On the Relevance of Various Cost
Models of Complexity
W. Morven Gentleman
CS-73-14

Department of Applied Analysis and
Computer Science

University of Waterloo
Waterloo, Ontario, Canada

ON THE RELEVANCE OF VARIOUS COST MODELS
OF COMPLEXITY

W. Morven Gentleman
University of Waterloo

Abstract

While one possible goal of work in low level
complexity is to study the intrinsic difficulty of
computing certain functions, another more practical
goal is to obtain sufficient understanding about the
relative merits of complicated algorithms to be able
to provide useful advice to someone undertaking an
actual computation.
' With respect to the latter goal, it is clear
that if the conclusions of an analysis are to be
applicable to a real computation, then the model
being analyzed must meaningfully characterize the
actual problems being solved and must accurately
reflect the actual costs. Many complexity analyses
today do not do this. This paper will discuss somne,
.and suggest what can be done.

Why do Analysis of Algorithms? ;

It is, of course, a legitimate goal of research
in the theory of computation to investigate the
intrinsic difficulty of computing certain functions
on machines of a given structure, either to classify
the functions or the machines. In either case, the
specification of the machine is part of the formu-
lation of the problem, and is hardly open to dis-
cussion,

However, a quite different goal often motivates .
work in this area. In actual computation, design
decisions and value judgments are continually having
to be made: which algorithm should be used? which
data representation should be employed? which part
of the computation, being the most expensive part,
should be most carefully done? how should the pro-
gram be structured? how much can the program be
improved? Rather than just using cut-and-try methods
or worse, going on unfounded hunches and prejudices,
it would be desirable to have some theorciical

assistance with such questions.

What is wanted, then, is theoretical analysis
of models that abstract real algorithms and problems.
With this goal, it is clear that questions of how
well the model analyzed reflects the real costs of
an actual computation and how well the problems
being solved are characterized are vital.

How well do our current style of analyses measure
real costs?

With this in mind, let us ask how well our
analyses do in some specific areas: matrix computa-~
tions, rootfinding, sorting, and symbolic algebra
computations.

In matrix computations, the traditional analy-
sis has counted the number of multiplications required
(or sometimes the numbers of multiplications and
additions). If the process is iterative, the count
is done per step, then some factor inversely propor-
tional to the rate of convergence is applied to
give the cost to convergence. Does this really
indicate the costs?

As an illustration, I took an Algol program
for iteratively solving a linear least squares
problem, and counted the number of multiplications
(6655) and additions (11651) per step. Knowing the
floating point add and multiply times on my Honey-
well 6050 computer (1.8 and 3.8 microseconds) I
could conclude that the arithmetic cost per step
was .04626 seconds. The measured time‘was .4165
seconds, so the overhead of bookkeeping, loop
control, array element access, etc. made the compu-
tation nine times as expensive as the arithmetic
costs alone would indicate, Moreover, if bounds
checking is requested on array element accesses,
the measured cost increases so this ratio becomes
sixty times the cost of the arithmetic alone. And
this is on straight line code using only simple
loops, compiled by one of the better Algol compilers
in the industry. '

These results suggest that changes in the non-
arithmetic structure of the algorithm might have
significant impact, but changes in the amount of
arithmetic are unlikely to- This suggestion is
borne out in another experiment (on a different
machine, an IBM 360/75) in which two different forms
of Givens transformations without square raoots were

being tested. The interest in the second iorm was

that ie by a minor rearrangement of algebra, it re-
duced the number of multiplications by 1/3. More
precisely, the number of multiplications using the
first form was 3 (p+l)p + 6p and using the second

form was (p+l)p2+ 5p. However the measured costs
turned out to be 46p2 + 716p - 2591 ypseconds and

