TRANSLATING PROGRAM SCHEMAS TO
WHILE SCHEMAS

by

E.A. Ashcroft
University of Waterloo

and

Zohar Manna
Weizmann Institute, Rehovot, Israel

CS-73-22

. *
TRANSLATING PROGRAM SCHEMAS TO WHILE SCHEMAS

Edward Ashcroft
Computer Science
University of Waterloo
Waterloo, Canada
and
Zohar Manna
Applied Mathematics

Weizmann Institute
Rehovot, Israel

Abstract

While-schemas are defined as program schemas without go to
statements, in which iteration is achieved using while statements. We
present two translations of program schemas into equivalent while-schemas,
the first one by adding extra variables, and the second one by adding
extra logical variables. In both cases we aim to preserve as much of the
structure of the original program schemas as possible.

We also show that in general any translation must add

variables.

* An earlier version of part of this paper was presented at IFIP 1971
(Ljubliana, Yugoslavia). The research reported here was supported in
part by the Advanced Research Projects Agency of the Office of the
U.S. Secretary of Defence (SD-183).

INTRODUCTION

The program schema approach makes it meaningful to consider
the relative 'power' of programming language constructs. Most work
in this area [12, 4] has considered adding features to program
schemas such as recursion and arrays. Here we consider removing, oOr
at least restricting, a feature of program schemas: the go to state-
ment.

There has been much interest lately, following observations
by Dijkstra [7], in the possibility and desirability of removing go-
to statements fram programming languages, using instead such state-
ments as the while statement. Programs in such languages should be
better structured, easier to understand and, hopefully, easier to
prove correct. The elegant formal system of Hoare [9] for proving
programs correct requires programs with the sort of 'nested'
structure that while statements provide. Goto-less programs are
clearly an interesting class of programs to study.

We therefore define a class of while-schemas, and show
that while-schemas are as powerful as program schemas by giving a
translation, ALGORITHM I, of program schemas to equivalent while-
schemas. This translation is interesting in that it preserves most of
the 'loop structure' of the program schemas, and gives while-schemas
of the same order of efficiency.

Bohm and Jacopini [3] have shown that program schemas

can be translated into while-schemas, with the addition of extra

logical variables. A modification of a technique in Brown et al

[2] would show (by a further translation) that the additional logical
variables add no extra power to while-schemas. However, applying
these two translations to a program schema would give a while-schema
that would not resemble the original program schema at all. In any
practical application, ALGORITHM I would be preferable.

Nevertheless, ALGORITHM I itself has some impractical
features; the resulting while-schemas tend to be long, and, applied
to a program schema that corresponds directly to a while-schema, it
does not give us back that while-schema. We therefore present an
improvement on Bohm and Jacopini's reduction to while-schemas with
logical variables, which we call ALGORITHM II. This doesn't give us
'pure' while-schemas, but the schemas produced are often more
'readable' than those produced by ALGORITHM I. The method preserves
whatever 'while-structure' already exists in a program schema, and
when applied to a program schema corresponding directly to a while-
schema, ALGORITHM II gives us back that while-schema.

Both ALGORITHM I and ALGORITHM II give while-schemas that
use more variables in general than the original program schemas. It
is natural to ask whether this is necessary feature of any translation.
We show that this is the case by giving a program schema, with one
variable, for which there is no equivalent one-variable while-schema.
This also means, of course, that program schemas are more powerful
than while schemas in the restricted sense that they need fewer

variables in general.

PROGRAM SCHEMAS

A program schema consists of a finite sequence of ‘statements,

separated by semicolons. This sequence must start with a Start state-

ment, e.g. START (XLL’ X, +++) , designating input variables, and end

with a Halt statement, e.g. HALT (xl, Xyp e) , designating output

variables. The other statements may be of the following types (other

types will be allowed in later types of schemas) :

i) null statements i.e. null

ii) assignment statements

e.g. % “ f(x2, Xy x3)
iii) conditional statements

e.g. if ¢ then S, else S,

where Sl and 82 are statements

and ¢y is a formula.
iv) compound statements

e.g. [Sl; Syi crei S,]

where Sl' 52, e, Srl are statements.
v) goto statements

e.d. goto Li

where Li is a label.

