Department of Applied Analysis and
Computer Science

Technical Report CS-73-10
April 10, 1973

A PDP-11 SIMULATOR FOR THE H6050
by

David Lamb
University of Waterloo

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

Department of Applied Analysis
&

Computer Science

% — . N, - d
ar - -
. . R .- -
e i K] 5

Department of Applied Analysis and
Computer Science

Technical Report CS-73-10
April 10, 1973

A PDP-11 SIMULATOR FOR THE H6050
by

David Lamb
University of Waterloo

A PDP-11 Simulator for Afie H6050 David Lamb

INTRODUCTION

This document is a description of the PDP-11 simulator on the Honeywell
6050 here at Waterloo. The program simulates the operation of a Digital Equip-
ment Corporation PDP-11 model 20 central processor with twelve kilowords of core
memory. Built into the simulator is a supervisor which functions simildrly to
the ODT-1lx debugging supervisor for the PDP-11. The monitor allows the user to
examine and modify core locations, to place breakpoinﬁs in his machine language

program and to run his program.

A description of the internal logic is also provided with special
attention to maintenance and extension of the supervisor and to the handling
of peripheral simulation. Plans for future capabilities are outlined.

For further information on the PDP-11 and the ODT-11x supervisor, :
consult the PDP-11 / 15, 20, x20 processor handbook and the PDP-11 paper tape'

software manual.

The Machine

This section is intended as a general introduction to the PDP-11 for
those unfamiliar with it, and may be skipped by those who have had some

experience with the machine.

The PDP-11 is a sixteen-bit wordlength mini computer with each
eight bit byte individually addressable. It has eight general purpose registers,
one of which, register 7, serves as the program counter. Onelother register,
register 6, is used as a hardware stack pointer for the handling of interrupts
and supervisor calls. The power of the machine lies in its addressing scheme

and in its handling of peripherals and interrupts.

The PDP-11 uses varying-length operation codes to make the best use of
the available space in a machine word. There are four basic groupings of
operations: double operaﬁd instructions, single operand instructions, condi-
tional branches, and a final group which holds all those instructions which do

not fit into one of the other three categories.

A PDP-11 operand address consists of six bits. The first two bits
indicate the basic addressing mode: the third bit is used to indicate indirect
addressing; the last three bits indicate one of the general registers to be
used in forming the address. In register addressing mode, (mode bit 00) the
indicated register is used as the operand. In autoincrement mode, (mode bits
01) the contents of the indicated register are used to address the operand;
after the address is determined, the contents of the register are incremented
to point to the next sequentiai core location. In autodecrement mode (mode
bits 10) the contents of the register are decremented to point to the previous
éequential core location and are then used as the address of the operand. If
the instruction operates upon bytes, updating of register contents is done in
steps of one. If the instruction operates on words, or if the register in
register 6 or register 7, the updating is in steps of two. In index mode
(mode bits 11) the contents of the word following the instruction are added to

the contents of the indicated register and used as the address of the operand.

If the indirect bit is a 1, the contents of the address calculated as
outlined above are used as the address of a core memory location. The contents

of this core word are fetched and used as the address of the operand.

Addressing modes 00 and 11 can be used as in most conventional computers
to refer to registers and core location in the ordinafy way. Modes Ol and 10
are extremely useful in the manipulation of stacks. On the PDP-11 stacks build
downward, higher stack positions being lower in physical core. A MOVE instruction
in autodecrement mode can be used to push items onto a stack: in autoincrement

mode a MOVE pops items off the stack.

The PDP-11 uses a hardware stack with register six as the stack pointer
in the handling of interrupts. The top four kilowords of memory are not core
memory, but peripheral device registers. They can be manipulatéd with all of the
instructions used to reference core memory, making specific input+«déutput in-=
structions unnecessary. One of these registers, at location octal 177776, is
the processor status word. It indicates the current priority of the central
processor, as well as certain conditions such as whether or not the result of
the last operation was negative or zero, or resulted in a carry or an overflow.
Each peripheral device is assigned an interrupt vector consisting of two
consecutive locations in core memory. When the device requests an interrupt, the
central processor pushes the current program counter and processor status words
onto the hardware stack. It then fetches a new program counter and processor
status from the interrupt vector associated with the peripheral device. Super~

visor calls are treated in the same manner.