43p2 + 596p - 947 useconds respectively. While the
multiplication count had predicted the form of the
cost functions correctly, the relative magnitudes
were wrong, leading to the erroneous conclusion
that the second method was substantially superior.
The examples above are still relatively
straightforward compared to what happens when large
matrix computations are performed on a virtual
memory machine. It is not difficult to find cases
where the conventional algorithms access data in
such an unfavourable manner that almost every array
element reference requires another page pull, but
where reordering the indexing, in a way that does
not change the amount of arithmetic, can dramatlcally
change the cost, e.g. Moler [2], In fact
Singleton [3] found that using a version of the
fast Fourier transform that was inferior in terms
of the number of trigonometric function computations
required was vastly superior in terms of real cost
when working on the virtual memory Burroughs B5500,.
(Even using this best available version, an FFT on
215 points was taking almost 50%Z as much channel
time as CPU time).
We might conclude from such cases that multi-
Plication count alone is too simple a model to use
to predict what really happens in matrix computation.
What about rootfinding? The traditional anal-
yses have been in terms of order, p, with cost 6
being measured by the cost of various function and
derivative values needed at each step. For one
step iterations with no memory, where p function
and derivative values are needed to obtain order p,
we can readily make the assumption that all function
and derivative values are equally expensive =0
obtain, and conclude that the efficiency, p 1/6 i¢
minimized at p=3, indicating cubically convergent
rules should be used. If derivative values become
more complicated to compute as the degree increases,
specifically 1if computing the function and the first
s-1 derivatives is more expensive than s~'iJ6
second order rules become preferable. Only if

derivatives become progressively cheaper to compute
as the degree increases do higher order rules pay:

if the cost grows less than 3'8, fourth order rules
are preferable, if less than s-5, seventh order

rules are preferable, and if less than s'333, twen-
tieth order rules are preferable.
In fact there s not much in all this. In the

first place the efficiencies are not much different:
when the cost grows like s, p=3 is only 2% larger
than p=2 or p=4. Moreover, two assumptions are buried
in it whose violation invalidates the application

in practice. First, that costs of function evalua-
tions can be discussed, independent of the abscissa.
This can easily be false, particularly when the
function evaluation is done to guaranteed relative
accuracy (as the author found when computing zeros
of Bessel functions). Secondly, that only asymp-
totic behaviour need be considered: mnot only can
starting and stopping be ignored, but even asymp-
totic error constants can be neglected. This is,

of course, imposed for mathematical convenience,
because these features are hard to discuss and
depend on quantities not readily available a priori.
Nevertheless, in real computations on a finite
wordlength machine it is most unusual to ever take
more than a few steps, and the asymptotic situation
never holds: conclusions based on it are often
simply false.

Perhaps the situation is better for some non-
numeric computations like sorting. Here the tra-
ditlonal measure is the number of comparisons and
it is well known that asymptotically n logzn

comparisons are needed, and that this number is
achievable. Van Emden's modification of Quicksort
[4] achieves an average of 1.140 n logyn comparisons
and appears to be fastest published program by
measurement. Of course, again overheads dominate
the real cost. .
Sorting too has its troubles, however, for

once sorts become too large to be in core, the
real costs are wholly asscciated with I/0, and
only recently { 1] have models become sophisticated
enough in terms of queuing theory and models of
I1/0 systems to predict the observed behaviour. And
sorting on virtual memory machines seems not yet
to have been well modeled.

" OQur final area is symbolic algebra cowmputations

Two very surprising results have been obtained here
in the past few years, first, that the application

of modular arithmetic homeomorphisms can asymptot-
ically make dramatic reductions in the maximum number
of operations required in various computations, and
second, that the conclusions of analyses based on
models of sparse polynomials, i.e. those with only

a few nonzero terms, can be radically different fron
those based on dense models. The second of these
results has had impact immediately: sparse poly-
nomials seem more typical of what is really seen by
an algebraic manipulation system, and the improve-
ments observable when using a method previously
thought inferior can be striking. The first, however,
has had a harder time gaining acceptance--the over-
head is high in many data representations and the
crossover points are unknown. Moreover, all ad-
vantage of sparseness is lost, and without exploiting
sparseness, only the smallest problems can actually
be solved.

How could our cost models be improved?

The root of the problem, indicated by the short-
comings of the theoretical analyses above, lies in
the fact that the entire thrust of modern mathema-
tics is toward abstraction. The algorithms we
consider are mathematical transformations, and
they can be applied to many classes of operands.
For example, Gaussian elmination can be applied in
any division ring, and a sorting algorithm can be
applied to elements of any ordered set. 1In this
context, we are naturally lead to measuring costs
by operations appearing in the algorithm as math-
ematically formulated.

