The GSYM System

An Interactive System For
Displaying Linear Graphs

by

Robert Brien Maguire

Technical Report CS-73-24

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

The GSYM System

An Interactive System For
Displaying Linear Graphs

by

Robert Brien Maguire

Technical Report CS-73-24

The GSYM System

The purpose of this report is to briefly introduce the GSYM
interactive graphics system. GSYM, short for Graph SYMmetry, is
designed to allow a user to create, manipulate and display graphs
using. an IBM 2250 Graphic Display Unit., The report is not intended
to be a user manual for the GSYM system. Rather, it will examine
several of the features in GSYM in order to see how the system
was designed as a tool for investigating the problems involved in
generating visual representations of graphs. The latter part of
the report contains a discussion of some screen layout problems
encountered while designing the graph display format used in GSYM.
Appendix B contains a more detailed description of the design and
implementation of GSYM, while Appendix A describes the hardware
configuration and display capabilities of the IBM 2250 Graphic
Display Unit. The discussions found in the report are not limited
to the IBM 2250 Display Unit, but could be applied to any graphic
display.

GSYM is not to be confused with existing graph processing
languages as it is not a programming language per se even though
it does make use of macro~like commands for operating on graphs
in certain situations. It also containé a list processing sub-
system, but is not primarily intended as a list processing tool.
It is simply an interactive graphics system especially designed
for working on the problem of generating displays of graphs.

The normal operation of GSYM is based on an 'interaction by

anticipation' format. The system displays the possible operations

we

2
the user may initiate at any given moment and the user selects
one of the current options using the light-pen attached to the
display. The system is said to be in the 'reset' state when
the current display shows the option list illustrated in Figure 1.
All system operations begin with the user selecting one of the
options in this list with the light-pen. For example, if he
chooses the ADD option then the display shown in Figure 2 is
placed on the screen. The user then indicates the element to be
added to the graph. If this were to be a vertex addition the
system would then request the user to position the vertex on the
screen.

A similar communicgtion process is used for all the system
operations. That is, GSYM displays a list or menu of the options
available to the user at the moment and awaits the user's response.
This t&pe of format not only guides the user but also eliminates
the possibility of system error owing to invalid user input. 1In
order to redﬁce the frequency of user error most of the option
lists contain a brief instructive note defining the nature of the
current operation and the user action required. Moreover, should
the user change his mind or wish to cancel an operation in the
middle of a command sequence he may return to the reset state by
pushing one of the programmed function keys on the function key-
board attached to the display. Thus, the system is delibertately
intended to be very forgiving, making it feasible for an in-
experienced user to become proficient in its use through actual

'hands-on' experimentation.

USE LIGHT-PEN TO SELECT OPTION:

* ADD

* ALTER

* BACKUP

* DECLARATION
* DELETE

* DISPLAY

* ENQUiRE

* HARD COPY
k% HALT *%*
* MISCELLANEOUS FUNCTIONS
* MODE

* MOVE

* POINT

* ROTATION

* TRANSLATION

FIGURE 1 : RESET STATE DISPLAY

@t

USE LIGHT-PEN TO SELECT ELEMENT TO ADD:

* VERTEX

* EDGE

* DIRECTION

* DIRECTED EDGE

* LABEL

*%% PFK 30 TO RESET #%%

FIGURE 2 : ADD OPTION DISPLAY

0"

5

As indicated in Figure 1 the user has a wide choice of
operations available to him. The nature of most of these is
evident from the name of the comménd. The basié graph manipula-
tion options are addition, deletion and alteration of graph
entities. The graphs are composed of vertices, edges and arrows.
An arrow is always associated with an edge, that is, an undirected
edge becomes a directed edge when the user adds an arrow (direction)
to the edge and vice-versa.

The move, rotation and translation commands allow the user
to manipulate the form of the graph as currently displayed on
the screen. He is able to move vertices, edges and arrows about
the screen or, if he so chooses, he may relocate the whole graph
by using the translate command. With the rotation command the
graph may be rotated about any point in the 3-dimensional cube
in which it is defined. This 3-dimensional cube corresponds
roughly to the box~like housing around the 2250 display screen.

The DECLARATION option is used to declare vertex and edge
properties. Each vertex and edge in the graph may have associated
with it its own property 1ist; The length of the property list
depends on the number of properties that have been declared for
vertices and for edges. For example, if four vertex properties
and five edge properties have been declared then every vertex has
an associated property list containing four entries and every edge
has an associated property list containing five entries. These
property lists are very useful for associating numerical data
such as edge weights with individual vertices and edges. This

feature is designed for the use of graph-theoretic routines

implemented on the GSYM system.

However, the vertex and edge property lists serve a dual
function since they are also used by the list processing subsystem
in GSYM to create lists of vertices and edges in graphs. The
user declares (through the declaration option) a 'head of list'
pointer which points to the first vertex or edge in a list.

At the same time he associates one of the previously declared
vertex properties and one of the previously declared edge properties
with the pointer.

The list is then created using the entries in the property
lists of the individual vertices and edges in the list to link to
the next element in the list. That is, the head of list pointer
initially points to the first vertex or edge in the list. Vertex
or edge elements are then added to the list using the POINT option.
When an element is added to a list the property in the last element
of the current list associated with the head‘of list pointer is
set to point to the element being added to the list. The property
entry in the most recent list element (associated with the head
of list pointer) is always set to O to indicate the last element

in the list.

