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ABSTRACT

OL systems and TOL systems are the simplést mathematical
models for the study of the development of biological organisms
with or without a variable environment, respectively. This
paper contributes to the study of the properties of the languages
generated by these systems and by their generalizations. Macro OL (TOL)
languages are languages obtained by subétituting languages of a giﬁen
type in OL (TOL) languages. We studf properties of certain families
of macro OL (TOL) languages, in particular we show that they are full
AFL's. |

We observe that OL, TOL systems and many of their generaliza-

tions can be viewed as special classes of index grammars.



0. Introduction

In 1968 A. Lindemayer introduced mathematical ﬁodels for
' developmental systems [8], now called L-systems. Later, he devoted
specifié attention to systems without interaction, so called OL systems
[9]. In [10] a modification of OL systems, called TOL systems, is
~ described to give a model of the behaviour of organisms in the presence
of a variable environment. We ask the reader to see the references for
the biological motivation of the considered systems. Formal definitions
of OL and TOL systems are given as special cases of extended systems
iﬁ the preiiminaries. Mathematical properties of these systems have
beén studied quite extensively, e.g. [7, 10, 12], and recently
various generalizations éf OL systems were introduced which, unlike OL
systems, generate languages with nice mathematical propertiés,

In the preliminaries we give modified definitions of extended
table systems and their subclasses [11], and of macro OL (TOL) |
systems [3]. We will observe that the‘former are equivalent to certain
special cases of the latter. As defined here a language L is an
o macro OL (TOL) language, fof some family of ianguages(;i, iff L is
the result of a substitution of typegifinto an OL (TOL) language.

In [3] it was shown that the family of regular macro OL
languages (RMOL) is the smallest full AFL, containing OL languages
(full AFL closure of OL languages) and [11] the family of extended

table OL languages was shown to be a full AFL. In the present paper



we extend these results and we show that for every (full) AFL;ii‘the
families QXEMDL and.}KjMTOL are also (full) AFL's. Moreover, if S

is principal [Sj then they are also prinéipal. To show the last result

we have to show, first, that RMOL is a full principal AFL. We will do

it by explicitly constructing a finite transducer (a-transducer in [4])
genefator for the RMOL languages over a fixed number of symbols. For a
given alphabet such a generator is a subset of the cofresponding Dyck
language. It is well known that every context-free language can be
expressed in'the form t (D) or in the fofm h(® n R) where t is a finite
transduction, ‘h is a homomorphism, D is the Dyck language dver a suitable
alphabet and R is a regulér set., We will show that for macro OL languages
the situation is different - by 'homomorphic characterization' we obtain

a proper subfamily of RMOL languages, namely FMOL lénguages. On the

other hand, the families of finite macro TOL languages and regular macro
TOL languages are identical and as for context free lénguages, there
exists a single generator which characterizes them either 'homomorphically'
or by finite transduction.

We will also show that the family of RMOL languages is not
closed under substitution (of itself) and that the result of this
substitution, the family RMOLMOL is agaiﬁ a full principal AFL. 1If
we repeatedly perform RMDL;substitutions we can get an infinite hierarchy

of full principal AFL properly between the context free and index

languages [1].



In the last section we elaborate the relationship of

(generalized) developmental systems to index grammars. We show that

all the‘¢onsidered families of languages ére included in index languages
and, moreover, that all the claéses of systems considered in [1l1], namely
OL, TOL, EOL and ETOL systems may be looked upon as special classes of
index grammars. In particular, a 'table' of an ETOL (TOL) syétem becomes
exactly a 'flag' of the corresponding index grammar, Consequently,

- for example, it follows immediately that decidable quesfions about index
grammars (membership and emptiness problem) are also decidable for all
systems mentioned aBove and that the family of languages geﬁerated'by,
any of these systems is properly included in the family of context

sensitive languages.



1. Preliminaries

language

We assume knowledge of the basic notions and notation of formal
theory, see e.g. [2, 13].

We start with a slightly modified, but equivalent, definition of

extended table OL systems [11].

Definition 1.1: An extended table L-system without inter-

action (ETOL system) is a 4~tuple G = (V,T,Q?,O) where

(1)
(i1)

(1ii)

(iv)

(&9)
(i1)

(iii)

X E>

P

y if there exist a

V is a finite nonempty set, the alphabet® of G,

T ¢ V, the terminal alphabet of G,

6715 a finite set of tables. 63 = {Pl,...,Pn} for some n = 1, where
. A ,

each Pi € VXV, Element (u,v) of Pi’ 1<1i<n, is called

a production and is usually written in the form u ~+ v. Every

i 1 <1i<n, satisfies the following (completeness) condition:

‘ *
For each a € V there is w ¢ V so that (a,w) ¢ Pi’

g € V+, the axiom of G,

Definition 1.2: An ETOL-system G = (V,T,G?,O)vis called

a TOL-system if V = T;

an EOL-system if 6:)= {Pl};

an OL-system if V = T and (P = {Pl}.

