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ABSTRACT

A numerical technique is presented for determining a simple
turning point in a branch of solutions of an algebraic system of
equations depending on a scalar parameter. Results are given from
testing the method on discrete versions of several mildly nonlinear
boundary value problems to determine turning points in the positive

solution branch.
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Introduction

We wish to describe a numerical technique for analysing a
simple form of singular behaviour in the solutions of nonlinear
algebraic systems of equations. Consider such a system of N equations

for unknown N vector, u , which depends on a scalar parameter, A .

1.1 ACu, A) = O

A solution 'curve', u(A) , which varies continuously with A 1is
called a branch of solutions. As a function of A, u(d) will, in
general, be multiple valued and can exhibit complex behaviour involving
changing of its multiplicity (see [13] and its extensive bibliography).
We shall treat a simple common case here, which we shall refer to as

a turning point in the branch.

Definition A 1is a turning point of (1.1) if for every sufficiently

small neighbourhood of A :
a) (1.1) has a continuous branch of solutions (A, u(}))
through (X, U(X))
b) for (A, u())) on the branch of a) ,

A < A (turning to the left) or

A > % (turning to the right).

The problem that we wish to tackle, then, is the numerical determination

of the turning points of a solution branch.



TIf the Jacobian matrix of A with respect to u is denoted

by Au(u, A) , then the eigenvalues of Au(w, p) can be designated by

uiow, p) . It is well known ([8]1) that if A 1is a turning point of
(1.1) then
(1.2) uk(u(X), A) =0 for some k

Hence, the problem of determining the turning points of branches of
solutions of (1.1) can be viewed as a special case of solving (1.1)
and (1.2) simultaneiously. This is the basis of the method described
here, and we assume throughout that Au(u(k), A) is a symmetric
matrix.

Such turning points occur in boundary value problems (with
u being a function) for the equilibrium states of nonlinear systems
(elasticity [1], [2], fluid mechanics [3], or nonlinear diffusion
processes [4], [5]). They mark the loss (or gain) of dynamic stability
of such states as the parameter, A , varies, [5]. We intend the method
to be able to analyse discretized versions of such problems and have
tested it on problems with u being a function defined on a finite

difference grid in the x-y plane and
(1.3) A(u, A) = Ahp + Af(u)

Here Ah represents a finite difference version of the Laplacian and
f(y) 1is an increasing function of y . These problems are discrete

versions of mildly nonlinear eigenvalue problems and the relation of



their solution branches to the solution branches of their continuous
counterparts has been studied by S. V. Parter in [6] and [7] and the
author in [11] and [12].

Extensive numerical computations by a different approach to
problems (1.3) have been reported by J. B. Rosen in [11]. The
technique provides numerical solutions and error bounds for equations
with a monotonicity property. This property holds for the minimal
positive solution of a branch of positive solutions of (1.1) and is
lost at A = A . Hence upper bounds for % were obtained in [11] by
observing the )\ values for which the technique failed. The problem
of computing a solution bfanch in the presence of a turning point has
also be treated by Anselone and Moore in [1], and by Thurston in [15],
from the point of view of getting past the turning point to the rest

of the solution branch.
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The Method

In this section, we describe a numerical method for comput-
ing turning points of branches of nonlinear systems as discussed in the
preceding section. This is done in three subsections after presenting
the viewpoint and background assumptions; two sections on a mathematical
description of the method and one on some details of its implimentation
for the experiments reported on.

We assume that rough quantitative knowledge of the turning
point has been obtained, i.e. an estimate of A and whether the branch
turns to the left (u(}) 1is defined for A - € f_Xlilx )} or the right.
Some analytic techniques are available for this purpose (141, 1519
In the examples presented this was done by scanning the branch for a
choice of A wvalues using Newton's method. We shall describe the
method as applied to turning points turning to the left in this section.

It is based on an inverse interpolation technique for

solving
(2.1) w@®, 1) =0

(here we have suppressed the subscript of the eigenvalue, U ,) where
u(@), A is a 'multi valued function' of A as indicated by the

solid line of Fig. 2.

§2.1 Modified inverse interpolation

For the jth step of the iterative procedure for solving

(2.1), three current points on the graph of wu(\), A) are retained



The inverse data (ui, L)

]

i =j, j+l, j+2 1is interpolated by a quadratic, Pz(u) , and the next

estimate of A , Aj+3 is calculated as

(2.2) Xj+3 = aPz(O) + (1 -o )Aj

for some parameter value, o , 0 <a < 1.