Any statement can be labelled, by preceding it with a label followed

by a colon. A formila is any quantifier-free formula of predicate

calculus.
The statement if =<+ then ... else null can be
written if ... then --- provided no confusion results.
Exanple: The followihg is a program schema Pl , with

one variable,that will be used often throughout the paper:

Schema Pl: START (xX) ;
x«ax) ;
L : if p(x) then [x <+ e(x) ; goto L] ;
A: if q(x) then x «b(x) else [x+« g(x) ; goto NI;
M: if r(x) then [x « d(x) ; goto M] ;

B : if s(x) then [x<+c(x) ; goto L] else x <« £(x);

N : null ;

HALT (x)

A, B, L, M and N are labels (A and B will be used in later
discussions). The symbols a, b, ¢, d, e, £ and g denote
functions and the symbols p, g, ¥ and s denote predicates or

tests. The expressions p(x) , g(x) etc. are (simple) formulas) .

WHILE-SCHEMAS

A while-schema is a program schema using only statements of

types i), ii), iii) and iv), and type vi) below:

vi) while statement

e.g. while ¢ do S

Such statements are to be considered as abbreviations for the equiva-

lent statements

L :if ¢ then [S; goto L] else mnull

Exanple: The following is a while-schema P, , with two

variables:

Schema P,: START (x)

-.

X + a(x)

-

~e

while p(x) do X <« e(x)

Yy X

if q(x) ‘then [x <+ b(x) ; while r(x) do x<«d®] ;
while q(y) A s(x) do

[x « c(x) ;

while p(x) do x « e(x) ;

y«x:

if q(x) then [x « b(x); while r(x) do x <« d(x)1l;
if qly) then x « f£(x) else x «g(x) ;

HALT (%)

The schema uses the same symbols as Pj, denoting functions

and predicates, and here we have the (more camplicated) formula

qgly) Arsx) .

WHILE SCHEMAS WITH LOGICAL VARIABLES

A while-schema with logical variables is a program schema

using only statements of types i), ii), iii), iv) and vi), and type vii) below:

vii) logical assigmment statements

e.qg. t, <« true

or ti +« false

The variables appearing in logical assignment statements

are called logical variables, and they may not appear in ordinary

assignments. They may appear, however, in formulas, as if they were

propositions, i.e. O-ary predicates.

Example: The following schema Py is a while-schema

with one logical variable (and one 'ordinary' variable).

Schema P3 : START (%) ;
x « a(x)

t « true ;

while t do

[while p(x) do x <« e(x) ;

if q(x) then [x <« b(x) ;
while r(x) do x <« dlx) ;
if s(x) then x +« c(x)

else [x « f(x); t « false]l

else [x « g(x) ; t « false]l] ;

HALT (x)

P, uses the same symbols as Pl and P2 denoting

3
functions and predicates, and here the expression t is a fornmla.

EQUIVALENCE OF SCHEMAS

Two schemas, having the same numbers of input variables and

of output variables, are said to be equivalent if they compute the
same function (from input variable values to output variable values),

no matter what functions or predicates are denoted by the symbols in

the schema. (Of course, the same symbol appearing in the two schemas
must denote the same function or predicate.)
More formally, we can first give meaning to the symbols in a

schema by using an interpretation. An interpretation I consists

of a domain D, from which the variables in the schema may take values,

and a specification of the functions and predicates over D. denoted by

I
the function and predicate symbols in the schema. The interpretation
also supplies initial values (fram DI) for the input variables.
Given an interpretation I , a schema S becomes a program (S, I)
The program has a finite or infinite computation

in the usual way, ~and if this is finite we let wval (S, I)
denote the final values of the output variables. If the computation
is infinite, val (S, I) is undefined.

Two schemas Sl and 82 are then equivalent if, for all
interpretations I , wval (Sl, I) =val (SZ’ I) , i.e. both are
undefined, or both are defined and have the same values.

