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Abstract

We consider generalising Floyd's assertion-method to more
complicated languages than simple flowcharts. We show that the way
one associates or attaches assertions to a program, and the intended
meaning of these assertions depend on the way the semantics of the
program are specified. The criteria for the correctness of the
assertion-method, adapted to a particular programming language,
depend on the method of semantic definition of the language. We
give two general methods of language definition, and show how to
obtain sound and adequate adaptations of the assertion-method for
any languages defined using these methods.

The paper includes a discussion of language definition
methods, and proposes a new method which we call the 'situational!

method.



0: INTRODUCTION

The basic idea of Floyd's 'assertion-method' for proving
properties of programs [ 5] 1is easily understood. Suppose that for
some program, which we can think of as a flowchart, we wish to prove
that, for all initial values of variables satisfying some'assertion',
the final values of the variables (when the program halts) satisfy some
other 'assertion'. These 'initial' and 'final' assertions express same
desired property of the program, perhaps a mathematical relationship
between values, or just a general property like 'the value of x is
positive'. We imagine 'attaching' these assertions to the initial and
final edges of the flowchart. Now if the program does have the desired
property, these attached assertions will be particular examples of
'valid' assertions, that is, assertions which are true of the variable
values whenever control passes along the edge to which the assertion is
attached (for computations from initial values satisfying the initial
assertion). The assertion-method provides a way of proving that a set
of assertions, one per edge, are all valid. Thus to prove that our
final assertion is valid we must invent other assertions to attach to
the other edges in the flowchart, such that the complete set of asser-
tions can be proved valid. These 'intermediate' assertions express
properties of the intermediate results of the program, just as the final
assertion expresses properties of the final results. To choose these
assertions clearly requires intimate knowledge of how the program is
supposed to be computing its desired result. The person who will find

it easiest to use the method is therefore the person who wrote the



program, and stating the intermediate assertions can be incorporated
into the documentation of the program, much like 'comments'.

Even considered just as an aid to documentation, the method
should have great potential. Unfortunately, there are practical problems
in its application. Two of these are 'what sorts of properties can I
express naturally as assertions; how formal do I have to be?' and 'how
do I apply the method to real programmimg languages, not just abstract
simple flowcharts?' The latter problem is considered in this paper.

The problem has two aspects. Firstly, if there is no flowchart,
what are we to attach assertions to, and what does it mean for them to
be valid? For example, what would we do with a Lisp program? Secondly,
different languages must require different ways of proving the assertions
valid. The usual way to prove them valid is to show that they satisfy
some condition, a 'verification-condition', derived from the program
itself. How do we derive these conditions for different languages?

We show that the answers to both aspects of the problem depend

on the method of defining the semantics of the programming language in

question. In the first section of the paper we define a very simple
progranmming language in two ways, and show how this results in different
versions of the assertion-method. The second section looks in more detail
at the methods of defining programming languages, emphasising two methods
for which there are easy generalisations of the assertion-method. The
third section answers the problem above. We define 'validity' of asser-
tions when using these two methods of language definition, and give the

conditions for sound and adequate generalisations of the assertion-



method in the two cases. We then show how to actually obtain sich
methods, by deriving verification-conditions directly from the language
definitions.

By bringing out the ‘semantics®’ underlying the various
versions of the assertion-method, we obtain a much more unified view.
Moreover, the 'meta-theeorems' of section three should allow the asser-

tion-method to be easily tailored to specific languages.

In the rest of this introductory section we give a short

explanation of the notation for relations used in later sections.

Notation for Relations.

Relations are sets. For R< A, R(a) <> a ¢ R. Binary
relations are written infix : for Rc<Ax B, aRb <> <a, b> ¢ R .

For set A , EA denotes the identity over A , i.e.
{<a, B> | a ¢ A} .

For Rl'SAXB, Rz'EBXC, :E%loRz‘__S_(_V_AXC is the

usual composition of relations: :-.aRl°R2€\f<.=>—r db € B, aRlb 3 szc .

"o “ReR 1is written R 2 , and in general R® denotes
RoRoRo* s -oR' - * R (n times). This is in contrast to R' which
denotes RX RX R X *++ x R (n times). We distinguish between Rl and

R. Rl is a set of l-tuples, which we can think of as singleton sets.

Ietting 2R denote the set of all subsets of R , we see that Rl < 2R,

whereas ReZR. : B - S

For R<AxB, and A'EA,B'iB we define



[A"]R.

{beB | arb for some a e A'} ©B

R[(B']

{aeh | aRb for some b eB'} £A.

For singleton sets we usually write [alR and R[b] instead of
({a}JR and RI{b}] . (This causes no confusion even when R ¢ P xB.
For X ¢ A, [XIR, denotes’ [{X}IR ; i.e. {be B=} XRb}=. 'Note that
{beB | {¥X}Ro for some x ¢ X} is [X-IR » not [XIR .)

We can use the same notation applied to components of the left

and right 'arguments' of R . For R c (A x B)x(C x D) , where

AnB=CnD=¢ (the empty set), if A' cA and D' c D =2v we define
[A'IR" = {<b, <c, &> e Bx(C x D) | <a, b>R<c, d> for some a ¢ A'}
and R[D'] = {<<a, b>, c> ¢ (A x B)xC | <a, b>R<c, d&> for some d e D'}.

Note that [A'IR[D'] is unambiguous.

For Ry cAxB , R, cBxC,and A'cA, it iskasily shown

that [[A'JR)IR, = [A'JR Ry
The latter expression is unambiguous since ([A']Rl) °R, is meaningless.

We always omit parentheses when no ambiquity results. .v - <
. "2  'We also use the notion of a collection, which is a

set with possibly repeated elements. wA denotes the set of all collections

over set A . The union or 'sum' of collections 11 and T we will
denote by u + 7w . Note that u+u#u when y # ¢ :

{a,b,a} + {a,a,b} = {a,a,b,a,b,al (order is unimportant).

