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INTRODUCTION

Bruno and Altman [18] have developed an interesting theory of
asynchronous control structures of modular design. This theory has been
further extended by Altman and Denning [19]. However, the exposition relies
to some extent on engineering intuition, rather than on mathematically
rigorous models. On the other hand, Patil [4] and Dennis [5] have
demonstrated the applicability of Petri nets to the precise specification
of asynchronous control structures. It thus becomes a challenging task to
reformulate the work in [18], [19] in a mathematically rigorous way by
meéns of Petri nets.

The second part of this Report (Sections IV-VI) is devoted to
this task. A similar attempt has also been undertaken by Jump and
Thiagérajan ([16],[17]), but our approach differs considerably from theirs.

The first part (Sections I-III) of this Report presents a unified
introduction to Petri nets, covering two different versions, which appear
in the literature. Emphasis is both on mathematically precise définitions
as well as suitable system-oriented interpretations. This first part
relies heavily on [31, [71, [9], [10] and uses freely material from these
sources.

Throughout this report we have stated-theorems~precisely, but have
omitted their proofs.

A comprehensive annotated bibliography on the theory and applica-

tions of Petri nets is given at the end of this Report.

This work was supported by the National Research Council of Canada,
Grant No., A-1617.



I. BOOLEAN-TYPE PETRI NETS

Def.l.1 a) A Petri Graph is a system

P

<S8,T,R>
where S is a finite set of places
T is a finite set of transitions

and Rc (S xT) u (T x 8),

The place s is an input place of t € T, iff sRt and an output place of t,
iff tRs.

b) A Boolean-type Petri Net (BPN) is an ordered pair <P,m>

where

P = <S,T,R> is a Petri Graph and m is a B-type marking of P,

i.e. a function m:S - {0,1}.

In the system-oriented interpretation of a BPN, a place s
corresponds to a certain condition which is either satisfied by the system
[i.e., m(s) = l]‘or does not hold [m(s) = 0]. A "fireable" transition,
to be defined next (Def.l.2), will correspond-to an:event (change-of
conditions) which may occur in the system.

Petri nets are conveniently represented by means of a diagram

as shown in Fig.l.l. The symbols used in BPN-diagrams are listed below:

¢
CB = place s with marking m(s) = 0

¢() = place s with token, i.e. m(s) = 1.

, tL

Q-—Tlk/ = sRt
) ,‘

t -G

transition t

tRs



FIG.1.1 - Example of BPN <P,m> .

SYSTEM INTERPRETATION OF FIG.l.l

The Petri graph of Fig.l.l represents e.g. a l-server,
2-customer system, where the places correspond to system conditions as

specified below (i ¢ {1,2}):

i . . .
8] = Customer in lane i requests service
Sg ~ Server free

i . < .

Sy = Customer in lane i is being served

i .

83 - Lane i is free.

The marking shown corresponds to a system state, in which the

server is free and two customers request service simultaneously.



The transitions in this example may be interpreted as the

following events:

i . . :
t1 — The server starts serving the customer in lane i
tZ - The server finishes serving the customer in lane i and
the customer leaves

i ;
t3 - A new customer enters lane i.

Note that the events represented by ti and ti may not occur
simultaneously, since there is only one server. We shall refer to such a
situation as a conflict (see below, Def.l.3),

Def,1.2 Let <P,m> be a BPN. The transition t is fireable (in <P,m>) iff

(vs € S)[sRt +~ m(s) = 1]
Thus in Fig.l.1l, the fireable transitions are ti and ti.

For a fixed Petri graph P we set

F A {t|t is fireable in <P,m>} .

Def.1.3 Let <P,m> be a BPN and V ¢ Fm. V is simultaneously fireable

iff

GGs € S)[|{t e V|sRt}| < 1].

<P,m> is conflict-free iff Fm is simultaneously fireable.

In Fig.l.1, Fm = {ti,ti} but Fm is not simultaneously fireable, i.e. the

BPN is not conflict-free.




Def,1.4 Let <P,m> be a BPN, and let V be a set of transitions which is
simultaneously fireable. We define mxV to be the B-type marking n of P

specified by:
7t = mrw-=Tw v R

where R(V) A {s| @t ¢ V)tRs}
R_].T.(V) A {s| @t ¢ V)sRt}
-1
and m (1) A{s|m(s) = 1}
We shall say that the net <P,n> is obtained from <P,m> by firing V.