In most of the paper we do not need the formal definition

of equivalence. In these sections we will use simple equivalence-~

preserving transformations which are clearly correct. However we do

use interpretations in the last section.

Exmlész The schemas Pl’ P2 and P3 are all

equivalent. (In fact P, is the result of applying ALGORITHM I to

2

P. and P, is the result of applying ALGORITHM II to P

3 l .)
To see informally that Py is equivalent to P, , note

1

that each iteration of the main while statement in P, corresponds
in P, to going fram label B back to label B . The variable y
in P2 , at the beginning of each iteration, holds the value that x
previously held in Pl , the last time computation reached label A .
To see informally that Pl is equivalent to P3 , hote
that each iteration of the main while- statement in Py corresponds
in Py to going from label L back to label L (the long way, via
statement labelled B) or to label N . In the latter case, t is
made false in P, , and we subsequently exit from the main while

statement.

10

FLOWCHARTS

We will find it useful to consider the flowchart represen-—
tations of schemas. Program schemas clearly correspond to arbitrary
flowcharts, with one Start node and one Halt node, using the follow-

ing types of statements:

i) assignments \L

e.g. X« f(x2, Xy x3)

ii) tests
e.g. where ¢ 1is a

formula.

We shall be more concerned with normal forms for such

flowcharts.

While—~chart form

Firstly, it is clear that while-schemas have more restricted
'structure' than program schemas, and we define a correspondingly

restricted class of flowcharts:

A while—chart is a one-entrance, one-exit piece of flow-
chart constructed inductively as follows:

i) an empty edge is a while-chart i.e. 4/

ii) an assignment statement is a while-chart.
e

€.g. Xy - f(x2, X x3)

b

11

f 2

iii) is a while-chart, where Al, A2, ces, An

are while-charts.

éﬂy—_,.'. -——‘l\;}"

iv)

is a while-chart, where A and B are while-charts

and P is a formula.

V)

is a while-chart,

where A is a

while-chart and ¢

is a formula.

The various cases correspond to the types of statement allowed in

while-schemas. Thus for any flowchart in while-chart form:

(stagrr (.--))

A

{ HALT (...) >

where A is a while-chart, there is an equivalent while-~schema, and

vice versa.

Block—~form

Even general flowcharts can be put into normal forms, by
such methods as duplicating nodes, unwinding loops etc. One such is
the block~form of Cooper [6] and Engeler [g].

A block is a one-entrance jmany-exit piece of flowchart

constructed inductively as follows (we occasionally number the exits

from a block, starting at the left):

i) A basic block is a block. A basic block is a one-

entrance many-exit tree-like piece of flowchart,

13

is a block where Bl is

.]

B, | a block.
i
]

iii) (Concatenating with the i~th exit)

is a block, where Bl and B2

are blocks.

14

A flowchart is in block form if it is of the form

where B is a block.

Clearly every flowchart in block form is eguivalent to some
program schema. The result of Engeler and Cooper is that for every

program schema we can find an equivalent flowchart in block form.

Example: Figure 1 shows a flowchart Pi in block

form which is equivalent to the program schema Pl . The blocks are
indicated by broken lines. BO’ Bl and B3 are basic blocks. B2,

B, and B, are constructed by looping, and B. and B7 by

4 6 5

concatenation.

15

Block form flowchart Pi .

Figure 1.

16

Properties of Basic Blocks

Before we consider our last normal form, we cbserve two
useful properties of basic blocks.
1. Given any basic block B and same i-th exit of B there
exist a formula i-test (B) , a basic block i-pruned (B) and a

sequence of assignment statements i-ops (B) such that

i-test (B)

B is equivalent to

Z

i-ops (B) i-pruned (B)|

To see this, note first that the basic block can be put into
a form in which the tests on the path to the i-th exit precede the

assignments, by repeated application of the transformation:

=

17

where P' is like P but with X replaced by T . Tt is then a
simple matter to find a single test to 'extract' the i-th path by

repeatedly applying the transformations:

to extract
the first

path

This eventually gives us the desired form for the basic

block. It will be called the 'i-extracted form'.