The mode command sets the operational mode for the system.
GSYM may function in one of two modes, normal mode or macro mode.
Normal mode operation is simply the 'interaction by anticipation'
format we have been describing. The user is aided in completing
the current operation by a series of displays and system messages.

In the macro mode, however, the user must type in a 'macro' which

7
contains - all the information required by the system to perform the
next operation. From an execution time standpoint the macro mode
is more efficient, but it requires more user time and a more knowledge-
able user.

Since GSYM is an interactive system it must be possible to
quiz the system at any time concerning the current status of the
graph, its properties and any graph related entities such as list
pointers. This is the purpose of the ENQUIRE option. Figure 3
shows the option list from which the user may select elements of
the graph or system whose Status is to be displayed. At his option
the user may also have this information printed out on the line
Printer,

The remaining options shown in Figure 1 are ones which are
necessary because of the avowed intention of using GSYM as a tool
for implementing routines for generating visual representations
of graphs. The first such option is the BACKUP feature. Figure
4 shows the display generated by GSYM when this option is selected.
The user is able to SAVE graphs on a peripheral device such as a
disk or data cell and RESTORE them as he pleases. Both the graph
and the current status of the system are stored so that when the
graph is restored the same display is recreated as well as all
graph properties and system and graph lists. Such a feature is
necessary if a user is to be able to easily save displays created
by visual representation routines and also be able to recover them

at any time.

an

USE LIGHT-PEN TO REQUEST INFORMATION

*»VERTEX PROPERTY LIST
* EDGE PROPERTY LIST

* POINTER LIST

* VERTEX PROPERTIES

* EDGE PROPERTIES

* LIST

* VERTEX LIST

* EDGE LIST

%% PFK 30 TO RESET #%%

ANY OTHER BUTTON TO REPEAT ENQUIRY

FIGURE 3 : SYSTEM STATUS OPTIONS

USE LIGHT-PEN TO SELECT BACKUP OPTION

* CREATE FILE DIRECTORY

* LOAD FILE DIRECTORY

* DELETE FILE DIRECTORY

* SAVE

* RESTORE

* RENAME GRAPH

% ANY PFK BUTTON TO RESET *

FIGURE 4 : DISK/DATA CELL BACKUP

10

The graphs are saved as members of a file directory which
the user must create before saving any graphs. The user types in
a name for the file directory when he'éreates it. There is no
limit on the number of file directories he may have. In order to
save or restore a graph in a different file directory from the
last directory used it is necessary to LOAD the appropriate directory.
When a file directory is no longer required‘the file may be deleted
from backup storage by using the DELETE FILE DIRECTORY option. The
user must type in a name for every graph he saves or restores. It
i; possible to replace a graph in a directory with a newer version
by doing a save and using the same name as was used for the old
version. It is also possible to change the name of an existing
graph in a directory by using the RENAME GRAPH option and specifying
the old and new names. Notice that the user does not become involved
in the actual detailed creation and maintenance of the files used
to hold these graphs. In particular, he does not have to worry
about the proper command language statements to create new files
or reference existing ones.

We also wish to be able to produce copies of graph representa-
tions using a plotter. THe HARD COPY oftion provides this facility.
When the user selects this option GSYM produces a hard copy of the
display of the current graph using a plotter. The plot of the graph
cannot be produced directly because the plotter is not on-line in
the existing hardware configuration. Instead, a punched card deck
is created containing all the information needed by a special pro-

gram written to recreate the display off-line using the plotter. ';

11

We have stated.that.GSYM is a tool for designing and testing
schemes for the visual representation of graphs. But we have yet
to indicate how the writer of such a representation routine attaches
his program to the GSYM system. The answer is that he uses the
MISCELLANEOUS FUNCTIONS option. When this option is selected GSYM
replies with the display shown in Figure 5. The user responds by
selecting one of the routines. SYS1 to SYS9 are special system
routines, the nature and use of whicﬁ are described in Appendix B.
USER1 to USER6, however, are reserved names to be used by user
written routines. When a name is selected the corresponding user
routine is invoked by the system. Of course, this assumes that
the corresponding routine exists and has been incorporated into
the system. The actual details for establishing communication
between the system and the user routine are described in Appendix B.
When tﬁe user routine is finished execution control returns to
the system. While this feature is intended for use with visual
representatioﬂ routines, a user who is familiar with the internal
operations and data structures of the GSYM system may incorporate
any type of (graph-theoretic) routine he wishes. For example,
he might write a program for finding Hamiltonian paths which, if
successful, uses the GSYM list processing subsystem to create a
list representing the path and then returns a GSYM pointer to the
start of the path.

In the process of designing GSYM it was necessary to solve
several problems related to the choice of a display screen layout

suitable for graphs. The solution of these problems would have

USE LIGHT-PEN TO SELECT FUNCTION:

* SYS1
* SYS2
* SYS3
* SYS4
* SYS5
* SYS6
* SYS7
* SYS8
* SYS9
* USER1
* USER2
* USER3
* USER4
* USER5

* USERG6

k%% PFK 30 TO RESET #%%

FIGURE 5 :

SPECIAL SYSTEM/USER ROUTINES

12

@

13

a direct bearing on the form of any display produced by a visual
representation routine. For this reason, we shall examine some of
these problems and the steps taken to solve or avoid them.