If ¥ is a set of collections, or asset of sets, UYVY denotes

fa|aehA for same A e ¥} .



1: ASSERTION METHOD FOR A SIMPLE ILANGUAGE

The programs in oW& Simple Language consist of sets of commands.
Each command when executed changes the memory contents and causes control
to transfer to another comand. We will take the command as the most
basig¢ level of the definition. The language definition simply describes
the effect of a program in terms of the basic operations of each command.
An arbitrary program P will consist of a set commands
C = {cl,cz,---,cn} and a set of labels Ly = {Ll’Lz""’Ln’L ;.

n+l

Each command c; is labelled Li . No comand is labelled Ln+l .

Command ¢y is called the initial conmand.

We assume a certain domain MP of memory-contents. (e can

think of the program as using a certain fixed number of variables, and
each element of M, is a vector of values for these variables.) The
basige operation of each cammand c; is then given by two functions
ciM 2 M, > M and ciL : My > L, . The first gives the new memory
contents produced by executing C; s and the second gives the label of
the next command to be executed.

We now express the semantics of P in two ways.

A, First Method.

Iet us call ZP = MP X LP the set of states, IP = MP X {Ll}

the set of initial states and FP = MP X {Ln +l} the set of final states.

We shall express the semantics of P wusing a set of state-transformation

rules derived from P , namely the rules

"<m, &>, where ¢ = Li , 1s transformed to <diM(m) ’ ciL(m)>"



for 1<i<n . These can more concisely be expressedsas
(Vi € M))<m, L>w <c;Hm), c,”(m)> for 1<i<n.
Mp)<m, Iy i . § -z

A computation is a sequence of states Z)1Z512Z3y" " where

2y = <m, L.> is an initial state, =z is obtained from =z.

1 441
3 =1,2,---) by applying same transformation rule, and the sequence
ends, if at all, when no rules are applicable, namely in a final state.

The memory-contents in this final state are then said to be the result

of executing P for input m, .

B. Second Method.

Here we wish to express mathematically the relation P

between inputs of P and the corresponding results.

For each c, ¢ CP , let G < Z_ % Z_ be a relation defined

1 -~ P P
by
<m, 2>gi<m', 2'> if and only if & = Li € m'= ciM(m) g
LY = ciL(m) .
n
Iet &o = US - Then zgpz' whenever z and z' could
i=1

be successive states in a computation.

Iet yJ.eldsP be the reflexive transitive closure of EP .

Then gz yields, z' whenever z and z' are the i-th and j-th states

in some computation for some 1 < j .
The desired relation P between inputs and results is then

1 . 1 . o s
{<m, m'>|<m, L,> yields, <m', Ln+l>} i.e. P =[] yields, [

P Ln+1] ¢
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This is not a very 'efficient' definition of P . As well as

L="p 2==-""p
all Li’Lj €L, . It essentially specifies the relations between

giving us P , yields, gives us the relations [Li] yields [Lj] for

memory—-contents computed between every pairs of commands in P . We
can get better definitions by noting that
a) [Ll] yleldsE is the minimal relation R < MP X Z
R°§_pf_R and EMPSR[LI]
b) yleldsP [L
o ¥ 1 ¥
bothgD R'" ¢ R andEMPS[Ln+l]R’

P satisfying both

. . . ' . .
o +l] is the minimal relation R' ¢ ZP X MP satisfying

[Ll] yleldsP and yleldsE [Ln +l] both specify fewer relations than
yieldsP . (In fact [Ll] yie‘ldsP gives us the relations between the

input and the memory contents at each command, while yleldsP [Ln +l]
gives us the relations between the memory contents at each cammand and
the result of P .) And from both we can get P since

P = [L,] yields, [T ..} .

We now get corresponding versions of the assertion-method.

A, First Method.

Here we attach assertions, relations on MP , to the labels in
P , where the intention is that whenever a computation of P (for inputs
satisfying the (initial) assertion attached to Ly ) reaches a state
<m, Li> then the assertion attached to Li mist be true of the current
memory-contents m . If this is the case we say the assertions are

valid and then the (final) assertion attached to L

htl express some




property of the results of executing P .

We have to check that the attached assertions are valid, by

semantics of P . We shall be concerned here with correctly specifying
the verification-condition itself, in order to ensure a sound and
adequate assertion method.

We shall denote the attaching of assertions to P by a
relation A c My, x T‘P ; for L; e Ly the assertion (relation) attached

to Li is A[Li] . We see that A is simply a relation on states.

states in A n IP ;, i.e. [An IP] 'ylelds; cA.

Z

P

2 . For the assertion-method using VP to be sound we then require

I) (Consistency of V,) VA < Z, : V,(A) = [A n I,] yields, < A .

p =——P
We also require the method to be adequate, that is, given valid initial

and final assertions we should hope- to be able to prove them valid

using Vp ¢

II) (Completeness of VP) VA ¢ IP : VP([‘A] yleldsP)

(To see this makes the method adequate note that if ,¢ < MP are

valid initial and final assertions for P then there exists an assign-

ment of assertions, namely [y X {Ll}] yﬂp , that satisfies V ,

and for which y implies the initial assertion and the final assertion
ol

implies ¢ .7 )

We can in fact specify such a complete and consistent verifi-

2 To be logically complete, we should expect to be able to prove that these

assertions satisfy V_, . In general this is impossible. These assertions
are formulas of some Calculus if and only if the calculus is incomplete.



cation condition for P :

Proposition 1.

If, for all A ¢ ZP ’ VP(A) <=> [A](_lP‘ < A then VP is

consistent and complete.