Example:

18

obtaining the 3-extracted form of the following

basic block B 3

1y « gx)

———

3-ops (B)

T

Yy + g(x)

q(f(g(x)))

plg(x)))

+3

y <« g(y)

C“P(x) Aplgx)) A glflgx))))
F

y + g(x)

X <

f£(y)

(%))

} 3-test (B)

N w—

19

2. The second property of basic blocks that we need is that

every piece of flowchart of the form o \l/ . , where B

B is a basic

U
l

is a while-chart. This can be seen very easily by induction on the

block,

number of statements in B . If there are no statements, we have an
empty edge, which is a while chart. If there are n > 0 statements,

we have either ’ \{' ' or , where Bl

3]

and B2 are basic blocks. In both cases we have while charts,

since J{ and . | are while charts by the

induction hypothesis.

20

Module form
The final normal form for flowcharts which we will consider
is module form.
A module is either
i) an assignment statement

or ii) a one—entrance,one-exit piece of flowchart constructed

from tests and modules.

A flowchart is in module-form if it is of the form

where M is a module.

This definition may appear surprising since we immediately
have that any flowchart is in module form, by taking each assignment
statement as a module, at one level, and then taking the whole flow-
chart as a module at the next level. However, we can find an

interesting subclass of module-form flowcharts.

A simple module is either

i) an assignment statement

or ii) a one-entrance,one-exit piece of flowchart constructed

from modules a:_]d ‘at mpst one test.

21

A flowchart is in simple module-form if it is in module

form, and each module is simple.

A simple module either has no tests, and is thus either an
empty edge or the concatenation of modules, or it has one test and can

only be of ‘the following forms:

| l 1
(b) C (c) c !

(a)
B | A |
T A
A

C
Voo Y
D

The analogy with while-schemas is obvious:

(a) 1is equivalent to [C ; if p then A else B ; D]

(b) 1is equivalent to [C ; B ; while p do [A; B]; D]
(c) is equivalent to [C ; while p do A ; D]
For every flowchart in simple module form there is an equivalent

while-schema, and vice versa.

22

The motivation for module- form now becames clear. At one
extreme we can take any flowchart as a module, whose sub-modules are
simply assignment statements. However, if by ingenuity, and equivalence—
preserving transformations, we can get many levels of modules, with
fewer tests per module, then we get closer to simple module form, and

hence closer to while-schemas.

Exanple: In Figure 2 we give a module form flowchart

Pi for the program schema Pl . Modules Ml and M2 are simple,

but module M, contains two tests gx) and s((x) .

AN

x ~ a(x)
d e
[e
| p(x) |
F T
L
~
q(x) ~ x - o) o |
F T ~
~— — |
x « g(x) X ~ b(x)

Figure 2. The module form flowchart P; .

24

ALQORITHM I

To translate program schemas to while schemas it suffices to
consider flowcharts in block form. We show how to transform each
block B into an equivalent piece of flowchart consisting of a while-
chart W, followed by a basic block B . We do this by induction on

the block structure as follows:

i) B 1is a basic block:

l }

I

ii) B is constructed by looping on the i-th exit of Bl :

W]

S’ N
mz:

—_—

N

N

i—pruned(ﬁf)

iy

25

i

iii) B is the concatenation of Bl and B2 , using the i-th exit

of

By

i

B,

B

>

1 :

/
v /

"

i

W
B,

=

i~-test (Bi)

i—ops(ﬁi)

-

26

N7
4
.

i~tesk* . (Bi)

w|

X 1is a vector of the variables occurring in i-test(8;); y is a
vector of the same length of new variables; i-test* (El) is the same as
i-test (ﬁl) but with variables X replaced by y , so that any com-

putation must take the same branch out of each test.

27

Note: If B, is a basic block, we can simply make the transformation

W,
B W B
1 Bl
RE
. o w >
By
B —
2 i B
- - . B2
No new variables are needed in this case.
Thus for every block ‘f‘orm flowchart
START (e«-) START (---)
we get a while~ WB
B chart form flowchart
B
HALT (---)

and hence a while schema.

28

Example: We take flowchart P!