Definition 1.3: Given an ETOL-system G = (V,T,P,0) we write

*
120008y € V and Yysrees¥y € V so that,

X = al;.."ak’ Y = YpeeeesVy and for some Pi GCT), aj.+ yj e P., j=1,...,k.

1



The transitive and reflexive closure of binary relation E>

is denoted by 39*.

Definition 1.4: ZLet G = (V,T,Y,0) be an ETOL system. The
language generated by G is denoted by L(G) and defined as

LG) ={weT:o E»* wl.

Definition 1.5: A language generated by an XYZ systém; for
any type XYZ is said to be an XYZ language. The family of all XYZ |
languages is denoted by XYZ. In particular, F, RO’ and R denote the

‘families of finiﬁe se£s, g-free regular sets, and regular sets, respectively.

Note that the reQuirement of completeness is essential for OL
and TOL systems., It is, however, unessential for systems allowing non-
terminals. We can easily show it by adding a ‘'dead' nonterminal similar

t°. a 'dead' state in'the well known technique for finite automata
(see also Theorem 3 of [ll]).

Now we give a quite different but obviously equivalent
definition of macro OL languages [3] as a special case of a more general
definition. We will define macro OL languages directly instead of

defining the associated macro OL systems as in [3].

Notation: Let¢la,(iz be families of languages. Then

Sub(;fl,gfé) = {f(L):L is inééé and f is aniza—substitutionz}.

Definition 1.6: Let éfl and ;fz be families of languages.
The L is called ancéfl macro Jﬁz language iff L is the result of an
oéﬁl—substitution2 into a 1language in<§fz. The family of ;ﬁi macran}z
languages is denoted by,gaMR%, 1.e.$£1MJ% = SubCéﬁl,oCé).



The equivalence of Definition 6.1 in the case that

JZ/Z = OL, and the definition of JZiMOL languages in [3] follows from
the note about completeness above and from the fact that in &flMOL

systems any derivation leading to a terminal string produces terminals

only in its last step. Consequently we also have the following:

Lemma 1.1: FMOL = EOL,

We need to use FMOL and FMTOL systems in some constructions.

To avoid further definitions let us define them as modified ETOL-systems.

FMTOL system is an ETOL system G = (Nu T, T, {Pl,.'. . ,Pn},S) where

S € N, Pi'c N x (N+.U Tf) and Pi does not require completeness for

1 <4i<n., Moreover if n = 1 then the syéteﬁvis called an FMOL system.
The biological motivation of macro OL systems was discussed

in [3]. 1If such models are extended to consider a variable environment

-formalized by 'tables' [10], we get macro TOL languages whose simplest

case, the finite MIOL languages,has already been studied under the name

of ETOL languages in [11]. Indeed, in the same way that EOL = FMOL, it is

also easy to verify the first equality of the following:
Lemma 1.2: ETOL = FMIOL = RMTOL.

Proof: It remains to show the second equality. By definition
RMIOL = Sub(R,TOL). Obviously, Sub(R,TOL) c Sub(R,ETOL). In [11] it
was shown that ETOL is a full AFL. Every full AFL is closed under

regular substitution [4]. Thus RMIOL = ETOL. O

An



2. Properties of Families of Macro OL Languages

The following lemma will be very useful.
Lemma 2,1: Let &fl be an AFL and &fé be any family of languéges. Then
Sub(Z,,4,) = Sub (LR ML),

(RO is defined in Def.l.5 as the family of e€-free regular sets).

Proof: For every AFL éﬁl containing € we have Sub(éii,Ro) =<Za [6].
Therefore by using the definition of ROMJZ%, and the associativity
of substitutions we have Subéifl,RdM6Z;) = Sub(ozi,Sub(RO,&ié)) =

= Sub(Sub (L ,R) ,L,) = Sub(ofil,o?/z). 0

Theorem 2.1: Letol be an (full) AFL. Then the families\;fMOL and »Z MTOL

are (full) AFL's.