Use of the Supervisor

The supervisor built into the simulator is a powerful tool for debugging
machine language programs. It offers the user a wide range of commands for

examining, modifying, and running his program.

To begin a session with the supervisor, sign on to TSS on the Honeywell
and type RUN CCNG2/PDP11,R at the subsystem selection level. The simulator
will identify itself and type an asterisk to indicate that it is ready to

accept input. The simulator expects all numerical input to be in octal, and

will type oﬁt all numerical responses in octal. The simulator will respond with
a question mark to any input it does not understand. It scans characters to any
input it does not understand. It scans characters until it finds either an
illegal character or a complete command, at which point it executes the command
or prints a question mark. Thus, any characters typed after a legal command
will be ignored. Any blanks or tabs in the command are totally ignored. To
terminate a session with the simulator, hit ATTN when the supervisor asks for

input.

The structure of commands accepted by the supervisor is identical to
that of ODT-11x commands. There are two basic sorts of commands: special
character commands and letter commands. Special character commatids are of the
form nS where n is null or an octal number and S is a special character. Letter
commands are of the form njmL where n and m are octal numbers or null and L is
an uppercase or lowercase letter. Each commands is described individually

below.

Commands to Open a New Location
The slash opens the word at location n for examination and modification.
The supervisor prints the six-digit address and the six digit contents of

location n. If n is omitted the slash opens the last-opened location.

The backslash on ASCII terminals or the or-bar on a 2741 openhs a byte
at location n. The six digit address and three digit contents are printed.

The backslash alone opens the last byte addressed.

For these two commands n may also be the special symbols $B, $M, $P, $S,
or $m where m is an octal digit. &$Bm opens a core location which holds the address
of breakpoint m. (Breakpoints are explained below). $B alome is equivalent to
$BP. $Pm opens a core location which holds the repeat count for breakpoint m
$P is equivalent to $P@. SM opens a location which holds the mask used in
search operations. Searches are explained below. $S opens the status word at

location 177776 octal. $m opens general register m.

The remaining special character commands interpret the afgument n
in a different way. 1If an octal number is specified before these special
characters the octal number (modulo 16 bits if a word is open and modulo 8
bits if a byte is open) becomes the new contents of the last-opened core

location.

The linefeed character on ASCII terminals or the exclamation mark on

2741's opens the next sequential location.

The up arrow or caret on ASCII terminals or the cent sign on 2741's

opens the previous sequential core location.

The carriage return has no effect other than causing the supervisor

to ask for a new line of input.

The equals sign interprets the contents of the currently open location
as an address and opesn the location so addressed. This is equivalent to the
commercial at for ODT-1llx. Unfortunately, the at is used as a line-delete on
2741's and as a character delete on ASCII terminals and so a substitution was

necessary.

The greater-than sign interprets the open location as a relative branch
instruction and opens the addressed location. For PDP-11 conditional branches
the low order byte is interpreted as an eight-bit two's complement number,

doubled and added to the program counter before being used as a branch address.

The back-arrow or underscore takes the contents of the open location,

adds the contents of the program counter, and opens the addressed location.

The less-than sign opens the location open prior to the last equal
sign, back arrow, or greater-than sign commands. The less than sign can recover
from up to eight such changes of sequence, after which it behaves like the line-

feed key until the next equal sign, back arrow, or greater—than sign is received.

The letter commands are described below. The B command is used to
manipulate breakpoints. A breakpoint is a location in a user's program where
the user's program is interrupted and control goes to the supervisor. The

supervisor allows up to eight breakpoints, each identified by an octal digit.

