Department of Applied Analysis
and Computer Science

University of Waterloo

Technical Report CS~73-08
April, 1973

A FORMAL DESCRIPTION OF ALTRAN
USING LINKED FOREST MANIPULATION SYSTEMS

by

Mansour Farah

Faculty of Mathematics

University of Waterloo
Waterloo, Ontario

Canada

Department of Applied Analysis
&

Computer Science

Department of Applied Analysis
and Computer Science

University of Waterloo

Technical Report CS-73-08
April, 1973

A FORMAL DESCRIPTION OF ALTRAN
USING LINKED FOREST MANIPULATION SYSTEMS

by
Mansour Farah

This research was supported by the National Research
Council of Canada, Grant No. A-7403.

ABSTRACT

The syntax and semantics of a programming language,
ALTRAN (with minor modifications) which is mainly designed for
algebraic manipulations, are completely formalized.

A model for formal definition of programming languages,
based on the notion of Linked Forest Manipulation System, is used

for the purpose of this formal description.

iv

ACKNOWLEDGEMENT

The author wishes to express his gratitude to his
supervisor, Dr. K. Culik for suggesting the topic and for his

guidance throughout the course of this project.

TABLE OF CONTENTS

INTRODUCTION
CHAPTER 1 - THE MODEL FOR FORMAL DEFINITION

Linked Forest

Tree Production

Programmed Grammar

Linked Forest Manipulation System
Macro-Operations on Trees

Model for Language Description

U W N

CHAPTER 2 - OVERVIEW OF THE ALTRAN PROGRAMMING LANGUAGE

Constants and Variables
Substitution

Invocation

Expressions

Statements

Procedure

Program

The Data Language
Restrictions on ALTRAN
Example

O WO~ WN

=

CHAPTER 3 - FORMAL DESCRIPTION OF ALTRAN

I. The Syntax Description
1. Basic Tokens
1.1 Letters and Digits
1.2 Identifiers
1.3 Arithmetic Constants
1.3.1 Integer constants
1.3.2 Signed integer constants
1.3.3 Real constants
1.4 Logical Constants

2, Attribute statements
2.1 Attributes
2,2 The attribute statement
2.3 List of attribute statements

3. Arithmetic, logical and label expressions
3.1 Arithmetic expressions
3.2 Logical expressions
3.3 Label expressions

vi

w

[l el < AR O, IE S R

el

14
15
15
16
16
17
17

17

18
18

20

24

24
24
24
25
25
26
27
30

31
31
34
37

38
38
44

IT.

(oA S B S

TABLE OF CONTENTS (cont'd)

Statements
4,1 Elementary statements

4.,1.1 The assignment statement
.2 The return-statement
.3 The goto-statenent
+4 The continue, doend and end statements
.5 The Input/Output statements
c
1
2
3

4.2 ation statements
Dummy and Actual Variables
Invocation statement

Algebraic options statement

H e
o N g D—‘l—‘l—'l—'

4.
4,
4
4
1
4
4
4

Groups

5.1 The do-group

5.2 The 1f ~group

5.3 Labeled and unlabeled group - Body

Proced ure
6.1 Main procedure heading
6.2 Procedure heading
6.3 Procedure
6.3.1 Procedure structure
6.3.2 Compatibility of types in an arithmetic

expression

6.3.3 Compatibility of types in the assignment
statement

6.3.4 Some restriction related to dummy
variables

Program
The Data Language

Job

Initialization

List of statements

The continue, goto, if, doend and end statements
The return statement

Element Accessing

Logical operations

6.1 Logical assignment

6.2 Loglcal expressions

Label assignment

vii

Page

47
47
47
47
47
47
47
50
50
50
50

53
53
53

58
58
65
66
66

72
76
77
80
84
88
89
89
95
95
97
101
103
103

104
106

REFERENCES

INDEX

10.
11.
12.

13.

TABLE OF CONTENTS (cont'd)

The Arithmetic Assignment Statement

8.1 Conversion of precision

8.2 The Conversion of type

8.3 The assignment of a value

Arithmetic expressions

9.1 Evaluation of constants and variables

9.2 Substitution evaluation

9.3 Evaluation of addition, subtraction,
multiplication and division

9.4 Evaluation of exponentiation

9.5 Conversion of types in expressions

9.6 Overflow

Relation - Comparison

Algebraic options statement

Procedure invocation

12,1 The invocation statement

12,2 Macro inbound

12,3 Macro outbound

12.4 Arrays in inbound and outbound transmission

The Input/Output statements

viii

INTRODUCTION

The complete formalization of a programming language has been
felt as a real need by both the designers and the users.of programming
languages. It was felt that several problems that those working on or
using programming languages encounter, would be resolved if a reasonable
formalization of the syntax and semantics can be made (e.g., proofs
on programs and in particular proofs of correctness of compilers).

Several kinds of formalisms have been found. None of them
however is perfect, none of them satisfies both the user and the designer
of programming languages.

One of the latest formalisms that deal with this subject is due
to K. Culik [2] and is a model based on the notion of linked forest
manipulation system. This model has the advantage of having simple and
elementary basic tools that are trees, pointers and labels. It can be
considered as an operational model, i.e. a model that is not purely
descriptive but that gives a way to construct a compiler, Although this
model seems interpretative, it can be used as a basis for either an inter-
preter or a compiler.

In this work a programming language for algebraic manipulations,
ALTRAN (for ALgebra TRANslator), is described using this model for formal
definition. The model, as we said, is quite simple as far as the basic
tools are concerned. However, the ALTRAN language as it is designed is
not very simple. That is why some features of the language have been

changed or deleted to keep the description in some reasonable bounds.

Before giving the formal description of ALTRAN, a review of
the method for formal definition of programming languages described in [2],
is given. This constitutes Chapter 1., Chapter 2 is an overview of the
ALTRAN programming language as it is described in [1]. Some restrictions
and changes made on the language are listed in this same chapter. Chapter
3 gives the formal description of ALTRAN with the modifications given

in Chapter 2,

CHAPTER 1

THE MODEL FOR FORMAL DEFINITION

This model [2] can be viewed as a machine formed of two parts.
The first part is a generator , the second an interpreter. The generator
part describes the syntax of the language by generating two distinct
objects, a concrete program and an abstract program.

The concrete program is a string which constitutes a program

in the given language. A context-free grammar generates this concrete
program.

The abstract program is a labeled, ordered, rooted forest

with pointers, that represents the program on an abstract level. This
forest is built up tree by tree in parallel with the generation of the
concrete program. Some transformations are eventually made on a tree, or
forest, using a linked forest manipulation system (1.f.m.s.) that is
described below.

This generator, as it is described, defines a translation from
concrete programs to abstract programs. Thus it can be used as a model
for building a translator,

The interpreter part executes the abstract program statement by
statement. This interpreter is nothing but a linked forest manipulation
system that performs some transformations on the akstract program (a
linked forest) and yields the resulting 1linked forest on which the results

of execution can be found.

1. Linked Forest

Different formalisms for defining a tree exist. One of them
is given in [2], but they are not of great interest for this work.

The notion of tree being understood, a labeled tree is a

tree whose nodes may be labeled or multi-labeled (i.e. several labels
are attached to a given node). These labels can be chosen from a given
set of labels.

A finite collection of labeled trees (forest), that are ordered
and such that pointers (or links) may exist between their nodes, is called

a linked forest.

A pointer can be considered as a member in some relation on
the nodes of a forest which is different from the relation defining the
edges of a tree. Thus a pointer i1s a pair of nodes that will be represented

by an arrow between two nodes on any graphic representation of a tree.

2, Tree Production

A tree production defines a transformation that can be performed
on trees or, more generally on forests., Such a production has a left-
hand side and a right-hand side, both being trees or forests. When a
tree production is applied to a tree or forest that contains a part
"similar", in respect to some well defined rules, to the left-hand side
of the production, it yields a transformed tree having a part "similar"

to the right-hand side of the production.

The transformation involved in such a production consists, in
general, of some subtree replacement. This kind of replacement is not
difficult to define precisely when the trees have no pointers. But in
the case of linked forests we need to be much more careful for we have
to specify exactly all what happen to the links with the environment when-—
ever a subtree is replaced by another one.

That is why a special kind of nodes that can appear in a tree
production is distinguished., These nodes are called pivotal nodes. A
pivotal node (double circled in any graphical representation) are the
privileged nodes whose descendants may be replaced in a tree production.
But at most one pivotal node may appear in the forest involved in a tree
production and whenever it appears, must do so on the left as well as the

right-hand sides.

3. Programmed Grammar

This notion is defined in [4] and is a generalization of the
notion of grammar in which the usage of a production is free of any
restriction. In a programmed grammar the productions (in our case the
tree productions) are labeled by some production labels. Also each
production has two supplementary fields that are called success and
failure fields., There is a distinguished production label (START), and
it is at a prodiction labeled START that the system is entered for genera-
tion or transformation. If a production can be applied successfully, the

next production to use is one labeled by the label of the success field.

Otherwise, it is one labeled by the label of the failure field that

should be used.

4., Linked Forest Manipulation System (1.f.m.s.)

The notion of 1.f.m.s. is essentially based on the two notions
of tree production and of programmed grammar that were mentioned above.
An l.f.m.s, is a set of tree productions each of them having

three supplementary fields:

i) Production label field
ii) Success field |
iii) Failure field,

Two distinct production labels are START and STOP. It is at the
production labeled START that the system is entered. The next production
to use is determined, like in a programmed grammar, by the success or
failure to apply the previous one. When the STOP label is encountered we
go out of the system. If the STOP label is not encountered in a finite
number of steps there is an error.

Example of an 1l.f.m.s.

If a, b, ¢ and d are labels the following defines an 1.f.m.s.

a
START > b START) L,
[
a a
Ll b N b Ll L2
[od (o4
a
L, > i/b@\ L, [STOP
Cc

Note that a pivotal node is used whenever there is a transforma-
tion on the structure of the subtree attached to this node. For example,

if we have the following tree:

it could be transformed using the previous l.f.m.s. into:

In fact, an l.f.m.s, is more powerful than what we have just described.
Three tokens are introduced to add some power to it. They are, the label

parameters, the tree parameters and the function denotatioms.

A label parameter can be considered as a variable that can be

replaced by any label from a given subset of the set of labels called

its domain.

A tree parameter can also be considered as a variable that can
be replaced by any tree from the parameter domain which is a set of labeled

trees.

Basic functions, whose formal definition is supposed to be

known, have a domain which is a subset of the set of inputs (that includes
all labels, basic numbers and symbols), and may be composed to form what

is called a function denotation. These function denotations may be used

as any label or label parameter but only on the right-hand side of a
production.

When using in a tree production such tokens as label parameters,
tree parameters or function denotations, we have a production that is
equivalent to several tree productions and in general to an infinity of

them. Such a generalized tree production is called a production schema

on trees. Thus an 1.f.m.s. in all its generality is a collection of

production schemata.

Now that the form of a production schema and that of an 1.f.m.s.
are described, we are going to describe, also in an informal way, how to
use such a system or more precisely to explain what does a production

schema mean.

Given a linked forest and a production schema s,

s Ll Puy u, Suc(L2) Fail(L3), we can map the forest w, into a forest

Wy using the production schema s if the forest W, can be separated into
two forests vy and wi and the forest w, can be separated into two

forests v, and wé such that the following conditions are respected.

(a)

(b)

(c)

@

(e)

Example:

vy (resp. v2) is obtained from uy (resp. u2) by:

- replacing each label parameter in uy and u, by the same
element of its domain all over uy and uy.

- replacing each tree parameter in uy and u, by the same

linked tree all over uy and Uy, This linked tree is obtained
from a tree belonging to the domain of the parameter by
eventually constructing pointers between the tree and wi

for u; or wé for Uy. The order of the tree parameters and

sons of any node being respected.

- replacing each function denotation in uy and u, by the element
it denotes (in the set of inputs).

When a node is common to vy and wi, a label or pointer attached
to it can belong to either vy (resp. VZ) or wi (resp. wé) but
not to both of them,

If uy (resp. u2) has a pivotal node, no descendant in Wy

(resp. w2) of this pivotal node may belong to wi (resp. wé).
For any node labeled by tree—parameters in Uy (resp. u2) the

only direct descendants (or sons) of this node that may belong

to wi (resp. wé) are those belonging to vy (resp. V2>'

]

1

labeling and pointers between their own nodes.

w; and wé are identical in respect to the tree structure,

Suppose that the set of inputs is £ = {a, b, ¢, d, +, —, %, /}

and let V be a label parameter whose domain is {+, -}, we write

A= {(v,{+, -})}, A being the set of label parameters and their respective

- 10 -

domains. Let B = {(u, Ze)s (Vs Zg)s (W, Z*)} be the set of tree
parameters and their respective domains. I, denotes the set of trees
whose nodes are labeled with some elements of X, Let F = ¢ be the set of
basic functions J = {START, STOP, L} be the set of production labels and
R be the set of production schemata that follows. S = (%, A, B, F, J, R)
defines an 1l.f.m.s.

Success Failure

START % * START| L

£

L STOP

This system reflects the following algebraic rules:

(k + L)#m kism + L#m

and (k/L)%% k.

[

Using this 1.f.m.s. we can write the following derivation:

- 11 -

5. Macro-Operations on Trees

To make the 1l.f.m.s. more powerful some functions on trees may
be defined and they are called macro-operations. A macro-operation,
like any function denotation, may appear on the right-hand side of any
production schema.