Proof.

a) Assume VP () . Then [A]SP < A giving

[AlG, ° Cp = [IAIG,IC, = [RIG, < A, and in general

[A](_1P® cA

’ for all n>1 .

Since A c A we get [A] yields, < A and hence [A n IP] yields  c A

L220p L22p

and VP is consistent.

b) Since yl‘e]‘.dsF o EP < ’yle‘ldsP by definition, for all A c IP '

[IA] yieldsP ]_QP = [A] yield§P o go < [A] yieldsP . Thus

VP([A] yleldsP) and Vp is complete.

By substituting the definition of S and simplifying it is -

easy to show that for all A ¢ ZP

VP(A) ¥=> Vm ¢ M, & A(m, Lj) => A(ch(m), ch(m))
cj eCP
In more concrete versions of the Simple Language, the functions c.L
are finitely expressible as for example ciL (m) = if p; (m) then Lj

else Lk . In such cases we can express Vp as a formula of predicate

calculus:

V, = Vm /\ qL.(m) > q L
]

(o)
Sy Cp < (m)
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where the term in the conjuction for the above example would in fact be

9, M > if p;(m) then qp, (c;m) else q (c;m) .

!
5 Iy
To check Vp (a) we then simply interpret each predicate symbol Iy as;A[Li] '
i
the assertion attached to Li , and check if the formula is satisfied.

If it is,then the assertions are valid and A[L

n+l] is true of the

results of computations of P for inputs satisfying A[Ll] .
This is the formula and method of Manna [10], based on the

earlier work of Floyd [ 5].

B. ‘Second Method.

Here we associate assertions with the relations used to
specify the input-results relation P . We require that the assertions
be true of those values which satisfy the relations, and hence be true

of the inputs and results of P . There were two ways of specifying

P
a) Using []'..l]?,"yie'ldsE . Here we associate assertions by giving a
relation A c MP X ZP . A[Li] will be the assertion associatéd-
with the relation [Ll]‘ y:.eldsP [Li] and A will be valid if
[Ll] ’yleldsP cA.

b) Using yields

D [Ln+l] Here we take A ¢ Zp X My . [Li]A will

be the assertion associated with the relation [Li] y:.eldsE [Ln +l]

and A will be valid if yields, [L

yields, Lyl ca .
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A verification condition VP for P will then be a relation

Mp>%p, LpXMp
on 2 in case a) and on 2 in case b) . In the two

cases we get the following conditions for the soundness and adequacy of

the assertion method using Vp ¢

I) (Consistency of V)

a) for all Ac MP X Z_ 2 VP(A) => [Ll] yields < A

P 1" p —

b) for all A c ZP X MP : VP(A) => yields

ylelds, [by,l =

II) (Completeness of V)
a) Vpl [T, ] ‘yields)) :

b) Vp (y:i;e’]’.dsE [Ln +l]) .

It is obvious that we have ready-made verification-conditions

Vo in the two cases - we simply use the defining conditions for

[L1] yiel§§P and yie‘ldsl: [Ln +l]] respectively:

a) For all AEMP x ZP

Vp(A) <> Ao C cA & EMPEc_A(Ll).

To get a predicate calculus version of Vp we first substitute for

-QP and get

M L
VP (a) <= Vmo,m € MP : mA<m, Ll> € & mOA<m, Li> = mOA<c:.L (m) , c; (m) >,

ci eCP

Thety writing VP as a formula of predicate calculus, we get

- 3 M
S —(Vmo,m)qL (m, m) A /\ . (mo, m o g L. (mo' cy (m))

1 c; eCP i Ci (m)



b)

‘—A'lz“

where the term in the conjuhction for the example in the first

method would in fact be

(m , m) >if p,(m) then dar, (m_, c.M(m)) else (m r C4 (m))

a it 9
L, o 1 joz. Lo

This is the formula used in Manna [11].

For all A c Z, x M,

Vo(8) <= C,ecAcA & EMPE[LHH]A .

To get a predicate calculus version of Vp we first substitute for

= ' .
VP(A) <=> Vm,m' ¢ MP s <m, Ln+l>Am &

& <c (m), h (m)>Am' => <m, L >Anm' .
As a formula of predicate calculus VP = becomes

Vo =(Vm,m')QL (m, m) & /\ Q (m), m') > Q. (m, m')
n+l of eCP C. m ) 1

where the term in the conjunction in the previous example would in

fact be

[if p;(m) then O (c;'m), m") else o (c;"m), m')N>Q (m m")

Lj 1 —_— IT( 1 Li
This is the formula that would be obtained by first converting P

to a recursive program using the technique of McCarthy [14], and

then using the method of Manna and Pnueli [13].
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To check VP (a) , in case a) we: interpret predicate symbol q,

- i

as A[Li] and in case b) we interpret predicate symbol QL as [Li]A . If
' i

is then satisfied the assertions are valid: in case a) A[Li] extends the
relation (between memory-contents) between the input of P and label

Li ; 1in case b) [Li]A extends the relation (between memory-contents)

between label 1. and the results of P . A[L ]
i n+l

respectively in the two cases extend P and are thus true of the inputs

and [Ll]A

and corresponding results of P .

Examples of the use of these type of formulae for proving
properties of programs can be found in the references.

We have seen for this Simple Language that the assertion-
method, in its theoretical justification and in its application, is
closely linked to the type and form of language definition used. To
explore this relationship more fully we first consider language

definition in more detail.

Vp
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2: 'METHODS OF LANGUAGE DEFINITION

There are two basic philosophical approaches to the specifica-
tion of programming language semantics.

The first approach, the operatiocnal, camputational or inten~-

sional approach, gives meaning to programs by describing the ways in

which their computations proceed. This method enables one to find the
results of a program for any inputs, but is more concerned with describ-
ing the manner in which these results are obtained.

