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ABSTRACT
Macro OL-systems and two of their subclasses, called FMOL-
systems and RMOL-systems are introduced. Macro OL-systems are motivated
by theoretical models for the development of biological organism,
Various properties of the families of languages generated by FMOL-systems
and RMOL-systems are studied. It is shown that the family of languages
generated by RMOL-systems forms the minimal full -abstract family of languages

containing the family of OL-languages.



1. L-systems, defined by Lindenmayer in [7], have been used for

the modelling of the development of simple filamentous organisms. At
discrete moments of time each cell of such an organism changes into zero,
one or more new cells. In an L-system, each type of cell is represented
by a symbol and the changes are described by a finite set of productions.
OL-systems are L-systems which do not consider the possibility of inter-
action between cells, and so all changes are described by a finite set of
context~free productions.

Properties of OL-languages, generated by OL-systems were studied
in [4], [6], [8]-[13]. It has been shown that OL-languages are not closed
under any of usual operations on languages as union, star, homomorphism
and they even do not contain all finite sets., The family of OL-languages
has been called an anti-AFL in [14].

We will consider the so called macro OL-systems, in particular two
special cases, FMOL-system and RMOL-systems, These have quite natural
biological motivation, and furthermore languages generated by them are
closed under many operations and mappings on languages.

In macro OL-systems each type of cell is described as in OL-
systems by a symbol called a terminal. In addition, there are non-
terminal symbols which represent elements of the macro structure of an
organism, namely groups of adjacent cells of the organism., The develop-
ment of an organism is then described by an OL-system over nonterminals
and by rules for transforming a macro structure representation into a

cell-representation, i,e. replacement of nonterminals by terminal strings.



In an FMOL-system, a nonterminal symbol may be replaced by
one of a finite number of terminal strings. In an RMOL-system a non-
terminal may be replaced by a string from a regular language over the
terminals. In macro OL-systems, only those developmental processes which
lead from the starting ﬁonterminal to a terminal string are valid.

In the next section, the definition of OL-systems is reviewed
and some notation used throughout the paper is introduced.

We then continue with the definition of macro OL-systems and
of their two versions, namely of FMOL-systems and RMOL-systems,
together with the definitions of FMOL-languages and RMOL-languages. Further-
more, the relations between FMOL-languages and context-free and RMOL-~
languages are studied.

In section four the machine characterisations of FMOL-systems
and RMOL-systems by FM-automata and RM-automata respectively are given.

In the last section the closure properties of the families of
FMOL~languages, RMOL~languages are studied and it is shown that RMOL-
languages form a full AFL (see [3]). Finally, it is proved that the family

of RMOL-languages is the smallest full AFL containing OL-languages.

2, Preliminaries. We shall assume that the reader is familiar with
the basic formal language theory from [5] and with the notion of AFL [3].
Now we will recall the definition of OL-systems and OL-languages. The
definition given below is taken from [12] and only very slight modifica-
tion in notation are made to be consistent with the notation used in the

definitions of macro OL-systems in this paper.



Definition: An OL-system G is a 3-tuple (I,P,0) where

(a) L is a finite nonempty set of symbols;

(b) P is the finite set of ordered pairs from I X Z* called the
productions. A production (a,a) where a ¢ Z, o € I* is usually written
as a *> Q-

(e) g€ Z+ is the initial string.

Any OL-system has to be complete which means that for every a ¢ X
*
there must exist a string o € ¥ such that (a,a) € P.
Let o = a;a,...a , Be I*., o is said to directly derive B in an

OL-system G, written o => B if there exist Bl,BZ,...,Bn e ©¥ such that
G

B = Bl BZ"’Bn and a, * Bl, a, +.82,...,an > Bn are productions in P.

Let %9 be the reflexive and transitive closure of the relation
Z> on I*, Language L generated by an OL-system G is denoted L(G) and is

defined to be the set {w ¢ Z*: o %9 w}.

Notation: Throughout the paper if r is any binary relation then t denotes
the reflexive and transitive closure of r, without repeating it specifi-
cally in every case.

The family of A languages is denoted by;ZfA, e.gcifeF is the
family of CF languages andéZiOL is the family of OL-languages.

Symbol € is used throughout the paper to denote empty word.



3. If we compare OL-systems and CF grammars we notice that in

OL-systems:

(a) no difference is made between terminals and nonterminals;
(b) OL-systems require completeness;
() one step of a derivation consists of simultaneous replacement

of all symbols of a string.