If Vv = {t}, then R(V) is the set of output places of t and

R_l(V) is the set of its input places.

Referring again to Fig.l.l and writing m*t for m*x{t}, we have e.g.

1 1. .2 1
mkt] = m, where m 1) = {sl,sz}.
1 1 1,0 2 1
Now le = {tz} and ml*t2 = my, where m, @ = {Sl’SO’SS} and
1.2 1.,
F = {t3,tl}. If we now assume that only ty fires, then the system

2

. 1
returns to the state represented by m, since mykty = m.



IT. INTEGER-TYPE PETRI NETS

Let N denote the set of non-negative integers.

Def.2.1 An Integer-type Petri Net (IPN) is an ordered pair <P,m> where P

is a Petri graph and m is an I-type marking, i.e. m:S - N,

Example 2.1

If the place (g in Fig.1l.1 is replaced by , i.e, m(so) = 2,
0o o

we obtain an IPN which may be interpreted as a 2-server, 2-customer system.
The modified firing rules are specifiedvin the following definitions,
Def.2.2 Let <P,m> be an IPN. The transition t is fireable (in <P,m>)

iff (ys € S) [sRt » m(s) > 0].

Def,2.3 Let <P,m> be an IPN and V a set of transitions of P. V is

simultaneously fireable (in <P,m>) iff

(ys € S) [m(s) = I{tlt e VA th}I]

We again denote by Fm the set of all fireable transitions in <P,m>

and call <P,m> conflict~-free iff Fm is simultaneously fireable,

Def.2.4 Let <P,m> be an IPN, and let V be a set of transitions which is
simultaneously fireable. We define m*V to be the I-type marking n of P

specified by:
s £ S)[n(s) mm(s)-|{t « V]sRt}| + Ht e V|tRs}|]

The firing of a single transition consists in decreasing the mark-
ing of its input places by 1 and increasing the marking of its output places

by 1.



Hence the marking mxV may be obtained by firing each transition

in V separately.

The IPN of Example 2,1 is conflict-free and we have:
.12
Fo= {tl,tl}

m.*Fm =m, where ml(s%) = ml(sg) =1 and ml(s) = p for all

other places.

Il
B

= = *
If we set m, ml*le and m, = m, sz, then mg

The following two definitions apply to both BPN's and IPN's.

Def.2.5 Let <P,m> be a Petri net, and 0 a sequence of markings

W= Mg, Wyyee. k = 0,

0 is a single-firing sequence for <P,m> iff either k = 0 or there exist

transitions ti’ 1 <1i<k, such that m, = mi—l*ti' The: outcome of ©

is the marking m .

0 is a total-firing sequence for <P,m> iff <P,mi> is conflict-free for

<4i=< - = * .
0<i<k-1and Mo =W Fmi
k-1
The total-firing sequence O terminates iff F = ¢. We set 0 = U Fm .
' i=0 i

Def.2.6 A Petri net <P,m> is live, iff for every single-firing sequence
0 for <P,m>, with outcome m' and every transition t of P, there exists a

single-firing sequence ¢' for <P,m'> with outcome m" such that t ¢ Fm" .

Def.2,7 An IPN <P,m> is k-safe, k 2 1, iff for every single-firing

sequence 0 for <P,m> with outcome m', and every place s of P, m'(s) < k.



ITI. MARKED GRAPHS

In this section we summarize some of the results on marked graphs

from Ref.[7].

Def.,3.1 A Marked Graph (MG) is an IPN <P,m> in which all places have

indegree 1 and outdegree 1.

Def.3.2 Let <P,m> be an MG, and C a directed circuit of P. The token count

m/C is defined by:

m/C A E m(s)
seC

Lemma 3.1 The token count of a directed circuit in an MG does not change
by firing.

Theorem 3.1 An MG <P,m> is live iff the token count ‘of every directed
circuit is positive.

Theorem 3.2 A live MG is l-safe iff every place is in a directed circuit

with token count 1.



IV. CONTROL NETS

Def.4.1 A Control Net is a triple C = <P,m,L>, where

1) <P,m> is a BPN in which all places have indegree < 1 and

outdegree < 1. A place with indegree 0 is an input terminal of C, and a

place with outdegree 0 is an output terminal of C. An input (output) link

of C is an ordered pair, the first component of which is an input (output)
terminal and the second component an output (input) terminal.