These macro-operations are defined using an 1l.f.m.s. and they
yield a linked tree when given a forest as parameters. Several macro-
operations that are formally described will be used in the description of
ALTRAN. Sometimes when the meaning of a macro-operation can be clearly
defined informally, we are omitting a possible cumbersome formal defini-

tion by an 1.f.m.s,

6. Model for Language Description

Based on the notion of 1,f.m.s. this model, as was mentioned in
the beginning of this chapter, has two parts.

The syntax part is a set of syntax rules. Each rule is formed
of a context-free production, a linked tree and eventually an 1.f.m.s.

The context-free productions generate a program in the given
language (concrete program) while, in parallel, the corresponding linked
tree is constructed in a bottom up manner. When there is an 1.f.m.s.
some modifications on the structure of the constructed tree are performed.
These transformations reflect in most of the cases some non-context-—free
properties of the language. In some other instances, it is used to

make some technical changes that facilitate the description later on.

- 12 -

Thus the syntax part, when it is performed, constructs an
abstract linked forest representing the program that it generates. It
should be noted that the construction of this linked forest gives a
bottom up algorithm for translation from concrete to abstract programs.

The semantics part is one l.f.m.s. which performs some prescribed
transformations on the linked forest obtained from the syntax part. These
transformations correspond in fact to an execution (more precisely to an
interpretation) of the program. As in any l.f.m.s. besides the label
and tree parameters, function denotations and macro-operations may be
used to make the presentation more compact, more natural and easier to
follow. For example, some technical details may be left apart by defining
a macro-operation.

When the 1.f.m.s. stops (and if it does so) the program has
been executed successfully. If the label ERROR is encountered during
the execution, the program contains a semantical error i.e. an error that
has to do with the meaning of the program and not its form. 1In this

case the program did not run successfully.

- 13 -

CHAPTER 2

OVERVIEW OF THE ALTRAN PROGRAMMING LANGUAGE

ALTRAN is a programming language designed mainly to enable the
user of doing some symbolic manipulations on algebraics. (In ALTRAN
we mean by algebraics rational fractions and in particular polynomials.)
But naturally it allows other types of data like integer, rational, real,
logical and label.

The basic arithmetic and logical operations are available and
also some non-elementary operations namely substitution and function
invocation.

The basic statements are the assignment statement, the goto
statement and the if-group in addition to some other basic statements like

end, return, continue etc. But other higher level statements or groups

exist like the do-group and the procedure invocation.

A data language and I/0 operations on this data language are
available.,

In what follows an overview of the language with some emphasis
on certain features that seem important is given. A survey of the ALTRAN
system can be found in [2] and the ALTRAN user's manual [1] gives a complete
informal description of the language. This work is mainly based on this
description. The modifications that we found convenient to make on the
ALTRAN language (for the purpose of this work) are listed at the end of

this chapter.

- 14 -

1. Constants and Variables

The integer constants, that can be short or long, do not lose
their accuracy when manipulated among themselves; they are always exact.
A rational constant is not basic, it can be considered as a pair of integer
constants, When rational and integer constants or values are mixed
with.real constants or values they lose their accuracy (because of round
off) and there is no way to recover from this loss.

Variables have in general seven attributes: type, structure
precision, scope, storage class, language and value. But the value
attribute can only be assigned to a dummy variable, i.e. a variable
appearing as parameter in the definition of a procedure. The language
attribute is given to a name of a procedure when it is specified in some
other procedure. When the structure is array, it may be completed by a

descriptor block (D.B.) giving the bounds of the array. If the D.B, is

not specified the array bounds are dynamic and can be borrowed from other

arrays during execution. When the type is algebraic, a layout giving the

indeterminates and their maximum exponent may be specified. If not, the
algebraic is dynamic and its layout is borrowed from another algebraic
during execution.

Each variable should be declared by giving at least its type.
This declaration can be made in several attribute statements and the
variable may be initialized in only one of them.

e.g. int I, J; alg (X:5, Y:5) A = Xt+Y;

external A, I;

long J=17.

- 15 -

2. Substitution

In an algebraic it is possible to substitute arithmetic expressions
(with some restrictions) for the indeterminates. This can be done implicit-
ly or explicitly. Also it can be of several levels,
e.g. If A is the previously declared algebraic,
A(1,2) is an implicit substitution that yields 3
as value (by replacing X by 1 and Y by 2).
A1) yields 1+Y.
A(X,Y = 5,3) is an explicit substitution that yields
the value 8.
A(Y,X) (1,2) is a 2 level substitution that yields the

value 3.

3. Invocation
A function or a subroutine can be iﬁvoked by putting its name

followed by a list bf actual parameters that are in general expressions.
When a procedure is invoked inside another procedure, it should be

declared (or specified) by giving its name the language attribute

(ALTRAN, FORTRAN or FOREIGN). If it is in§oked as a function, the type

as well as other attributes (when they are not the default attributes)
should be specified. A matching of the actuals and dummies is made in
‘the inbound transmission of arguments, i.e. assignment of each actual

to the corresponding dummy. But it is not necessary to have as much actuals

as there is dummies.

- 16 -

After execution of the body of the procedure an outbound trans-
mission of the arguments is done i.e. assignment of each dummy to the
corresponding actual if this is possible.

When it is a function invocation a return-statement returns the
required value (arithmetic or logical). But when it is a subroutine then
a return-statement can be used with a label argument to retwn to some

point in the invoker.

4. Expressions

In an arithmetic expression a primary can be a constant, a scalar
variable, an array variable, a substitution or a function invocation.
However, a substitution is considered as an algebraic whatever it yields
as value. Some rules for combining arrays as a whole between themselves
or with scalars should be respected.

Logical expressions can be formed using some logical operators

(or, and, eqv, negv, ...).

A label expression is a label constant or a label variable.

5. Statements
Besides the basic statements, the invocation statement and the

do-group, we have the I/0 statements read and write (each followed by a

list of arguments).
There is also the algebraic options statement which is an invocat-
ion of a built-in procedure. This procedure changes the global variables

corresponding to the algebraic options that define the degree of

- 17 -

simplification to perform on any algebraic to compute. These options can
be set at any time in a program by means of this statement. For more

details about the algebraic options see [1].

6. Procedure

Typically, a main procedure has no arguments and is not
recursive. Consequently, this is how we will view it in the formal
description. A non-main procedure has a name and eventually, attributes
and a list of dummies. These variables as well as the others used in the
procedure should be declared in a list of attribute statements following

the name and arguments of the procedure.

7. Program

A program consists of a main procedure and eventually, several
non-main procedures. The execution starts at the beginning of the main

procedure and ends with its end.

8. The Data Language

The input as well as the output make part of the ALTRAN system
and constitutes the so-called data language. In this language we can
have exbressions in which the primaries are comnstants and indeterminates.
An array notation for polynomials [1, B.4.6] and the back-reference

[1, B.4,6] help making the presentation of the input more compact.

- 18 -

9, Restrictions on ALTRAN

The following restrictions or changes are made on the ALTRAN
language as described in [1].

~ Borrowing is not considered.

— Operations on arrays as a whole are excluded. Only elements
of an array can be used in an expression. Consequently,
there are no lists.

— Indeterminates can only be scalar,

— In the data language indeterminates ére excluded and the
alternative polynomial notation is not considered.

— A procedure name can only have the ALTRAN attrxibute, i.e. it

can only be written in the ALTRAN language.

Some other minor modifications can be found in the description ,
e.g. not considering the relation operators .EQ., .NE., ... but only
==, < >, .., for the convenience of the presentation, distinguishing

the keywords (lower case letters underlined), putting semi-colons between

statements, etc., ...

10. Example
The following is a very simple example of an ALTRAN program. The

program consists only of a main procedure and it computes and prints out

the Chebyshev polynomials of degree less or equal to 5.

-19 -

PROCEDURE MAIN
ALGEBRAIC (X:5) R=1, S = X,T
INTEGER N

WRITE "N = 0", R, "N = 1", §

DON = 2,5
T = 2%X*S-R
WRITE N, T
R=S§
S=T

DOEND

END

- 20 -

CHAPTER 3

FORMAL DESCRIPTION OF ALTRAN

Using the model for formal description based on the notion of
linked forest manipulation system (l.f.m.s.) we describe in what follows
the ALTRAN programming language with the restrictions stated in the

previous chapter.

This description has two main parts: the Syntax Description part,
and the Semantics Description part. Each of them is subdivided into several
paragraphs corresponding to the different features of the language. Each
of these paragraphs has two subdivisions and occasionally a third one:

Subdivision a) describes informally the way the formal part
works and what it means. Subdivision b) is the formal part of the des- -
cription. Subdivision ¢), when it exists, gives an example to clarify
some ideas.

This formal description makes use of the following basic sets
which are not completely specified but can be easily completed from the

formal description if required.

T, = {A,B,...,2} is the set of letter
T = {4,5,0,%, /4,2, 1,9, 5,42, == < >,5,F,0,Y, —ye e)
is the set of special symbols
T = {int, rat, proc,...} is the set of word symbols.
T = T2 u T uT is the set of terminals.
s W —_—
N = {<int const>,<real const>, <stat>, <proc>,...} is the set

of non-terminals.

- 21 -

¢ = {EXEC, LEXEC, VAL, LVAL, ...} is the set of control words.
F = {ineg, srt, intsh, cir, ...} is the set of basic functioms.
IS = {O,l,...,LS} is the set of positive short integers.
is = {0,-1,...,—LS} is the set of negative short integers.
Iz {Ls+l,...,L2} is the set of positive long integers.
il = {_(Ls+l)""’_L2} is the set of negative long integers.

Z = IS U Il U is U il is the set of signed integers.

RS is the set of positive short real numbers,

RQ is the set of positive long real numbers.

+ P
R = RS v RQ is the set of positive real numbers,

R is the set of negative real numbers.

R = R+ U R° is the set of real numbers.

K =2u Ru {null} is the set of constants.
L=Tu Ku C is the set of of input symbols.
A=Tu K is the set of output symbols.

The formal description itself is a 5-tuple:
(Z, A, F, SYNTAX, SEMANTICS)

where SYNTAX and SEMANTICS are described below:
SYNTAX = (X, N, A, B, F, J, R, <job>)

where - A is the set of label parameters with their respective domains,

The list of these label parameters and domains follows:
(., {a, B, ..., 2}

(s, {0,1,...,91)

- 22 -

(Xgs Ig)s (XgsIg)s (X, RU Z U 1)

(t,{int,rat,real,log,label}), (Tl,{rat,real,log,label})

(B,{int,rat,indet}), (Bl;{iEEJEEE})

(m,{short,long}), (o, {internal,externall)

(v,{autom, static}), (a;{tzpe, prec, st class, struct, scope,

lang, value})
(t, {1abel, dolab})

(py{<,<=y==,< >,=>,> 1), (pg,{==,< >}

W, {+,-,%,/,4,==,< >, <, <=,>,>= })

v, {+,-,%,/})

(¢{101,102,103}H), (¥,{1,2,3})

(6,{ INT ,RAT ,REAL,ALG}) , (el,{INT,RAT,REAL})
(92,{RAT,REAL}), (93,{RAT,REAL,ALG})

(n, {ANY,INT,RAT}), {n, {ANY,INT}).

- B is the set of tree parameters and their respective domains. The list

of these tree parameters and their domains follows.
((£,2), (u,2), v,3,),w,5,),

(x,Z2,)5 (7,L,), (2,20}

- J is the set of production labels that can be retrieved from the formal

description if required.

- R is the set of syntax rules given in subdivisions b) of the Syntax

Description part.

- 23 =

SEMANTICS = (¥, A', B', F, J', P)

where — A is the set of label parameters with their respective domains.

Their list follows:
(x,2), (2,2), @,2), (,2), (p,27)
(Xy> 2V B), (X5, ZU R), (X, ZU R)

(t, {int, rat, real, logl), (Tl, {alg, real, int, rat})

(\): {+s) *: /})
M, {+s -, %, /}u {==9 X 2y 2Ty 2, <=y <})
U, {==, <>, >=, >, <=, <})

(&, {exp, logexp}), (t, {int, rat, real, log, label})

(A, {VAL, LVAL}), (m, {short, long}),(8,{INT,RAT,ALG})
(z, {EXEC, LEXEC}), (o, {var, elem}).

- B' is the set of tree parameters with their respective domains.

Their list follows:
{(tsz*): (usz*)’ (V’Z*), (W’Z*) H
(X,Z*), (Y’Z*)’ (Z’Z*)s (xlsz*), (XZ’Z*)}

- J' is the set of production labels that can be relieved from the

formal description.

- P is the set of semantics productions given in subdivisions b) of the

Semantics Description part.

- 24 -

I. The Syntax Description

1. Basic Tokens

1.1 Letters and digits

a) The set of letters is TQ = {A,B,...,2}, and the set of digits

is Td = {0,1,...,9}. X and § are label parameters, their respective
domains being TR and Td'
b)

<letter> - A 2\

1 A e {A,B,...,Z}

<digit> »+ § o8
2 6 € {0,1,-.-,9}

1.2 Identifiers
a) An identifier should start with a letter which can be eventually

followed by letters and/or digits.

b)
ident
<ident> - <letter> I
1
<letter>
<ident> - <ident> <letter> <idem:>Q\\\°
2 <letter>

<ident> — <ident><digit> <ident>q\\\\$

<digit>

- 25 -~

c) The identifier IDENT1 is represented by (or generates) the

following subtree

ident

1.3 Arithmetic Constants

a) There are two types of arithmetic constants, the integer
constants and the real constants.

b)

]
<arith const> - <int const> <int const>

(-]
<arith const> > <real const> <real const>

1.3.1 Integer constants

a) Depending on its value, an integer constant may be considered
as a short integer constant (member of IS = {O,l,...,LS}) or as a
long integer constant (member of I, = {LS+1, Ls+2’ vees Lz}).