We will now define a generalisation of OL-systems,called macro-
OL-systems,which still requires the simultaneous replacement of all symbols
of a string in each step of a derivation, but which uses two kinds of symbols
the nonterminals and the terminals in a similar way like context-free
grammars. There are only productions for replacement of nonterminals and
only terminal strings are in the language generated by the system.

A macrq OL-system works like an OL~system except that the
produced strings are only intermediate strings of nonterminals. For this
purpose, it uses productions with nonterminal strings on the right-hand
sides. There is another type of productions where the right-hand side
denotes a language over terminals. A terminal string in the 1anguage
generated by the system may be obtained by replacing each nonterminal,
say A, in an intermediate nonterminal string by a terminal string from a
language denoted by d where A + d is a production.

Definition: A macro OL-system G is a 4-tuple (N,T,P,S) where

(a) N is a finite, nonempty set called the nonterminals;
(b) T is a finite, nonempty set called the terminals, T n N = ¢;
(c) P is a finite set of ordered pairs of the form (A,a) called the

productions with A € N, where either & ¢ N* or o is an effective
description of a language over T. A production (A,a) in P is

usually written as A + aj-



@) S € N is the starting symbol.

We say that o directly derives B, and write o E> B, if there
exist n 2 1, Aj,A),...,A in N and B;,B,,...,B in N* u T* so that

o = Al A2 f"“An’ B = Bl 82...Bn and for each k = 1,...,n either Ai -> Bi
is in P or Ai + d is in P where d denotes a language over T containing Bi.
We say that o derives § in a macro OL-system G if o %> B. The

language generated by a macro OL-system G = (N,T,P,S), denoted L(G) is

called the macro OL-language and is defined to be the set {o ¢ T :S %> al.

Note that in a macfo OL-system there is not necessarily a
terminal replacement for every nonterminal.

By restricting the type of languages over terminals which may
be used in productions we obtain a particular class of macro OL-systems.
We will consider two such classes. First, we consider finite languages and

get finite macro OL-systems (FMOL-systems). Clearly, we can write one

production for every string in a finite language and therefore, without
restriction of generality, we may only allow productions of the form
A~ o with o € T® in an FMOL-system (0. denotes the language {al).

Definition: FMOL-system is a macro OL-system
G = (N,T,P,S) with P ¢ N x (8* u T*).

The language generated by an FMOL-system is called finite macro OL-language,
abbreviated FMOL-language.

Note that an FMOL-system is a context-free grammar with a modified
interpretation. A string is generated by an FMOL-system only if in its
context-free derivation tree all the paths from the root to any node

labelled by a terminal are of the same length.



Theorem 1: ;2iCF $ oL
Proof: Let L be a CF-language ' generated by the CF-grammar G = (N,T,P,S).
We may assume that the productions of P are of the form A - 0, where

a € N+ U T*. Construct the FMOL-system G1 = (N,T,Pl,S) where

P, = PU {A > A:A ¢ N}. Then clearly L(Gl) = L(G). Thus.,ZCF _C_DZFMOL.

The proper inclusion of CF-languages in FMOL-languages follows
from the fact that the language L = {anbncnln 2 1} is generated by the
FMOL-system G = (N,{a,b,c},P,S) where N = {S,Al,A,Bl,B,Cl,C} and

P={s~>ABC, A> AA, B~>BB, C>CC, A >~A, B >B,C ~>Cy,

A, »a, A>a, B +¢c, C+cl.

n +b,B>b, C

1 1
Now we will define the second class of macro OL-systems, called

regular macro OL-systems (RMOL-systems)., In an RMOL-system a nonterminal

may be replaced by a string from a regular language over the terminals
given by a regular expression.
Definition: Regular macro OL-system, abbreviated RMOL-system, is a macro

OL-system (N,T,P,S) with P ¢ N X ~* v ET) where E_ is the set of regular

T

expressions over T. The language generated by an RMOL-system is called

regular macro OL-language, (RMOL-language).

Z

Theorem 2: o RMOL*

C
FMOL +
Proof: Inclusion of AfFMOL in &ngDL is trivial. From [4] follows that
the language L ={w ¢ {a,b}*: number of a's in w is 2"} cannot be generated

by an FMOL-system but this language is generated by the RMOL-system

¢ = ({A,B},{a,b},P,A )where P = {A > BABAB, B +~ B, B » b*, A > a}.