As one might expect, vertices and edges are displayed as points
and straight lines, their most natural representation. We have al-
ready mentioned the use of arrows to represent directions on directed
edges. The user is free to position an arrow anywhere on the screen
although one would hope it would be placed on the corresponding edge.
In order to indicate the positive and negative ends of the edge the
user specifies an arrow orientation. There are eight possible
orientations‘corresponding to the eight major points on a compass,
North, South, East, West, Northeast, Southeast, Northwest and South-
west. Figure Q‘shows an example of a digraph with the directed edges
illustrating the possible arrow orientations. Vertices and edges may
also be labelled in GSYM. Labels contain one to four alphanumeric
characters and may be positioned anywhere on the screen. Figure 6 also
shows several examples of labelled vertices and edges.

The display screen of the IBM 2250 is a two-dimensional entity
and is therefore only capable of two-dimensional pictures. If we were
restricting our investigation to planar graphs and intended to require
that all visual representations of these graphs also had to be planar
maps, then such a two-dimensional display system would be quite adequate.
However, we wish to generate visual representations for both planar
and non-planar graphs. While this does not preclude the possibility
of generating visual representations for non-planar graphs with the

resultant intersecting edges, there is another more serious problem *

14

in using a two-dimensional system. If a graph had multiple edges con-
necting the same two vertices then these edges would be displayed as the
same liné and it would.be impossible to tell by looking at the screen
which were the multiple edges. Moreover, we do‘not wish to restrict
ourselves to a two-dimensional co-ordinate system because of the con-
straints this would impose,on our visual representation routines. We
would not be able to generate a representation treating a graph as a
three-dimensional object and this is a natural representation for many
graphs. For these reasons all GSYM graphs are defined using a three-
dimensional co-ordinate §ysteﬁ which forms a cube bounded on one side
by the displéy screen of the 2250 Display Unit and roughly bounded on
the other sides by the physical housing around the display screen.

This means that an edge is displayed on the screen as a straight
line joining the x and y co-ordinates of the Cartesian (x, y, z) co-
ordinates of its end-vertices. This three-dimensional Cartesian repre-
sentation implies that the user must be able to rotate the graph in
order to see more than just one face of the graph. Therefore, GSYM
has a rotation option whereby the user can rotate the graph about any
point in the cube in which the gréph is defined. The user specifies
this centre of rotation and also the amount of rotation (in degrees)
about the x, y or z axis.

Having just described how GSYM operates on three-dimensional
entities we pause to describe the only exception to this rule, a two-
dimensional entity called the 'light-pen edge'. The light-pen edge

is an alternative representation to the straight line representation

wt

15

"NORTH'
LABELS
v3
L4
'"NORTHEAST'
] t
2 i, v, "NORTHWEST
A
t]
EAST Vi "WEST'
4
' SOUTHEAST' ' SOUTHWEST'

"SOUTH'

FIGURE 6 : ARROW ORIENTATIONS

e

16

of edges. Instead of having the system create a straight line for an
edge the user may specify that he wishes to draw a freehand representa-
tion of the edge using the light—pénf The edge is then displayed as

a sequence of short straight line segments tracing the path followed

by the light-pen. Notice that this edge type provides an alternative
solution to the problem of displaying multiple edges. For example,
multiple edges could be drawn as curved lines between the end—vertices.k

There are really two problems involved here. The first problem
1s that of displaying multiple edges connecting the same two vertices
of a graph. On a two-dimensional display screen straight line representa-
tion of multiple edges causes a somewhat thicker or brighter line than
normal to be displayed between the vertices. That is, it appears as
if there is only one edge joining the vertices. This problem can be
solved b§ drawing the edges as curved lines. The GSYM system, however,
does not check for the existence of multiples edges between vertices.
It is left entirely to the user to recognize and handle such cases of
multiple edges. The light-pen edge feature provides a solution should
the user wish to make use of it.

The second problem is the fact that, while graph edges are typi-
cally drawn as straight lines, there are many instances when curved
lines are more appropriate. In other words, there will be graph repre-
sentations where the ability to use curved edges as provided by the
free-hand drawing facility of light-pen edges will be necessary to create

a good visual representation of the graph.

17

Thus, the real purpose of this facility is that it allows the user
greater freedom in altering the visual representations produced by
representation routines. Straight line edges may be replaced by user
drawn edges which improve (in the ﬁser's opinion) the visual represen-
tation ;f the graph. These edges should not be used other than for this
purpose because, unlike all other elements of the graph, they cannot
be treated as three-dimensional entities. It is impossible to draw a
curve in 3-space within the present context of the IBM 2250 graphics
system. When the user draws a light-pen edge, he is only able to draw
fhe edge as it would be seen from the display screen side of the cube
in which the graph is defined. For example, should a graph containing
light-pen edges be rotated, the light-pen edges must be redrawn between
the new positions of their end-vertices. Figure 7 shows an example of a
graph containing all the various elements which may be found in GSYM
graphs: labelled and unlabelled vertices and edges, directed edges
and light-pen edges (both directed and undirecfed).