The two limits LS and L2 are implementation dependent. Xg and

Xy are label parameters, IS and 12 being their respective domains.

- 26 -

b)

<int const> -+ <sh int const> °

1 v L <sh int const>

<int comst> - <lg int const> °

2 <lg int const>
<sh int const> - Xg 1 int,short
c .

3 Xs Is 4 const, Xs

<lg int const> - Xy, o int,long

I

Xy Ig b const, X

I, = {O,l,...,LS} , I = {LS+1,LS+2,...,L2’}.

1.3.2 Signed integer constants

a) A signed integer constant is an integer constant preceded
eventually by a sign (+ or -). When it is ~, the constant is
replaced by its negative value from either IS or TQ, using an 1.f.m.s.
and a basic function for negative.

b)

(=]
<s int const> - <int const> <int const>

1

o
<s int const> - + <int const> <int const>

2

©

<s int const> > -<int const>
3
<int const>

©

START ine, T N T int T STOP

const,ineg(x)

const,X

- 27 -

Hi
|

s = {0,—1,...,-LS}, I, - {—(LS+1),-(LS+2),...,—%}

1.3.3 Real constants

a) A real constant is considered to be short or long depending on

its form rather than its value. It is the 'D" between the
mantissa and the exponent that will force the constant to be long.

For each possible representation of a real constant we use an
l1.f.m.s. to transform it to a real constant. For this purpose
two basic functions are used, one for short real transformation
(srt) and the other for long real transformation (lrt).

b)

<]

<real const> -+ <sh real const>
1 <sh real const>

o

<real const> + <lg real const>
2 <lg real const>

<int part> > m °

intp,m
me {0,1,...,p}

<lg int part> =+ n
o
4 n ¢ {0,1,...,9} Lintp,n

ea hort
<sh real const> > ,<int part> I.E_;in____

<int part>

- 28 -

o Treal,short

real,short

START > STOP
intp,m const,srt(0,m,0)
real ,short
<sh real const>*<int part>.<int part> d///ﬁ\\\\¥
6
<int part> <int part>
real ,short real ,short
START, o///\\\° - STOP
int oy int m, ans;,srt(ml,mZO)
real ,short
<sh real const> - <int part> , [
7 <int part>
real ,short real ,short
START - STOP
intp,m const,srt (m,0,0)

<sh real const> =+ e<int part>E<s int const>

8

d///g\iijl,short

<int part> <s int const>

real,short

START ,
int

intp,m

const , X

real ,shext

STOP
congt,srt (0,m,X)

9

<sh real const>»<int part>.<int part>E<s int const>

real ,short

int <int <s int
part> part> const>

real,short

START
int
intB,m1 intB,m2

const,X

>

eal,short

STOP

const,srt(ml,mQ,X)

- 29

const>

(///ﬁ\:jjj,short

<int part> <sint part>

<sh real const>*<int part>, E<sint
10
real ,short
START intp,n int >
const,X

real ,short

STOP
const,srt(m,0,X)

<lg real const> +-<lg int part>D<sint const>

11

<lg int part> <sint const>

real,long eal,long
START i STOP
intp,n int > const,lrt (0,n,x)
const , X

<lg real const>*<lg int part>.

<lg int part>D<sint const>
12

p/r{

<lg int part><lg int part><sint const>

eal,long

START

real,long
STOP

int

const,X

const,lrt(nl,nz,x)

<lg real const>*<lg int part>.D<sint const>

13 <lg int part> <sint const>
real ,long real,long

const ,X

const,1lrt(n,0,%)

1.4

- 30 -

I

o {0,1,...,p} Iq = {0,1,...,q} q>p

I
e

{0,1,...,e}

srt : I XI XI =R -
P p e s

: X .
irt I Iq X Ie -> Rl

q
RS and'Rz are subsets of the set of real numbers with R

srt(ml,m2,n) is defined iff mm, € I.

P

lrt(ml,mz,n) is defined iff mm, € Iq

Logical constants

a) There are two logical constants true and false,

]

b)
<log const> » true I log
const ,true

<log const> + false

I log

const,false

<

R

Q"

2.1

- 31 -

Attribute statements

Attributes

a) There are seven different attributes for an identifier.

The type can be integer, rational, algebraic, real,

logical or label. The layout for algebraics makes part of

“the type and it consists of pairs, indeterminate: highest

exponent. An indeterminate is an identifier and its highest

. exponent is an integer expression, i.e. an expression in

which all constants are integer constants and all variables
are integer variables,

The occurrence of an indeterminate in a layout is an
implicif declaration of this indeterminate. Thus no other
declaration of this identifier or occurrence in another layout
is permitted (as we shall see later on).

The structure can be scalar or array followed by a descriptor

block (D.B.) that gives the lower and upper bounds for each
dimension. The lower bound might be implicit, in which case
it is 1.

The precision can be either short or long.

The scope can be either internal or external.

The storage class can be either automatic or static.

The language attribute can be only altran (for the purpose
of this description).

The value attribute can only be value.

b)

- 32 -

<indet> - <ident>

o indet,decl

<ident>

<layout> - <indet>:<int exp>

layout

o
<indet> <int exp>

<layout> -+ <layout>,<indet>:<int exp>

<layout

<indet> <int exp>

<type> - T type
. T e {int,rat,real,log,label} T
<type> = alg(<layout>) type
alg
5 <layout>

<D.B.> = <int exp>

int ,short .
==YTT==<int exp>

const,1

<D.B.> = <int exp>:<int exp>

<int exp> <int exp>

<D.B.> — <D.B.>,<int exp>

<D.B.>

int ,short int exp>

const,1l

- 33 -

<D.B.> - <D.B.>,<int exp>:<int exp>

<D.B.

<int exp> <int exp>

struct
<struct> - scal
scal
10 R
struct
<struct> +array (<D.B.>) [
array array
11 <DIBI>
. rec
<precision> » T I BI=E
- T e {short,long} m
: e
<scope> > O p SSOP2
o ¢ {internal,external} | o

13

<st class> -+ Yy

v ¢ {autom,static}

o st _class

14 oY
lang
<lang> - altran
altran
15 ——
val
<value> - wvalue I
value
16 —_—
<attrib> > <type > <t;pe>
17
<attrib> - <struct> <s;ruct>

18

- 34 -

o
<attrib> - <precision> <precision>

19

[}

<attrib> - <scope>
p <scope>

20

o

< ib> »> < 1 >
attrib st class <st class>

21

o

<attrib> » <lang>

<lang>
22
< > > < > °
attrib value <value>
23
2,2 The attribute statement
a) An attribute statement consists of a list of attributes

followed by a list of subjects. A subject is either an identifier
or an initialization of an identifier. An 1l.f.m.s. is used to
check that no identifier and no attribute appears more than once

in an attribute statement.

b)
2.attrib
<f.attrib> - <attrib> I
- <attrib>
< -
<f.attrib> + <{.attrib><attrib> Z-aZEIGIF”\\\\m
<attrib>
25
<subject> > <ident> I
i <ident>

- 35 -

<sub ject> =+ <ident> = <exp>

27

<ident>

<subject> -+ <ident> = <log exp>

28

init

=,stat

<ident>
ar log exp
<1 >
used og exp
<jdent>

<subject> + <ident> = <label exp>

init

<ident>

<label exp>

used
29
<ident>
<%.subjects> > <subject>
30 <subject>

<R.subjects>*<l.subjects>,<subject>

31

<f.subjects>

<subject>

<attrib stat> » <f.,attrib><{,subjects>
32

«/////AQSE%;»

<f.subjects> <L.attrib>

fsub]

ident

- 36 -

L.subj
START > ERROR E1
ident ident
u u
‘decl
E1 - ERROR |STOP
L
o o
o € {txge,struct,prec,scqpe,st class,lang,value}.
c) The attribute statement:
long alg (X:10, Y:5) A,B =X
would be represented by the following tree:
odecl
o sub L.attrib
wsubj ,init Fattrib pattrib

] - | prec t e
ident sstat B2 =Jpe
B <ar pvar , exp d long alg,layout

{used lused

| ident ident

B Ix . int,short ¢indet,decl, int,short

indet,dc1,ident ident
X iconst ,10 (Y const,5

- 37 -

2.3 List of attribute statements

a) A list of attribute statements consists of several attribute
statements separated by semi~colons.

While an identifier can be assigned attributes in several
attribute statements, the same attribute should not be assigned
more than once (2.Sl). Also an identifier should not be initialized
more than once in one or more attribute statements (2.START).

After this checking, each attribute statement generates as
many attribute statements as there is subjects. The order in
which the subjects appear is respected (2.82). This is repeated
for each list of attribute statements that is constructed.

b)

£.decl

<Q.,attrib stat> > <attrib stat>

<attrib stat>

L.decl
START]
STOP Sl
subj »L.attrib .8ubj L L.attrib
u W v w
® L.decl
Sl > x

<f.attrib stat> + <f.attrib stat>;<attrib: stat> | <L.attrib sta;\

2
<attrib stat>

init init
->
START 4{£:::<<::; J{é;;:/A*<::;\b ERROR| S, -

1

u v u w
decl decl
51 .subi \Q.attrib & subj %.attrib - ERROR| S,
o ol
ident ident
u u

2.decl

S ->
2
f.attrib 2|3
v w
u
£.decl
X ® L.decl
53 decl > x STOP
%.subj \oL.attrib '
W
3. Arithmetic, logical and label expressions
3.1 Arithmetic expressions
a) An arithmetic expression is constructed using the elementary

operations +, -, %, /, 4 with the conventional priorities. However, it is

not allowed to write A*B4C; one should write either (A4B)4C or At (BAC).

The nonterminal <simple factor> is introduced to avoid such a construction,
Subscripted variables are allowed and can be used as a primary in

an expression., The subscripts should be integer expressions. The operation

-39 -

of getting the corresponding element of an array is called element
accessing; that is why the tree corresponding to a subscripted variable
is labeled elem.

A function invocation is considered as a primary and can be
used accordingly.

A substitution is not a primary for it cannot appear as exponent
in any case. A substitution can be explicit (8) or implicit (6,7);
In the first case the indeterminates or more generally the forms (variables
having indeterminates as values) to be substituted are indicated. In the
second case they are not, but the expressions to substitute for are in the
same order as the indeterminates in the layout.

For the explicit substitution, that can be at several levels,
the forms are paired with their corresponding expressions using an
l.f.m,s, that comnsists of two productiomns.

b)

var

<var> > <ident> used

1 <ident>

elem

<var> > <ident>(<L.int exp>)

var
<f.int exp>
used

<ident>

oform

<form> - <var>
<var>

3

- 40 -

L.forms
<f.forms> -+ <form> I
<form>
<L.forms> -+ <&.forms>,<form> <2.forms§\\\b
<form>

<subst> - <exp> (<SZ,, exp>)

subst
Ap

<exp> <L.exp>

<subst> > <exp>(<f.forms> = <%.exp>)

subst

exp
< exp>

<%.forms> <%.exp>

START %.forms L.exp > START] L
b3 y 1
formsll.exp
y
u v u v
w

L > ©
1 STOP [ERROR

.forms L.exp w

- 41 -

<prim> -+ <const>

-]

<const>
10
<prim> > <var> <v;r>
11
<prim> > (<exp>) <e;p>
12
'] fnct
<prim> - <invocation> <igvocation>
13
<simple factor> > <prim> <pr;m>
14
1\

<simple factor> -+ <prim>**<prim>
15

N

<prim> <prim>

<simple factor> -*<subst>
16

o

<subst>

<factor> -+ <simple factor>
17

o

<simple factor>

<factor> - (<factor>)**<prim>

18

<factor> <prim>

- 42 -

<term> - <factor>
19

o

<factor>

<term> > <term>*<factor>

290

<term> <factor>

<term> - <term>/<factor>

21

<term> <factor>

<exp> > <term >

o

<term>
22
<exp> - +<term> <t;rm>
23
o
<exp> > —-<term>
24 <termi
+

<exp> - <exp> +<term>

25

<exp> <term>

<exp> > <exp>-<term>

26

<exp> <term>

<%.exp> + <exp>

27

L.exp

exp

<exp>

<f.,exp> > <fL.exp>,<exp>

28

<I2,.exp>‘\\\\\o
exp

<exp>

- 43 -

o€Xp,int
<exp>
<int exp> +> <exp> P
29
. L.ex
<2.int exp> - <int exp> I__._Jl
30 <int exp>

<f.int exp> -+ <{.int exp>,<int exp>

<%.int exp

31 <int exp>
c) The expression AxB(X**2, Y#%2) (Y = X)+l is represented by:
+
int , short
const,l

subst

var
used

ident

int ,short

const,2

- 44 -

3.2 Logical expressions

a) A logical expression is formed using logical constants, variables
(including element accessing from an array), relations function invocations
and logical operators which are —, A, VvV, =, .