1 of Figure 1. Blocks B

2

and B, are already of the required form:

4
e.g. B2

w

2—test-(§2) is g(x) , 2-ops (§2) is |x <« Dbx) and 2—prmed(§2) is

| v

simply x <« g(x)

v

Hence B5 becomes

B s M et

)
1\
o
J

6_.

is then

The 3-extracted form of §5

q(x)) ;

29

T

x:v,/
o)
Ul

S e

~,

gly) A sx)

1 x <« c(x)

X « g(x) x <+ £(x)

and thus B6 becanes
W
B
>
qgly) A s(x) Wy
6
X « c(x)
W
By
‘-\
K\ B6

1 x < g(x) lx « £(x) !

))

The final while-chart form flowbhart equivalent to Pl' is

in Figure 3. This corresponds exactly to the while-schema P‘.2 . 31

p(x)
T ' F
X + e(x)

x « d(x)

% « e(x)

HALT (x)

Figure 3: While-chart form flowchart equivaléent to Pi .

32

Comments:

i)

ii)

Putting a flowchart into block form in general requires same
increase in the size of the flowchart. This can be reduced by allow-
ing the exits of any block to be joined together in arbitrary
ways and still be a block. In the same spirit we would allow
basic blocks that were not tree-like but merely loop-free.
ALGORITHM I will work just as well for such block form. The
only change needed is in defining the i-extracted form for basic
blocks; for example i-ops (B) becames a one-exit basic block
rather than a sequence of assignment statements.

This modified block form corresponds to interval analysis (see
[11).

To minimise the number of new variables added by ALGORITHM I, we
must find block form flowcharts which avoid concatenating blocks
except when the second block is basic. Even for while-schemas it
is not clear how to do this, and so ALGORITHM I is not an

identity mapping on while-schemas.

33

ALCORITHM IT

The idea of Bohm and Jacopini's translation of program schemas
to while-schemas with logical variables [3] (see also [5]) can be
expressed as follows. Suppose the given program schema has n state-
ments including the Halt statement, numbered, for our convenience, 1
to n . We construct a while-schema using k additional logical
variables, where p <k < 2n+l . Each statement of the original
program schema then corresponds to a particular pattern of values for
the k variables - the number of the statement written in binary
notation. The while-schema consists of a single while statement, the
formula of which will be true provided the 'pattern' of logical variable
values does not correspond to the Halt statement. If the fornmla is
true, we enter the body of the while statement, where a series of tests
decides to which statement in the program schema the logical variable
values correspond. The operation of that statement is then performed,
and the values of the logical variables are changed so that their
'pattern’ corresponds'to the next statement to be executed in the
program schema. The body of the while statement is repeatedly executed,
until we reach the pattern for the Halt statement in the program schema.
When this happens we exit from the while statement, and reach the Halt
statement of the while-schema.

The while-statement simply acts as a one-loop interpreter,
performing one operation of the original program schema on each iteration.

The logical variables simply represent a 'program counter'.

34

An improvement upon this method, due to Cooper [private
communication], reduces the number of logical variables required. We
take the flowchart representation of the program schema and choose a
'cut-set' of the edges between the assigmment and test statements
from which it is camposed, i.e. we choose one edge per loop. We add
the edge leading to the Halt statement to this set. These edges are
then numbered, and coded up as logical variable value patterns as
before. The while statement 'interpreter', on each iteration, now
performs the operations of the original program schema from one cut
set edge to the next cut set edge, and updates the logical variables
accordingly. This technique is used in ALGORITHM II, below.