For more detailed information on the GSYM system the reader should

refer to Appendix B.

£

18

DIRECTED LIGHT~PEN EDGE

NEG.

DIRECTED EDGE

N

LABELLED
VERTICES

END2

ék UNDIRECTED EDGE

POS.
END1
<— UNDIRECTED
LIGHT-PEN
EDGE
EDGE
< =~

UNLABELLED VERTEX EDGE LABEL

FIGURE 7 : ELEMENTS OF GSYM GRAPHS

.t

APPENDIX A

a

APPENDIX A : HARDWARE DESCRIPTIONS

Hardware Descriptions

The IBM S/360-2250 Model 1 Graphic Display Unit is the graphic
device on which the GSYM system was implemented. The 2250 Display Unit
has been designed to operate in combination with an S/360 computer; in
this case the 2250 was connected to an IBM 2911 switching unit which,
in turn, was linked to an S/360 Model 75 and an S/360 Model 50. Thus,
the 2250 Display Unit and the GSYM system could be used with either
machine. The following description briefly describes some of the
features of the 2250. It will not discuss the S/360 machines except

in their relation to the 2250.

IBM 2250 Display Unit

The IBM 2250 Display Unit is a programmable cathode ray tube (CRT).
Although the 2250 is a computer with its own control unit and memory,
iﬁ is normally expected to be operated as an I/0 device attached to a
channel of an $/360 computer. The channel is usually a multiplexor
channel as the 2250 is basically a low speed device.

The CRT consists of an electron gun and a phosphor-coated screen.
The electron gun focuses an electron beam on the screen which causes the
phosphor to glow briefly at the point of contact. The movement of the

electron gun is controlled by graphic orders placed in the 2250 memory.

L

ey

A.2

Thus, the user programs the 2250 to trace images on the screen, placing
graphic orders in the 2250 buffer to create a display. The CRT screen
is divided into a 1024 by 1024 grid, with each intersecting point
being addressed as an ordered pair (x,y) where 0s<x,y<1023.
The 2250 at the University of Waterloo contains most of the optional

features which are available to the Model 1 2250 Display Unit. These

include the following:

1) Buffer Memory

The buffer for the 2250 consists of between 4K and 32K bytes
of storage in 4K increments. The University of Waterloo 2250 has
an 8K buffer. This buffer can be accessed by either the 2250 or
the main computeF with an access time of 4.2 microseconds per byte.
The 2250 uses thé buffer as a memory for storing the instructions
and data which control the movement of the electron gun. The main
computer uses the buffer to pass data and instructions to and from
the 2250. While the 2250 executes the graphic orders in the buffer
the main computer can continue processing. Thus, the screen may

contain a display while the main machine is preparing the next.

2) Absolute Vectors

Without this feature the 2250 could only draw straight lines
horizontally, vertically or at a 45° angle. Any other straight
line would be drawn as a combination of such lines. With this
option, however, the 2250 can draw straight lines between any

two points on the screen grid.

».

A.3

3) Character Generator

This option is a hardware devicg which draws alphanumeric
characters on the screen. The characters‘are stored as one byte
data items in the 2250 buffer and when they are to be displayed
the character generator directs the movement of the electron gun

50 as to trace the character. Without this option characters must

be generated by software using a sequence of vectors.

4) Function Keyboard

The function keyboard consists of a box with 32 pushbuttons
or keys on it. The keyboard is used primarily for interrupting
the main computer. An interrupt is sent to the main computer which
then requests data from the 2250 to identify the key used. In the
GSYM system the keyboard is used mainly to control light-pen

operations.

5) Alphanumeric Keyboard

This keyboard is very similar to a typewriter keyboard. Its
primary purpose is to type in alphanumeric data which is stored
in the 2250 buffer. This data is displayed on the screen as it is
typed. A special unde;score character is displayed on the screen

beneath the position where the next character typed will be placed.

6) Light-Pen

-The light-pen is another user control device. It is a pen-

like stylus which is attached via a flexible cord to the 2250.

wt

A.4

The pen can detect the beam of the electron gun as it passes over
the screen. If the pen is enabled when it detects this beam it
halts the display and sends an interrupt to the main computer.
Information is then sent to the main computer specifying the type
of data detected (line or character), the location of the byte
accessed in the 2250 buffer and the x,y co~ordinates of the beam.
The pen is enabled and disabled under program control. When it
is enabled an interrupt occurs as soon as the beam is detected.
Otherwise, the pen switch must be activated by pushing the tip

of the pen gently against the screen.

Further details on the use and programming of the 2250 Display

Unit may be obtained from the IBM manuals listed in the Bibliography

(i, 1i).

an

APPENDIX B

-t

APPENDIX B : MORE DETAILS ON GSYM

This appendix contains a more detailed description of the data
structures and internals of GSYM than was feasible in the body of
the report. It is not a user's guide. However, a thorough under-
standing of the following material should permit a user to follow
and comprehend listings of internal GSYM routines. It should also
enable the user to begin to write and connect his own 'user func-
tions' to the system.