The second approach, the denotational or extensional approach,

is concerned only with specifying the inputs-results relationships of
programs. These relationships are given mathematically and the mathe-~
matical specification need not suggest the actual mechanism for obtain-
ing the results for given inputs. In fact the specification may be
non-constructive.

Both methods have their advantages for different applications.
The first method is more useful to implementers and programmers, while
the second is preferable for proving things about the results of

programs, and is aesthetically more satisfying.

" Computational Definitions.

By and large computational definitions fall into two classes:
interpreter definitions (for example [9 ,15]) and transition-rule
definitions (for example [4]). In the first case an abstract inter-
preter is given for the programming language, written in some suitably
formalised algorithmic language. Any program is then considered as

data, as is the programs input, and the execution of the interpreter
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describes the camputation of the program for this input. In the second
case we consider data structures called 'states' and the camputations

of programs are given as sequences of states produced by application of
appropriate 'state-transition rules'. This class can be further
subdivided depending on the role played by the programs Of the language.
We can either incorporate the programs into the state and have one set of
rules for the language itself, or we can embed the programs in the rules,
and use simpler states. The latter method wequires a translator from
programs to transition rules, which can be thoughtuof as a sort of
comppler into the basic 'transition-rule language'. (The former method
usually also requires a translation of programs into their 'state
representation'.)

The distinction between the classes is really only one of
degree; the interpreter definitions usually talk of states also, and
conversely the process of repeatedly -  applying transition rules can be
thought of as the behaviour of a simple one-loop interpreter. Never-
theless we shall keep the distinction, and prefer definitions in the
second class because of their simplicity and similarities to other
formal systems, such as formal grammars and predicate calculus. In fact
we shall restrict ourselves to considering only the transition-rule -
compiler definitions, to simplify the 'states', Our aim is to obtain
sound and adequate generalisations of the assertion-method for languages
defined in this way. (Notice that the first definition of the Simple

Language was a transition-rule-compiler definitions)
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At any stage in a computation the state must contain all
the data that will be needed in the rest of the camputation. In the
Simple Language, with a fixed number of variables and simple control
structure, this amount of data is also fixed; we need only the memory
contents and the 'instruction counter'. For languages with recursion
however, states must hold an unbounded amount of data. This is i.nc:n—v
venient when applying the assertion-method; it is difficult to assert
properties of such states. It is preferable to have states containing
fixed amounts of data, any item of which can be referred to directly.

The solution is to allow several 'states' to exist at once,
in fact we allow an unbounded number of them. Each 'state' will then
correspond to some part or aspect of the previous monolithic state, and
we shall call them 'situations' rather than states. The previocus state-
transition rules would only have made localised changes in the state,
and these changes are now described by changes in a subset of the
current situations, the rest of the situations staying the same. Our
aim in introducing 'situations' is that it should be natural to express
their properties , so the situations themselves should describe
'meaningful' aspects of the state. The transition rules then should
become directly intelligible (and even the idea of the 'state' can
become unnecessary) .

We can formalise these ideas as follows. To give the
semantics of some language we need to specify for each program P a

domain of situations SP and a set of transition rules

S S
— . P P
R, = {Rl,Rz,- .o ,Rn} . Each rule R; denotes a relation R, €27 x2

. The

idea is that for A,B ¢ SP , if A Bi B and the current state (collection of



- 18 -

and £ (nl) = n, meaning "f called with ny returns n, ",

The initial situations are those in the first class.

The rules RP are as follows:

v

(Vx € J)P(X) > P(x), £(x)

AN

(Vx € J, x> 100)£(x) > £(x) = x - 10

o

(Vx e Jy x <100) &x)—- £(x), £(x + 11)

(Vx,y € J,x <100) £(X)f(x + 11) =y —£(x), £(x + 11)=y, £(y)

of?

o

(Vx,¥,2 € J,% < 100) . £(X), £(x +11) =y, £(y) =z v £(x) =z .

These rules denote relations in an obvious way. For example,
for A,B c SP s A B—S B if and only if for some n,,m, € J, n, < 100

and

>
Il

{f(n f(nl + 11) n2}

f(nl + 11) = Ny, f(nz)} .

D

o
1l

{f(n)),

The computation of P for initial situation P(99) , for

example, is then

{P(99)}
{P(99), £(99)}
{P(99), £(99), £(110)}

100}

{P(99), £(99), £(110)

{P(99), £(99), £(110) = 100, £(100)}
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{P(99), £(99), £(110)

Il

100, £(100), £(111)}

{P(99), £(99), £(110) 100, £(100), £(111) = 101}

{P(99), £(99), £(110)

100, £(100), £(111)

101, £(101)}

{P(99), £(99), £(110) = 100, £(100), £(111) 101, £(101) = 91}

{P(99), £(99), £(110)

100, £(100) = 91}
{P(99), £(99) = 91}

{P(99) = 91}

(In this particular computation each state is a set of situations, but
for computations from initial situations P(x) where x < 90 we will in
fact get states containing repeated situations.)

This particular program P has rules RP with a very
important property. Let vyields_ be the reflexive transitive closure

I———7p
of EP . Then

(The independence property)

for all A c S

p ad @ cX , if A c uld] yields, and

2-=-"p
[Pdgb # ¢ then for some & ¢ ZP containing A and some 0o, € 0

O yieldsP o .

This property says that if the various situations that would
allow a rule to be applied occur at all at any time during any of the
computations of P from initial states ¢ then there must be a compu-
tation, from same gigg}g_initial state in ¢ , in which they all

occur simmltaneously.




We will see that this property allows us to derive verifica-
tion conditions very directly from the situation-transition rules for . .
programs. We shall therefore restrict ourselves to definitions with
the independence property. This is not a very strong restriction;
languages involving recursion seem to require definitions with this
property anyway.