We consider flowcharts in module form, and, for good
results, we try to get as many simple modules as possible. We then
translate each module M into a statement of while-schema WM by
induction on the module structure.

i) If M is an assigmnment statement, WM is that assignment
statement.

ii) If M is a simple module, Wy is the corresponding state-
ment of while-schema (as indicated in the section FLOWCHARTS) .

iii) If M is a non-simple module, then we apply Cooper's version
of the Bohm and Jacopini reduction. We choose a cut set of
the edges between modules and tests camprising the module M ,
and add the single exit edge of M . We then take sufficient
'new' logical variables to represent these positions in M,

and construct a statement of while-schema. This statement

35

will be a compond statement [Sl; 82] . Statement Sl will
perform the operations from the entrance of M up to the
first cut-set edge, and set the logical variables to correspond

to that edge. Statement S, is then the while statement which

2
'interprets' the module M . It's formula checks that the

current pattern of logical variable values does not correspond

to the exit edge. The body determines the current cut set

edge, performs the operations to the next cut set edge (using

the while~-schema statements corresponding to the modules of which

M is composed) and updates the logical variable values accordingly.
This is possible as é statementA of while-schema since the use of a
cut set of edges ensures that there is a bound on the number

of tests and modules that can be performed between one cut set

edge and the next.

Example: The modules of flowchart P:'i (Figure 2)
correspond to statements of while schema as follows:

Ml and M, are simple modules and cbrrespond to

2
while p(x) do x < e(x)
and while r(x) do x « d(x) respectively.

M3 is non-simple, so we choose cut set edges, for example
o and B in Figure 2 (there is only one loop in M3 and we must add
the exit edge of M,). We then need one logical variable, t say, to

keep track of the cut'set edge -~ true correspbnds to o , false

36

corresponds to B . W is then the following statement of while-schema

M,
[[x « a(x); t < truel;

while t do [WM;
1

if qg(x) then [x « b(x);
Wy 7
)

- if s(x) then X « c(x)

else [x « £(x);

t « false]]

else [x « g(x); t « false]l]

Enclosing WM3 between Start and Halt statements then

gives us the while-schema Py .

Carment : No reasonable algorithm is known for finding
the optimal equivalent module form for a program schema, optimal in
the sense that ALGORITHM II adds the smallest number of logical
variables. However, it is clear that the flowcharts of while-schemas

are in simple module form, so that ALGORITHM II is the identity

mapping on while-schemas.

37

THE NECESSITY OF ADDING VARIABLES

We show that any translation from program schemas to while-
schemas must in general add wariables. We prove that for a particular
one-variable program schema there is no equivalent while-schema that
also uses only one variable.

A similar result has been demonstrated by Knuth and Floyd
[10] and Scott [private cammnication]. However, the notion of
equivalence used by those authors is more restrictive than ours, in
that it requires the equivalence of computation sequences (i.e. the
sequences of assignments and tests in order of execution) and not
just the equivalence of final results. f‘or example, the following pro-—
gram schema has no 'equivalent' while~schema if we consider execution
sequences:

START (x) ;
x « ax) ;
L : if p(x) then [x+«Db(x); if q(x) then [x<«c(x); goto LI

"alse x <+« d(x)]

else x « e(x);

HALT (x)

However, if we apply ALGORITHM I, we get an equivalent while-schema,

which happens to use only one variable:

START (x) ;

x «alx) ;

while p(x) Ag(x)) do x <+ clbx)) ;

if p(x) then x <« d(b(x)) else x <« e(x);

HALT (x)

38

Clearly our result is stronger than the previous re'sults,
and needs a more complicated program schema to demonstrate it. The
one we use is the following program schema P5 :

Schema Py : START (X) ;
L :if p(¥ then [X<+e(X); g to Ll:
if g(X) then X <« e(D else [X « e(X); go to NI

puS— [routuimy

M: if g(X) then [X <« d(X); goto M];

— panh——

if p(X) then [X<« d(X); goto L] else X« d(X);

N : pull;

HALT (X)

This schema is similar to Pl , but is simpler since it
only uses two functions and two predicates. It is expecially interesting
because for most other simpler wversions of Pl there are equivalent

one-variable while schemas. For example, the program schema
below |
START (x);
x +ax) ;
L.:if p(x) then [x «e(x); go to Ll;
if q(x) then x «Db(x) else [x<«g(x); goto Nl;
M: if g(x) then [x < b(x); goto Ml;
if s(x) then [x<«c(x); goto Ll else x <« £(x);
N : null;

HALT (%)