One must ensure, of course, that Aj+3 <X, and this is
the function of the parameter o . In Lemma 1, it is stated that the
Aj converge montonely to % under suitable conditions. Strictly
speaking, to get monotonicity, a reassignment of indices j+1, j+2, j+3

may be necessary after jth step. These conditions refer to A(u) as

the inverse function to u(u(d), A) and require

3

(2.3) max | S AL < K
3 - 3

du

2 -1

and nax | LA < M
2 - 2

du

where the maxima are taken for Iu(%l)l < Ju| 5_]u(i)|

Lemma 1 Let k = K3(2M2)3/2/6 and KA be defined by (2.2) with
>\1§>\2_<_>\3<>\.If
(2.4) Kk} - xl)l/z = p<1

then for 0 < o < 1/(1+p) ,



>

(2.5) A < A, <

The Aj converge to 7\ with linear asymptotic convergence
rate =1 - o . (Proof is in Appendix A.) One could vary o with j

so that aj +1 as j *® ; however in the experiments tried a con-

stant o was used, in the range .85 to .97 usually.

§2.2 Evaluation of u(u(), A)

The process just described requires the evaluation of

pu(a(d), A) for given A . This involves solving
(2.6) Au(M), A) =0

for u()\) and calculating the relevant eigenvalue, u , of Au(u(A), A).
To accomplish this, we exploit some properties of Newton's method
observed by Rall, [10], generalizing the well known behaviour of Newton's
method for multiple roots of a scalar equation.

The results pertinent to this discussion can be qualitative-
ly summarized as follows. Suppose that Au(w, A) is symmetric; that
A is set to A and hence (2.6) has G(X) as a multiple solution; and
suppose that Newton's method for (2.6) produces {un(X)} which converges
to u})

If we let e, be the error in un(i) , i.e.
2.7) e = un(k) - u(})

then the components of e in the directions of the null space of



Au(a, ) are reduced at a linear rate, while those in the orthogonal
complement are reduced at a quadratic rate.

If we are using A near 7-, we could expect that similar
behaviour of the error in the Newton iterates would occur i.e. that as
the error, e > decreases, its direction is predominantly in the
eigenspace of u(u(}), A),(the eigenvalue of Au(u(A), A) closest to
zero). Although we would not know the error in the nth iterate, e, >

we could expect that

(2.8) ) c, = ) - un(X) = e

Yn+l n

i.e. that the correction to the nth iterate has predominantly the
direction of the eigenspace referred to above. This vector is therefore

put into the Rayleigh quotient for Au(u(k), A) to give an approximate

value for p()\) . 1In practice its direction could be improved somewhat
by several steps of the inverse power technique for calculating
eigenvalues.

In principle, the nth step of Newton's method for calculat-
ing u(u(d), A) from a given A =X could be described by (2.9). In
(2.9) we are using square brackets [w, v] to denote the inner product
of vectors w and Vv ,

(2.9) Au(un(K), K)cn = —A(un(X), A) = r
uoo= [Cn’ Au(un(X), A)cn]/[cn, cn] = [Cn’ rn]/[cn, Cn]

un+l(l) = un(X) + c

with un(A) converging to u(A) and Wy converging to u(u(A), A)
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for a successful implementation.

§2.3 TImplementation Details

In implementing (2.9) one might anticipate that if Newton's
method is continued until c, is quite small, or effectively stops
decreasing, then the direction of < would be heavily contaminated by
round off effects, and in particular, might not be primarily in the
eigenspace of uu®), A) . Hence (2.9) was terminated while c,6 was
still several orders of magnitude larger than the machine resolution of
u, -

When (2.9) was terminated, a couple of steps of the inverse
power method for computing U were taken to improve the numerical value
of u somewhat. Typically this resulted in about a 10% correction in
the computed value of W . (See Table la)

In Newton's method, and the inverse power process, a linear
system of equations must be solved with a sparse, symmetric matrix of
coefficients which may not be positive definite. The system was solved
using a Gaussian elimination program for band matrices which performed
partial pivoting (GELB of the IBM Scientific Subroutine Package). In
no runs did the program warning parameter signal the possible loss of
significant digits.

Lemma 1 indicates that Xl < A4 <% , but does not give the
relation between Az, A3 and AA . In this implimentation, a three

vector (A(1), A(2), A(3)) is retained, but not in order. Instead, a

variable, irepls is maintained so that A(irepl) is the least of the A



values at each stage (or the greatest for turning to the right). After
K4 is computed, it replaces A(irepl) and, after u(u(k4), AA) is
computed, irepl is recomputed.

In the discussion of Newton's method in the preceding section,
the topic of starting values was omitted. One could retain u(Xl) N
u(AZ) and u(X3) and if, e.g. AZ were being replaced by X4 , use
u(Az) as the starting value for calculating u(l4) .  Rather than

retain u(ki) , i=1,2,3 , we made a least squares fit using two

parameters,
AOG, + BOY)

for each u(ki) and retained A(Ai) and B(ki) . The shape functions ¢1
and ¢2 are discussed below.

