AN EFFICIENT UNIFICATION ALGORITHM

by
Lewis Denver Baxter

Applied Analysis & Computer Science

July, 1973

Technical Report CS-73-23

ABSTRACT

An efficient algorithm to unify sets of expressions of first
order logic is presented. It is shown that previous implementations
of the abstract unification algorithm require exponential amounts of
resources. The claim of efficiency is partly justified by showing that
the space required is linear in relation to the lengths of the inputs.
With respect to time, although the previous inefficiencies are eliminated,

a precise estimate is difficult to make.

KEYWORDS AND PHRASES

unification, analysis of algorithms, resolution, theorem proving,
first order logic, topological sorting, data structures, compu-

tational complexity

CR CATEGORIES

3.60 5,21 5.25 5,31

1. INTRODUCTION

The unification computation plays a major role in refutational
deduction algorithms and can be compared to the elementary arithmetic
operations in procedures of numerical mathematics. Consequently it is

important to design the most efficient unification algorithms.

An implementation of the abstract algorithm given in
Robinson's pioneer paper [l] using a string representation for
expressions is inefficient due to the explicit creation of terms whose
length can increase exponentially, Hence such an implementation
requires at least an exponential amount of time and space in relation

to the length of the input set of expressions.

In [2] Robinson gives an implementation of the unification
algorithm using a compact tree-like data structure to represent
expressions, which purports to be "very close to maximal efficiency".

The data structure certainly economizes on space because instead of
creating and copying expressions in the course of applying substitutions,
pointers are manipulated; consequently only a linear amount of space is
required. However the inherent phenomenon of the abstract algorithm
persists: expressions are (implicitly) created whose length is
exponential. Although these expressions require only a linear amount of

space, the time required to examine them is exponential.

Whereas the above algorithms involve sequential scanning and
subsequent substitution, a new algorithm is presented which has a simple

transformational approach of a parallel nature. The input set of

expressions is transformed into a simpler set which has the same most
general unifier (if it exists); in fact a permutation of this set, if
unifiable, represents the most general unifier. This set of expressions
is unifiable if an associated directed graph has no circuits, or
alternatively, if a naturally induced partial order can be topologically
sorted. This algorithm also quickly detects failure of unification in
the same but broader spirit of [3]. Whereas Stillman uses the concept
of "weak substitution" to merely filter through expressions which are
"weakly unifiable", this algorithm not only easily detects failure of
unification in certain cases but also reports all cases of failure and

gives the most general unifier in all cases of success.

The topological sorting phase of the efficient algorithm has
been previously analyzed to require linear amounts of resources.
Analysis of the transformational phase is discussed and shown to require
a linear amount of space. An analysis of the time required is not
trivial; one reason is that a problem involving the processing of
equivalence relations can be formulated as a unification problem. It is
conjectured that the amount of time-required is quadratic in relation to

the length of the input expressions.

A complete resolution program can be based upon this efficient
unification algorithm in which substitutions are never performed but

rather denote constraints in the representation of clauses.

2, PRELIMINARIES

The reader is expected to be familiar with the papers [1] and
[2], which define the problem of unifying expressions in the context of
resolution-oriented theorem provers; much of the nomenclature found there
will be used, except that for substitutions. All substitutions in this
paper are represented as the implicit product of component substitutions:
{v « t} in which the variable v is to be replaced by the term t.
Consequently the general form of a substitution is:

vy « e, vy vtk eee {v < e}

and will be called a composite substitution. The material omn topologically

sorting a partial order [4, 2.2.3] will be useful also.

Expressions of first order logic will contain superfluous
punctuation for readability (e.g. parentheses, commas and blanks) but to
simplify the calculation of the relationship between the length of an
input, denoted by L, to an algorithm and the time and space requirements,
only the predicate symbol: P, function symbols: f,g,h constant symbols
(regarded as nullary function symbols): a,b and variables

K3YsZsUsVyWsX 3Xy5eaey whose lengths are taken as unity, will be used.

In the analysis of algorithms the O-notation will be used for

approximations [4, 1.2,11.1].

3. ANALYSIS OF PREVIOUS ALGORITHMS

In computing the most general unifier it is assumed that the
substitution components are not explicitly "multiplied" together, since
otherwise the unification problem would be inherently inefficient. To
demonstrate this and to also exemplify the notation used, consider the
unification of the set of two literals:

LCICIREIOPIE JC I O PR JC IR SUNPDINS CIE SURLRNE I0D g

The unifier for this set is the composite substitution:

{xn « f(xn_l,xn_l)} —= {x, < f(xl,xl)}' {x; « f(xo,xo)} .

To show this product explicitly, first define the expressions e
recursively:

e =x 3 e = f(ei,ei) i=0,1,2,...

i+l
Then the explicit unifier is:

{xl C ey Xy T ey XC en} .

