic system there
exists a € I' such that:
(i) there are infinitely many words of L(G) containing symbol a;
(ii) there exist k > 0, Y1sYq € rt such that a ED Y1s @ L Yoy and

trp) # ().

Suppose that t(Yl), t(yz) € ZI. In addition suppose that t(o) € L (In the

1
case t(0) € L2 we may easily modify G and t to have fLh-image of starting

string in L., because min(Ll) = min(Lz)).

1’
Case. 1. Suppose that t(a) e El. By Lemma 5 for every b ¢ T, t(b) ¢ Zl,

4+

" there exists kb 2 0 such that if b l> o0and 0 < § < kb—l then t(a) € 22

then t(a) ¢ Z; and if b = 0o, do € F+ then t(a) e ZI. Construct
POL~system G' = (I'',P',0) where I'' = {b € T:t(b) ¢ Zl},

P' ={b>8:beTl'", b+ S ¢ Pl,kb > li il{b -+ 8:b € F',kb =1, b ~»> ajca, € P

*
for some Aps0y € I'and c ¢ T, and b 5> § for some § ¢ T+}.

2



-~ 18 -

Then t(L(G')) = t(L(G)) n ZI = Ll' Since a ¢ I'' and a satisfies

(i) and (ii), G' is an essentially nondeterministic system with respect to

t' generating Ll which is a contradiction to our assumption.

*
Case 2. Suppose that t(a) ¢ 22. Let A = {0aB:aafR ¢ L(G) for some 0,B e I }.
By (i) A is infinite. Since t(0) € ZI and t(caB) e Z; for any caB € A,
for every string 0af € A there exilsts a string a'aaBB' € L(G) and

jaB > 1 which satisfy the following conditions:

%
2.1 o',B' ¢ T and a , ¢ I, t(a'aaBB') € Ll;

afB

k|
' ¢ 0B ; ' v L . ;
(2.2) o aaBB ==> oaf € A and if o aaBB > § for 1 < i < JaB

then t(d) € L2;

*
(2.3) There exist str%ngs a; az, Bl, 62 e T .such that o = 0100,

J ] J
B = 8182 and o' g§ o, B'=g§ 62 and 2,8 9 azasl.

For every b ¢ [' let kb has the same meaning as in Lemma 5. Clearly, for
< . = ' ' ery ! '
any aaf € A, jaB < max{kb.b € T}. Let B = {a aaBB e L(G):a aaBB

satisfies conditions (2.1)-(2.3)}.

Since A is infinite and any string of A can be derived
from a string of B in limited number of steps, B must be also infinite.

, %
Thus,there exists a' ¢ I' such that the set {o0'a'B' ¢ Bia',B" ¢ T } is infinite.

. . * i '
There exist i 2 1 and 61,62 € I' such that a' = 61a62. Let 61, 62 be

*
any strings of I' such that 61 k, Gi, 62 k, Gé. Then

a' & 61a62 k, diyléé and also a' itk, 6iy265. Since t(yl) # t(yz), we
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have t(Gi

and Y{,Y, by Giyldé, diyzéé, respectively, in Case 1 of this proof we

Yldé) # t(éiy25£), and t(a') ¢ Zl. Thus,if replacing a by a'

obtain also a contradiction. ]
Lemma 7 The language L ='{a3n:n 2 1} is an essentially deterministic hPOL~-
language.
Proof Suppose that L is not an essentially deterministic language, 1.e.
there exist f-homomorphism t and POL-system G = (Z,P,0) which is essentially
nondeterministic with respect to t such that t(L(G)) = L. It means that
there exists symbol a ¢ Z such that
(i) There are infinitely many words 6f L(G) where symbol a occurs.
(ii) There exist k > 0, Y12Yp € Z+ such that a k, Yys @ 59 Yo and

t(Yl) # t(YZ).

. * k. k
Let alaBl e L(G). There exist aZ’BZ € L such that oy => o, and 61 > 62.

k k .
So alaBl = u2Y182 and also alaBl = azYZBZ' Slgce uZYlBZ and azYZEZ

are distinct and both are in L(G), t(azYlB) = 33 and t(o 82) = a3j, for

272
same 1,j > 0, 1 # j. We may assume, without loss of generality, that

1 .3
i > j. Then t(yl) = a3 -3 t(YZ). It follows from (i) that there exist

o,B € Z* such that 0af € L(G) and |caB| > 31. Let o',B' € Z* be strings
such that o 5> o' and B E> R'. Then caf Eb a'YZB'. Since G is a
propagating OL-system, la'YZB'I = 3™ for some m > i. From the string caf
we can derive in k steps also string a'ylﬁ'. However,

m

37 < Ia'YlB'I = 3"+ 3t - 3j < 3m+1, which i1s a contradiction since

t(a'y;B') is in L and thus |a'y,B'| = 3% for some s. 2 1. 5
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Lemma 8 The language L = {p2c"d™:n > 1} is an essentially deterministic

hPOL-language.
Proof Suppose that L is not an essentially deterministic hPOL-language.
It means that there exist POL-system G = (Z,P,0), f-homomorphism t and

a symbol a ¢ I such that

1) L = t(L(G)).
(ii) Symbol a occurs in infinitely many words of L(G).
(iii) There exist k > 0 and Y1sYq € Z+ such that a k. Yi0 @ k, Yy and

e(y)) # elyy).
Let d;B be strings over v* such that caB € L(G). Let

0y Bl be some strings in I* such that o 5> 01 and B §> Bl.

Then oaR 59 a Bl and also aafB £> o B

11 1Y1P1°

Since t(Yl) # t(YZ), alylﬁl, u16281 € L(G)s there exist i,j 2 1, 1 # 3

such that t(a Bl) = bicldi and t(alYZBZ) = bjcjdj. We may suppose

1M1
that j > di.