A relation can be formed using the operators <, <=, ==, <>, >=, >,
to compare two arithmetic expressions. But for arithmetic expressions with

algebraic operands only == and <> are defined (as we will see in the semantics

description).

b)
var
<log var> — <ident> used,log
! <ident>
elem

<log var> -+ <ident> (<%.exp>)

<%.exp>
used,log
z |
<ident>
P
<relation> —»<exp>p<exp>
p € {<,<=,==,<>,>=,>} <exp> <exp3711

o

<log prim> - <log const> <log const>

o

< > <
S log prim> -+ <log var> <log var>

o

<lo rim> » <inwvocation> . .
g P <invocation>

o

<1 im> (K1 >
<log prim (Klog exp>) <log exp>

6

- 45 -

<log

prim> - <relation>

o

<relation>

]

<log factor> » <log prim> <log prim>
8
-
<log factor> - not<log prim> I

<log prim>

10

<log

term> »> <log factor>

o

<log factor>

11

<log

term> - <log term> and <log factor>

A

N

<log term> <log factor>

o

<log super term> - <log term> <log term>
12
v
<log super term> -+ <log super term>or<log term> \\\o
13 <log super term><log term>
<log exp> -+ <log super term> <log s:per term>
14
<log exp>r<log super term>eqv<log super term} //////\\\\¥
o
15 ﬁlog super term><log super term>
<log exp>><log super term>neqv<log super term>

16

<log super term><log super term>

- 46 -

c) The logical expression:

(X <2eqv3<4)ormnotyY

would be represented by:

var
fused,gfui
int,short int ,short int ,short ident
used const, 2 comst,3 eomst,d |y
ident
X
3.3 Label expressions
a) A label expression can be a label constant (label) or a label

variable., The latter can be an identifier or an element of an array.

Note that a function invocation cannot give a label as value.

b)

<label> + <ident>

I used ,label

<ident>

<label wvar> - <ident>

var

used,label

<ident>

- 47 -

<label var> - <ident>(<%.int exp>)

<%.,int exp>
used,label

8 <ident>

<label exp> + <label> <1a;el>

<label exp> + <label var> <la1;el var>

N
4, Statements
4,1 Elementary statements
a) 4,1.1 The assignment statement: It is only possible to assign an

arithmetic expression to an arithmetic wvariable, a logical expression to a
logical variable and a label expresston to a label variable.

4.1.2 The return-statement: The return-statement can have

several forms, The simplest is a return with no arguments., But there is
also a return with an arithmetic or logical expression as argument, to be
eventually returned as walue of a function. There is also the return with

a label variable as argument which should be a dummy variable in a subroutine
procedure, and it gives the return point in the invoker.

4,1.3 The goto-statement: It is a goto followed by a label

expression.

4.1.4 The continue, doend, and end statements:

4.,1.5 The Input/Output statements: It can be either a write followed

by a list of arguments or a read followed by a list of arguments.

- 48 -

b)
=,stat
<gtat> - <var> = <exp> /\ ‘
! <var> <exp>
=,stat
<stat> =+ <log var> = <log exp> ’
z <log var> <log exp>
. =,stat
<gstat> + <label var> = <label exp> J////%\;\\b
3 <label var> <label exp>
at
<stat> - return [§£——
4 return
stat
<stat> » return (<exp>) I
5 return ’E)E.R
<exp>
stat
<stat> - return (<log exp>) [————-
return,logexp
6 <log exp>
s
<stat> - return <dummy label> stat
return
7 <dummy label>
dum lab
<dummy label> > <label var> <1abei_;l_a?;‘-
8
<stat> - goto <label exp >

]goto,stat

<label exp>

- 49 -

ontinue,stat
<stat> - continue °L ’
10
end ,stat
. <end-stat> - end —
1 ena
. <end-stat>
<end stat> -+ <ident>:<end-stat> &///D
label,dcl
12 <ident>

<doend~stat> - doend
13

odoend,stat

<doend-stat> - <ident>:<doend-stat>

iy

J//P<doend—stat>
label,dcl

Pumimastmutivon s

<ident>

<char string> > §

15 gET,Q,UTdUTs'

Istring

£

<char string> + <char string> £

16

<char str;r\1§>\\\\\\\o
g

17<I/O arg> + "<char string>"

o arg
<char string>

<I/0 arg> =+ <var>
18

<I/0 arg> -+ <log var>
19

<]_og var>

<%2.1/0 arg> + <I/0 arg>

20

I L.arg

<1/0 arg>

<%.1/0 args> » <2,1/0 args>,<I/0 arg>

21

<2.1/0 ar;§>\\\\\~°

<I1/0 arg>

- 50 -

T
<stat> = read<{Q.var> o Iead,stat
aa <{.var>
22
. write,stat
<stat> - write <R,1/0 > ° ==
’s —_— /0 args <2.,I/0 args>
<R.var> -+ <var> I 4.var
24 <var>
<f.var> -+ <log var> I %.var
23 <log var>
<f.var> > <Q, >.< >
f.var>,<var <2.var;\\\\\\v
26 <var>
<{.var> > <f{.var>, <lo >
» <log var <L.var>
27 ' <log var> .
4.2 Invocation statements
a) 4,2,1 Dummy and Actual Variables: The dummies are variables of

any type, while the actuals are expressions of any type but they can be
omitted (blank) explicitly or implicitly. It is also possible that an
actual be an array variable,

4,2.2 TInvocation Statement: It is an invocation of a subroutine

procedure with or without parameters. The number of actuals do not need
be the same as that of the dummies.

4.,2.3 Algebraic Options Statement: This statement is in fact an

invocation of a procedure (built-in) OPTS having two arguments. This proce-
dure sets the required algebraic options concerning the simplification of

algebraics.

- 51 -

b)
dum,var
<dum> -+ <var>
used
1
<ident>
<f.dum> - <dum > I L-dun
2 <dum>
<f.dum> > <%,dum>,<dum> <L dum;\\\\\\\v
3 <dum>
coctuals o ¢ [actual
blank

<actual> + <exp>

o actual,exp
<exp>

<actual> - <log exp>

o Llogexp
<log exp>

<actual> -+ <label exp>

o

<label exp>

<actual> - <array var>

o actual
<array var>

<array var> - <var>

o array
<var>

<f.act> -+ <actual>

10

I L.act

<actual>

<R.act> - <Q.,act>,<actual>

11

<5L.act;\°

<actual>

<invocation> » <ident>(<f.act>)

12

invoc

<ident> <fR.act>

- 52 -

0
<stat> - <invocation> <invoc;t%§5§j§E2E
13
' invoc,proc,stat
<stat> -+ <ident> /L
\\\\g.act
<ident>
actual
1 blank
<stat> + opts (¢,¥) opts
y ¢ ¢ {101,102,103}, ¢y ¢ {1,2,3} b
c) The following procedure invocation where A and B are arithmetic

variables has 3 actuals, one of them is explicitly omitted and it has the

following tree representation.

ROUT (A+B, ,A%x%B) invoc,proc,stat

sactual,exp

(A) :(B) EERSE (B)

- 53 ~

5. Groups
a) 5.1 The do-group

A do-group consists of a body (list of statements) between a do-
statement and a doend-statement.

The do-group tree is replaced, using an l.f.m.s., by a list of
basic statements and the if-group which reflects its meaning (Dl).

To avoid a jump from the outside into a do-group (which is
forbidden), the usage is linked to the declaration for each label and in the
declaration tree, label is replaced by gglég_(Dz,D3).

5,2 The if-group

An if-group can be followed eventually by an else-group. But the
else-group cannot appear by itself,

5.3 Labeled and unlabeled group - Body

A group of statements may be labeled, but when it makes part ot
an if-group then it should be unlabeled.
A Body is a list of groups separated by semi-colons.

b)

©

<parm> - <int exp> <int exp>

<control wvar> - <ident> var

used ,int,short

<ident>

dostat
<do-stat> - do<control var>=<parm>,<parm>,<parm>

Sparm><parm>

<controlvar><parm>

- 54 -

do-stat
<do-stat> -do<controlvar>=<parm>,<parm>
= int,short
<parm>
const,l
¢ <controlvar><parm>

<do-stat> - do

5

o do-stat

<do-group>+<do-stat>;<body>;<doend-stat>]

<do-stat> <body><doend-stat>

START -+
ostat L stat doend

A\

f.stat

doend
v

goto,stat

label

ERROR

- 55 =

goto

used,label

2 z,dcl
u ident

u
¢ e {label,dolab}

@go to

N
w

dolab,dcl \label

D, Z,del used,label N D, PTOP
u dolab,dcl label
ident v
u
z ¢ {label,dolab}
<if-group> -+if (<log exp>)<unlabeled group> if,stat
end ,stat
7 <log exp><unlabeled group>
<if—group>ﬂ1£ﬂ<log exp>)<unlabeled group>; if,stat
else<unlabeled group>
<log exp> <unlabeled <unlabeled
8 group> group>
<unlabel > -+ <i °
unlabeled group> + <if group> <if-group>

9

<unlabeled group> + <do-group>

10

[~}
<do-group>

<unlabeled group> -+ <stat>

11

[+]

<stat>

<group> > <unlabeled group>
12

o

<unlabeled group>

<group> -+ <ident>:<group>

13

¢/Igggzj;cl

<ident>

- 56 -

<body> + <group> 1 L.stat
14

<group>
<b0dy> 7 <b0dy>;<group> <b0dy;\
v <group>

¢ ¢ {label,dolab}.
c) Consider the following do-group:
do; L : A= A-1;
if (A > 0) goto L;
doend

Before any transformation using the 1.f.m.,s. is performed we have

the following corresponding tree:

do

f.stat doend, stat

if ,stat

—

N’Stat

label ,used,ident

ident
label] ——

» int ,short

const,1 const,0 <L

- 57 -

After transformation using the l.f.m.s. of the <do-group>

we obtain the following tree:

L.stat
=,stat f,seat doend,stat
e btat Paiufhuslslondt el
fdolab,dcl A~ s EXP R > r—ggl:—?— end,stat
(A)
L {var yint,short {var int dlabel
(4) jconst,l @) const ,0

- 58 -

6. Procedure
6.1 Main Procedure Heading
a) The main procedure heading consists of the statement

procedure main

followed by a list of -attribute statements. At this level, as all attribute
statements of the procedure were considered, we can put all attributes of a
given subject in one declaration tree labeled def (for default tree)
(HZb’ H4b)‘ Then we can verify that a type is given to each subject
(HZa’ H4a)'

But an important problem arises: we should not lose the order in
which the declarations, more precisely the initializations, occur. This
is done by looking first for the initializations from left to right
(Hl, HZ)’ and leaving the declarations without initializations for amother
scan (H3, H4).

After considering a declaration, its deletion is performed
(H6a’ H6b). Also a procedure specification that has no type (i.e. is not a
function but a subroutine) has all its attributes except the language
attribute deleted as they are not useful (H7).

The assignment of default attributes follows (HSa’ H8b). A
function def is used to give for each attribute o its default for variables.
But for a function the default for the precision attribute is long
while it is short for ordinary variables.

All this is repeated for all declarations (H9). Then when there
is no more declaration trees, some incompatibilities of attributes should be

detected (Hlla’ H s Hijoo le,).

- 59 -

b)
o main
<heading> - procedure main;<f%.attrib stat> l
! <f.attrib stat>

2.decl

u <

START o f.decl > Hl
u endel
L.decl 2.decl
v v

Hl - Hl

decl decl

subj f.attrib f.attrib
w w
ident u
u
> @l.decl H
' 2a
'l ecl de f
S NL.attrib .
init,subj (init,subj
Js1dent \, dent
- siden
u v T v L.attrib
«type «S8truct «prec “Scope dstclassd lang value

- 60 -

decl
H2 -> ERROR
a w
type {ident Ltype
u t
decl decl
H2b H2b H6
ident ¢ ident {0
t
L2.decl
H, T H, ERROR
endel
2.decl
H4 decl H4 H5
ype truct _ElEE
2.decl o X.decl
v v
Hs T HlO fLRROR
endef

- 61 -

altran

decl def decl
4a ﬁ m iy - H,, |ERROR
ident type Jident {type ident itype
u t u u t
decl decl
b > Bap| He
ident Jo ident do
u t u t
decl def def
H6 ® decl .
a > 6a| 6b
x|y w
ident
ident ident u
u u
£,decl
B, T N ® X.decl . .
decl 6b 7
L.attrib L.attrib
VN W -
i, f 1 > H, |H
Lype ang lang 7 8a
altran
altran
def
H
8a d H H
Rz 8a| 8b
u y
prec long

- 62 -

def def
H - H H
u
8b x|y u x|y 8b 9
60y %
def (OL]_)
o, € {prec,struct,scope,st class}
2 .decl %.decl
H - I H H
9 endel endcl 1 4
odef odecl

H > E— Hio| H11a
H >

11la ERROR Hllb

L.aterib
Hllb -> ERROR Hllc
label long

- L.attrib ERROR| H

1llc - 12

st class
autom

mi decl

12 ERROR| H

] - 13
L.attrib
external

- 63 -

i L.dum ' .

13 /\ -+ ERROR H, ,

ar yvar
u u

” decl - roc decl

14 Hl4 STOP

L.attrib f.decl L.attrib|
ident lident glang ident tident glang
u u u
' altran

def: {struct,prec,scope,st class} + {scalar,short,internal,autom}

def (struct) = gcalar
def (prec) = short
def (scope) = internal
def (st class) = autom
c) Consider the following heading of a main procedure,.

procedure main;

long integer I = 1; logical K,L; altran A

Before using the 1l.f.m.s. to transform it the original tree representing this

heading would be as follows:

del

4subi ,init

ident » int ,short

main
JL.decl
{ decl

subj L.attrib

ident

Y m— type

bK tlog

£.attrib
¢ vpe prec
}int llong

const ,1

- 64 -

decl ,decl
0 . .
d sub .attrib lsub R .attrdib
ident rtype Jident lang
o L log A altran

After performing the transformations using the l.f.m.é. the declara-

tion trees of I, K and L change their structure while that of A has only a new

branch for the value addéd.