We used the notion of 'state' to formalise the idea of a
computation. One advantage of 'situational' definitions however is
that the rules do not refer to states. The rules describe the semantics
of the various language constructs using the minimal amount of 'environ-
ment'. This makes the rules very intelligible as intuitive descriptions
of the constructs. The rules for the 91-function for example could be
written in English with very little change, and the result is a
succinct but understandable description of the way the program computes.

For a situational definition of most of Algol 60 see [31].

Denictational Definitions.

The denotation method associates with each program in a
language a set of partial functions or relations. This set contains
the partial function or relation "computed by the program", i.e. the
inputs-results function or relation. These functions or relations are
specified for each program as the 'least-defined' or minimal ones
satisfying conditions derived from the program itself; the semantics of
the language can be considered to be embodied in this translation of

programs into conditions. This was the method used in the second
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1

definition of the Simple Language.

To some extent the functional and relational specifications
are interchangeable. The relationswill turn out to be graphs of
functions, and then 'minimal' relation is the same thing as 'least-
defined' function. However there can be differences. If a function is
not strict insomeits arguments (i.e. if it can give a 'defined' result
when one of its arguments is undefined) then it doesn't have a graph in
the~usual sense, unless we introdice a special element to mean
'undefined'. And if we do this then 'least-defined' function nolilonger
means 'minimal' graph, in a set-theoretic sense. The relational
approach essentially restricts us to the graphs of strict functions.

We are going to only consider in future the relational
approach (or functional approach limited to strict functions) because
of the simplicity of adapting the assertion method to languages defined
in"this way. This is a restriction because there are languages for
which a natural denotational definition must allow non-strict functions,
for example recursive programs with 'call-by-name' type evaluation rules

(see [12]) .*’l

(It is interesting that the situational approach, which is
also closely related to the assertion-method, also seems unable to handie

‘call-by-name') . Nevertheless we feel that many interesting languages

*)

In [12] it is arqued that 'call-by-value' evaluation rules are
incorrect since they are not 'fixed point rules'. However if we
restrict ourselves to strict functions, and insist that all expressions
in programs be strict, the 'minimal fixed points' are given by 'call-
by-value' evaluation rules. Whether we choose minimal minimal fixed
points (call-by-value) or maximal minimal fixed points (call-by-name)
is largely a matter of taste. I am indebted to David Park for this
observation.
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can be defined this way (see [61]).

The conditions obtained in the functional approach usually
consist of an k-functional 1 (map from k-tuples of functions to k-tuples
of functions) of which we require the minimal fixed point, i.e. the
k-tuple of least defined functions f such that T(f) = f . In fact
this is the same as asking for the least defined f such that t(f)
is no more defined than f . In relational terms, we are looking for
the ‘(set—-theoretically) minimal kx-tuple of relations T such that
T(r) ¢ ¥ (where t' is the translation of T into relational terms).

In a typical denotational definition then,we specify the
semantics of a program as a set of relations, defined as the minimal
relations satisfying some inclusion (or set of inclusions). The
definition of the language is a translation of programs into inclusions.

Our previous denotational definition of the Simple Language was of this

type.

As an example we can consider again the 91-function:
f(x) < if x> 100 then x - 10 else f(f(x + 11)) .

We specify the semantics of f as the least defined (strict)

function F satisfying
F(x) = if x> 100 then x - 10 else F(F(x + 11)) .

In relational terms, we want the minimal binary relation R (over

integers) satisfying Tt'(R) < R, where for X,y ¢ J
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TR (%, y) <= (x>100 & y=x - 10) v

(x <100 & dzeJ[(x+ 11)Rz €& z Ryl) ul

A denotational definition of the language of recursive

programs would specify an appropriate Tt1' for each program.

|

Hitchcock &€ Park [ 6] have a relational calculus for expressing such
definitions which avoids the use of individual variables.



3: 'THE ASSERTTON METHOD

The way we associate or attach assertions to a program, and
the meaning of these assertions depends on the way in which the program's
semantics are specified. This is because the criteria for the correct-
ness of a particular version of the assertion method (apapted to a
particular language) depend on the form of the semantic definition of
the language. The two forms we will consider are situational

definitions, and relational denotational definitions.

The assertions attached to a program P are intended to be
true of the situations that actually occur in computations of P (for
initial situations satisfying the 'initial assertion'). Such assertions
are said to be valid.

We shall take the attached assertions as simply-a relation
A c S, -on-situations; the 'initial assertion' is A M as. fderpgsume
thesnotation-of the previous-sectjon.)

For a sound and adequate assertion-method for P we then

S

require a verification condition V, < 2 P

b with the following properties:

I) (Consistency of VP) For all A c SP

. 1 .
Vp(®) = Ul S)71 ylelds, < a

(i.e. the assertions are valid)

IT) (Completeness of VP) For all @ c ZO ' VP (UL®] yie‘ldsP) .
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Obtaining VP from the rules RP .

First we establish some useful properties of R and 'yieldsE .

Property 1.

For all 0 < 3,

UL @IR, < UlUBIR, vuU® .

Proof. Consider any situation s ¢ U[ @ ]§P . By definition of Ry

there exist states 01105 € ZP , and B,C < SP such that e 01 ,

91

o =02+B,BBPC and S is contained in o

1 +C.

2

If s 1is contained in o, then S is contained in 0y -

S8 eUB .,
If s is contained in C, since B c U® and BBPC,

s e UIUB IR,

Property 2.
For A,BcS,,if A cB then

VIAIR, < UIBIR, .

‘Proof.

Immediate from the definition of §P .
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‘Property 3.

If we have the independence property then for all ¢ < Zo
UlUlelylelds IRy < ylelyiedds, .