To find the relationships between the lengths of these

unifiers:

the length of the input, L = 4n + 2;
the length of the composite unifier equals 4n = O(L);
the length leil of the expression e, can be shown by

i+l

induction to be 2 ~ 1, hence the length of the explicit unifier is:
n n .
@+ le]y = 7 2ttt
i
i=1 i=1
= 4 (2B-1)

0¢2ly .

There are two common implementations of the original abstract
unification algorithm [l], according to the data structure used to

represent expressions.

In the implementation which uses a string representation [1]
the unification of:

{P(f(xo,xo), f(xl,xl),..., f(xn_l,xn_l), P(xl’XZ""’ xn)}

requires the creation of terms having exponential length. Using the
earlier definition of the expressions e;, after applying the substitutions:

{Xl < el}, {XZ < ez},'o., {Xn_l < en—l} [

at the final stage of the algorithm the terms x and e are examined.

To determine if the variable x occurs in the term e s it is necessary
to search e - Hence the time required for the algorithm is bounded
below by the time required to examine e which is proportional to its
length. Also, since all expressions are explicitly represented by
strings, the space required for the algorithm is bounded below by the
space required to store the expression e, . As already seen, e has
exponential length thus both resources are at least exponential for this

implementation.

In [2] an implementation is presented in which expressions
are represented by trees in which common subtrees are identified, thus

e has the representation:

£ f - - - £ X
\—? \ao

in which the pointers from the binary function f refer to its two argu-

ments which in this case are identical expressions.

Although the representation of e requires only linear space,
the time taken to search e for an occurrence of X remains exponential

due to the essential recursive nature of the examination.

Actually, the space required to store expressions is quadratic
due to the two-dimensional table, "args", whose number of rows is
proportional to the length of the input expressions and whose number of
columns is the maximum "arity" of the input functions. However, by
using a linked-list representation for "args" the quadratic bound
becomes linear. Also note that the execution of the recursive search
function "occur" implicitly requires additional space in the form of a
pushdown stack which however is only linear. In practice, the space
requirements are not critical since most storage can be released at the
end of the algorithm, which would appear as a subroutine in a theorem

prover,

4. DESCRIPTION OF THE EFFICIENT ALGORITHM

The efficient algorithm which is now presented determines if
a set of pairs of expressions:

s = { {rl,sl},...;{rn,sn} }

if unifiable and if need be computes the most general unifier of S.
The algorithm can be readily applied to determining the most general
unifier of several (m) literals:

{P(tll,...,tln),...,P(tml,...,tmn)}

since that problem is equivalent to unifying the set of m~l pairs of
literals:

{ {P(tll,...,tln), P(tZl,...,tzn)},...,{P(tll,...,tln), P(tml,...,tmn)} .

First an informal description of the algorithm with illustrating
examples is given. The algorithm consists of two separate phases: a

transformational phase followed by a sorting phase. In the first phase

the set S is transformed, according to several rules, into another set U
of ordered pairs of expressions:
U= {<v

ot >,...,<Vm,tm>}

1°71
in which the variables v, are distinct. The first element of the
ordered pair <v,t> will be called the superseded variable. Each rule
preserves unifiability so that U is unifiable iff S is unifiable.
During the algorithm a pair from S is either transferred to U or is
replaced by some other pairs. Initially U is empty and the algorithm

proceeds iteratively by selecting an arbitrary pair from S until either

S becomes empty or failure of unification is detected. According to the

form of a particular pair of expressions chosen from S one of the

following rules is applied:
Rl, The pair {t,t}, where t is any term, is deleted from S.

R2. If the pair is'{f(sl,...,sm), g(tl,...,tn)} then if the
function symbols f and g differ, unification fails
otherwise replace the pair by the m (=n) pairs:

'{sl,tl},...;{sm,tm}.

R3. If the pair is {v,t} where v is a variable and t is a
term (possibly also a variable) and if neither v nor t

appears as a superseded variable of U then add <v,t> to U.

R4. If the pair is {v,t} where v is a variable which appears
as a superseded variable in the ordered pair <v,t'> of U

then replace {v,t} by {t,t'} in S.

Note that the rules R3 and R4 include the case in which the

pair from S consists of two variables.

Eg 1. S = { {f(h(a,w,a),x),y},{z,8(y,a)},{g(f(u,x),w),z} }.
The sets S and U are shown at the beginning of each iteration with the

chosen pair of S underlined.