The declaration tree of I becomes:

~decl
subq,init
value,null rident int,short
I const,1
[type fStruct f{prec

¢ int Jscalar .long

L.attrib
{scope Lstclass .long value
»internaiautom

- 65 -

6.2 Procedure Heading

a) The heading of a non-main procedure gives a name to the procedure
and eventually a list of dummy variables, A list of attribute statements
follows in general.

The 1.f.m.s. for the procedure hea&ing is the same as. that of the
main procedure. So, for schemata H, to H., the informal description of

1 12

the main procedure heading is the same as here.

The two supplementary productions (H Hl4) check that no dummy

13
variable appears more than once in the list of dummies (Hl3) and give the
language attribute altran to a declaredvariable which is the procedure

name (H This transformation is necessary when a function procedure calls

14)'
itself and has to be given a type. The language attribute that remained
empty is filled with the attribute altran showing . that the variable is a

procedure name,

b)

<heading> - procedure<ident>(<%.dum>); d//////ﬁ\\\\\\
-
< .
L.attrib stat> <f.attrib stat/\

<ident> <f£.dum>

START

H The same as for the

e
Mo
* s T

heading of the main

14 14
procedure

j=n}
jas]

STOP

- 66 -

<heading> - proc <ident>;<{.attrib stat>
<%.attrib stat>
2 .dum
2 <ident>
oblank
START Hl
H1 As for the heading of Hl H2
. the main procedure ' . . .
H14 H14 STOP }
6.3 Procedure
6.3.1 Procedure Structure
a) When constructing the tree for a procedure we have to add a branch

with a node labeled staint for the static internal variables. At this node

we shall attach later on the declaration trees of variables having the attributes

static internal,

The l.f.m.s. checks first for the duplication of any indeterminate

or label declared implicitly (START, Kl).

Then we must make sure that a variable that is used as short and/or
int (e.g. control variable) is declared to be short and/or iEE.(KZa’ KZb)'

Now we link each used variable to the value node of its declaration
(K3a’ K3b’ K3c)’ For the particular case of an indeterminate its value is
its name. Consequently, the name of a variable indeterminate is not deleted

while the name of the other types of variables is deleted from the usage tree.

Also a pointer to a layout in which the indeterminate was declared is constructed.

- 67 -

The case of static internal variables is resolved by making a

copy of the declarations of these variables and attaching them to a
special node of the procedure tree that we labeled staint. A link is kept
with the original declaration tree for initialization purposes, while all
variables will point to the copy of the declaration tree instead of the
original ome (K3d—K3e).

No operations on arrays as a whole are allowed (K3f).

The algebraic variables should also have a pointer to their
layout constructed (K3g).

A dummy label should not be used within a procedure for other
purposes than as a return point, and any label variable appearing in a

return-statement should be a dummy label (K4a’ K4b’ K4c)'

If there is an invocation of a procedure in the procedure

itself then a pointer is constructed from the invocation to the procedure tree

root labeled proc (KSa)' Also if there is a specification of the procedure
then a pointer to this specification is constructed. If neither of these

two situations occur there is an error (K K K .
(5a® 5b°? 5c)

b)
. roc
< > 5 H
proc> + <heading>;<body>;<end stat> eading
staint
. R <body>
del el ERROR| K
START o === o + .
Kl G del decl > ERROR K2a
subj
u

- 68 -

decl var
K2a used,short ” ERROR‘ K2b
ident [prec ident
u
long
decl
S var
K2b ‘ -+ ERROR K3a
used,int
uident type ident
u
"1
var
X3a K3a | X3p
used
ident
u
. used,label 1abel K X
3b N — 3b 3¢
label,dcl ident label,dcl :
u
alg,layout lg,layou
|K3c used + indet ,ident K3c K3d
indet,del ident indet ,decl
u u

- 69 -

Kag Ko K3f
proc
{internaldstatic
u/
value alue
'internal static Iinternal static
var
decl decl decl decl
K
3e var - var
value value value value
fK3f - ERROR Kj
arxay H € {+’_s*s/’ s==’<>’<=’>=,>s<s=}

- 70 -

u v

decl
K
38 ” K3g K4a
value |[type alg,var
al
dum,var dum,var
alue value
Kia > Rea | Kap
dumlab,var
mvalue > ERROR | K
K —_— 4e
4b
dum,var
K value - FRROR | K
4e 5a
var
invoc proc
K y/(///@\\\$
5a ident {{//1\\\\» - KSa KSb
u v
dent
u w
invoc decl
\ af////gk\\\m
2b dent f.attrib Ksp [Kse
u v
ident llang
u .
altran
invoc
K > ERROR (K
>¢ AJ:\i 6

- 71 -

c) Consider the following procedure function:

procedure ALP (M,N);
int M,N,ALP; static M = 2;
M=Mx N+l; return (M);
end

This procedure will have the following tree as representation

before applying to it the transformations performed by the 1l.f.m.s.

_proc
" staint rg.decl L.stat
decl ldec1 \decl {dent £ . dum
‘W (ALP) -
dA o, o P dum,var pdum, var
used iused
ident J ident
d M 4 N
alue =,stat
null
int,short,exp
f.attrib
const ,2
Ltype sprec Struct / scope st class \ long ~value

dint short sscalar internal [static

-72 -

Note that for ALP the precision attribute will be long and not

short as it is for M or N, because ALP is the name of a function procedure.

6.3.2 Compatibility of types in an arithmetic expression
a) | At this level as the types of the variables are known, we can check
the compatibility of types in an arithmetic expression. A search is performed
in any tree representing an expression. During this search the type of each
variable or constant is examined and a type for each subexpression is deduced.
This type is in fact the highest of the types that appear in this expression

according to the following hierarchy of types.

Algebraic Real

Rational

Integer

Note that algebraics and reals are not comparable in this hierarchy as
they are not compatible. Thus we must check that algebraics and reals are
not mixed in an expression.

Starting at the production labeled K, an expression is "picked up"

6
and two control words VER (for verify) and ANY (for any type) will direct our
search in the tree. This search will be performed from left to right and the
label VER will push the search downwards while REV (for reverse) will push

it upwards.

The control label ANY will be replaced by one of the control labels

INT, RAT, ALG and REAL depending on the first variable encountered. If at

- 73 -

some point the label ALG appears, a real variable should never be encountered.
Also if at some stage the label REAL appears, an algebraic variable should
never be encountered.

If several algebraics (including indeterminates) appear in an
expression, they should have the same layout., But the checking for this
constraint is deferred to the semantics phase mainly because of substitution
whose layout will not be known before the interpretation phase.

The restrictions on exponentiation are also verified using
five supplementary productions. In fact, there is more restrictions on
exponentiation, but they can only be verified at the semantics level.

Here we only make sure that if the base is algebraic then the exponent

is integer.,

b)
K6 0 €XPp - o eXp, VER ANY K7a
©,VER,ANY I@
I >
VER ,ANY
© ,VER,© ©
I IVER,G

0 ¢ {INT,RAT,REAL,ALG}

v,VER,ANY
/\ ER, ANY

V€ {+a_:*,/}

- 74 -

elem,VER,ANY elem
/\ : > ’
' VER, ANY
V,VER, 6 N
N .
VER,©
elem,VER,O
->
VER, 6
oalg,VER,n > -alg,REV,ALG
n € {ANY,INT,RAT}
oindet ,VER,N > oindet ,REV ,ALG
oSubst ,VER,N - osubst ,REV,ALG
oreal ,VER,N > oreal ,REV ,REAL
orat,VER,n > orat ,REV RAT
oint,VER,n; - oint ,REV,INT
n € {ANY,INT}
oB,VER,ALG - oB,REV,ALG

B € {int,rat,indet}

- 75 -

oBy s VER,, REAL - o8y ,REV,REAL
B « {int,rat}
oint ,VER,RAT - oint ,REV,RAT
y _
/\ - /\
REV, 6 VER, 6
v V,REV,0
/\ ’ /\
REV,0
e © ,REV,@
REV,H
elem elem,REV,0
+
REV, 6 e :
4 ,VER, 0 A
/\ ’
VER, 6

REV,0

-
/\WR,MY

4 A

>
~RE/V,‘9\» (/\VER,ANY
A 4,REV,ALG
/A/\ . /\
LG REV, INT
4 +,REV ,REAL
>
REV, 6
1 V29
6 € { INT ,RAT ,REAL}

8, € {RAT,REAL}

4 | ¢,REV,61
>
cH REV, INT
oexp_,REV,G3,int > ERROR
8, € {RAT ,REAL,ALG}
K7 0eXp,REV,0 - 0eXp,0 K6

6.3.3 Compatibility of types in the assignment statement

a) For the arithmetic assignment statement the error of assigning a
real expression to an integer, a rational or an algebraic variable is

detected.

-77 -

b)
K7a ERROR K7b
alg REAL
K (/\ FRROR| K, _
at REAL
FRROR | K
5e¢ AM& 8a
6.3.4 Some restrictionsrelated to dummy variables
a) These restrictions are:
~ A dummy cannot be external (K8b)
— A dummy label cannot be static (K8c)
— A dummy label is given automatically the value attribute (K8d)
— No variable other than dummy can possess the value attribute (K8e)
b)
var ,dum decl 5 var ,dum «//Q%fg
K
84 \ Kga | Xeb
value value
dum
K
8b L.attrib > ERROR Kgc
external
dum
Kge > ERROR | Ko .
$.attrib
label {static

- 78 -

dum dum
L.attrib L.attrib
Kgd > Kea | Xge
type ‘gval val
label label value
decl
Ky, %.attrib > ERROR| K.
val
value
dum decl
K -> STOP| STOP
8f
L.attrib L.attrib
c) Consider again the procedure given in 6.3.1lc but after performing

the transformations (l.f.m.s.). The following chaﬁges would be noticed.
First, there will be a copy of the declaration tree of M attached to the node
labeled staint. Second,all variables including dummies have a link to the
value node of their declaration with their name is deleted from the usage
subtree. Third, on the top node of each expression (labeled exp) we have

the type of the expression (INT, REAL, ...).

All these changés appear on the following tree.

- 179

z¢3suod

INI “dxe¢330ys ‘ITUL

Jioys ‘juT‘ieA

TInu‘sniea ¥

1¢3suody

1104s ¢ Jul

INT ¢ dxo

JI0ys‘Iul
HzHamxm.um>.

uInjaay

e384 Je3st=

FERCED JUTB3S

20210

- 80 -

7. Program

a) A program consists in general of several procedures one of them
being a main procedure,

The global variables (external static) as well as the algebraic

options are considered in the l.f.m.s.

The same technique as for internal static variables is used here.

A copy is made of the declaration and attached to the glob-var node. A

link between the original declaration and the copy is kept for initialization
purposes, The variables pointing to the original declaration will point

now to the copy (Ml’MZ)'

All declarations of the same global variable, which should have
the same attributes, will be linked to the global tree thus constructed
(MB’M4)'

For all specifications of subprocedures in a procedure heading,
construct the link between the specification and the procedure itself, while
deleting the name from the declaration GHSa).

Naturally, each specification of a subprocedure name should be
related to a procédure tree otherwise an error is detected (MSb)'

Function invocations will be 1igked to the function definition
directly while keeping the link to the specification. The subroutines will
also be linked to their definition but we do not need keeping any link to
the specification as it will be deleted next (MSd’M6a)'

Finally the names of the procedures as well as the names of the

declared variables (appearing in the declarations) will be deleted

(M, M7 5Mg 5 My)

- 81 -

b)
ro
<prog> > <proc> IB——E
! <proc>
<prog> - <prog>;<proc> <probg\
2 <proc>
prog prog
START [> [M ERROR
main,proc main,proc
ro
M /ﬁ > ERROR| M
in main
prog
M oPIOE - th M
0 u 1
ob var
1 ,102 103
prog
| f//////////géy
roc
M vglobvar 7 M
1 ba
L.decl
Xl x2

u

value

var

decl
Subi LL.attrib

tiz

scope

jexternal

ar external

dexternal

- 82 -

decl decl decl decl
" /\ ” /\
2 M2 M 4
dé/ var value alue
alue alue ovar
.glob var decl glob var decl
M3 > Ml+ Ml
decl L.attrib tdecl L.attrib
v v
L.attrib ident L.attrib lident
W u u
ident ident
u
glob var decl glob var decl
M
4 decl \, decl M, FRROR
w w
ident ident
w u w
sident ident
u u
decl ecl
M4a elem * elem,T,m Mﬁa M5a
value var,T,T value var,T,T
roc decl roc decl
M
5a - M M
L.attrib S5a 5b
xly t|z Xy tlz
ident ident ident altran
u u u
altran
decl
M5b > ERROR M5C
L.attrib
Iident
S
altran

- 83 -

decl

decl

=
F
[¢]

Mse proc > Mg M5d
invoc,fnct invoc, fnct
decl proc odecl
M5d proc M M5d M6a
invoc,stat invoc,stat
5& decl
Moa > Mea | Meb
proc proc
Meb > Z Moo | M
v
ident v
u
M
@
7 T -> M7 M8
del
u
M
8 Mg My
decl
M9 ub L.attrib -> M STOP
w 9
ull ident

u

- 84 -

8. The Data Language

a) For the input as well as the output a data language exists. An
expression in this data language consists of combination of constants using
the elementary arithmetic operations. A statement in this language is a data
expression or a constant including the null constant.