Consider any situation s € U[U [@]yieldsg]gP . By definition of
§P there exist: A,B c SP such that A c U[@]yields:{: , A EP B and
s is contained in B + (L)[<I>]'yield:sE - B)

If 8 e B then, since [A]_RLD # ¢ , by the independence
property there exists some o o € ® such that 9 yie1d§1: o for some

0 € ZP containing A . Thus s e U[Oo]y;l.elas~o§P © g

S € U[<I>]yieldsE .

If ‘s ¢ B then s eyl0lylelds; directly.

Property 4.

For all I < SO
UlT'lyields, < UlIlyields;.

Proof.
It is straightforward by induction on n that, for all n > 0, if
state 0 e [Il]§P® then Iiyieldsy. oy for same 01105 € ZP such that
=g +0 This immediately proves the property.

O'l 5 -
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For completeness we also prove

Property 5.

If we have the independence property then for all I < So

Proof.
We prove that for all n > 0
UITIR, Q) < U [Il]y;'LelcrisP . (1)
= = 1 1.1
n=0 Ull}= I =uI~ c ylrlyields, .

L—"5p

Assume (1) is true for n=k .

n=k+1 u[I]_B_P@"~ = u[[I]§P®]__RP
< UIUIIIR (@J__R_P u u[I]=RP®

by Property 1.
Hence by the Induction Hypothesis, and Property 2

U[I]L_lPi‘ < U[U[Il]'yieldsp']g;, u U[Il]‘yiegqsi,‘ .

By Property 3

ulu [Il]yieldsl IR < UIT'lyields,

umgP@" < Ultllyields, .
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Corollary 1.
If we have the independence property then, for all I < SO ’
. 1 ,
i = I lyieldss - .-
U[I]y;elds Ul lyields -,

(This is the motivation for calling it the independence property. The

corollary essentially says that if we run several computations together
we get the same situations as if we run the camputations separately.

The computations are independent.)

‘Corollary 2.

Property 3 is true also for all I ¢ SO . (In place of

We can now get a particular formulation of Vp -

Proposition 2.

If we have the independence property and, for all A c SP '

VP a) <= U [A]§P < A then Vp is consistent and complete.

Proof.
a) Assume V,(A) . Then UI[AIR; <A and thus UIVIAIRIR, < A .

Now by property 1

@ _
U[A]§P = U[[A];RP]—B—P < U[U[A]§P]§P u U[A]QP <A .
We can repeat the process indefinitely and get

~
U[A]=RP@' < A for all n>1.
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Since U{A} = A we get UI[A] E"eldsy— Cc A and by Property 2
ields 1 .
UIA n 8 lyiélds, S A . Then by Property 4, UL(A n 8 ) lyields C A

and VP is consistent.

b) By Property 3 we immediately have that Vo is camplete.

We can express this formulation of Vp more directly in terms
of the rules R, . Note that the definitions of By and R, imply

that for all A < SP

UIAIR, cA <> VBcA, VCc8,, BR,C=>CcA
<= VB,C c Spr BR, C implies (B < A=>C c A)
<==> VRi € RP,VB,C < SP, B Ei C implies

(BEA=>C_C_A)

Thus, for program P , defined by rules RP with the
independence property, a complete and consistent verification condition

for checking validity of assertions A ¢ SP is the following:

VR, ¢ R, , VB,C e 5, , BR, C  implies BcA=Cch)

i.e. for all rules, if the situations on the left of the

"—' satisfy the assertions A then the situations on the

right must also satisfy A .




This particularly simple generalisation of the assertion
method is the main justification for developing the ‘situational'

definition technique.

Example:  the 91-function.

We shall illustrate the assertion method by proving the - -

validity of the following assertions A :

Vx,y € J A(P(x)) <= x< 101
A(P(xX) =y) <= y=091
A(f(x)) <= x< 111

Al(f(x) =y) <= y=max (x-10, 91)

Simply applying the verification condition, for the first rule R, we
have to check that
(Vx e HAPK)) = APEK) & A(fx))
i.e. (1) (VxeJd) x <101 = x <111
(we drop the repeated term).
Similarly for the other rules we have the check

(2) (Vx,y eJ) x<101 & y=max (x~10, 91) = y =091

(3) (VxeJ) x<111 & x> 100= x - 10 = max (x-10, 91)

() (VxeJ) x<111 & x<100=>x+ 11 < 111

(5) (Vx,y €J) x<1ll & x<100 & y=max (xtl, 91) = y < 111

(6) (Vx,yeJ) x<111 & x<100 & y

il

max (x+l, 91) ¢&

z =max (y, 91) = z = max (x, 91)
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All these are trivial properties of integers. We have thus proved that
for all camputations of P for integer inputs less than 102 , if we
ever get the situation P(x) =y , then y =91 . (Situations of this
type would be distinguished as final assertions.) Note also that if we
ever get the situation f£(x) then x <111 . Thus if we run P for
inputs less than 102 we never call f for inputs greater than 111 .

This is a typical property of the camputations of P (as distinct from

the results of P) that is provable by this method.

Expressing VP as ‘a Predicate Calculus Formula.

When the situations SP fall into a finite number of disjoint

classes So,Sl,-- . ,Sm and each situation in a given class Si contains
a fixed number n, of data items {(as in this example), we can express
VP as a formula of predicate calculus. Any situation in Si can be
represented as <§>i , where X is a vector of data items of length n,;
the subscript i is simply notation to denote the class or type of the
situation. To specify assertions A c Sp we then have to specify
A(<§>i) for all n;~tuples of data items X ,and 1<i<m. The

assertions A then become essentially m relations A, on ni-'-ngples

of data items. In the example the assertions would be

Ao(x) = x < 101
Al(xl y) = y=091
Az(x) = x <111

A3(X, y) <= y=max (x-10, 91) .
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We can then express VP using n,-ary predicate symbols 4 which we
interpret as relations Ay whenever we want Vp (A) . In the example

VP becomes

Vix,y,z € 3) [l (x) > q; (x)]
¢ lg,x®) & a3, ¥) 2q & y)]
& [q:L (x) & x> 100 o d, (x, x-10)1
& Ig;(x) & x <100 > q(x + 11)]
& [ql(x) &€ x <100 & q, (x+11, y) > ql(y)]
€ [ql(x) & x <100 ¢ q2(x+ll, y) & q2(y, z)

> g, (%, 2)1]

The construction of this formula directly from the rules R, is obvious.
Formulae of this type, for recursive programs, would be

obtained using the technique of Ashcroft [ 1].