2) L is a set of links of C, such that every terminal of C
belongs to exactly one link in L.

3) (¥ys € S) [s is a terminal of C - m(s) = 0].

Examples of Control Nets

The following additional symbols will be used in diagrams

representing control nets.

OO = O—0O—01
o—~0 0—e—0

r— — e — -
a (:>“}ﬂ, :lq.(:>b
! | 1 , output link <b,,b,>

1°72

]

input link

)
10ty | azo"'lﬁ.._..-.. 1“"0’2

which may be used to form composite control nets, as discussed later.
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Fig.4.1 - WE(W) - module Fig.4.2 - JUNCTION(J) - module

Fig.4.4 - TRIGGER (T) - module Fig.4.5 - SINK - module
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Interpretation of Basic Control Nets

The SINK-module (Fig.4.5) may be considered to represent the con-
trol part of an operational unit, functioning asynchronously. Upon receipt
of a START-signal (this corresponds to placing a token in al) the unit
performs a well-defined single task (the transition fires). It indicates
completion of the task by returning a DONE-signal (this corresponds to the

appearance of a token in a2).

Consider now e.g. the S-module (Fig.4.3), and assume that SINK-

modules are connected to output links b and ¢, as shown in Fig.4.6.

b, &y,
t
el 2 cl
c t
r C
O= 1 (O
) ts

Fig.4.6 - S-module with output link terminations

This control net represents a system with two operational units which are
to be activated sequentially,

If the system receives a START-signal (i.e. a token is placed
in al), the events represented by the following transitions will occur

in the order indicated:

t t,s tge

10 Epe Foo
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Thus the second operational unit (tc) will be activated only
after the first unit (tb) has issued a DONE-signal. After the second
unit has completed its task, the system issues a DONE-signal (i.e. a
token appears in az).

If an attempt is made to restart the system before it has issued
the DONE-signal, this attempt will remain ineffective (since ty becomes

refireable only after t, has fired).

3
If this and similar precautionary measures are not required, the

internal connections between transitions tl’tZ’tB in Fig.4.6 may be omitted,

Def.4.2 Let C be a control net, and a = <al,a2> one of its input links.

By terminating link a we mean the connection of an outside transition ta

as shown in Fig.4.7(a). The termination of an output link b = <bl,b2>

is similarly defined (see Fig.4.7(b)).

! lﬂ ‘
a |
\ 1
~G— .
\ L
t | t
a { | b
\ B
N |
al !0 I ﬂf
{ 2 2
C C
(a) Termination of Input Link (b) Termination of Output Link

Fig.4.7 - Link Terminaﬁions
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Def.4.,3 Let C be a control net and a = <al,a2> one of its input links.
By starting input link a we mean the placing of a token in its input
terminal ay.

Def.4.4 A control net contains a deadlock iff the BPN obtained by

starting all its input links, and terminating all its input and output
links is not live.

One easily verifies the following (cf. Thm.3.l).
Theorem 4.1 If a control net contains a directed circuit with token-
count 0, then it contains a deadlock.

An example of a deadlocked control net, obtained by 'cascade-

connecting" an S-module (Fig.4.3) and a J-module (Fig.4.2) is shown in

(el

S-module J-module

Fig.4.8.

b

a10

———

2, O 2Ok

S a -

Fig.4.8 - Example of Control Net with Deadlock

On the other hand, none of the basic control nets (Figs.4.l-

4.5) contain deadlocks.
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V. COMPOSITION OF CONTROL NETS

Def.5,1 Let Cl and C2 be control nets., Let B = <bl,...,bk> *k = 0)
k

be a sequence of different output links of C1 and o = <al,...,a >
a sequence of different input links of CZ‘ The B/o-composition C of
C. and C, is the control net obtained from Cl and C2 by identifying links

1 2
bl and al for all i, 1 < i < k, as indicated in Fig.5.l.

b
-
[ ]
L]
r .
" >
. (: bl=al |
. | ' Output
} .
.""'T ' N . Links
. of C
InputJ :bknak .
Links e e
of C (: .
4 . Legend
[ o " = o | N )
: - =
H
N l—»

Fig.5.1 - Composition of Control Nets

In the sequel we shall be concerned with compositions of the
basic control modules W, J, and S. In order to simplify the representa-

tion of such composite control nets, we use the G-representation of these

modules, as shown in Fig.5.2.
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b
® e
®c
a
ecC b e
(a) G-representation of - (b) G-representation of
W-module J-module
b
* L
a
.