Proof: By definition and by Lemma 2.1

S MOL = Sub @l ,0L) Sub(Z,R MOL) and

SMIOL = Sub 6L, TOL)

Sub (o(‘ﬁ/,ROMTOL) .

RMOL was shown to be a full AFL in [3]. By Lemma 2.2 RMIOL = ETOL

and ETOL was shown to be a full AFL in [11]. Therefore, clearly,

0
(full) AFL's by [6, Corollary 1]. [

RMOL and RMTOL are AFL's and Sub_(of,ROMOL) and Sub (L ,RMIOL) are

Now we proceed to develop a homomorphic characterization of

FMOL languages and consequently to show principality of our AFL's.



First we need to show an auxiliafy result which will play a
similar role for FMOL languages as the Chomsky Normal Theorem does
in the proof of the homomorphic characterization of context-free langguageé.

* and b is not in T. Then there exists

Lemma 2.3: Let L € FMOL, L c T
an FMOL system G = (Nu T u {b}, Tu {b}, P, S) such that P cN x (NZUTu{b})
and L = p(L(G)) where U is the homomorphism defined by u{a) = a for

a €T and p) = €.

Proof: Given an FMOL system G = (Nu T,T,P,S) let r be the maximum of
the lengths of the right sides of the productions in P and 2. Let b.not be in

Nu T and let P, = {a, > a

r-s
1 0 l...asb 1a

0 7 @preeag € P}u {b~> b}, i.e.
we fill each production in P by "blanks' up to length r.
Now construct the FMOL system G' = (N'u T,T,P',S') where

N'= (Nu Tu {b}u Pl) x {1,...,r=1}, S' = (5,1) and P' is given as

follows:
(i) IfmeP,T=a, >a ...a for a, e Nu Ty {b}, then the
following productions‘are in P':
(a) . (aosl) > (alsr—l) (Tf,r—l);
(b) (r,k+1) - (ar_k,k)(n,k) for 2 < k £ r-2;
(c) (@m,2) ~ (ar—l’l)(ar’l)'
(ii) (a,k+1) > (a,k)(b,k) is in P' for each a ¢ Nu Tu {b};
(iii) (a,1) > a is in P' for each a ¢ T u {b}.

Clearly, H(L(G')) = L(G) and G' is of the required form. 0



We have also proved the following normal form theorem for

FMOL which is of interest in itself.

Theorem 2.2: Every language in FMOL can be generated by an FMOL system

G=(Nu T,T,P,S) such that Nn T = ¢ and P ¢ N X (N2 u Tu {eh).

Proof: Replace the production (b,1) >~ b in the system constructed in the
proof of Lemma 2.3 by the production (b,1) ~ €. 0

Now we define subsets of Dyck languages [13] which will be used to
characterise the families FMOL and RMOL. We will distinguish two kinds of
'brackets' : a#;ai for 1 £ k £ m which may occur only as inner-most brackets
and ck,ci for 1 <k < ﬁ which may occur only as non-inner-most brackets for
some m,n =2 1. This distinction is unéssential but will make the proof of

Theorem 2.3 more transparent. See also the note at the end of the proof of

Theorem 2.3.

Definition 2.1: Given Zm,n = {al,...,am,ai,...,aé,cl,...,cn,ci,...,cé}

for m,n 2 1, let Gm,n be the FMOL system (Nm,n’zm,n’Pm,n’s) where

: —_ T 1 . .
Nm,n = {S,Cl,...,Cn,C ,...,Cn} and Pm,n consists of the productions

S~ CkSC£S .for 1<k <n,

S~ a.a) for 1 < i < m,

ii
Ck > C ]Ck for 1 <k £ n, and
Ci > ci lCi for 1 < k < n.
OL

Denote L(Gm,n) by Dm,n'
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- Theorem 2.3: A language L is in FMOL if and only if there exist m,n > 1,

. * * .
an homomorphism h on Zm n and a regular set Rc I 0 such that
? ’

L=h0 aR).
m,n

Proof: Let L c T' and L = u(L(G)) for FMOL system G = (Nu T u {b},
T u {b},P,S) and homomorphism U from Lemma 2.3. Let T' = Tu{b} = {ai,az,...,am}
and P = {ﬂl,ﬂz,...,ﬂn}. Note that there is no loss of generality in assuming

that T'" is a fixed alphabet {al,...,am} for any set T' of cardinality m.