GSYM is a collection of both PL/1 (iii) and Assembler (v) pro-
grams. PL/1 was chosen because of fhe built-in list processing
features of the language. The majority of the list processing code
required for creating and maintaining the graphs and their properties
is writtén in PL/1. While this is more expensive in terms of execu-
tion time than Assembler code would be, it has the advantage of being
easily written4and just as easily changed. Chages to existing rou-
tines and new routines can be coded, tested and debugged much faster
using the high level language. This is highly desirable because
GSYM is intended as a tool for testing various visual representation
schemes. In addition, it is expected that the graph theorists for
whom this tool was primarily developed are more likely to understand
(or will be more willing to learn) a high level language like PL/1.
Finally, the facility of being able to sig;al PL/1 on conditions from

Assembler routines for graphic display control and the PL/1 graph

processing routines.

-4

All ;he routines for communicating with the graphic display are
coded in Assembler language. The basic attention handling facilities
of the Graphic Programming Services for the IBM 2250 are used to con-
trol the display.(i) Most of the non-graphic 1/0 operations of the
GSYM system are also coded in Assembler. Finally, many service
routines such as the routine for handling system status enquiries
are written in Assembler in order to make them more efficient and
faster than would be possible using PL/1.

The following figures show the PL/1 data structures used for the
various graph entities. 1In most cases the lists of graph elements
have been implemented using PL/1 based variables.(iii)

Figure B.4 shows how the 2250 buffer is used to store the graphic
orders which produce the display of the current graph. The free area
is used by system routines for creating the various option lists and
other displays the user sees while working with GSYM. The graphic orders
for these displays are recreated and placed in the buffer each time
they are shown so that the free area is also available to user routines.
A user creating his own displays must, however, know what pgrtion of
this free area is used by any system routines his routines may invoke.
For example, a user routine which calls the light-pen tracking routine
must not violate the area this routine will use. Moreover, the user
routine must restore the status of the buffer to what it was before
it took control.

The following descriptions are of the format of the graphic orders
corresponding to the Qarious graph entities. The user is referred to
the IBM Graphic Programming Services Manual for further details on thes

- meaning and use of the different commands. (i)

Previous vertex 'POINTER'

Next vertex 'POINTER'

Internal name

- CHARACTER(4)

Label 'POINTER'

Address of graphic orders

= 2 bytes

Property List pointer

= 2 bytes

2-D co-ordinates

= 4 thes

3-D co-ordinates

=6 hytes

Invalence - 2 bytes

Pointer to incident

indirected edges -~ 2 bytes

Outvalence - 2 bytes

Pointer to incident

outdirected edges - 2 bytes

Valence - 2 bytes

Pointer to incident

undirected edges - 2 bytes

FIGURE B.l1 : VERTEX DATA STRUCTURE

B.3

L 1

Previous edge 'POINTER'

Next edge 'POINTER'

Internal name

- CHARACTER (4)

Label 'POINTER'

Address of graphic orders

~ 2 bytes

Property list pointer

- 2 bytes

(Positive) vertex 'POINTER'

(Negative) vertex 'POINTER'

2-D co-ordinates of arrow

- 4 bytes

3-D co-ordinates of arrow

- 6 bytes

Address of arrow graphic orders

- 2 bytes

Arrow orientation

- 2 bytes

Edge type

- 2 bytes

FIGURE B.2 : EDGE DATA STRUCTURE

B.4

@

2-D co-ordinates of first

character - 4 bytes

3-D co-ordinates of first

character - 6 bytes

Address of graphic orders

- 2 bytes

Label characters

- CHARACTER(4)

Label Data Structure

Pointer to tail

Po—
of list
Vertex/Edge
points to X
Value of property #1| ___

property list.

Value of property) &1
#n

Vertex/Edge Property List Format

FIGURE B.3

OFFSET
0 Reserved
4 GSRT GEPM
8 GTRU '604"]
T 77T T7T7
12 Vertex Data Area/////////(/
YN N
604 GNOP2
608 GTRU '1404"
7777
612 /Edge Data Area//////
Yl L
1404 GTRU '3208"
I 7 7/
1408 [Laber/patd axéa/ [[][]
3208 GTRU '4598"'
I
3212 Direction Data Area
L.z
4598 GTRU '6156"
I T 77
4602 // Light- Pen Edge
/%ata Area //
s 1. 1 1
6156 GTRU T4
T 7 77
/ﬁre,e,u,e////
8192
bytes

NOTE: Contents of buffer shown as it exists before any elements

"are added to the graph.

FIGURE B.4 : STRUCTURE OF 2250 BUFFER

Vertex Graphic Orders

4 GSRT GEPM
. unblanked vertex screen
. locations
&« final vertex entry
GTRU edge orders
S

There is sufficient room in the vertex buffer area for a maximum
of 148 vertices. The buffer areas reserved for the different graph
entities may easily be changed by restructuring the buffer and making
slight changes in the routines for adding and deleting the various ele-
ments. However, in order to increase the size of any one buffer area
without decreasing the size of any of the others means decreasing the
size of the free area. This is quite feasible as none of the existing
GSYM routines use more than a small faction of this area at any given
time. However, the current buffer allocations should be sufficient
to contaip the maximum amount of data that can be displayed on the
screen without encountering display regeneration problems (i.e. screen

flicker).

e

12

596

600

Vertex buffer area as it would appear when full.