The command n;mB sets breakpoint m at location n. If m is omitted, the super-
visor searches for a free breakpoint. If it cannot find one, it prints the
message NO FREE BPT and waits for a new command. If a free breakpoint is found
it prints out the number of the breakpoint that was found. The command ;mB re-

moves breakpoint m. The command ;B removes all breakpoints.

The command njE searches for all words which address location n. All
words which contain the value n, which are relative branches to n, or which
when added to the program counter at that point refer to n are printed. The search
is done between the limits specified by the contents of $M+2 and $M+4. These

lcoations can be accessed by typing $M and a slash, then using the linefeed key.

The command n;G runs the user's program starting at location n. The
program will continue executing until a breakpoint is reached, the ATTN button
is pressed, or an error of some sort occurs. When a breakpoint is reached the

supérvisor prints the breakpoint number and the address at the breakpoint.

The command ;P is used to continue executing a program ohce a bregkpoint
has been reached. The command n;P continues until the brédkpoint has been
reached n times. These repeat counts are kept in the location $P though $P+16

octal.

The command n;W searches for all bit patterns matching n in the posi-
tions specified by $M between the addresses specified by $M+2 and $M+4.
Comparison is done by taking the exclusive or of n and the compared location
and taking the end of this result with the contents of $M. Thus to find all
locations whose second octal digit from the right is a 2, oneé would set $M to

70 and give the command 20;W.

The command n;m0 calculates the offset of location n with respect to
location m. If m is omitted, the offset with respect to the current location
is taken. If the offset is even and in the range -256 to +255 decimal, the
eight bit offset is printed in addition to the sixteen bit offset. This is
used to calculate the offset used in relative branch instructions. For example
if we are examining location 346 and give the command 414;0 the sixteen bit

offset is 44 and the eight bit offset is 22.

The command n;mM enables memory protect on mode n through m. During
execution of the user's program, whenever reference is made to aprotected
location the simulator prints a message to that effect, prints the current
instruction the contents of all the general registers; and the protected
address, and waits for a command from the typewriter. n;M protects the single
location n. The command ;M enables the memory protect option if it has been

disabled.

The command n;mC clears memory protect on locétion n through m. If
m is omitted the location n alone is cleared. If both n and m are omitted,
memory protect is disabled. A subsequent ;M will re-enable memory protect,
protecting all locations protected before the ;C command unless some location

were cleared by an intervening n;mC.

Memory protect is normally enabled. The locations $0 through $7, $RO
through $B7, $P® through $P7, $M, $M+2 and $M+4 are all normally protected.

Internal Logic of the Simulator

The simulator was originally written entirely in Honeywell Fortran.
Later, routines that were inefficient in Fortran were rewritten in GMAP, the

assembly language of the Honeywell 6050.

The main program is written in Fortran. It consists logically of two
sections, the command handler and the hardware simulator. Statement numbers .
in the 1000 range comprise the command handler; statement numbers in the 2000
range comprise the simulator. In addition there are several statements in the

9000 range which print out certain error messages.

The core memory of the simulator is a large integer array, MEM. The
Honeywell word is thirty-six bits in length whereas the PDP-11 word is only
sixteen bits in length. To avoid problems of wasting core storage, two PDP-11
words are packed in each Honeywell word, one to each eighteen bit half. The
PDP-11 word is right-justified in the half word. The high order bit is set to
a one if this location is memory protected and a zero otherwise. The second

bit is a one if this location is a breakpoint and a zero otherwise.

For quick access, the general registers each use full Honeywell word.

Eventually, the entire program will be written in GMAP. When this is done,
index registers will be used for the more frequently used PDP-11 registers,
registers six and seven and possibly register five. (PDP-11 standard con—

ventions use register five for subroutine linkage).