Some notation using backlabeling is defined and an l.f.m.s. is
used to transform the corresponding tree to one reflecting its meaning but
using only the elementary operations on expressions.

b)

o

<data prim> - <int const> .
1 P <int const>

o

<data prim> - (<data exp>) <data exp>

g

<data fact> - <data prim> .
3 P <data prim>

4\

<data fact> - <data prim>**<int const> d////*\\\\b

<data prim> <int comst>

g

<data fact>><data prim>**%{<s int const>) d////‘\\\
~

5 <data prim> <s int const>

< > > < > °
data term data fact <data fact>

<data term>><data fact>*<data fact>

7 <data fact> <data fact>

- 85 -

<data term> =+ <data fact>/<data fact> /
8 <data fact> <data fact>
<data exp> + <data term> °

<data term>
9
<data exp> »> +<data term> <dat; exp>
10
<data exp> =+ -<data term> ©
11 <data term>

+

<data exp>»<data exp>+<data term>
L2 <data exp> <data term>
<data exp> - <data exp>~<data term> <
13 <data exp> <data term>
<data stat> <data exp> °

<data exp>
14
<data stat> - <real const> <real°const>
15
<data stat> - +<real const> <rea1°const>
16
<data stat> ~<real const> ©
17 <real const>
<data stat> <log const>

18

o
<log const>

- 86 -

onull
<data stat> - null —_—
19
input
<input> - € °
20
input

<input> > <data stat>

21

data stat
<data stat>

<input> - <input>;<data stat>

22

<input

data stat
<data stat>

<output> —+ €
23

°outEut

<data prim> - <back ref>
24

[+}

<back ref>

<back ref> -+ (=<ilabel>)
25

oback ref
<ilabel>

<ilabel> - <int const>
26

[»]
<int const>

int

START]
const, ¥

® X START |STOP

<data exp> + <ilabel>:<data exp>

27

data exp>

ilabel
<ilabel>

<data stat> > <data exp>
28

[+]
<data exp>

- 87 -

c)

START eback ref,x Gilabel,x > ® ;ilabel,x START| D,
u
®
T- 7 P P2
ilabel,x
oback ref,X v ERROR| STOP

Consider the following data expression
(1:(1.2+2))%3,5%% (=1)

Before applying the l.f.m.s. of the <data stat> to it we have:
%

int,short backref,l

real,short

const,1.2 onst,2 const,3.5

After transformation by the l.f.m.s. we would have:

%

int ,short

real short real short

const,1.2 const,2

const,3.5 real ,short Y int,short

co 2
const,l.2 const,

- 88 -

9. Job

a) A job consists of the program followed by the input and the output,
if any. The input is separated from the output by the word eof (end of file).
The control word EXEC is attached to start the interpretation of the job,

which leads us to the semantics description.

b)

job,EXEC
<job> » <prog><input> eof<output>

1 <prog> <input> <output>

- 89 -

I1. The Semantics Description

1. Initialization

a) The execution of a job starts at the main procedure and ends when
the end of this main procedure is reached (1-4). But the execution of any
procedure requires first the initialization of some of its variables. That
is why a control word INIT is used to go through the list of declarations
and initialize those scalar variables that need initialization. Array
variables cannot be initialized, but we must construct the array and attach
it to the value node using a macro constr (19) defined below.

The initialization of automatic variables should be performed each
time we enter the procedure. But the initialization of static variables is
done only at the first call of the procedure and if its value is null (for
it can be external and have a value from another procedure). This is
performed in productions (7-13).

On the other hand, for the arrays and algebraics the expressions
in the descriptor block (D.B.) or the layout should be computed once for

all for that invocation (14-18).

b)
job,EXEC job
START [N I
. rog prog,EXEC
prog,EXEC prog
>
) [Eroc,main [Eroc,main,EXEC
A

- 90 -

prog oprog,END

>
Iproc,main,END dproc,main
job 0job
IJ—_- o STOP
prog,END oProg
proc,EXE proc

>
]2 decl L2 .decl,INIT
2 f%.decl,INIT oL.decl

-> u
decl idecl,INIT

decl, INIT decl
>
L.attrib f.attrib, INIT Fo
scalarjautom
scalar autom
decl
>
f.attrib, INIT
F
o

autom

- 91 -

iscalarjistatic

scalar)static

,decl ,INIT

tbarray bstatic
u array static
1o
decl,INIT decl
init
alue \EXEC
: v
11 autom autom
decl decl
nit fL.attrib - nit L.attrib, INIT
alu;\\\»END alu;\\\b
12 v v
,decl,INIT decl

13

LL.attrib

2.attrib

]

istatic

alu\e\> EXEC

v

static

- 92 -

18

ENDIN

;L.attrib , INIT f.attrib, INIT
Lstruct [struct
F ,array -> L,array
D J
1u Lexp sexp ,EXEC
f.attrib, INIT TSL.attrib
ItzEe dtype
ialg > salg
D
L o €Xp JEXEC
alg
alg,ENDIN
-
u v
VAL P
sP u
+
16 pel
array array,ENDIN
->
u n
VAL,n
17 nez
f.attrib L,attrib,INIT
-

93

decl decl
F2 fL.attrib, INIT -> f.attrib, INIT
value
value
constr (u) l
array arra
19 u array
%.decl L.decl
5 u/ \v
’o ecl ,END decl decl decl,INIT
f.decl L .decl ,END
L — > ul‘“—"’
21 decl ,END decl
22
23
F decl decl
24 fL.attrib,INIT f.attrib ,END

- 94 -

The macro constr is defined by the following productions:

Lo
M
START
HERE 1
u
CONS
' CONS
" /\ T "3
u
n Wn
n
M, KS A HERE M
1
u
n dd (m,1) n Tm |
M3 u v M]_
CONS HERE
L
M top M
4 u & top 5
u
CONS
n o n
M5 u/R v ﬂ MS
RE HERE
w w W
HERE
Me u[uI M5
m,HERE m
M, Lop @ STOP
u

- 95 -

2. List of statements

a) A list of statements is executed from left to right, When there

is no more statements to be executed the procedure ends execution.

b)
roc roc ;
-
1 .decl ,END\ %.stat 9.decl %.stat ,EXEC ;
L.stat ,EXEC f.stat
[—“"““‘u > [—————_u
2 EXEC
fL.stat - L.stat ‘
3 ND N\, o EXEC
L.stat f.stat ,END
-> u T
IEND [
"
proc,main N proc,main,END
5 [l stat ,END [Q.stat
3. The continue, goto, if, doend and end statements
a) The continue, doend, and end-statements have no effect at all (1-4).

The goto and the if-statements have an obvious meaning (5-9).

b)
f.stat f.stat
Ai ” /
nue,
. EXEC ontinue,END
f.stat N {.stat,END

exit ,EXEC exit

- 96 -

f.stat {.stat
[._ - — _). [

doend ,EXEC doend ,END
%.stat L,stat
end ,EXEC end ,END
goto,EXEC

5 goto
value stat L\\~#/)*value stat
N— _/EXEC

if ,EXEC

goto,EXEC goto
->
stat [_ﬂ/’/////fstat,EXEC
if
l + z/R

A XEC

if

if
/\ > /[\
0G VAL,true EXEC

if if
/\ - /I\
0G VAL,false EXEC

4, The return-statement (refer to 12.1 when necessary)

a) The return-statement in its simplest form, return, leads the
execution out of the body of the procedure to perform the outbound
transmission (1-4). |

But when it has an expression, arithmetic or logical as argument,
the return-statement becomes more complicated to describe. First, we
have to execute the expression (5). Whenever the value has been found
we have to move it upwards the tree till it reaches tﬁe node labeled
invoc (6-8). 1If the invocation is a statement (subroutine invocation),
this value is needless; we just delete it (9). Otherwise (it is a
function invocation), an assignment statement is constructed to assign
the returned value to the variable created in this purpose (10).
After the execution of this assignment statement the control word EXEC
will appear at the outbound transmission subtree. But in the case of a
function we have to transmit the value of this function to be used in
the expression and delete the copy of the procedure. If the function is
algebraic we have to transmit also the layout with the value (11-14).

The third type of return-statement is that with label argument.
This third type can be used only in a subroutine procedure and it means
that instead of returning to the invocation point in the invoker a
jump is executed to some statement given by the label argument (15).
Note that the outbound transmission should be executed before this

return is made,

- 98 -

b)
stat stat,RET
.-).
return ,EXEC returm
1 — ===t
%.stat L,stat,RET
’ [
) stat,RET stat
stat stat,RET
, %.stat,RET f.stat
L.stat f.stat
>
. .stat ,RET\,L.stat L.stat \, &.stat,EXEC
return ,EXEC return
g & ,EXEC

£ ¢ {exp,log exp}

stat . tat
’ A
feturn eturn A, ,RETVAL
u — 1
6 A sRETVAL
.return return
->
a a
u u
, A Ay »RETVAL
v v
A € {VAL,LVAL,LOGVAL}
L. stat L.stat
—).
stat
stat Xl,RETVAL

u -\ Ay »RETVAL

v

u v

- 99 -

invoc,stat invoc ,stat
-
Ik.stat L.stat
x|y Xy
alestat %.stat,END
A »RETVAL

10

invoc,fnct

_}.
2.stat
L.stat
X, ,RETVAL, R

f.stat

invoc,fnct

L.stat

11

invoc ecl
+
%.stat
alue
v
L.stat ,END

or *short X

T ¢ {int,rat,real,log,label}

12

ecl

L.act

invoc

LVAL,tov
v (1)

- 100 -

decl

&éiue //
J 2 stat ,END
alg short

‘\:::::>q§%zgs
L.act bVAL LALG

value
l

short

13
invoc
>
2.stat
v
f.stat ,END
14

15

@ .stat

X

invoc,stat

£.stat
Xy

i .stat

VAL ,RETVAL

stat

- 101 -

5. Element Accessing

a) When we want to use an array of any type we must use it element
by element. Two different usage of an element are possible. The first
one is to use its value in an expression (0,1), the second one to assign
to it a certain value (2-6). These two usages have in common a certain
procedure which is to access an element of the array.

This selection is performed using the control word SELECT.
We have to compute the subscripts (7-10) and locate the element in the

value tree of the array (11,12).

b)
ecl elem, LEXEC celem, SELECT ,L.PRIM
—>
value
0
elem,EXEC _elem, SELECT ,PRIM
decl i
. lvalue
=, EXEC =
{on
elem,EXEC EXEC
var,log
2 svar,log

- 102 -

-
lem,EXEC
var,label
=,EXEC =
_).
elem elem,EXEC
svar ,label var,label
>

lem,EXEC elem €lem,EXEC elem,EXEC

Ivar ,label oYar var,label var

=,EXEC =
élem W REAL ~ €lem, EXECN, REAL ,LEXEC
var yar
=,EXEC =
lem o €lem, EXEC\,0, EXEC
Lvar var s

8 e {INT,RAT,ALG}

elem, SELECT elem
->
4 ;EXEC

%.exp,EXEC L.exp
a
[EER [

exp,EXEC

- 103 -

10

11

/\@SELECT . SELEND
Jvalue LG;;;;//AD

12
elem elem, SELEND
I“"‘ > -
SELEND
13
6. Logical operations
a) 6.1 Logical assignment

Two cases to consider:
— simple variable as lefthand side (1,4)
~ subscripted variable as lefthand side (5.b2).

When the righthand side is blank, the assignment has no effect (2,3).

- 104 -

6.2 Logical expressions

A label parameter p ¢ {A,v,Z,Z} is used to make the presentation
more compact (6). |

For the evaluation of a logical expression we fetch the value
of constants and variables and when found we label it LOGVAL (7-10). Then
we compute the result of a logical operation using five logical basic

functions: not, and, or, eqv, neqv, Their meaning is well known (ll—lS).

b)
=,EXEC =
N /\
1 og log EXEC
_ =,END
AN SN
) 0 blank ,EXEC og blank
= = N END
->
elem blank,EXEC elem blank
log log
3
=,END
>
Nk@g
u i
LOGVAL ,k :

k,% ¢ {true,false}

—,EXEC -

5 EXEC

- 105 -

p,EXEC P
-
XEC LWEXEC
6
p e {a,v,z,2}
og,EXEC o
-
LOGVAL,true
; const ,true const ,true
og,EXEC o
-
LOGVAL, false
o const ,false const,false
Jé//////’—_‘\\\\\ﬁégg}var,EXEC var,log
alue, >
' alue, LOGVAL, %

value,® {em -
u
og,var, LOGVAL,k ,value,k
SELEND
10
— -
->
11 u
LOGVAL, LOGVAL ,not ()
u
A
e
u v
12 LOGVAL, 2 LOGVAL,k LOGVAL,and (%,k)
u v
v v
>
u v
13 LOGVAL, ¢ LOGVAL,k LOGVAL ,or (2,k)

c
<

- 106 -

—)
u v
1y LOGVAL,? }LOGVAL,k J//;§ij\\yLOGVAL,eqv(l,k)
u v

of
>
u v
15 LOGVAL,% JLOGVAL,k LOGVAL ,neqv (£,k)
u v

7. Label assignment

a) The label assignment should have as lefthand side a label variable
that can be a simple variable or a subscripted variable element of an array.
The righthand side can be a label variable (simple or subscripted) a label
constant oxr a blank.