GSRT GEPM
(x;,5,)5u
(x2’y2) u
(%148°Y148) >0
GIRU | '604'

11777777

B.8

'Y

Edge Graphic Orders

604 GNOP2 GEVM

blanked beam to first vertex

unblanked beam to second vertex

label orders

1/ TTTT 7777

1404

604. GNOP2 GEVM

pune omm— — —— ——— oa— q— — —

)b

vt a——— o— a— — —

1400 GTRU '1404"

Buffer area as it appears when full.

¥

The edge buffer area contains suffigient space for a maximum of
99 edges. This area is not used for light-pen edges, just for the usual
straight line edges. The edge orders in the area represent both directed
and undirected edges as the graphic orders for displaying the arrows

on directed edges are stored in their own buffer area.

Label Graphic Orders

1404 GEVM blanked beam to label
co-ordinates (x,

y) GECF B

4 character label

GEVM X co-ordinate

¥y co-ordinate GECF B

4 character label

GTRU arrow orders

[T

3208

@t

1404 GEWM X co-ord.
y co-ord. éﬁCF g--_]
label # 1
GEVM X co-ord.
y co—~ord. GECF B
label # 150
3204 GTRU '3208'
=8 [[/[]]]]1]]]]]

Label buffer area as it appears when full.

.11

The label buffer area is large enough to allow for 150 labelled

vertices and/or edges in the graph.

bined total of more than 150 vertices and edges, it follows that not all

of them can be labelled.

Edge Direction Orders

(xo3yo)

(xl,yl)

(Xzsyz)

Therefore, if the graph has a com-

L 1)

B.12

3208 GEVM blanked beam to
(xos
yo) GEVI2
unblanked beam | blanked beam to
to (x,y,) (xo,yo)
unblanked beam GEVM
to (xz,yz)
1
GTRU light-pen orders | &~ M2y be on %

word boundary

-

The incremental mode is used for the arrow orders because this form
only requifes 14 bytes per arrow whereas the equivalent absolute mode
orders would require 18 bytes per arrow. Using the incremental mode also
means that the graphic order will be the same for all arrows with the

same orientation. Note that by setting up different pairs of values

fot(xl, yl) and (xz, y2)’we can generate the different orientations
using the same graphic orders. There is sufficient buffer space for
a maximum of 99 edge arrows. This corresponds to the maximum number
of straight line edges. But light-pen edges may also be directed so
the total number of directed edges regardless of type cannot exceed

99..

3208 J— i
10),b GEVI2
G11a¥1)s0 | Gxgy9)sb
(xlz,ylz),u GEVM
4592 GTRU
4596 ; 14598
| vy /

Arrow buffer area as it appears when full.

Light-pen Edge Graphic Orders

6160

4598
=
head of edge{blanked & start of edge orders
list (x,
y) GEVI2
unblanked unblanked
U(x4,54) variable length edge
orders
U(xn,yn) GTRU &~ transfer to next edge's
orders
next edge GEVM
blanked (x,y)
GEVI2
L[]
: > loop to start of buffer
GTRU A &
FREE AREA

It is impossible to estimate the average length of the orders for

>

each edge since this will vary for each user. There is, however, room

B.15

for approximately 30 edges if each edge takes about 20 line increments.
But then it is also possible to draw an edge so long that it will not
fit into the light-pen edge buffer area even if this area was previously

empty.

Addition and Deletion Buffer Operations

All routines for altering the graph by adding and deleting graphic
orders from the 2250 buffer operate in essentially the same manner.

The sole exception is the light-pen edge routine. For all other graph
entities, if an element is to be added to the graph, the routine first
checks whether there is space left in the buffer for the element. If
there is, then the graphic orders required to display the new element

on the screen are generated and placed at the bottom of the corresponding
buffer area. These routines maintain a pointer to the most recent entry
in each buffer area. If there is no room for the element the user is
simply informed that the buffer is full.

When an element is to be deleted the routine is passed the address
of the graphic orders to be deleted. Each time an element is added to
the graph the address of the graphic orders generated for the element
is saved in the data structpre corresponding to the element. The routine
then copies the orders for the most recent entry of this type into the
space which is no longer needed. Thus, each time an element is deleted
the buffer area is compressed, avoiding the problem of buffer fragmentation.
0f course, if the element to be deleted is the most recent entry the
pointer to the most recent entry is simply reset to point to the second

most recent entry.

>t

B.16

The above scheme will not work for light-pen edges since the graphic
orders. for thebdifferent edges differ i?‘length. That is, it is not pos-
sible to keep the buffer area intact after a deletion without recopying
much of the buffer. Thus, we cannot avoid the buffer fragmentation
problem. The table below is used to keep a record of each light-pen
edge entry in the buffer. The table is initialized so that the only
entry is a free area entry representing the whole light-pen edge buffer
area. When the first light-pen edge is added fo the graph this entry
is split into an entry representing the buffer area used for the edge
orders and an entry representing what was left of the free area. Thus,
as long as edges are added to the graph a linked list of 'in use' buffer
areas is built up and there remains one entry representing whatever
free area is left. Each entry contains the starting address and length

of the orders for the corresponding edge.