Peripheral registers are implemented differently. When the simulator
recognizes that a peripheral register is being referenced, it sets switches 5o
that reads and writes are not done by the standard routines. A special routine
is called for each peripheral register that is implemented. At present, only
the Processor Status register at location 177776 is implemented. This approach
is taken for two reasons. First, special routines are needed for reading and
writing peripheral registers because such reads and writes have side effects.
For instance, loading the teleprinter data buffer causes the loaded character
to be printed on the teleprinter; setting the low order bit of the disk control
register indicates a disk operation. The second reason for this approach is
that when few peripherals are implemented it saves approximately two kilowords
of Honeywell core storage. At present the simulator takes approximately
eight kilowords of core. At peak points during the day this makes response time

very slow, since TSS swaps out large programs as frequently as it can.

The logic of the main program is quite simple. The supervisor calls
a subroutine to fetch and decode a command from the typewriter. It then branches
to the appropriate command routine to execute the command. Most commands return
for the fetch of another command after they have finished executing. The ;G and
;P commands branch to the hardware simulation section after loading registers
0 to 6andthe!'breakp0int proceed'countswith whatever new values were specified
by the user. Any changes the user makes to the breakpoint address section are
ignored; the addresses are kept in an array inaccessible to the user and hence
cna be changed only by the ;B command. When the hardware simulator returns to
the supervisor, the special core locations have the contents of the general

registers, the breakpoint addresses, and the proceed counts written into them.

The hardware simulator fetches the word of core storage pointed to by
register 7 and interprets it as an instruction. It branches to the appropriate
routine to handle each instruction or to an error message routine if the
fetched word was not a legal instruction. At the completion of each instruction
a section is executed which sets the appropriate condition code bits in the

processor status word depending on the results of the instruction.

The subroutine LOCATE translates the address it is given into a
subscript for MEM. The word MEM in which the PDP-11 word is located is
placed in location MAR. The lower bit of the address, which indicates whether
to take the add or even byte, is placed in switch ODD. The second bit, which
indicates in what half ofbthe Honeywell word the PDP-11 word is located, is
placed in the switch TOP. The routine checks to see if the address is longer
than 12K. If so, it checks to see if it is in the peripheral range. If it
is in the peripheral range, the routine does a table lookup to see if a
peripheral is assigned to that location. If the address is gfeater than 12K
and is not a legal peripheral register address, an error return is taken. If
it is a legal peripheral address the address of the routine to handle the

peripheral is placed in location PERRIN.

The table used to look up peripheral register addresses starts at
location PERTAB. Table entries are of the form
VFD 18/xxxx, 18/ADR
where xxxx is the affect of the peripheral register address in the peripherals
bank, divided by two and ADR is the address of the routine asgdciated with
the peripheral register. The routines are'of the form

TRA (read register section)
(instructions for write register section)

At present the interrupt structure is not implemented; when this is a¢complished,

there will be a third word just previous to these two |
TRA (INIT pulse received)

The INIT pulse is generated by the RESET instruction and restores all devices

on the bus to their status at power-on.

The routine FETCH picks up the PDP-11 word indicated by the MAR and
TOP registers. It checks the memory protect and breakpoint bits of the |
addressed word, placing these in the switches MPT and BPT respectively. ILf
the PERIP switch is set it branches to the read routine for the peripheral

register being addressed.

The routine FILL writes a new value into the addressed word, saving
the current MPT and BPT bits. Both FETCH and FILL ignore the 0ODD switch.
That is, they both operate on full PDP-11 words.

The routines GET and PUT check the switch BYT to determine whether a

byte or a word is to be operated upon. Thereafter they operate like FETCH

10

and FILL, save that in byte mode they operate only upon a single byte. In word
mode, if the ODD switch is on, GET takes an error return since all word data
must be taken from an even address. PUT does no such checking because a GET is

always done before a PUT, to check for errors.

The routine BUMP updates TOP and MAR to addresé the next sequential
PDP-11 address. It is called in situations where it is known addresses will
be sequential, such as in word searches with the;W command. BUMP does no
checking for overflow into nonexistent memory, so this must be done by the

routine which call it.