39

is equivalent to the following one-variable while-schema
STARF (%) ;
x <« alx)
vhile p(x) do x <« e(x) ;
while q(x) A q((x)) do x <« bx) ;
while q(x) A s(b(x)) do
x «cE));

while p(x) do x <« e(x) ;

while g(x) A g(b(x)) do x <« b(x)] ;
if qg(x) then x « f(b(x)) else x< g(x) ;

HALT (x)

Our proof that there is no one-variable while-schema P5
equivalent to P5 must therefore depend crucially on special features

of Py . The essential property of Py is the following:

in any unfinished computation of P. , if p is true and g
is false, then the next-but-one function that will be applied

is e , whereas if q is true and p is false then the next-
" 'but-one function that will be applied is d . If both p and
q are false, the computation will terminate after applying

onesmore function.

Let D= {d, e}* . We shall consider the interpretations
IZ ,» where z e D*h*D , defined as follows:

i) DI =D
b4

40

ii) for y eD , dly) =yd
zZ

ely) = ye

}
p) = |yl < |z| & z(y|+1) =e ¥
ay) = |yl < |z| & =z(y] +1) =4

iii) 'The initial value of the input variable X is A ,

ﬁc_’

the empty string.

Note that the predicates p and g are mutually
exclusive, and, from the essential property of Pg the computation
of (P5, IZ) , where z = uhv (U, v € D) , must terminate with
val (P5, IZ) = eu (the symbol h makes both p and g false and
makes the computation halt). Also for any interpretation
Iwauhv (a0 € {d, e}, w,u,v € D) , when the value of X becomes ew ,
the future course of the camputation is determined by uhv , since

this substring will determine the possible future values of the

predicates p and g . This property also holds for any one-variable

schema Pé equivalent to P5 (it will be called the main property of

Pé) » and will be used to show that such a schema cammot exist.

Iet us assume therefore that there exists a one-variable

while-schema Pé equivalent to P5 .

can assume there is some while statement S in Pé , say while !

Without loss of generality we

do S which is not contained in or followed by any other while

l 14
statement, and for which Sl is executed in the computation for scme

IZ . We can also assume that there is no bound on the number of

%/ |y| denotes the length of string y ¢ z(i) denotes the i-th
symbol in string 2z .

*¥ This is a 'Herbrand' or 'free' interpretation (see [11]).

41

iterations of S for camputations for such interpretations IZ .

(A1l such bounded while statements could be 'unwound' the correspond-
ing number of times, leaving only 'unbounded' while statements and
while statements never entered for any IZ .)

Let the maximum 'depth' of functional camposition in any
fdrmula in Pé be M . Then in computation of (PE'), Iz) , if we

evaluate a formula ¢ for value w of variable x then the ocutcame

of ¢ is determined by z(|lw| +1), z(lw] +2), -+-, z(|w| + M+ 2) .

We define visible (z, w) as this substring of z starting at

z(|w| +1) and ending at z(|w| + M + 2) .

Lemmas For all n > 0 there exist strings

u,w,y ¢ D, with |w| =n , such that for all v ¢ D the camputation
. . . .

of (P5 ' Iu vwhy) exits from S with a proper prefix of euv as the

value of variable x .

This technical Lemma has the -following informal corollary:

Corollary: For every n > 0 there exists a computa-

tion of P2 which exits from S with more than n functions still

to be applied.
This corollary contradicts the fact that S is not
followed by or contained in another while-statement; the number of

functions that can be applied after exiting from S is bounded. Hence

while-schema Pé cannot exist.

42

Proof of Lemma: By induction on n .

Base step (n = 0) Since S is unbounded there exists an inter-
pretation I whose computation enters Sl before the end of the
computation is 'visible', i.e. more than M function applications
from the end. In other words z' = u'ayv'hy' , where

u',y,v',2v' €D, oe{d, e} and |y| =M+ 1, and the camputation
of (Pé,
since Sl is entered, the formula ' must be true for this value

Iz.) reaches S8 with eu' as the value of X . Moreover,

of X . Note that the truth of y' is determined by
visible (z', eu) =y .