'
1°° sC s

Consider now the alphabet X yo oo
m 1 n

|
= {a . ,...,a ,a',...,a',c
l’ 5 m’ s m’

2

ci,...,c;} from definition 2.1, and construct the right linear grammar

GR = (N’Zm,n’PR’S) where P_ is defined as follows:

R
(i) If A-> a is in P for a ¢ T', then A -+ aa' is in PR.
(1ii) If w, = A+ BC for B,C in N then
i ;
(a) A > ciB is in PR’ and

(b) D ~> aa'ciC is in PR for every D >~ a in P where a € T'.

Let R = L(GR) and h1 be the homomorphism on Zi defined by hl(a) = a
’

for a e T', hl(a) =€ for I -T'. Similar to the proof of Theorem 3.7.1.
s
OL

in [13] for context-free grammars we can verify that hl(Dm 0

nR) = L(G).
Note that Dan is dependent on language L and therefore we may use a
s

different pair of symbols ci,ci for each production iu G.
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Finally, let h denote‘the composition of h, and py, i.e. h is

1

theAhomomorphism defined by h(a) = u(hl(a)) for each a ¢ Zm,n' Then

L = h(Dg%n n R) and we have the required characterization for every

language in FMOL. We geﬁ exactly the languages in FMOL since Dgfn is in

‘FMOL and the family FMOL is closed under homomorphism and intersection

with a regular set [3]. 0 |
Note that we may omit the symbols ai,...,aé in the

definition of Dgf and in construction of GR’ We have not chosen this

simplification because we wanted the languages DgLn

to be subsets of
> : .

Dyck languages.

Corollary 2.1: A language L is in RMOL if and only if there exists n 2 1

“and a finite transduction> so that L = t(DgL).

Proof: In [3] it was shown that RMOL is the closure of OL under finite

transductions. Thus the result follows immediately by Theorem 2.2, |
Corollary 2.2: RMOL is a full principal AFL,

Proof: = We have éhown that the AFL RMOL is generated by the family

L = {DgLn:m,n 2 1}, However, using well known techniques, all the languages
>

e ’ OL .
in £ can be encoded by a simple language D over a two letter alphabet,

say {0,1}, so that for every m and n there exists a finite transduction t o
. 3

so that DgLn =t n(DOL). The proof is completed by the fact that finite
H ]
transductions are closed under composition. [

Theorem 2.4: Let &£ be a full principal AFL. Then £MOL is a full

principal AFL.



- 12 -

Proof: By Lemma 2.1 and becaqusﬁf is a‘full AFL iifMOL = Sub(if,RoMOL) =
= Sub(ii,RMOL). By Corollary 2.2 RMOL is full principal. 1In [5, Corollary 1]
it was shown that the result of the substitution of a full principal AFL

into a full principal AFL again has this property; 0

By Theorem 2.4 RMOLMOL is also a full principal AFL. We will

show tﬁat it properly contains RMOL, i.e. that RMOL ié not closed under
substitution. We may repeatedly substitute RMOL and get an infinite
hierarchy of full AFL  ((RMOL)™MOL n = 1,2,...) between the families
of context-free and index languages.

‘'To show RMOL ¢ RMOLMOL we need the following

Lemma 2.4: Let L be in RMOL but not in FMOL. Then there is a_string

x in L so that x = uvw, v # € and uvkw e L for any k 2 0.

Proof: Since L is in RMOL there exists a regular substitution f and

an OL language L', L' ¢ Z*, so that L = f(L'). Since L is not in FMOL

f(a) is not finite for at least one a in I such that yaz is in L' for some
y,2 in *, Therefore, the proof is completed by applying the 'pumping lemma'

(see [2] p.128) to the regular set f(a). a
Theorem 2.5: RMOLMOL is a full principal AFL properly containing RMOL.

Proof: RMOLMOL is a full principal AFL by Theorem 2.4, Obviously, it

includes RMOL, therefore it remains to show that the inclusion is proper.
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n n

Let L, = {az in =21}, L, = {b% :n > 1} and let the substitution

2
f be defined by f(a) = {a}Lz. Let L = £(L;), i.e. L is in RMOLMOL.
Lét.h be the homomorphism defined by h(a) = a, h(b) = €. 1In [7] it
was shown that h_l(Ll) is not in FMOL (= EOL). Consider the finite
substitution.defined by £(a) = {a}, f(b) = {b,e}. Clearly, h—l(Ll) = £(L)
and therefore L is not in FMOL since FMOL is closed under finite suB— '
stitution.