The routine ORDERS reads in and decodes commands from the typewriter.
It uses the ASCII code for each character to look up in a table the internal
code for each character. The top two bits are used to indicate what type
of letter has been found. Type bits 00 indicate a number; bits 01 indicate
a letter; bits 10 indicate a special character; and 11 indicate a character
which is not passed to the calling program but is dealt with inside the command
decoder. All illegal characters are represented as special tharadcter odtal
412. Special characters presently implemented are represented (minus type bits)
as octal Ol through 11. The letters are represented as octal Ol through 11.
When a letter is recognized, octal 12 is added to it to give a command number.
If a letter was not expected, the register is cleared to 00 before 12 is added,
thus giving the command number 12 which indicates an illegal character. If
more special characters are to be implemented, all locations in the translation
table TABLE which contain octal 412 must be upddated to contain 4xx where xx
is 1 + the number of special character implemented. Location LETTER +1 must
be updated to contain the instruction ADX2 = OXX. Adding new letter commands
is easier: the locations in TABLE corresponding to the letter in both upper
and lower case should be changed from 412 to 2nn where nn is one greater than
the number of the last letter command implemented. Currently, nn would be
octal 12. An entry would have to be added to the end of TAR2 to indicate
whether this letter can follow the 8 to indicate a special location. Entries
in TAB2 are zero if the letter cannot follow the $ and contain the address to
be examined otherwise. The top bit is set if the letter can be followed by a

single digit as with $Pn and $Bn, and is zero otherwise.

11

The routine MSG prints out messages and reports. If the first
argument is negative, MSG simply uses the argument to pick a tally out of a
table to reference the message to be printed and print the indicated message.
For zero or positive arguments, MSG branches to a routine which packs
additional information into a line before printing it out. Thus, single
messages which remain the same constantly are referenced by negative arguments;
messages which change, such as the message which prints out the contents of

a core location, are referenced by positive arguments.

The routines SETFLG, SETBRK, and UNSET are used to deal with the ATTN
key. SETFLG sets up a swtich which is set TRUE when the attention key is
pressed. SETBRK causes the program to resume execution where it was interrupted
when attention is pressed. This is done so that an "instruction" (that is
the routine which executes a PDP-11 instruction) is not interrupted in the
middle. At the beginning of each fetch cycle the break flag is checked.

UNSET causes the hitting of the attention key to terminate the simulator and

- return control to the TSS subsystem from which the simulator was called.

The routine ADRESS decodes the six-bit PDP-11 operand address. If
the processor is in word mode or if the specified register is register six or
register seven, the increment to be used is autoincrement or autodecrement
addressing is set to two; otherwise, it is set to one. The routine decides
what addressing mode to use based upon the first two of the six bits. Register
mode without indirect addressing sets switch REGM to TRUE, otherwise it is set
to FALSE. If indirect addressing is specified, a FETCH of the addressed core
location is performed (in register mode, the contents of the register are used).
If autodecrement addressing was specified for register six, and if the result
left a value less than octal 400 in register six, the stack overflow switch
STAK is set. This switch is tested at the beginning of each instruction fetch

cycle.

The routine TRAP performs the standard interrupt sequence. It stacks
the current processor status and program counter and picks up the new
processor status and program counter from the core address specified by its

argument,

12

This completes the description of the major routines of the simulator.
There are a number of minor routines which are either mostly self-explanatory

or non-essential to an understanding of the workings of the simulator.

Limitations of the Simulator

The trace trapband T-bit features (for which see the processor handbook)
are not implemented. However, these features are used only by ODT on the

PDP-11 and so should not be needed due to the capabilities of the supervisor.

The interrupt structure and peripherals are not yet implemented.
These features had to wait until the FETCH and FILL routines were written in
GMAP, as Fortran would have been extremely inefficient in the handling of
such features. The routines to handle these features are already planned out:

however, there remains no time in the term to implement and debug them.