Rule S

[

R3 {f(h(a,w,a),x),y} {z,g8(y,2)} {g(f(u,x),w),z} ;

R4 {f(h(a,w,a),x),y} {g(f(u,x),w),z} ; <z,g(y,a)>

R3 {f(h(a,w,a),x),y} {g(f(u,x),w), g(y,a)} ; <z,g(y,a)>

R2 {g(f(UQX) sW) sg(y’a) }; <z sg(y’a)> <y,f(h(a,w,a) ,X)>

R3 {f(u,x),y} {w,a} ; <z,g(y,a)> <y,f(h(a,w,a),x)>
R4 {f(u,x),v}; <z,g(y,a)> <y,f(h(a,w,a),x)> <w,a>

R2 {f(u,x),f(h(a,w,a),x)} ; <z,g(y,a)> <y,f(h(a,w,a),x)> <w,a>

R1 {u,h(a,w,a)} {x,x} ; <z,g(y,a)> <y,f(h(a,w,a),x)> <w,a>

R3 {u,h(a,w,a)} ; <z,g(y,a)> <y,f(h(a,w,a),x)> <w,a>

s <z,g(y,a)> <y,f(h(a,w,a),x)> <w,a> <u,h(a,w,a)>

The resulting set U equals:

{<z,g(y,a)>, <y,f(h(a,w,a),x)>, <w,a>, <u,h(a,w,a)>} .

In the ordering phase, determination if U is unifiable requires
the recognition of a circuit in an associated directed graph, G, which
reflects the relationship between the variables in U. If U =
{<vl,t1>,...,<vn,tn>} then G has as nodes the superseded variables
{vl,...,vn} and directed edges v, * vj for each variable vj occurring

in the term ti' U is unifiable iff G contains no circuits.

Eg 2. From Eg 1, U has the associated graph:

@——0—0Q

which has no circuits hence S is unifiable. (Note that x is not a

superseded variable of U.)

10

Eg 3. U = {<x,f(,z,v,w)>, <‘y,g(11,w)v>, <z,h(y,w)>, <u,g(w,v)>, <V’h(zsa)>}

has the associated graph:

«§ |

which has a circuit: z <« y + u < v + z, hence U is not unifiable.

Eg 4. U = {<x,f(x,b,x)>} has the associated graph:

<Y

which has a circuit, hence U is not unifiable.

Eg 5. Note that due to rule R4, circuits formed from variables will not
occur. If S = { {x,y},{y,z}, {z,x} } , which is unifiable, then after
the transformational phase U = {<x,y>, <y,z>} and U # {<x,y>, <y,z>, <z,x>}

whose associated graph has a circuit.

In general, if U is unifiable then some permutation of it
gives the most general unifier: <v,t> represents the substitution component

{v < t} of the composite unifier.

The problem of determining if a directed graph has a circuit
is equivalent to that of determining if the naturally induced partial
order can be topologically sorted. The topological sort which also gives
the order of the component substitutions, has a well known linear

algorithm given in Knuth [4, 2.2.3].

Eg 6. Using Eg 2 the partial order naturally induced from the graph is

{z <y, y <« w, u< w} where v, € v, denotes "

vy precedes v2". This can
be topologically sorted into the ordered list (z y u w), in which, if
vy v

then vy precedes v, in the sorted list. Hence the composite

2 2

unifier is:
{z < g(y,a)} {y « f(h(a,w,a),x)} {u « h(a,w,a)} {w <« a}
in which the order of the component substitutions corresponds to that of

the associated variables in the topological sort,

11

5. FLOWCHART AND DATA STRUCTURES

A more formal flowchart to describe the t¥ansformationakt ghase.of the

algorithm is now given:

Input S and initialize
U to empty

Take the next pair
{el,ez} from S

[none

yes

Is either e; or e,
a variable

Y

Is either e)] or ey

yes a superseded variable of U no

Assuming ej is the
superseded variable,
with <e;,e> in U,
add to S {ez,e}

Add to U <ej,ey>
where ey is a
variable

If el = f(Sl,...,Sm

and e, = g(tl,...,tn)

does f = ¢
\L yes

Add to S the pairs:
{Sl,tl},.-.,{Sn,tn}

Fai:

13

In the algorithm, the pair chosen from S is arbitrary; if S is
represented as a linked list stack, pairs are deleted from and inserted
at one end; if S is represented as a queue, pairs are taken from one end
and added to the other. By using heuristics it may be possible to choose

pairs which will quickly lead to a failure if that is inevitable.

If expressions are represented by strings then the above
algorithm is not linear, for consider the unification of {sn,tn} where
the expressions s, and t, are recursively defined:

s =X ,t =y s

o = f(si,ti) , t

i+l 141 T FEgs) 1=0,1,2,...
The set S during the algorithm contains in all: 1 copy of {sn,tn}, 2 copies

of {Sn—l’tn—l}""’zn copies of {so,to}, the total length of which is:

n , n . i+l
' n-i _ n-i , o 1+l
L' = .Z 2770 (fsy [+]e D = ‘Z 207 2. (27 A1)
i=o i=o
n .
- 9 Z (2n+1_2n-1)
i=o
=2 ((@) 2™y,
Now the length of {sn,tn},
n+l
L o= s [+|e | =2 @7~
hence L' = O0(L log L), consequently the time and space required to copy

these expressions is not linear.