All the combinations should be considered one by one. Their

meaning is obvious.

b)

= ,EXEC = ,END

’
(/\ R /\
abel blank abel wblank

= ,EXEC

alue,nul abel Ylabel

= ,EXEC

stat ->
val ue abel abel
\\\\\\\\-~wstat

stat

alue abel

oStat

- 107 -

alue,null

=,EXEC =,END

lem, SELEND\ label

value ,null

var,label stat var,label

- 108 -

10

elem \,label ,stat

11

12

stat

.stat

13

value

.= 109 -

14

lem, SELEND

= ,EXEC

elem, SELEND

stat

label Jvalue

label Llabel Jvalue

15

elem, SELEND

stat

16

, label

+€1em, SELEND

= ,EXEC

,elem, SELEND

.stat

¢label

17

= ,EXEC

=,END

value™{label }elem

label

- 110 -

= ,EXEC

elem, SELEND

stat

18
o= s EXEC
>
¥label \elem,SELEND

19

8. The arithmetic assignment statement

8.1 Conversion of precision
a) The arithmetic assignment statement has an arithmetic expression as

righthand side. It should have been labeled REAL, INT, RAT or ALG while veri-
fying the compatibility of types in the 8yntax Description. If this expression
is REAL then the computations will be made in long precision (LEXEC). Other-
wise, the computations will be started in short precision (EXEC) (2, 3).

When the value of the expression is obtained and is short (VAL),
while the lefthand side is long, then the value of the expression is converted

to long precision (LVAL) (4).

-111 -

If the value of the righthand side is a long integer while the
lefthand side is short, then the value of the righthand side is converted
to a short integer if this is possible. The conversion is done by the basic
function intsh defined in the formal part below (5).

Similar situations to this one but with a real, rational, or
algebraic expression as righthand side are considered. A function realsh,
that truncates the mantissa of a real number, is used. For the rational
conversion, the function intsh (on integers) is used. But for the
algebraic conversion a macro operation denoted alsh is used to truncate
all the coefficients (integer or rational) of the algebraic if this is

possible (6,7,8).

b)
=,EXEC =,END
-
Tl blank Tl blank
. T, € {int,rat,real,alg}
=, EXEC =
. >
) REAL ' REAL,LEXEC
=,EXEC =
>
o o, EXEC

3 o ¢ {INT,RAT,ALG}

- 112 -

/\

AL VAL

> short

AN

INT ,LVAL,Y INT,VAL, intsh(X)

~ong ~ong
V.

A > q
LVAL ,y ,REAL REAL,VAL,realsh(x)

—).
hort
/ sRAT ,LVAL / ,RAT, VAL
1 ®Xp '

ntsh(xl) ’intsh(xz)

+
hort
ALG,LVAL ALG,VAL

v alsh (v)

- 113 =

The function intsh is defined by

intsh : T v I -~ I uTl
s s s s

X > X

This function is not defined for x ¢ I2 U IQ.

The function realsh : RQ U ﬁz -+ RS U RS truncates the real
number to make it short. ﬁé and ﬁs are respectively the set of long

negative real numbers and the set of short negative real numbers.

8.2 The conversion of type

a) When in an assignment the types of the lefthand side and of the
righthand side differ there is some rule for conversion that make it possible
in most cases.

The conversion from INT to RAT, ALG or REAL is always possible
(1-4). The function cir (conversion from integer to real) is used and is
defined by cir : Z > R, cir(z) = z.

The conversion from RAT to ALG or REAL is always possible, but
that from RAT to INT is only possible if the denominator of the rational number
is one (5-8). The conversion to real makes use of the function rediv (real
division) that is defined by rediv : Z X Z > R, rediv (zl,zz) = 21/22;

The conversion from ALG to INT, RAT or REAL is possible when the
value is numeric and for conversion to INT it should have 1 for denominator,
if it is a rational value (9-13).

All these cases are common to simple and subscripted variables.
Moreover, when an operand is algebraic the layout should be transmitted or

deleted depending on the context.

- 114 -

>
rat
g w
INT,A,X / sRAT ,A
A e {VAL,LVAL} Y bl

.
alg alg
layout INT,), X layout

X

INT,A,X REAL,A,cir ()

-5
At W int
w
/ sRAT, A INT,A,x

- 115 -

RAT, A

eal

10

- 116 -

layout -

rat

{ JALG, A

11

real
T w
REAL, A, _
rediv(xl,xz)
12
real
ALG, A, X REAL,A,cir(x)
13
8.3 The assignment of a value

The assignment of a value of any type is done when both sides of
the assignment statement have the same precisioq and the same type.
However, for the particular case of an algebraic we must check
that the layout of the lefthand side is respected. This is done in two steps:
- The first step uses a macro, check, which when applied to an:
algebraic value gives a list of the indeterminates used in this algebraic value

with their highest exponent. This list is in structure analog to a layout (1).

- 117 -

— The second step makes use of a logical function, icomp (integer
comparison) which is defined latef on formally. This basic function when
given as arguments a relation symbol and two integers, yields as value
true if the relation holds between the two integers, false otherwise. So
using this function we can check that the highest exponents are respected for
each indeterminate. Productions (2,3) perform this step, and show that
it is an error to have an indeterminate in the algebraic value that violates
the layout, i.e. that is not in the layout of the lefthand side variable.

The label OK is attached after the first indeterminate is
checked but in fact we must continue applying production (4) as long as
there is péirs (indeterminate: highest exponent) hanging from the assignment
tree and before we can apply the production that assigns the value to the
algebraic variable.

To assign the righthand side value to the lefthand side variable
the layout of both sides should be the same (5).

For the other types the assignment of value is easy to understand.
There is also a compulsory distinction to make between simple and
subscripted variables: the pointer to the value of a subscripted variable
should be deleted after the assignment is performed. But elem-node keeps

pointing to decl-node of the array.

b)

F check (u) I

- 118 -

= . =,OK
-5
true
w y w
=,0K =,END
N olayout
. alue Malg,short, ¥
ayout U W
X
layout ALG,VAL layout

u

X

- 119 -

=,0K R
lem, layout
SELEND
v short (ALG,VAL
layout
X
OK ,END
' lem
«€lem, SELEND W ->
— w
sal g,short \ALG,VAL ovalue alg,short
v u u

- 120 -

10

11

12

13

- 121 -

1h

elem, SELEND

Kvalue,xl real,short

REAL,VAL,X2 ovalue,x2

15

16

1em,SELEND

17

18

lem, SELEND

rat ,short

rat,short

- 122 -

19

20
21

N =, END

>
lem, SELEND tlem
w w
value’xl int,short INT,VAL,X, -value, X, int ,short
22 —_—

23

- 123 -

.
INT,LVAL,X2 int,long,
°value,x2
21
9. Arithmetic expressions
9.1 Evaluation of Constants and variables
a) After we enter an expression, the evaluation is performed in parallel

and naturally bottom-up (1,2). So we have to look for constants and variables
and evaluate them. To specify the type of the value obtained we use a func-
tion tov (type of value) to make the presentation more compact. The two cases
of long and short precision are considered separately as well as the cases of
simple and subscripted variables (3—17). It should be noted that when the
execution is done in short precision (EXEC), and we encounter a long variable or
constant then the execution is resumed in long precision. But when the execu-
tion is in long precision (LEXEC) and a short variable or constant is
encountered, the execution continue in_lggg_precision.

A label parameter ¢ is used whose domain is {EXEC,LEXEC}. The label
parameter n belongs to the domain {+,-,%,/,4} u {>,>= < <= <> ==},

For the algebraic variables or indeterminates the layout associated
with the value of this variable or indeterminates is the layout of the variable
itself (8,9). Indeterminates have for value their own name and naturally are

considered as algebraic values(18).

- 124 -

b)
e,t 2
>
z
1 ¢ ¢ {EXEC,LEXEC}
N,&
>
2 ne {+s_’*’/9+} u {>’>=,<s<=s<>s==
T,short ,EXEC T,short
-
, const,X const,X bwtov(T) ,VAL,¥X
T,long ,EXEC T, lon
[= X =
. const, X const,X LG tov(T) LVAL,Z
T,LEXEC T
->
const,y const,X L2tov(T) ,LVAL,¥
5
T ,long,var ,EXEC var,T,long
/-@ >
value alue tov(t) ,LVAL
v v v
] T ¢ {int,rat,real,log,label}
var,T,short ,EXEC var,T,short
>
value value tov(T),VAL
7 v v v

- 125 -

11

var,alg,long,EXEC var,alg,long
¢ alue x1azout ALG,LVAL
8
var,alg,short,EXEC var ,alg,short
>
value layout alue
v X ' v ALG,VAL
v
o xlaXout
elem,SELEND ,PRIM
u
.
var,T,long
value ovalue
v v
10
elem,SELEND,PRIM
u v
-).
var, ,short
alue ovalue

12

lem, SELEND,PRIM

- 126 -

13

elem,SELEND ,PRIM
u

var,alg,short

<
r]
® it
= o]
oy
[p] o]
t
: (a3
A
[
[
=
txf
b
ol
Q

T, wvar,T

-
value tov(t) ,LVAL
v v

1y

var,alg,LEXEC var,alg
>
value ALG,LVAL
v layout v v
x ayout
15 b4
elem .

) @K\\\\\w
ovalue \|\var,T tov(t) ,LVAL

16 v \%

@elem
alue ,ALG,LVAL
var,alg
layout :
X
17

18

indet,

layout

- 127 -

The function tov is defined as follows:

tov : {int,rat,alg,real} - {INT,RAT,ALG,REAL}

tov(int) = INT

tov(rat) RAT

tov(alg) ALG

tov(real) = REAL.

9,2 Substitution evaluation

r

a) A substitution 1s a primary that is defined for algebraic variables
in which we would like to substitute some algebraic values for the indeter-
minates of this algebraic or some of them. In general, it consists of
several levels, i.e. we have a substitution in a substitution etc....

So in the general case we have to go to the lowest level of substitution to
perform it first, then go up gradually (1,2).

When we are at this lowest‘level of substitution (1) a pairing of
eaéh indeterminate and its corresponding argument is performed using one of
two macros, pair or pairing, that are described formally below. These
two marcros make use of another macro, arglay (argument layout). What
arglay does is, given a list of pairs (the first one is the form or indeter-
minate, the second the argument to replace the indeterminate):

o) To find the eventual layout of the second element of each pair.

(2) To make sure that the layouts, whenever they exist, are the same
for all the arguments.

3) To link the layout, common for all the arguments, to the top node

of the list of pairs.

- 128 -

.

The common layout when it exists, is obtained after performing
the macro arglay. Then it is used to decide about the layout of the result
of the substitution (5-9). The layout of the substitution is the common
layout to the arguments and algebraic variable if it is the case. Otherwise,
if there is no layout for the arguments (e.g. numeric arguments) then the
common layout will be that of the variable. Otherwise it will be that of the
arguments on the condition that all indeterminates that appear in the layout
of the variable be substituted (8,9).

The substitution itself is given as a macro, subst, described
formally below.

What it does 1s to replace each indeterminate by the

corresponding argument given in the pair (indeterminate, argument).

b)
subst ,EXEC subst
_).
ALG «KLG,EXEC PAIR
1 Ll
ubst subst
y % .exp,PAIR . eX
v
A
pair(u,v)
layout layout
3 X X

- 129 -

A «Q.forms Lﬂ.exp

pairing(u,v,w

subst
y
layout
X
EXEC
subst (v,u)
olayout
X X

Nt
y

-
EXEC
subst (v,u)
ayout

X

subst
N y
EXEC
subst (v,u)
nolayout
layout onolayout

X

~ 130

K PAIR
3 d ERROR
°laxout
X
blank
8
subst
y
.Layout
subst (v,u) layout
z
9
ubst subst
>
w A
y y w v
uJ»/\ y
10 v X J
The macro pair is defined by:
top top
START] d//L\y N PAIR Pl
u v u v
PAIR AIR
Pl u v > Pl
u v
b4 v x v

- 131 -

PAIR
P, . ERROR| P,
A
X
PATR PAIR
-> P P
P3 A 3 4
u
blank
x Doanx
X
to
earglay (w)
P, PAIR > STOP [ERROR
|
The macro operation pairing is defined by:
START] top top
-> P
1
PAIR
u v W
u v w
AIR
\4 AIR
> o
Pl X|y z t ; . Pl P2
.value xy J//
v u
/ v
x é
1 u Xl
ovalue
u

- 132 -

ATR
- Xy z t
Pl PZ
' / v
u Xl
PAIR
> ERROR} P.
u v
x
PAIR
J/// -> ERROR P4
v
u
X
AIR
i
> ERROR P5
v Tu
X y
AIR AIR
W
u > u P5 P6
blank
% u
Lo
PATR > ®Lop STOP |ERROR
X arglay(x)

- 133 -

Finally the macro subst is defined by:

START

otop

A

>L§

SUBST ARG

<
[

v, SUBST

/N

UBST

%
NDSUB

P

SUBST

AY]
/\ENDSUB

o V,ENDSUB

«
/

©, SUBST o
b SUBST

0@ »&, ENDSUB
LENDSUB

@indet, SUBST ARG
u

@indet ,ENDSUB ARG
v

- 134 -

top
@Lop IsTop
v
>
NDSUB ARG
v u
9.3 Evaluation of addition, subtraction, multiplication and division
a) First if one of the two operands in any arithmetic operation is

short and the other long then convert the short operand to a long one (1,2).
We can evaluate one of the four elementary arithmetic operations only
if the two operands (valueé) are of the same type,
For the case of algebraic operands, the layout of each of them
should be identical to that of the other before the operation can be performed
(6,7).
For integers and reals the following basic functions are used and their
formal definition is given below:
— drop (integer arithmetic operations): This function has three
arguments, an arithmetic operator and two integers. Its value
is the result of applying this operator to the given integers.
— ineg (integer negation): This function gives the negation of an
integer.
— rarop (real arithmetic operations): This function has three
arguments, an arithmetic operator and two real numbers. Its
value is the result of applying the operator to the given reals.
- rneg (real negation): This function gives the negation of its

real argument,

- 135 -

For algebraics and rationals some macro-operations are used.