The simulator presently gives extremely slow response when TSS is
crowded, since it reqﬁires a large area for the core array. TS§ swaps such

large programs as frequently as possible to make room for smaller routines.

Error conditions such as nonexistent memory, stack overflow, and
addressing errors currently cause error messages to be ptinted, whereupoh
control goes to the supervisor. Eventually there will be an option for
each error of whether to print the message or to perform the hardware trap
sequence defined for each error. At present there is no way for a PDP-11

program to detect and process such errors.

There is at present no way to read in a PDP-11 machiné language
program save by typing it in at a terminal. Eventually the simulator will be
part of a general PDP-11 subsystem which will allow a user to assemble pro-
grams, link them with already existent load modules both on the Honeywell and
on a PDP-11 connected by a communications line, and run them using the simuiator.
When the full subsystem is developed, the simulator should provide a powerful
tool for software development for the PDP-11 as well as an excellent aid for

a course on minicomputers in general and the PDP-11 in particular.

13

Sample Terminal Session

Accompanying this document is a complete session with the simulator,
from signon to signoff. This section describes the session. Using the
simulator requires a knowledge of the machine language of the PDP-I1, or at
least a reference manual close at hand, since all instructions must be typed
in an octal rather than in symbolic form. This was not done merely to avoid
symbol decoding and encoding, but also to emulate the ODT-1lx supervisor which

has the same requirement.

The first activity with the simulator is the testing out of a machine
language program to multiply two numbers. The two original sixteen bit
numbers are placed in registers R3 and R4. The thirty two bit result is

returned in RO and R7.

In the notation of the PDP¥ll assembler, PAL-11A, the program is as

follows:
CLR R9
CLR R7 Zero out registers zero to two
CLR R2
MOV #20,R5 Place a count in register 5 of octal 20
LooP ROR R4 Rotate R4 right. The lower bit enters the carry indicator
BCC NEXT Branch if Carry Clear to NEXT, skipping
ADD R3,R1 the add instructions. Add R3 to R7
ADC R® Add the carry bit to register zero.
ADD R2, RO
NEXT TST R4 Get the indicators based on the contents of R4
BEQ OVER If zero we are finished
ASL R3 Shift R2 R3 left one place. The high order bit
enters the carry indicator, where the Rotate Left
ROL R2 moves it into the lower bit of register two.
DEC R5 Decrement the counter and branch back to the
BNE LOOP loop if it is nonzero
OVER HLT Halt when done.

At LP1 we begin typing in the machine language equivalent of the above
program standing at location 1000. The exclamation point at the end of each
line tells the simulator to open the next sequential location. At L@2 we realize
we have made a mistake in the previous line, as we go back up one location to
fix it. At L@3 we must place a branch back to the beginning of the loop at
location 1012, so we ask for the offset of 1017 from the current location with
the ;0 command. We then type in the branch instruction and then check to see
if the branch back at location 1026 was correct. We say 1026; 1036 thinking
that this will give us the offset of 1ocation 1036 from location 1026. When

14

we get a negative offset we realize that the arguments should be in the other
order. We are puzzled that the offset is three instead of four as we expected
until we notice that we should have asked for the offset of location 1040

with respect to 1026.

At LP4 we set breakpoint O at the halt instruction at location 1040.
We then apply a standard trick used to print sequential core locations. We
open the word containing the mask, $M, and leave the mask at . We change the
low limit of the search to the first location to be printed, location 1000, and
we set the high limit of the search to the last location to be printed, location
1036. When we do a word search, all bits will be masked off and so the search
will succeed for every word in the range and consequently every word will be
printed out. At LP5 we give the search command, which proceeds to print out

our program.