IN
USE
BUFFER LENGTH OF |DATA STRUCT POINTER TO POINTER TO
ADDRESS AREA ADDRESS LAST ENTRY | NEXT ENTRY =
&«
FREE /
Y
BUFFER LENGTH OF POINTER TO | POINTER TO
ADDRESS AREA ———— | LAST ENTRY NEXT ENTRY ‘*)

-

B.17

When a light-pen edge is deleted the linked list of 'in use' entries
is searched until the correct entry is found. This entry is then moved
to the tail of the 'free' list. The free list contains only one entry
until the user starts deleting light-pen edges. Therefore, the usual
situation will be that the light-pen edge buffer area is partitioned into
holes of 'in use' areas and 'free' areas. When an edge is added its
buffer area is taken from the first entry in the 'free' list with enough
space to hold the orders generated for the new edge. Any space that is
not used is returned to the 'free' list.

Eventually, the light-pen edge buffer area will become fragmented
into 'in use' areas and 'free' areas, the 'free' areas being quite small.
This situation is allowed to continue until there is an edge to be added
and none of the 'free' entries are large enough to hold it. The buffer
area is then compressed by moving all the 'in use' areas to the start
of the buffer area (i.e. the orders are recopied) and the buffer table
is recreated. The 'free' areas are thusly transformed into one large
'free' area at the bottom of the light-pen edge buffer area. Should
this area still not be large enough for the new edge the user is in-

formed that the buffer area is full.

System —- User Routine Linkage

For each function name listed in the miscellaneous functions option
list (see Figure 5) for which no actual routine exists, there is a dummy
entry point in the routine SYS1. Suppose for example that a user wishes
to add a routine called USER6 (only names allowed are those in the mis-

cellaneous functions option list) to the system. He must remove the g

B.18

USER6 entry point from SYS1 and recompile and relinkedit SYS1l. He then
inserts a subroutine call to USER6 in the routine called 'GSYM'. 'GSYM'
must also be recompiled and relinkedited. The user must then change
the job. control language for running GSYM so that the new routine is
"included' when all the system load module libraries are linkedited
together at run time. Finally, he must compile and linkedit the new
routine USER6 and place the load module obtained in one of the system
load module libraries. The following is a list of the existing system
and user routines which may be invoked by using the miscellaneous func-

tions option.

SYS5 -- Light-Pen Edge Curve Fit

This routine allows the user to perform a curve fit on a specified
light-pen edge. The purpose of this facility is to be able to create
a smoother version of an edge that was drawn using the light-pen. This
is occasionally necessary because of the poor resolution of the light-
pen. In order to be able to draw a smooth curve it is necessary to use
a relatively small light-pen target. However, the smaller the target
the more likely the pen is to strike the target at random points on the
circumference of the target as it moves about the screen. Thus, this
routine was written in an attempt to improve tﬁrough software what is

essentially a deficiency in the graphics hardware.

SYS6 —— Adjust Edge Labels and Arrows

This routine will move an arrow associated with a directed edge
to the centre of the edge (except for 1ight—pen edges) and display the
arrow with the proper orientation. If the edge is labelled the label:;

is positioned just off the centre of the edge. The user may select the

B.19

edge or may specify that this operation is to be performed on all directed
edges in the graph. This routine is intended to make it a little easier

for the user to position arrows and labels on edges.

SYS7 —~ Trace

This routine allows the user to set up a selective trace of the
internal operations performed by the system. This is expensive and

should only be used as a debuggiﬁg tool.

SYS8 -~ Buffer Dump

This is another debugging tool which allows the user to have part
 or all of the contents of the 2250 buffer printed out. This routine is
very useful in the debugging of user routines which manipulate the 2250

buffer.

SYS9 —-- Graph Input

When this routine is invoked a description of a graph is read from
a user specified (through job control language) disk file and displayed
on the screen. The graph is displayed without regard to its structure.
That is, the vertices are arbitrarily placed in rows on the screen and
the edges inserted between the appropriate vertices. This routine allows
the user to bring graphs into the system without having to create them

element by element.

USER]1 —— Automorphism Group Calculation

This routine consists of automorphism group calculation and graph

display routines currently being investigated using the GSYM system.

B.20

System Error Messages

The following is a list of error messages that may be generated
by the system when an error is detected. Note that these are recover-
able errors, that is, the user has’made an error such as typing a name
wrong or a similar easily corrected error. It is also possible for the
system to terminate abnormally due to a graphic I/0 error. However,
most of the GSYM graphic I/0 routines have been purposely designed to
retry the 1I/0 operation several times before abending. Thus, such
errors are extremely remote unless there is a serious system hardware

fault.

INTERNAL NAME ERROR
UNDEFINED NAME USED
.] END NAME MISMATCHED
INVALID ORIENTATION
_INVALID PROPERTY
USE ALTER OPERATION TO CHANGE NON-NULL LABEL
INVALID NUMBER
INVALID LIST TYPE
INVALID OPTION
USE ADD OPERATION
NULL LABEL IMMOVABLE
ELEVENTH PROPERTY
NAME ALREADY IN USE

POINTER LIST FULL

B.21

INVALID AXIS
LAST INTERNAL NAME
INVALID BUFFER ADDRESS

2250 BUFFER AREA FULL

Macro Data Tables

We shall conclude this appendix with a list of the data required
for the various internal operations performed in manipulating the graph
currently on display. Before any system operation begins all the data
‘required to complete the operation is collected in the PL/1 structure
shown in Figure B.5. The data is typed in by the user if the system
is in macro mode. However, if the system is in normal mode then the
system derives this information from the usual 'display-user response'
sequence. For example, when the user positions the light-pen target
on the screen in order to create a new vertex the screen co-ordinates
of the target centre are placed in this structure. The rest of the
appendix shows what values are required for each operation. These
tables are necessary for anyone trying to invoke system routines from

his own user routines.