But whereas the algorithm is unaffected by
which of the various isomorphic problems it is
applied to, the cost of real computation is not.
Indeed, one might almost argue that the abstraction
in the algorithm is introduced explicitly to make
it transparent to the very features on which real
costs depend: program structure, data representa-
tion, data management, implementation of primitive
operations, special structure in the data for
problems of interest, etc.

Another thing which often makes our analyses
inappropriate is that mathematical difficulty,
combined with the desire to have results that can
be expressed simply, often leads to asymptctic anal-
yses. But the problems which are usually solved,

indeed sometimes the only ones which can be solved,
are often far from the range of validity of the asym-
ptotic conclusions,

The above remarks might suggest that what is
needed is a thorough analysis using more elaborate
models, I should like to suggest this is not so,
for the following reasons:

1. Since no model can reasonably be expected to
treat exactly the specific problem that actual
computation will be done on, what is wanted is not
exact results, but intuition.

2. The more elaborate the model, the more likely

it is to be mathematically intractable. While

for simple models this may be coped with by finding
‘approximate relationships, for many parameter models
the situation may be hopeless. Choosing only models
that are mathematically tractable can be quite
misleading.

3. Even if results can be obtained, the relationship
between a many parameter input and a complicated
output can be so difficult to see that extracting
intuition from the mess is impossible. In fact,
relating a many parameter model of the data to the
specific input for the computation in question is
often impossible.

4. As the model becomes more elaborate and more
detailed, the range of applicability narrows until
it may not include the case at hand.

5. Even elaborate models of computations with the
mathematical algorithm still omit details about
program structure.

A new philosophy for analyzing algorithms
Recognizing that what is wanted is not necessar-
ily precise analyses for specific cases but rather
sharpened intuition, how can this be made available?
Since we cannot be sure which cost model will
apply, analyzing several is desirable, and since
what we really want to uncover are the sensitive
parts of the computation, extreme models are often
more informative than more general ones. Since
program structure and data structure are vital to
include in our models, something closer to analysis
of programs rather than analysis of algorithms is
needed. (Of course, even as several cost models
should be tried, several program and data structures
should be too). Because we are looking at programs,
mechanical help is possible: for well structured

programs it should be possible to have a processor
that examines the program flow and produces a
analysis in terms of parameters such as loop limits
and the number of successes and failures of given
tests for such cost factors as the number of
primitive operations, e.g. arithmetics, array ele-
ment references, elementary function calls, and so
forth. Various models for the cost of these primi-
tive operations can then be tried. (An algebraic
manipulation system can be a big help here). In
this context, it is useful to note the work of B.A.
Wichmann on studying Algol execution speeds [51],

in which he finds primitives which do not interact,
whose relative speeds are almost independent of

the particular machine and implementation, and which
reasonably predict measured costs.

Finally, empirical evidence to support the
intuition, not just to support the mathematical
models, should be a mandatory part of the analysis.
It should be checked by measurements on real
computations, possibly cases too complicated to
analyze directly, that the behaviour predicted really
does occur--or more important, that unexpected be-
haviour does not. For this purpose isolated exper-
iments can be useful, but empirically determined
cost formulae are usually far more so.

References:

Kritzinger [1] Kritzinger, P., "An approach to the
optimization of direct access merge
peformance'", unpublished Ph.D. thesis,
University of Waterloo, 1972,

Moler [2] Moler, C., "Matrix Computations with
Fortran and Paging'", CACM, Vol.1l5, No.S5,
April 1972, pp. 268-270.

Singleton [3] Singleton, R.C., "On computing the
fast Fourier transform', CACM, Vol.10,
No. 10, October 1967, pp. 647-654.

Van Emden [4] Van Emden, M.H., "Increasing the
efficiency of Quicksort", CACM, Vol. 13,
No. 9, Sept. 1970, pp. 563-567.

Wichmann [5] Wichmann, B.A., "A comparison of Algol
60 execution speeds'", National Physical
Laboratory Report CCU3, 1969, also
The Algol Bulletin.

	
	
	
	
	
	
	
	