Since, obviously, L does not satisfy the requirements of

Lemma 2.4 L is not in RMOL and the proof is completed. U

Note: It was stated in [3] that RMOL is properly included in the
family of index languages [1]. Inclusion was shown but the proof of proper
inclusion was omitted. Now, this follows from Theorem 2.5 since index

languages are closed under substitution [1] and therefore include RMOLMOL.
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3. Properties of Familiegs of Macro TOL Languages

Most of the results proved in the last section for families
of macro OL languages hold for families of macfo TOL languages with
minor modifications.

We start with the definition of 'generators; of FMTOL
languages. To simplify the constructions we use the result from [11]
that every language in ETOL (= FMIOL) can be generated by a system with

only two tables.

Definition 3.1: Given the alphabet A {a yal:l < i < m}
‘ m,n %4
. T »
LI < < i = >
u {ck,j’ck,j' 1 <k<mn, j 1,2} for myn = 1, let Gm,n be the FMTOL

» =‘ L 1 =
system (N, Am,n’{Pl’PZ}’S) where N = {S} u {Ck,j’ck,j'l <k<n,j 1,2}

and P, = {s +>¢,_.sC' .S:1 <k <n}luP'forj=1,2 and
J k,j k,j

'= . '.] < i < :1 < £ i =
P {s » ajaf:l <1< m} U {ck’j > ck,j|ck’j.1 <k £n, j=1,2}

T T
1 1] ] . < < 1 =
U {Ck,j > Ck,jlck,j'l <k <n, j=1,2}. Denote L(Gm,n) by Dm,n'

The result from [11] that each language in FMIOL can be
generated by a system with no more than two tables can easily be modified

as follbws.

Lemma 3.1: Every language in FMIOL is generated by an FMTOL system

* - %
G=(NuT,T,{P P3},S) where P. , P, c N XN and F, < N X T .

1°F2» 1°%2 3

We can now generalize Lemma 2.3:
*
Lemma 3.2: Let L ¢ FMTOL, L< T and b not be in T. Then there exists

an FMIOL system G = (Nu Tu {b}, T u,{b},{Pl,P P3},S) such that

2’
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2

P,,P, € NxN°, P, c N X (T u {b}) and L = u(L(G)) where h is the

3
homomorphism defined by u(a) = a for a € T and u(b) = €.

Proof: By Lemma 3.1 and the method of the proof of Lemma 2.3. 1

We omit the obvious generalization of Theorem 2.2 and proceed:

to the main result of this section.

Theorem 3.1: A language L is in FMIOL if and only if there exists myn 2 1, an

homomorphism h on A and a regular set R < A*  such that L = h(DT n R).
, m,n m,n m,n

% :
Proof: Let L T and L = y(L(G)) for FMTOL system

G=(NuTu {b}, Tu {b}, {P P3},S) and homomorphism U from Lemma 3.2.

2 2
= {ﬂl,...,ns}. ,

l’PZ,

1 1
Let T' = Tu {b} = {al,...,am}, P, = {ﬂl,...,ﬂr} and P

1 2

Let n = max(r,s) and Am n be the alphabet from Definition 3.1.
bl

Construct the right linear grammar G_ = (N,A ,P_,S) where
R m,n” R
PR is defined as follows:
(i) If A~> a is in P, then A > aa'is in Py
(ii) if nJi = A > BC is in P, for B,C in N, then
. > .
(a) A Ci,jB is in PR, and
_+ ' ' - 3 + 3 .
(b) D aa Ci,jc is in PR for every D a in P3
The remaining part of the proof is the same as the proof of Theorem 2.3
substituting DT for DOL .
m,n m,
We iobtain exactly the languages in FMTOL since this family is
closed under homomorphism and intersection with a regular set [11]. i

Unlike the case of macro OL languages in section 2, here
the homomorphic and the finite transduction characterizations give the

same family FMIOL.
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Corollary 3.1: A language L is in FMIOL (= RMTOL = ETOL) if and only

if there exist m,n 2 1 and a finite transduction so that L = t(DT ).
: m,n

Proof: 1In [11] it was shown that ETOL is a full AFL and therefore it is
closed under finite transductions [4]. TFor equality of the three

families see Lemma 1.2. 0
Corollary 3.2: FMTOL (= RMIOL = ETOL) is a full principal AFL.