B.22

1 MACRO,
2 TYPE,
2 PROP#,
2 CORDl, (3 X, 3Y, 32)
2 CORD2, (3.X, 37Y, 32)
2 PLUS,
2 NEG,
2 LBL,
2 LBL-TYPE,
2 ARROW,
2 LIST(10),

2 LTPEN

FIGURE B.5

Add Operation B.23
CORD1 CORD2 PLUS NEG LBL
‘|vertex label

v location location label

E label

location end 1 ptr. end 2 ptr. | label
DIR arrow undirected positive
location edge ptr. end ptr.

DE arrow label positive negative label

location location end ptr. end ptr.

VLBL iabel. vertex ptr. label

ocation

ELBL label

location edge ptr. label

B.24

LBL_TYPE ARROW LTPEN | PROP# LIST
\' label #f of property
type properties values
E label ltpen | # of property
type flag properties values
DIR arrow edee tvpe
orientation ge typ
DE label arrow ltpen | # of property
type orientation [flag properties | values
VLBL label
type
ELBL label edge type
type ge typ
NOTE: In all tables values not shown are undefined. This also

applies to elements of "MACRO' which are not listed.

Delete Operation

B.25

PLUS LBL_TYPE ARROW LTPEN
v vertex ptr. all flag
E undirected
edge ptr. edge type all flag
DIR directed
edge ptr. edge type all flag
DE directed '
edge ptr. edge type all flag
PRTY. vertex/edge pointer to all flag
code property
in vertex or
edge property
list
NOTE: If the 'all flag' is on no other data is required for the

deletion.

Alter Operation

B.26

PLUS NEG LBL LBL_TYPE | ARROW LTPEN
DIR directed new reverse
edge ptr. arrow direction
ortn. flag
VLBL vertex ptr label label
type
ELBL edge ptr. label label
type
PRTY vertex or |vertex or vertex/ locn.
edge ptr. |edge ptr. edge code | of
. or numeric pProp.
value in
list
PTRVAL |vertex or vertex/ locn.
ledge ptr. edge code | of
prop.
in

list

-t

B.27

Point Operation

PLUS - pointer to the first vertex or edge in the 1list.

NEG - pointer to the second element in the list.

LBL TYPE - location of head of list 'POENTER' in GSYM pointer
list or location of property associated with list.

. ARROW - location of property in vertex list.

LTPEN - turned on if LBL TYPE points to 'POINTER'.
PROP# - # of property lists to alter.
LIST - pointers to the remaining elements in the list.

B.28

Move Operation

CORD1 PLUS NEG LIST

\ new location ptr. to
vertex

E ptr. to edge| ptr. to new end 2 ptr. to new end 1

DE ptr to ptr. to new neg. ptr. to new pos.
directed edgg end end

VLBL |new location ptr to
vertex

ELBL = |jnew location ptr. to
undirected
edge

DELBL .[new location ptr. to
directed
edge

ABRROW Inew location ptr. to
directed
edge

Declaration Operation

B.29

PLUS LBL LBL_TYPE ARROW LTPEN
VPRTY property
name
EPRTY property
name i
PTR vertex | pointer location location defer flag
or edge | name of of
ptr. property property
in vertex | in edge
list list
ASSOC |} vertex location location defer flag
or edge of of
ptr. property property
in vertex | in edge
list list

.t

Translation Operation

CORD1 - the x, y and z increments by which the co-ordinates

all the elements in the graph are to be shifted.

Rotation Operation

CORD1 - the co-ordinates of the centre of rotation.
LBL TYPE - rotation axis code.

PROP# - amount of rotation in degrees.

B.30

of

.t

BIBLIOGRAPHY

-

(11)
(114)

(iv)

(vi)
(vii)
wiid)

(ix)

BIBLIOGRAPHY

IBM System/360 Operating System Graphic Programming Services
for the IBM 2250 Display Unit, Form C27-6909-5.

IBM System/360 Component Description IBM 2250 Display Unit
Model 1, Form A27-2701-2.

IBM System/360 Operating System PL/1 (F) Language Reference
Manual, Form C28-8201-2.

IBM System/360 Operating System PL/l (F) Programmer's Guide,

Form GC28-6594-7.

IBM System/360 Operating System Assembler Language, Form
GC28-6514~6.

IBM System/360 Operating System System Control Blocks, Form
GC28~-6628-4.,

IBM System/360 Operating System System Programmer's Guide,
Form C28-6550~6.

IBM System/360 Operating System Supervisor and Data Manage-
ment Macro Instructions, Form GC28-6647-3.

IBM System/360 Operating Svyvstem Supervisor and Data Manage-
ment Services, Form C28-6646-2.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