The program was written to identify vectors u and c as
mesh functions defined on a subset of a square mesh of spacing h on
the unit square 0 <x <1, 0<y<1. This is a natural identifica-
tion for boundary value problems in two independent variables; but, of
course, other problems can be adapted to it. The submesh used is
described by two variables,  RBOTM and RTOP indicating that the
lines Ybot = (RBOTM - 1)h and Ytop = (RTOP - 1)h are the bottom

and top mesh boundary rows; and by two functions of y , fz(y) and

fr(Y) . The mesh subregion then is

{(i-1)h, (3-1)h | i,j positive integers RBOTM < j < RTOP,

£,((G-Dh) < (i-Lh < fr((j—l)h)}
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The shape functions, ¢l and ¢2 , used in the least squares fitting

process then are the restrictions to the mesh of

o, (%, ¥y) = (y - (RBOTM - 1)h) ((RTOP - 1)h - y)x

(x - fz(y))(fr(y) - x) cos (T, x) cos (To, y)

where Oy s i =1, 2, are chosen to suit the symmetries of the problem
at hand. The least squares parameters for the solutions are stored and
used to generate initial guesses when required; they are printed out to
provide a compact description of the solution branch (see Table 3), and
they are used to generate initial guesses for subsequent rums. A
schematic flow chart of the method as implimented, then, is given in

Fig. 1.

o
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Some Experiments

The method was tested on some finite difference versions of

the mildly nonlinear boundary value problem for plane regions D

~Au (%)

Af(u(x)) x €D

(3.1)
x € 9D

il
o

u(x)

The results reported on here are for:

s
o
Il
h
Q
SN’
A
™
A

A) D - unit square (0 <y < —‘fr(y) = 1)
and f(u) = e

B) D - six sided region bounded by y = 0; v = 1;
x = f (y) = max (0, y-%) ; x = £ (y) = min (y¥s, 1); and

f(u) = et

C) D - unit square and f(u) =1+ (u+ u2/2)/(l + u2/100)

For the problems A) and C) involving the unit square, the nine point
box form of the discrete Laplacian was used, with a nonlinear deferred
correction as described in [9]. For problem B) the five point discrete
Laplacian was employed.

Typical results for the relation of u(u(d), A) to A are
shown in a graph on Fig. 2 composed of data from two rums for problem
A using a mesh spacing of h = 1/16 . 1In Table la an example of some
computer output monitoring the progress of Newton's method and the
inverse power method for evaluating (), A) is shown. In the
second half of the table (Table 1b) the later iterates of the modified

inverse interpolation process for solving (2.1) is given (for this run
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o = .9). Runs of problems A and C wusing h = 1/21 showed no change

in the accuracy of the results as given.

In Figure 3 is shown the part of the branches of positive
solutions showing the turning point for problems A and B (£(u) = eu,
unit square and six sided domain). In Figure 4, the branch of positive

solutions for problem C and also the variation of u(u(d), A) with A

are shown. The branch shows two turning points, Al = 7.957 and

Xé = 6.423 , it turns to the left at A, and to the right at X,

As the branch turns upwards at A = Xl , the critical eigenvalue

becomes positive, indicating that the upper part of the branch has

become dynamically unstable. As the branch turns back to the right at

A= Xz s

this boundary value problem is a model for a system which has two stable

the critical eigenvalue becomes negative once more. Hence

steady states; a lower one existing for 0 < x<<X1 and an upper one
existing for X > Xé
In Table 2 are presented the numerical estimates of the

turning points as discussed.

Problem A % = 6.8082
Problem B %X = 9.6384
Problem C Tl = 7.957 Xz = 6.423

Table 2
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The estimate of X = 6.8082 for problem A compéres favourably with

the upper bound of 6.81 for this problem obtained by J. B. Rosen [11].
As discussed in §2.3, the program computes least square

coefficients, A(\), B()), as brief summaries of u()) , the fitted

forms being
ulx, v, M) = ¢(x, ¥)(AQ) + B(A)cos(altx)cos (aTy))

with ¢(x, y) = (x = £,(3))(E_ () - 0yA - y) and a =3 for
problems A and C and a = 2 for problem B . Some of these coefficients
are given in Table 3 to provide a more quantitative description of

the branches of positive solutions for these problems.