They are the following:

b)

qarop: Given an arithmetic operation (+,-,*,/) and two
representations of rational numbers, this macro operation
gives a tree which is a representation of a rational
fraction result of the arithmetic operation on these
rationals.

alop : Given an operation in the set {+,-,*,/} and two trees each
representing an algebraic, this macro operation gives a
tree representing the algebraic resulting from the two given
algebraics by application of this operation.

asimp: Given the algebraic options and a tree representing an
algebraic, this macro operation transforms the tree
into a simplified one representing the same value of the
algebraic., The degree of simplification depends on the
specified options. (For a complete description of these

options and their meaning see [l], D3 and L7).

VAL ¢(LVAL LVAL (LVAL

LVAL VAL LVAL LVAL

- 136 -

INT,A,iarop(v,Xl,Xz)

M v y//i;f\\RAT A

w qarop (V,x,y)

optsglob
-
G,A 101 02 103
asimp(a,b,c,
alop(v,x,y)) a be

S layout layout
u

w asimp(a,b,Cy
alop(V,x,y))

layout

- 137 -

& @
>
\:E '
INT, A, X J INT,A,ineggx)
8
) &
+
v REAL ,rneg(X)
REAL,A,X v
9
e
.—)
/,RAT, A
10 1 X2
S - © layout
layout & ALG .\
ALG, A
v
u
11
/
>
W /,RAT , A
INT,A,)(l INT,A,XZ
12
/
>
REAL, X

13

v

- 138 -

1y

! RAT, A
w qarop(/,x,y)

15

asimp(a,b,c,
alop(/,x%,y))

16

/[ggif?lob
@ J 102 POB
a b c

ALG,)\
5imp (a,b,c,
alop(/,x,y))

- 139 -

The basic functions used here are:
ineg : Z ~+ Z
z > -z
rneg : R~>R
r > -t
iarop : {+,-,%,/}x 2 xZ > 2
v ,z52,) >z, Vaz

1 2
rarop : {+,-,%,/} x Rx R+ R

v ’rl’rz) g rl \Y r2
9.4 Evaluation of Exponentiation
a) For an integer exponent the result should be of the same type as the

base (1-4).

An algebraic can only have an integer exponent (3).

If the exponent is not integer the result is real, So, a trans-
formation to real of the base and exponent is done if they are not already
real. Then the exponentiation is performed (5-10).

The functions that are used here are:

— rediv (for real division) previously defined.

— cir (for conversion from integer to real) also previously

defined.

—~ iexpo (for integer exponentiation) has two integer arguments
the second one being positive. It computes the e#ponentiation
as defined formally below.

— rexpo (for real exponentiation) has two real arguments and it

computes the exponentiation as defined formally below.

b)

- 140 -

The new macros used here are:

- gqexpo (for rational exponentiation): Given a tree representing

a rational fraction and an integer this macro yields a tree
representing the rational fraction resulting from exponentiation
of the numerator and denominator of the given rational fraction.
aexpo (for algebraic exponentiation): Given a tree represenﬁing
én algebraic and an integer this macro gives a tree representing
the algebraic that results from exponentiation,

qsimp: Macro for simplification of rational numbers. Given

a tree representing a rational, this macro yields a tree
representing the simplified rational number equivalent to the

given one.

W INT, A
v w iexpo(X,p)

(=

RAT, A

RAT, A INT,A,X v w gsimp (gexpo(u,X))

- 141 -

4 ptsglob
-
101 [102 {103
a b “c
W
ALG, A
ALG, A NT,A,X asimp(a,b,c,
u ' aexpo (u,X))
layout
X
1«
v W
REAL,A,X1 OINT,A,Xl REAL,X,cir(XZ)

REAL,A,X REAL,A,rediv(m,n)

REAL,A,X

/ JRAT)\

REAL,A,¥ L(REAL,A,rediv(m,n)

r _

- 142 -

/I\
_+
v "
REAL, A, X REAL,), LREAL,A,X

rediv(k,%)

) /I\
0 REAL, A ,rexpo (X »X,)
v

REAL,), X 4REAL, A, X,

+
w
0 0
-5
v w
REAL,A,cir(x) LREAL,A,rediv(m,n)
b

/ ,RAT, A

10

/t\ .
>
" v W
INT,X,Xl REAL,)\,X2 REAL,A,cir(Xl) REAL,A,X2

- 143 -

The following new functions are defined:
iexpo : Z X Z+ > Z

Zy
(zl,zz) >z

rexpo K'x R + R

r
2
(rl,rz) >r

9.5 Conversion of types in expressions

a) When we have either an arithmetic operation or comparison between

two operands of different types it is possible to convert some types to

others, More precisely if the types are comparable the value of lower type

in the hierarchy is always converted to the higher type.

b)

- 144 -

REAL, A, REAL, A, X
rediv(k,4)

REAL,A,rediv(k, %)

- 145 -

-
8
1 (1
-5
v \% v W
INT,X,Xl REAL,A,X2 REAL, A, REAL,X,X2
. c1r(xl)
>
v
REAL,X,Xl INT,A,)(2 REAL,X,cir(XZJ
10
9.6 Overflow
a) When a function is not defined for the given arguments the value is

outofdomain. In this case an overflow or a loverflow occurs depending

on the precision of the calculations. The execution terminates with an error.

b)
r I ERROR
>
1 L VAL ,out-of~domain overflow
(
> ERROR
2 ,LVAL ,out-of-domain loverflow

- 146 -

10, Relation -~ Comparison

a) After we obtain the same type for the operands of a relation or
comparison (9.4) we can effectively compare the operands.

For integer and real operands, functions are used to perform

the comparison, their result being logical. These functions are:

— icomp (for integer comparisons) that has three arguments
the first one is a relation symbol and the other two integers
to be compared. The result is true if the relation holds
between these integers, false otherwise.

— rcomp (for real comparisons) as for icomp except that it is
for real operands instead of integer operands.

For rational and algebraic arguments of a relation macro

operations are used,

— qgcomp: Macro for rational comparison; it compares two rational
numbers given by their tree representation. The comparison
symbol constitutes the first argument for this macro,the
other two being the numbers. The result is true if the
relation holds, false otherwise,

— acomp: Macro for algebraic comparisons; as for qcomp except

that the trees represent algebraics instead of rationals.

b)

- 147 -

v
LOGVAL , icomp (1,7 5X,)

W
INT,A,X; lINT,A,XZ

pe {>,5=,<,<=,<>,==}

U
>
v W °LOGVAL,rcomp(u,)(l,Xz)
v w
REAL,)‘:X]_ REAL,}"XZ

o
>
v W LOGVAL
v w qcomp (U,x,y)
RAT, A RAT, A
X y

i My
v v LOGVAL
. v w acomp (U,%x,V)
ALG, A ALG,)

X Ly
M € {==,<>}

- 148 -

11. Algebraic options statement

a) When executed, the option statement should set a label of the
global options tree to the wanted value., So that whenever we want in the
program, we can change the options, thus changing the degree of simplifica-

tion of algebraics from this point on.

b)
EXEC,stat,opts coptsglob END gstat, o9ptsglob
pts
/\w L ¢
2 ¢ v
" 2
1 1 wz
12. Procedure invocation
12.1 The invocation statement
a) When a procedure is invoked the whole of the'procedure tree

except the subtree corresponding to the static internal variables (labeled

staint) is copied into the invocation tree (1).

Afterwards, the trees for the inbound and outbound transmission
of arguments are constructed using two macro operations (described in
the following paragraphs), that are inbound and outbound.

The initialization of the declared variables of this procedure
follows by putting the keyword INIT on the top node (2).

When the execution of the procedure ends and if it is an invoca-
tion statement (not a function primary) then all what is not in the list of
actual parameters will be deleted to come back to the original form of.
the invocation statement tree (3). For the function tuis is done after

computing the value of the function (4.b, 11-14).

- 149 -

b)
roc nvoc invoc , INIT
u_ _ u
>
staint f.act f.act
1 v v

L.stat
inbound (v,u) t outbound(u,v)

2

invoc ,END

L.act
3

12,2 Macro Inbound

a) Given a list of dummies and a list of actuals this macro assigns to

each dummy the corresponding actual, If there is no corresponding actual
it puts blank. If there is no dummy variables but there is some actual
variables or if the number of actuals is greater than that of the dummies

an error is detected. Its formal description is given below.

- 150 -

b)
to
START T—i _—n
3
-S>
Jﬁfz;m f.act
v
etop
Ly w > L. L
1
.dum L2.act fL.act
u v
X - y
to
L, w2 R o STOP | L
w
.dum L.act
L X ERROR L
3 -
~dum L.act
L, ;ti - 3 STOP
% .dum 2.act

- 151 -

12.3 Macro Outbound

a) Given a list of actuals and a list of dummies this macro assigns the
value of each dummy into the corresponding actual if it is a variable
and the dummy does not have the value attribute (dummy labels have the value
attribute).

If the list of actuals is empty then there is no outbound transmission
to perform,

If the number of actuals 1s less than that of the dummies we just
stop after the last actual,

The number of actuals cannot be greater than that of the dummies
as it was checked in the inbound transmission before. 8o there is no need to

check it again.

b)
START)
- L4 Ll
L decl top
! Lt
L.attrib
value
.act LwR.dum
v u
value

- 152 -

N L
1
decl
L.attrib
>
value evalue
to
Ly
.act £ .dum
v u
X y
W to
> Ll
ﬁ.dum .act 2.dum
v
to ®
W STOP
-3
.act £.dum
v u
top [
> ® 5T OP
w
.act 2 .dum

- 153 -

12.4 Arrays in inbound and outbound transmission

a) ' Arrays as a whole can be transmitted as actual or dummy variables and
we must perform consequently an assignment in one direction or the other.

But they must have the same type, precision and identical descriptor blocks»

to make the assignment possible,

b)

- 154 -

13, The Input/Output statements

a) When a read statement is to be executed, the first element of the
input data is evaluated. When the value of this data expression is found,
its value is assigned to the variable. |

When we want to write the value of a variable this value is
transferred to the output list.

If we want to read and there is no more input data then the

execution stops.

b)
oread,EXEC oread
u u
>
1 3 bREAD
oREAD -input : oREAD input
R e
>
) \datastat SEXEC
read input read oinput
o U
- =,stat LDEL
READ,var l
—_— A,T :
x A,T
v ar A, T v
3 X v
ead input
u >
READ,elem
X
A,T
v
[N

u oinput
DEL u
X
A
5 y
read read
=,stat ,END
REND
X
X
6 y
read read
u/\v u v
1, REND READ
read read ,END
u uy—=22
REND

oREAD @input

oREAD @inEut

STOP|

-write ,EXEC write
u u
1o 2arg rg,EXEC
rwrite goutput write W output
w
pstring ,EXEC string,WEND
u u
11
write write
@output utput
u arg % DEL
Al Al v
12 v v

- 156 ~

oWrite write
w w
v DEL -
arg,WEND
u
A
13 v 1
write write
(K :,, i /\
ND EXEC
14
write uowrite,END
-5
WEND

15

- 157 -

REFERENCES

1. W.S. Brown, ALTRAN users' manual, Bell Telephone Laboratories,
New Jersey, 07974.

2. K. Culik II, A Model for Formal Definition of Programming Languages,
Department of Applied Analysis and Computer Science,
University of Waterloo, Research Report CSRR 2065, June 1972,

3. A.D. Hall et al., ALTRAN System for Rational Function Manipulation -
a survey, CACM 14, 8(1971).

4. D.J. Rosenkrantz, Programmed Grammars and Classes of Formal Languages,
JACM, 16, 107-131 (1969).

___arglay

<actual>
acomp

aexpo

ALG

alop

<array var>
asimp
<attrib>

<attrib stat>

<back ref>

<body>

<char string>
check

cir

constr

<control wvar>

<D.B.>
<data exp>

<data stat>

INDEX

146

140

73

- 135

- 127

51
135
33

35

86

56

49
117
113

94

53

32
85

85

<digit>
<doend-stat>
<do-group>
<do-stat>
<dum>

<dummy label>

END

ENDIN
<end-stat>
EXEC

<exp>

<form>

<group>

<heading>.

iarop
icomp
<ident>
iexpo
<if-group>

inbound

53
51

48

90

92

49

88

42

39

55

59

139

146

24

143

55

149

<indet>

ineg

INIT

<input>

INT

<int const>
<int exp>
intsh
<invocation>

<I/0 arg>

<job>

<label>

<label var>
<label exp>
<f.attrib stat>
<layout>
<letter>
<L.exp>

<log const>
<log exp>
LOGVAL

<log var>

Page
32

139

90

86

73

26

43

113

51

49

88

46

46

47

37

32

24

42

30

45

96

44

LPRIM
LVAL

<f.var>

outbound

<output>

pair
pairing
<parm>
<precision>
PRIM

<proc>

<prog>

qgarop
qcomp
gexpo

gsimp

rarop
rcomp
RAT

REAL

<real const>

realsh

rediv

50

151

86

130

131

53

33

101

67

81

135

146

140

140

139

46

73

73

27

113

113

<relation>
rexpo

rneg

<scope>
SELECT

SELEND

<s int const>

<subject>
subst
<subst>
<stat>

<st class>
STOP

<struct>

tov

<type>

<unlabeled group>

VAL

<var>

143

139

33
101
103

27

34
133

40

48

33

90

33

127

32

55

98

39

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