(c) G-representation of
S-module

Fig.5.2 - G~Representations of W-, J-, and S-Modules

In this G-representation a link is represented by a single dot (*). An
arrow pointing towards the module indicates an input link, an arrow
pointing away from the module indicates an output link.

The star (%) in Fig.5.2(c) is used to indicate the output link
of the S-module which is t§ be activated first (primary output link).

Fig.5.3 shows the G-representation of the control net of Fig.4.8.

Fig.5.3 - G-representation for Fig.4.8
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Def.5.2 A WSJ-net is a control net obtained from W-, S-, and J-modules

by (repeated) composition.

For WSJ-nets the converse of Theorem 4.1 also holds:
Theorem 5.1 A WSJ-net contains a deadlock iff it contains a directed
circuit with token count 0.

The following Theorem 5.2 is a mathematically precise formulation
of a result first stated in [19].
Theorem 5.2 A WSJ-net C contains a deadlock iff there exists an S-module
S and an output link b of C such that the G-representation of C contains a
directed path from S via its primary output link to b, as well as a directed

path from S via its secondary output link to b.
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VI. EQUIVALENCE OF CONTROL NETS

Def.6.1 Let C be a Control Net, A a set of input links of C, and B a

set of output links of C. An A/B experiment on C consists of terminating

all output links in B and starting all input links in A. The experiment
terminates if there exists a terminating total-firing sequence O with out-
come m' for the Petri Net <PB’mA> where PB is the corresponding extension
of P, and m, the extension of m,
Assume now that the A/B-experiment on C terminates, that the

corresponding firing sequence is 0, and that the outcome of o is m'.
The outcome of this experiment‘is the ordered pair <A',B'> where
A' A {a]a is an input link of C and m'(a,) = 1} and B' = {b ¢ B|tb e G}
Def.6.2 A control net C is well-formed iff

1 C contains no deadlock

2) Every A/B-experiment terminates and its outcome <A',B'>
satisfies the condition A' < A,

3) If A is the set of all input links of C, and B the set of
all its output links, then the outcome of this A/B-experiment is <A,B>.

For WSJ-nets we have the following result.

Theorem 6.1 A WSJ-net is well-formed iff it contains no deadlock.

Def.6.3 Let C and C' be well-formed control nets. C and C' are equivalent
iff there exists a 1-1 correspondence between their input links as well as
a 1-1 correspondence between their output links such that corresponding

experiments always yield corresponding outcomes.
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Fig.6.1 illustrates Def.6.3. Corresponding links of C and C'

have the same label.

(a) a well-formed control net C

.

(b) a well-formed control net C' equivalent to C

Fig.6.1 - Equivalent well-formed Control Nets

Def.6.4 Let C be a WSJ-net and B its set of output links. We define a

precedence relation < on B as follows:

b < b' iff there exists an S-module S such that the G-representation of C
contains a directed path from S via its primary output link to b, and a

directed path from S via its secondary output link to b'.
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Referring to Fig.6.1, we have for both the control nets C

and C':

< = {<c,e>,<d,e>}

Def.6.5 Let C be a control net, A the set of its input links, and B the

set of its output links. We define an i/o-relation p & A X B as follows:

apb iff the G-representation of C contains a directed path

from a to b.

Referring again to Fig.6.l, we have for both C and C':
p = {<a,c>,<a',d>,<a,e>,<b,e>}

The following theorems are precise formulations of results
stated in [18], [19].
Theorem 6.2 Let C and C' be well-formed WSJ-nets. C and C' are equivalent
iff their links can bé relabeled such tﬁat their precedence relations
coincide, as well as their i/o relations.
Theorem 6.3 Let C be a well-formed WSJ-net. Thetre exists an equivalent
well-formed WSJ-net C' which is the composition of control nets CW’CS’CJ
(in this order; see Fig.6.1(b) for an example), where CW contains only

W-modules, or is a trivial through-connection, ‘and similarly for CS and CJ.
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