+
Case 1. Let t(Yl) € {b,c,dJ+ -ib c+d+. In this case, since

t(Yl) # t(Yz), t(alYlBl) and t(@iyzsl) cannot be both in L,.

s, 8, 8

Case 2. Let t(Yl) =b lc 24 3 for 8118584 > 0. Then s, = i,
i—s1 1—53 i'sl i—s3
t(al) =b and t(Bl) =4 . Since t(alyzel) =b t(yz)d =
j-i+s, , j-i+s .
= bjcjdj thus t(YZ) = b lcjd 3. Let az, Bz be strings in Z such

that 0L2aB2 e L(G) and |ocaB| > 3j. By (i1) such strings exist. Let Gy, 63
be strings which are derived in G from Oy s 82 respectively, in k steps.

k
Then u2a82 Eb a3YlB3 and since G 1s a propagating system, la3Y183l > 3],
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51 52 .53
However, t(a3Y183) = t(a3)t(Yl)t(B3) = t(a3)b c °d t(B3) where s, = i

> 0. . .
and 51,33 0. Thus s, < IQSYIBBI,/ 3 which is in a contradiction to
t(05Y;B3) et (L(G)). O
3i i 1 i
Lemma 9 The language L = {a 21} v {b'c > 1} is not an hPOL-language .
3i
Proof By Lemma 7 and 9,the languages Ll = {a > 1} and
2 {blcld1 i > 1} are both essentially deterministic hPOL-languages and,

clearly, min(Ll) = min(Lz) = 3 >1, So by Leimma 6 if L is an hPOL~language
then L is an essentially deterministic hPOL-language. Assume that L is an
essentially deterministic language. Let G = (I,P,0) be a POL-system, t be
an f-homomorphism, t(L(G)) = L. We can suppose without loss of generality
that t(0) ¢ L, (otherwise we can easily modify G and t such that t(0) € Ll).

Let o € L(G), t(a) € L2 so that

i i+l

37 < |la] <3 ¢D)

*
Since t(O) € L1 and 0 => o, there exist n1 1 and B such that

o —> ; O, t(B ) e L. and if B —> Y for 0 <1< n, Y € Z then t(y) € L2

1

It follows from Lemma 5 that there exist 62 e L(G), n, > 1 such that
n

2
t(BZ) e L., o= 82 and if o i9 Y for 1 < n, then t(y) € L,. Since

1° 2 2

81’62 € Ll and because of (1), |B| < 3i and IBZI > 3i+l. Also by Lemma 5

there exists constant ¢, independent on 1, such that

+ 0, <c. (2)

oy 2

It follows from Lemma 4 that there exist n 2 1, PDOL-systems
n

5= lt(t (L(G )) and

Gl’GZ""’Gn and 2-homomorphismus t' such that L(G) =
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if v %9 § for some 1 < j <n, s 2 0 then t'(Yy) %> t'(8). Let composition

h|
t ° t' be denoted by t". Let for any i =z 1, Ai = {(81’62):t”(81)’t"(62) € Lqs
i +
IBlI < 3%, IBZI > 3t 1, Bl %> BZ for some }, 1 < j <m, k 21, and if
Bl %> v for 0 <m < j then t"(y) € Lz}.
k|

It follows from the discussion above that for any string

1

o e L(G), t'(a) e L 3t < la] < 3i+ , there exists (61,82) € Ai such

2’
*

that Bl = q =% 62. Clearly, because every Gj is a deterministic propagating

gystem for every 1 < j < n,‘L(Gj) can contain at most two strings 61,62 such the

(61362) € Ai and thus ||Ai|| < n.

It follows from (2) that for any (81,82) € Ai there are at
most c-2 strings whose fh-images are in LZ’ whose length are between 3i

and 3i+l and which can be derived from Bl. Therefore, we have

i+l

R e)
[ U L || £n e c for any i 2 1. However, it follows from the

LT Ritl T2

=3 i+l

¥ ) i -l
definition of language L, that || U L7l =3 -3 for i 21
2 423t 2
which is a contradication. W
Theorem 9 o¥ypnor, § «UnpproL”
.

Proof Languages Ll’ L2 from the proof of Lemma 9 are both in<xf%PDOL
but their union is not in &t%PDOL as shown in Lemma 9. Clearly, L1 u L2

is in<2€

hPDFOL* L
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Theorem 10 OZhPOL _?_ thFOL‘

Proof Directly by Lemma 9 since Ll U L2 is in oZihPFOL'

Theorem 11 oChPDFOL and OghPOL are incomparable.

t Z
Proof The language a b 1is incZihPOL but not in hPDFOL 25 shown

in the proof of Lemma 2. The language L. u L, from the proof of Lemma 9

1 2
is in °8hPDFOL but not in OZhPOL' |

The inclusion results on the considered families of languages
are summarized in Figure L. The meaning of the graph is the following.
If two nodes labeled<22A, DZ% are connected by an edge (double edge),
the node‘jsh being below the node QZQ} thenaziB c OZ?’QiﬁB $ OZ%). If
two nodes 1abeled<25A, °Z§ are connected by a broken edge, then<§iB,<;¢A
are incomparable. If two nodes are not connected by any edge or

ascending unbroken path then their relation is open.

5. Closure properties of hOL-languages Some closure properties of hoL
are given in Table 1. It is easy to show, using similar techniques as in

the proof of Theorems 1 and 3 thatGthOL is closed under concatenation,

operation star and e~free homomorphism. By Theorem lFthOL is closed
under union. It follows from [5] that"ifilOL is not closed under inverse
homomorphism.
-1
U . * le—free hi h

4350L YES| YES| YES| YES No

Table 1.
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REGULAR

Figure 1.
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