Proof: See the proof of Corollary 2.2. a



- 17 -

4. Subsets of Index Grammars

We refer to [1] for the definition of index grammars and index
languages. We will show that the families OL, TOL, FMOL (= EOL),
FMTOL (= ETOL) are subfamilies of index languages and, moreover, that
the corresponding systems closely correspond to certain subclasses
of index grammars. In particular, a 'table' of an (E)TOL system is
ndthing else than a 'flag' of the corresponding index grammar.
Definition 4.1: An index grammar G = (N,T,F,Q,S) is called an ETOL-

index grammar iff F = F, u F, and N = N' v {S,A} such that

1 2
(1) F; n Fy =0, N' n {A,8} = ¢;
(ii) Q= {s » Ag:g € F2} u {A > Af:f € Fl} v {A > B} for some B ¢ N';

(iii) fc N' x N'* for each f in Fys

(iv) g < N'" x T for each g in FZ'
Definition 4.2: Using the notation of Definition 4.1, an ETOL-index
grammar G is called

(@8] EQL-index grammar if lFll = IFZI = 1.

(2) TOL-index grammar if there is an one-to-one mapping p from N

onto T so that F, = {g} and g = {A > u(A):A € N}, and if for
each f in Fl and each A in N there is w ¢ N* so that A > w ¢ f.

(3) OL-index grammar if both conditions above hold.

We can easily give additional potentially interesting subclasses
of index grammars. For example, it is.easy to describe a class of index
grammars equivalent to ETOL-systems with regular control sets [14], i.e.
ETOL systems in which the manner of generating a string is restricted by

allowing only given sequences of productions.
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Theorem 4.1: The languages generated by X-index grammars are exactly

X languages, for X = OL, TOL, EOL, ETOL.

Proof: We will only prove the result for ETOL (= FMTOL). It is easy
to verify it for the other types.
1. Given an FMTIOL system G = (N,T,{Pl,...,Pn},Z) construct an

EfOL-index grammar G' = (Nu {S,A},F,Q,S) where {S,A} n N =¢, Q is

- -
from Definition 4.1 and F = {P;:i =1,2; j=1,...,n} for P? = Pj nN
*
and P§ =2, 01" for j =1,...,n. Clearly, L(@) = L(@").
2. . Given an ETOL-index grammar G = (N,T,F,Q,S) with F = Fl U F2

and N = N' v {S,A} satisfying the conditions of Definition 4.1 construct
an FMIOL system G' =.(N',T,F,B) where B is the nonterminal for which
A~ B and A is not in N'. Clearly, L(G) = L(G"). 0

We have immediately the following two corollaries, The first

one is a refinement of already known results with lengthy proofs in [10,12].

Corollary 4.1: The families OL, TOL, EOL (= FMOL), RMOL, FMTOL (= ETOL)
are included in the family of index languages and thus properly included
in the family of context sensitive languages. Thus the membership

problem is decidable for corresponding systems.

Proof: Inclusion in index languages follows from Theorem 4.1. We do
not need the part of Theorem 4.1 whose proof has been omitted since
OL, TOL, EOL and RMOL are subfamilies of FMITOL. Proper inclusion of index

languages in context sensitive languages was shown in [1]. O
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Corollary 4.2: The emptiness problem is recursively decidable for

FMOL, RMOL and FMTOL (ETOL) systems.
Proof: The emptiness problem is decidable for index languages [1].

Note that the emptiness problem is trivial for OL and TOL systems, they

always generate a nonempty language. g
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~ FOOTNOTES

1. For an alphabet V, v* is the free semigroup with identity €

enerated by V. An el .. * ing. A t
g y e ement a ?n of V' is called a string subse

1
of V¥ is called a language over V, v*-{e} is denoted by V+.

2, ' Let L ¢ £* and for each a in I let La be a language of type A.
Let f be the function defined on I¥ by f(e) = {e}, f(a) = La for each a in Z,-
adf LK Y = L) ‘ = i * i

n (al ak) f(al) f(ak) for eachn 2 1 and a, in L. Then f is

called an A-substitution. f is extended to languages over . by defining

f&X) = U, £(x) for all X c I¥,
x in X

3. A finite transducer is a 6-tuple M = (K,Z,A,H,qO,F).where K is

a finite set of states, I and A are input and output alphabets, H is

a finite subset of K x ¥ x A* x K, 4y € K and F c K. Let |- be the
relation on K x I* x A* defined as follows: Let (p,xw,zl) I—-(q,w,zz)

if (p,x,y¥,q) is in H and z, = z;Y. Let |-~ be the reflexive and transitive
closure of |— .

A* -
M defines a mapping t from v* into 2~ , called a finite trans-
duction and is defined by t(w) = {z:(qo,w,e)[—*(p,e,z) for some p in F}.

The mapping t is extended for every L ¢ o* by t(L) = \Jw in L t(w).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