Relational Denotational Definitions.

We willrcensider-two versdéoms of the assertion method for
languages defined denctationally using relations. These are, respective-

ly, the methods of Park and Hoare.

Park's Method:

As for the Simple Language we associate assertions with the
relations specified by the definition of the program. Each assertion
is itself a relation, and to be valid it must simply extend the corres-

ponding defined relation. Héhee the inputs and results of the program
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mist satisfy the relation (assertion) associated with the defined
inputs~results relation.

Assume the semantics of program P are specified as a k-tuple
of relations r (for some k) which are the minimal relations such that
Tp (r) < r (where this can be considered as a k-tuple of inclusions).
Assertions A ‘'attached' to P now also consist of a k-tuple of
relations.

For a sound and adequate assertion method we require a veri-

fication Vp (2 relation on k-tuples of relations) such that

I) (Consistency of V,) For all k-tuples of relations A
Vo (A) = TrcA

II) (Completeness of V) V, (x)

Obtaining V. from the definition of P

Clearly, as for the Simple Language, we can take
LA @) <= Tp () ¢ A . By definition r is the minimal k-tuple of
relations satisfying VP and I) and II) are quaranteed.

Example: the 91-function

From the definition of the 91-function given earlier we see

A 1is a single binary relation Al “én integers and

Vp(B) <= (Vx,y € J)
[(x >100 & y=x-10)

Vx <100 & (Hz e DI+ ll)Alz & 2z Aly]] => xAly
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Now if we define A) as
X Ny <= (x >100 & y=x~-10) v (x <100 & y=91)
fo check A (= Al) _ for validity.-we have o check

Vx,v ¢ J
[(x>100 & y=x-10) v
x<100 & (dz ed)[((x+11>100 & z=x+1) v

(x+11 <100 &€ z=091)) & ((z>100 &€ y=2z~-10) v

(z <100 & y=091))]]

= (x>100 ¢ y

x-10) v (x <100 & y=91) .
This breaks up into the following five statements:

VX V2 € J
(i) (x>100 & y=x-10) = (x> 100 & y=x-10) v

(x <100 & y=91)

(i1) x<100 & x+11>100 ¢ z=x+1 & z>100 & y=1z-10

=> (x>100 & y=x-10) v (x<100 & y = 91)

(iii) x <100 & x+ 11> 100 & =z

x+1 & z<100 & y=091

I
el
I

= (x>100 & y 10) v (x <100 & y=91)

(iv) x <100 &€ x+11 <100 & z=91 & z>100 ¢ y=1z-10

=> (x>100 &€ y=x-10) v (x<100 & y=91)

(v) x<100 & x+11<100 & z=091 & z<100 & y=2091

=> (x > 100 & vy x—lO)V(xilOO & y = 91).
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All these statements are trivial properties of integers. Hence
Al is a valid relation. Hence, in particular, if the input to the 91-
function is no more than 101 then the result, if any, is 91. This we
also proved from the situational definition and assertion method.
However in the latter proof we also proved that for inputs no more than
101 we never called f for values greater than 111. This we can not
prove from the denotational definition - the concept of 'calling a

function' is not defined.

It is clear that once again we can express Vp as a formaula
of predicate calculus - we simple replace the X relations A by k
predicate symbols 0,,Q,,°*,Q in T, () <A . Thus for the 91-

function VP becames (after a little manipulation)

(Vx,v,2 ¢ J) [x > 100 = Ql(x, x-10)1]

& [x <100 & Q(x+ll, z) & Q(z, ¥) = Q;(x, ¥)]

To check VP @) we simply interpret the predicate symbol Ql
as the relation A;.

Formulae of this type, for recursive programs, would be
obtained by the technique of Mamna & Pnueli [13]. It is interesting

that their formulae were justified using a computational definition of

recursive programs. The more elegant justification, using denotational
definitions, is due to Park [16]. It is also worth noting that the

author‘s technique [ 1] for recursive programs was developed independently
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of Manna and Pnueli, and the differences in the two techniques come
solely from the differences between the two approaches to language

definition, computational and denotational.

Hoare's Method.

At first sight Hoare's method [ 7, 8] of proving assertions
about programs appears to be a direct application of Floyd!'s method, and
hence appears based on computational semantic definitions of programs.
Assertions are attached to programs in the same way, between statements,
and the aim of the method is to show that they are true whenever
computation reaches them,

However, we will show that there is an implicit denotational
semantics underlying Hoare's programs which can justify his method.