Consider now the interpretation Iz = , where u = u'ay

I uvhy
and v is any string from D . The computation must reach S as
for Iz v i.e. with value eu' for variable X , since the changes
in the interpretation are not 'visible' by this point. However when
it subsequently exits from S it can not do so with value euv (the
final value) for X, since wvisible (z, ewwv) = y , and for this

value the formula ¢' must be true. Thus it must exit from S with

a proper prefix of euv as the value of X .

Induction step Assume we have strings u,w,y ¢ D , with

|w| = n , such that for all v ¢ D , the camputation of (P_, Iuvwhy)
exits from S with a proper prefix of euv as the value of X .
We shall find a string w' e D, |w'|=n+ 1, such that

for all v' ¢ D, the camputation of (P!, Iuv'w'hy) exits fram S

with a proper prefix of euv' as the value of X .

i)

ii)

iii)

43

There are three cases to consider (in order):
for all v =v'e (for all v' e D) in the induction hypothesis,
the corresponding proper prefix of euv is also a proper prefix
of euv' . In this case we take w' = ew .
for all v=v'd (for all v' € D) in the induction hypothesis,
the corresponding proper prefix of euv is also a proper prefix
of euv' . In this case we take w' = dw .
for some v = v"e in the induction hypothesis, the correspond-
ing proper prefix of euv is euv" , i.e. the computation C

of (P, I exits from S with value euv" for

uv"ewhy)
variable X . Note that the rest of the computation adds ew
to the value of X .

Consider now the interpretations Iuv' iy for all v' eD.
By the induction hypothesis, the value of X on exiting from

S must in each case be a proper prefix of euv'd . But the
main property of Pé ensures that in no case can this value of
X be euv' , otherwise the future course of this computation,
being determined by why , would be the same as for C , giving
X a final value of euv'ew instead of euv'dw .

Thus with w' = dw , the computations of (P!, I) (for

uv'w'hy

all v' ¢ D) exit from S with a proper prefix of euv' as

the value of X .

a4

ACKNOWLEDGEMENTS

We are indebted to David Cooper for stimulating discussiops
and for his modification of the Bohm and Jacopini's reduction, which we
have used in ALGORITHM II. We are also grateful to Donald Knuth for
his eritical reading of an earlier version of this paper, and subsequent

helpful suggestions.

'REFERENCES
" [1] Allen F. E. "A Basis for Program Optimization". Proc. IFIP

Congress, Ljubliana, Yugoslavia, 1971.

[2] Brown S., Gries D. and Szymanski T. "Program Schemes with Push-
down Stores". SIAM J. Camput.,l, No., 3, 1972.

[3] Bohm C. and Jacopini G. "Flow Diagrams, Turning Machines and
Languages with only Two Formation Rules". Comm. ACM, 9, No. 5, 1966.

{41 Constable R.L. and Gries D. "On Classes of Program Schemata".
SIAM J. Camput., 1, 1972.

[5] Cooper D.C. "Bohm and Jacopinis Reduction of Flow Charts".
Ietter to the Editor. Comm. ACM, 10, No. 8, 1967.

[6] Cooper D.C. "Programs for Mechanical Program Verification".
Machine Intelligence 6, Edinburgh University Press, 1970.

[7] Dijkstra E. "Goto Statement Considered Harmful". Coamm. ACM, 11,

No. 3, 1968.

[8] FEngeler E. "Structure and Meaning of Elementary Programs". In
Symposium on Semantics of Algorithmic Languages, Springer-Verlag,
1971.

[9] Hoare C.A.R. "An Axiamatic Approach to Computer Programming”.
Comm. ACM, 12, No. 10, 1969.

[10] Knuth D.E. and Floyd R.W. "Notes on Avoiding Goto Statements™.
Information Processing Letters, 1, North-Holland Publishing Co.,
1971.

45

[11] 1wmckham D., Park D. and Paterson M. "On Formalized Computer
Programs". J. Comput. and Sys. Sci., 4, No. 3, 1970.

[12] Paterson M. and Hewitt C. "Comparative Schematology". Conference
Record of Project MAC Conference on Current Systems and Parallel
Computation, ACM, New York, 1970.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