At LP6 we examine register zero, with the intent of proceeding to
examine the other general registers. We realize two lines later that it is
smarter to use the above-mentioned word search technique. At L@7 we pldce
two numbers to be multiplied in registers three and four (each coritaing a three).
At 1.08 we give the command to begin executing our program. The line just
after our command is the simulator telling us we have encountered breakpoint
zero, at location 1040. At LP9 we give the command to the word search to
print out all eight general registers. To our horror we discover that the
register zero register one combination does not contain the octal equivalent
of nine, as we would have expected, since 3 times 3 gives 9. Each register
contains nine, whereas we expected register zero to contain zero. We examine
the printout at the program to discover we have mistyped an instruction.
Instead of 103002 (Branch on Carry Clear to NEXT)
we typed 10302 (Move register three to register two)

At L10 we correct our mistake, reinitialize registers three and four, and run
the program once more. The supervisor tells us we have reached breakpoint
zero at the end of the program and we ask for the contents of the general
registers. Lo and behold, we have the right answer! At L1l we try again for
two new numbers, octal 17, decimal 15. We try again and find the answer to

be octal 341, which is decimal 225 as we would hope.

At L12 we begin to test a few other capabilities of the simulator.

We examine the status word and register seven, the program counter. The program

15

status word has the zero bit set. At L13 we see that the program counter is
1040 and we ask to examine location 1040 with the equal sign command. At
L14 we remove breakpoint zero and try to begin execution at locdtion 1040.

This location has a HLT instruction.

At L15 we place memory protect on location 2000 to 2012, and try to
execute location 2000; the memory protect mechanism traps us. The same occurs
when we try to execute location 2012; however, location 2014 is not protected

so it is executed.

At L16 we open the current location which is the address pointed to
by the program counter. We then give the command to open the location open
prior to the last equal sign‘command; that is, the location holding the program
counter, register seven. We then change the high and low search limits to
bracket our program again, and search for all references to location 1040 at

L17. We then search for all references to location 1012.

At L18 we set a breakpoint at location 1012, The simulator tells us
it has assigned breakpoint number zero. We set registers three and four
to five and six respectively and begin executing our program. We hit the
breakpoint, which we placed on the instruction at label LOOP in the program.
We set the search limits around the general registers again and examine the
registers. At L19 we give the command to proceed from this breakpoint. We
reach the breakpoint again and ask for the registér again. At L20 we tell
the simulator to proceed, ignoring this breakpoint twice. The program completes
and reaches the halt instruction at the end. We print out the registers again,
note that our result is octal 36 or decimal 30 as we would expect. We then

hit the ATTN button to exit the simulator and logout from TSS.

Ln1

1a2nann

PETEOLAY enRa ap/an/ 73 10:0% 7000

AT I —=userld

OoPpANKS FILE SPICE AVATILADLE

SYRTE™ ?runv cena2/pdnll,r

Ntn=11 cimulator

100N/

An1ARN/AAANDA
ArTana/ananan
nn1 r\n],_:/nnnf}gn
AnNTAanc/ananen
nn;wjn/nqnndq
nN1Anc /01795
nn1nIa/nnannn
nnaalr/noannn
AATATH/ANN0Y
na1n15/05000800°
N91027/0ANNNY
Ne1N22/NNanan
An1A2L/a0nnan
pp1ans/nannnn
nala3zn/annnnn
AnTATA/NYAAAN
ARIATL/ANNNAD

na1asr/nnqnnn

1777512 ary
*]
nA1IARCIaNn/nnn
IR VEEDELE
#1026 1137 0
177757 3773
SALRAR OIS R ARCA oFe
annanr nn-
TN 0

* ey / '
nE777%/0n00017
NCI7IN/ oannnn
AL7775/Nnnnann

#5001

*50N001

*0NN2
*1170
t’.‘¢
#1270
*2N1
£0NON
*1N3021
*T0ZNT
#55001
#002601
#5771
=150h!