Appendix A (Proof of Lemma 1 82.1)

The inverse interpolation method is effectively an iterative
scheme for evaluating A(0) =X . In §2.1, we let Pz(u) be the
quadratic polynomial interpolating the function A(u) at (ui, Ai) s
i =1,2,3 . The improved estimate, XA , for % based on this data

then is given by (2.2) i.e.
(A.1) 14 = aPz(O) + (1 - a)kl

Here we wish to show that for a chosen as in Lemma 1

(A.2) Ay <A, < X

Since Y = 0 1is a local maximum for A(u) , we have

(assuming A(u) to be three times continuously differentiable) that

~ = 2 2, 2
(A.3) Ay = Aug) = A+ (@"A(8;)/du /2
for some S, , A, < S, < A . Using
i i i
X-xlii-xj j =2,3 and (2.3)
i.e.

max;_leX(S)/duzl_l < M,

Xl<S<X
we get
(4.4) 2= 20y - D/ @)

1,2,3 .

| A

2(n - )\1)M2 i



Consequently, using the basic interpolation error formula

and K from (2.3),

3
(A.5) X - 2, (0] < Kgluy my uyl/6
< @ e @ - 1
Now
(A.6) X-, = @- ) = A) + a(x - 2,(0))

so, using (A.5), and setting
_ 3/2
k = K3(2 M2) /6

we get

4.7 - -2 - ok - W2 <T o, 2 @- &=+ k(- W72,

Hence, if p = k(A - X)llz <1 and 0<a<1/(1 +p) (A.7) shows

that 0 < A - X& and that as A - Xl approaches zero,

a.8) T-a = @-@-2)+ 0(Cx - x1)3/2)
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MEWTONS  FTHOD FOR LAMBDA = 6, B0R2

ITERATTON MOHMRER LIGFAVALUE FSTIMATE 1728 OF MEWTOMN CORRECTION

1 : ~-153,9710
2 0.1004
3 n,.1438

1HVERSE TTFRATION pragE FOR LaMBihA =

ITERATION HUMRRD FIGPHVALUE ESTIMATE

1 0.1438
2 : 0.1048
3 0,1048
LANBDAS 6.80R1T  UMAXS 1.2732

NERTONS  HETHOP FoRk LAMBDA = 6.,8081

TTCRATION NUMBER FIGFHMVALUE ESTIMATE SIZE

1 : -153,2972
2 0.0481
3 0.1429
4 0.1349

INVERSE TYERATION PHASF FOR L.AMBDA =

ITERATION NUMBER FIGERVALUE FSTIMATE

1 0.1349

2 0.123%6

3, n,1236
LAvPDAZ 6_B01A UNMAXE 1.2742

TABLE 1A

1.560F=01
2.804F=02

1.862F=02

6HJBOR?

OF MEWTON CORRECTION
1.595F=01
2 H21F=02
5.743F=03

5.554E=03

6.,5081
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LAMBDA MU UMAX
6.80462 .7315 1.3065
6.80659 .5001 1.2943
6.80725 -.3128 1.2508
6.80779 .2703 1.2821
6.80802 .1869 1.2776
6.80807 -.0919 1.2627
6.80814 .1236 1.2742
6.80817 .1048 1.2732

6.80822 - Newton's method failed to converge

Table 1b



Problem A

Minimal positive

Upper positive

A Solution Solution
AN B(\) AQN) B(M)
5.50 10.6 -.04 34.1 6.45
6.00 12.6 A1 30.2 4.81
6.25 13.9 24 29.1 3.99
6.75 18.6 91 23.2 1.98
Problem B
Minimal positive Upper positive
A Solution Solution
A(A) B(N) A\ B())
8.80 15.7 10.1 35.1 11.1
9.00 16.7 10.6 33.6 11.6
9.50 * * 28.4 12.5

Problem C
Minimal positive Unstable Upper positive
A Solution positive solution Solution
AV B(A) A(A) B(}) A(N) B(A)
15.7 .25 90.9 12.2 240, 17.0
7.0 16.9 .36 79.2 10.6 265. 16.0
21.0 .81 57.8 70.8 * *

Table 3

Some Least Squares Parmaeters for Positive Solution Branches



- 18 ~

start, i=0

determine subscript
i of Xl,kz or X3

to be replaced

e ..“.,>~_ e e wmn e

P Yes
il . i< 37 o o e e
(generating
initial d
initia ata) No
4
. . No
t continue inverse
read in interpolation?
3 aA B P © (then
’ Yes stop)
/ compute new XJ
i= i+l

fit new A, B
and set Ai = A,

B, =B
i

Y

©) 2y

generate u

VAN

i

from A, B

FIGURE 1

evaluate u(X)
n(u(r), A)




2:00

I-50

I-00

050

-050

-1-00

-1-50

pw(ulX),\)

678

6:79 6-80 js 6-81 \—
X

FIGURE 2

variation of Critical Eigenvalue, ua(), A) with A

f(u) = e’ ; unit square: (x, 0 denotes different runs)
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