By avoiding the use of go-to statements, each syntactic entity in a
program - an expression, a statement, a list of statements, a block -
can be given a semantic specificatioﬁ (a binary relation between memory

contents) solely in terms of the semantic relations of its immediate

constituents. For example, if RS denotes the relation associated with

program fragment S , and M denotes the domain of memory-contents, we

can define the semantics of the following constructs:

(i) if s

81752 then RS = RSlORSZ |

while Q do S

(ii1) 1if s 1

then Ry = repeat(q,s;) n ™ x~Q) vhere repeat (0S)

is the reflexive transitive closure of RS“Q(Q % M) -
1
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In this way we can specify the semantics of any program P
as a set of binary relations on M , and so the definition agrees with
the scheme of denotational definition described previously. However,
in Hoare's method, he does not associate with each relation RS a
single assertion which is to extend it, but rather two assertions,

TS,US c M say, which are to have the property that [TS]RS < US
(TS{S}US in Hoare's notation). Note that when S is the whole program
P, U gives properties of the results of rumning P for inputs
satisfying Tp -

To be a sound assertion method there must be some verification
condition on the attached assertions which ensure the above property
(which again we will call validity). For denotational definitions in
general it seems difficult to formulate such a condition. However, for
Hoare's go-to less programs, such conditions can be found relatiwely
easily. Suppose we have, for each program fragment S , a sufficient
condition for assertions T, and U_. to be valid, in temms of the other

S S

assertions, assuming they are valid. In general such conditions would

not constitute a consistent verification condition. However, if for
each S , the condition for S 1is in terms of only assertions for

constituents of S, then together they do form a consistent verification

condition. This is because if sssextiens satisfy such conditions then
their validity is assured by structural induction and -the-method is :sound.
For the method to be adequate, we have to be able to prove validity of

any assertions T, ,

b which are valid, by appropriate choice of other

P

assertions. For this we require first that the conditions for each S



also be necessary (i.e. if TS,US are valid then there do exist other
valid assertions that satisfy the condition for S) and secondly that
no two conditions require the existence of valid assertions for the
same program fragment (i.e. there is no conflict incchoosing a single
pair of assertions for each fragment). The latter condition is ensured
by expressing the condition for S in terms of valid assertions for
immediate comstitwentscsf S .

This will be clearer if we consider the two constructs given

earlier.

Conditions for these constructs result from the following two
identities:
(1) If s = Sl;S2 then for all A,Bc M

[AIR, < B if and only if (HC cM[AIR; =C & [CIR; <B .
1 2

(Proof: Note that [A]Ry ¢ B <> [AJRg°°R, < B <>[[AIR, IR, < B.
0 1 72
'if' part: [AlR; =C & [CIRy <B= [[AIR; IR, <B
1 2 1 72

= [A]RS cB

'only if' part: ILet C = [A.]Rs . Then [A]RS cC and
1 1
AR = B = [CIRg < B )

(ii) If S= while Q do S

Il

1 then for all A,B ¢ M

In

[a] Ry
[Cn Q] c C
Rsl <
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(Proof: Note that [A]Rs < B <= [A] (repeat (Q, sl) n (M x~Q)) < B

<= [Alrepeat (Q, §;)N~Q B .
'if' part:
[CnQ]RSl'gC => [C](Rsln @xM) ccC
= [C] (Rsl n (Q x M))@_c_c forall n >0 .
=> [C] repeat (Q, S;) c C .

Since Ac<C and CM~Q c B,
[A] repeat (Q, 51)”’@5 CA~Qic B

.~ [AIRg c B .

'only if' part:

let C —= 4Alrepeat (Q, Sl) . Then CN~Q < B and, since repeat

is reflexive, A cC.

[C n Q]RSl = [C] (RSl n (Q x M)

=[] (repeat (0, S)°(Rgh 0 (2% M),

In

.C by definition of repeat (Q, Sl) )

The 'if-parts' of such identities can be translated into

conditions on the attached assertions TS ,US , which together would
i Ti
form a verification condition for the program in question. For example

the first identity would give the condition

(1) TS=TSl & US= U52 & U, =T
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and the second would give the condition

(i) T. c y [3 UeN™~Q cU, & T, =U, nQ.
S_ — N
Sl Sl S Sl Sl
The 'only if parts' of the identities ensure that the method
is adequate. If TS and US are valid then they can be proved valid

by choosing assertions T. , T, , U, , U etc. as in the proofs of the
S17 8y 87 5,

identities. No two conditions, for S, S' say will require choosing
assertions for the same fragment S", since S" can be an immediate
constituent of at most one of S and S' and the conditions are only
in terms of immediate constituents. Thus a single choice of assenttiens
for each fragment will satisfy all the condition simultaneously,- i.e.
will satisfy the verification condition.

We have noted that the verification conditions obtained must
be consistent because a proof by structural induction, using the
identities, could prove that assertions satisfying the conditions are
valid. This being the case, rather than give the verification condition,
it is sufficient to give the identities, as rules for proving validity.
This is the approach of Hoare. It results in an elegant formal system
for proving assertions valid.

Note however that in general it is not possible to simply
replace verification conditions by inference rules in this way; it only
works here because of the 'nested' structure of the semantic relations.
This is therefore a powerful argument in favour of such 'structured'
programming languages. Note also that the rules only need use the 'if'
parts of the identities; however, the 'only if' parts are still neces-

sary, for the the method to be adequate.
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4: COMMENTS

When applying the assertion method to flowchart programs it
is usual to attach only one assertion per loop. That is, we choose a
'cut-set' of points in the program at which to attach assertions. In
keeping with the point of view of this paper, this corresponds to
increasing the size of the basic semantic entities in our program from
statements to loop~free pieces of flowchart. Such modifications of a
language definition are not always possible. For example, if we
consider 'parallel flowcharts' [2], increasing the size of the basic
entities may eliminate possible computations by decreasing interactions
between parallel processes. In this case the 'one assertion per loop'
rule fails.

The correspondence between the assertion-method and the
underlying semantics of the programming language implies that questions
about the method, such as 'how do you handle overflow?' should really
be asked about the underlying semantic definition. If the definition
says that '+' for example is not truly addition of integers, but addition
over some domain of 'finite precision integers', then this is the
operation that must be used in proofs of assertions. Such proofs could
well use theorems of numerical analysis. On the other hand if we use
true integers in proofs then essentially we are considering an idealised

language, without overflow.
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