U o= e

L

%0303

*C1021
*53051
*1112:0

N

x|
£1000!
*]1030

-J.-;vr
nhrAann/AnEnan
anr1nng /anEnng
nA1NAR/ANENNYD
ANTAAZ/NT2TNE
N1/ anangn
ANl a1N s nanany
NNIATEL/0TA30)
P2101nrnaen
"1'\.:1AF!;""\,1/"\,G!:5(\'\
"N1N22/800290
"ATRON/0NSTON
AN ARAROW SN Rale I FIRa ¥ Y
S REEVEREE P
SISV Y
"OTARN /005305
nnjnzn}nn13r5
*éﬂ/ l
nE7IRALANNANS
t’f$

NEL

e/

D777/ Ann0nn g
ASTTTH/NNIANe %577521
ARTTTR/0NLNES 7770

LR

V]
[B]

+ ey

*
Ul

5

nT77c9/0n0Ann
NE7TER/AMAR90
nETTEr fnannan
NE7T7RAIANANAN
nE7700 /0 An0n
nTT7TCL fAnAANT
nm7TRc AN
NT777°7Nnnan

'c\—’;/

ARTTT/ANAN0N w3
ALTTTR/ANANNA g3
ote Ny oy -
x] Yoo
L AP [AI RN AW PN
: . S
Jo @ Vv
s
ARF7 L2/ 000N
PRITAN /0011
NEFINS /I pnnnnr
ceFIonsannnng
nEFFeo fnnsnnn
SR A S0 1V ARa BT e T livd
DTN AN nAN
NTTFTIN LN AN
w1070/
AR VAR RS AN #1TN30072
O /
AT oN L annane w2l
NTT7T00 fFaannnn R4
JORR I T Bia IS e

Ve
SRR ARA T BRI

1.1

-
-

NI

~ o~

b

-
/
-
/
1

=100 N .

)

st
H 1
Ist

R S
e

e

c

-~

0

Yooy ey
Porvem b g~
['.~»'-,‘
: bl e

’““)" o
CN T e
% .A‘{'

'

[aEalaNa¥alsl %

i

e}

7
n " 7

IRAIRAAIE
T
T "7 o~

~e e,

T I

Ny

aNalh INAY Nie

ARSI) =27/

f],’\.’l_"l_l‘i“ E3—

.'\'r\f\ﬂfa[]

112m

mrotelT

tion nnnnnn
re "Nnnan g
Yy

.

rotell

tinp ThNnN

i B Ra K]
fAnNnT D

[XaNa N aRA N} Nnap e

AN TL

[a¥aNaNa¥alat

nanT N

MYy e ey

18

RGP

~

VIZT NN a0N

./

AnAT S e aAnN
A A W AR ek
; FR Sl

o] N Ao
o 77,/

R777I/N57702
il Ay i e e &y Sa
SITIOANETNT
1007 e
:\1 \, 1 (‘/;‘I "
1117 e

LREN
[-
[I
oo

i
-4
~d

3

r\,// 3!‘}7117(\

m77C anannn

1AM
B ’
Ne NATNT T

~onf
r7772/°00000
R777E /001N

mer e~ AR 2
STT7o L0007

E77R2/ARanen
F77En/nnnAn
f7ﬁ;5/nnnnn
f7%;ﬁ>”ﬁﬂQO

F

DD

)

oA W AT RATa N

e

rIen ananagn

7o S/ANNNAN

Al .
S77IN/NNINL

T BT B

Rt Ay RS N S RA N AN AN AR

nrANn N
ol A Bale S N Na¥ataly I
c77C0/MnNr0g
L7700 n0nn1y
L7700/900000
S777I0/001n1n

R

I
1ot AnnAN

x|

x577821
x57770

19

E I

” .

AR77T2/nNAN0N
rE77SC/nANAAN
NTI7RA/NANNDY

Nm7TISL/ANNNTr

2Ry By Nako BV N aWaNa¥aWaKe
nr77EN/AAANT "
r‘f:']"]f‘!"/nﬁ:f"s(\,’\,.’}
nT7770/2010%02

'\
cYeTrEl ?21neoout
rrpragsaurens userd

=xtinme shnrin~ of

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