If however, expressions are represented by the compact tree-like
data structure the above inefficiency is eliminated because only pointers
rather than expressions need be manipulated. The above flowchart can then
be reinterpreted to reflect the fact that only references to the expressions

are manipulated.

14

This is illustrated by using the "table" representation of
expressions described by Robinson [2]. The k-th row of this table
represents an expression, expression [k]; SYMBOL [k] is the first symbol
of that expression and if this is a function symbol then ARGS [k,i]
(efficiently represented as a linked list) refers to the i-th argument
of the function. VBLE [k] indicates if the expression is a variable and
if so, SUBST [k] if non-zero refers to the pair:

<expression [k], expression[SUBST [k]]>
in U, S, initially a set references, is represented by a linked list

data structure,

Eg 7. Using Eg 1 the table representing the sets S and U is finally:

k SYMBOL ARGS VBLE SUBST
1 f 25

2 h 343

3 a

4 W true 3
5 X true

6 y true 1
7 z true 8
8 g 6 3

9 g 10 4
10 f 11 5
11 u true 2

Initially the SUBST column, representing U, is empty and

S

{ {1,6}, {7,8}, {®,7} }; finally

U = {<7,8>, <6,1>, <4,3>, <11,2>}.

6. ANALYSIS OF TIME REQUIREMENTS

The time required for the transformational phase is closely
related to the number of times the four rules are applied. It appears
certain that this is not linear in relation to the length of the input,
due to the repeated processing of pairs from S which consists of two
variables. In fact, the problem of processing equivalence relations
[4, 2.3.3] can be formulated as a unification problem: if the set of

equivalence relations is {xiEyi l i=l,...,n} then by identifying X, and

y; as variables, to determine if arbitrary elements xj and ¥, are in the

15

same equivalence class the following set of expressions can be considered:

S = { {Xi’yi}""’{xn’yn}’ {Xj,f(yk)} }.

S is unifiable iff Xj and ¥y, are not in the same equivalence class. The

efficient unification algorithm probably does not process the sets
{xi,yi} in the most efficient manner. An efficient algorithm [5] which
processes equivalence relations by representing equivalence classes by
dynamically varying trees, gives a time bound of O(n log n). It is
therefore conjectured that the efficient unification algorithm operates

in quadratic time although this is not justified in this paper.

16

7. CONCLUSION

The unification algorithm presented here processes expressions
in a natural parallel manner and consequently eliminates the inefficiencies
of earlier algorithms. This new approach raises possibilities for
implementing the algorithm on parallel processors, however, a more radical
venture is to design a complete theorem prover using the algorithm as a
basis. The representation of substitutions as composite substitutions
also facilitates the representation of clauses as constraints in the manner

of [6].

Several theorem provers have been implemented in which substi-
tutions are not actually performed [7]; this idea together with the use
of constraints suggests an efficient implementation of a theorem prover

which is dominated by the manipulation of pointers.

This paper suggests further areas of research:

(1) analysis of the time required for the efficient unification
algorithm

(2) embedding the efficient unification algorithm in a
refutational deduction system using constrained resolution

(3) extension of the efficient unification algorithm to higher

order logic.

ACKNOWLEDGEMENT

I am indebted to Prof, T. Pietrzykowski who suggested several
improvements to previous versions of this paper and who also discussed

further areas of research related to this paper.

17

REFERENCES

[1]

[2]

[3]

[41]

[5]

(6]

(7]

Robinson, J.A. (1965)
A machine-oriented logic based on the resolution
principle, JACM 12 23-41.

Robinson, J.A. (1970)
Computational logic: the unification computation,
Machine Intelligence 6 63-72.

Stillman, R.B. (1972)
The concept of weak substitution in theorem proving,
Ph.D. thesis, Syracuse University.

Knuth, D.E. (1968)
The Art of Computer Programming, Vol. I, Fundamental

Algorithms, Addison-Wesley.

Fischer, M. (1972)
Efficiency of equivalence algorithms, in complexity
of computer computations, R.,E. Miller and J.W. Thatcher
(editors), Plenum Press, New York.

Huet, G.P. (1972)
Constrained resolution: a complete method for higher
order logic,
Report 1117, Jennings Computing Center, Case Western
Reserve University.

Baoyer, R.S. and Moore, J.S. (1971)
The sharing of structure in resolution programs,
Metamathematics Unit, University of Edinburgh,
(To appear in Machine Intelligence 7).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