4, Now we give a machine characterisation of FMOL and RMOL-
languages,

An RM-automaton is basically a push-down automaton which writes
on its push~-down tape pairs consisting of a symbol of the push~-down tape
alphabet and a natural number which indicates the ''level" of the symbol.
There are two basic kinds of moves of an RN-automaton:

(a) "shift" - an input symbol,or €,is read and a push-down tape 3
symbol with the level number 1,or €,is pushed on the top of the )
push-down tape;

(b) "reduction" - a nonempty string of symbols at the top of the push-
down tape, all of them having the same level number,is replaced
by a single symbol with the level number increased by 1.

Definition: An RM-automaton M is a 7-tuple (K,Z,P,Gl,dz,qo,qf) where

(a) K is a finite, nonempty set of states;

() I is a finite, nonempty set of symbols called the imnput
alphabet ;

(e) I' is a finite, nonempty set of symbols called the push-down

tape alphabet:

(d) 51 is the shift-function Gl:K x (Zu €) + finite subsets of

Kx (T'u €);

(e) 62 is the reduction function GZ:K x TT > finite subsets of K X r;

(£) 4 is the initial state;

(g) q; is the final state,




Note If RM automata were interpreted in the standard way using the
acceptance with final state, they would be equivalent to push-down automata.
However, we will interpret them in a different way.

A configuration of an RM-automaton M is a 3-tuple (q,0,Y) where
qeK, ae ¥ and Y e (I x I)*. In this section I denotes the set of
natural numbers., The intuitive meaning of a configuration is the fqllowing:

- q is the current state;

- 0 is.the unread portion of the input;

- Y is the current content of push-down tape with the top on the

right,

For given RM-automaton M define a relation |- as follows.

(qi,a,yl) Lﬁ (qj’B’YZ) if one of the following two conditions holds

(a) - shift move, (q,,B) € 8.(q.,a), oo =aB, ae Zu {e} and v, = v,cC
i’ 1'% 2 1
where ¢ = (B,1) if B ¢ I otherwise ¢ = €, i.e. either nothing
or one symbol a is read from the input tape and if B # € then
B is pushed down with the level number 1;
(b) - reduction move, (qj,A) € 62(qi,3132...Bs) where A;B;,B,),...,B € r
o = B, and there exist Y3 € (r x I)* and n € I such that
Y, = Y3(Bl,n)(B2,n)...(BS,n), Yy = Y3(A,n+l), i.e. a string of
symbols all of them with the same level number from the top of
the push-down tape is reduced to a single push-down symbol with

the level number increased by 1.



The language accepted by an RM-automaton M is denoted by L (M)

and is defined as the set
*
{Oﬂt(qo,d,E)lﬁ(qf,e,A) for any A € T}.

Note that the automaton M accepts only if the length of push-down tape is 1.
Definition: An RM-automaton (K,Z,F,Gl,dz,qo,qf) with the shift function
61 restricted to K X (L u {€}) » finite subsets of K X I' is called an

FM-automaton, i.e, FM-automaton has to push one symbol on tape in every

shift-move.
Now we will show the equivalence of FM-automata and FMOL-systems.

Theorem 3: The family of languages accepted by FM-automata is éﬁ?MOL'

Proof: In this proof the following notation will be used:
If r is a binary relation defined on a set U, then rm,where m =0
is the binary relation on U defined by
(a) a r° o for all a in U;
(b) o™ B, where 0,83 € U and m >0 if and only if there exists

Y € U such that o rm_1 Y r B.

Let L be an FMOL-language given by an FMOL-system
G = (N,T,P,S). We will first construct an equivalent FMOL-system Gl of a
special form. Let T' = {a':a ¢ T}. Let X be a symbol not in Nu T u T',
Define homomorphism h, by h(A) = A if A € N and h(a) = a' if a ¢ T.
Construct FMOL-system G, = (Nl,T,Pl,S) where N, = N U T' v {X} and
Py =h@® uvi{a">a:aeTtu {A+X:iA>ec P}u {X + X, X > €}, Clearly,
if a string can be generated using Pl, it can also be generated using P
only and therefore L(Gl) = L(G). The FMOL-system Gl has the property that

*
if O ¢ L(Gl) then there exists B ¢ (T' u X)+ such that S et B E> o and
1 1
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no production of the form A + € has been used to derive B. Now we will
construct an FM-automaton which simulates exactly all such derivations.
Construct the FM-automaton M = (K,T,P,Gl,ﬁz,qo,qf) where K = {qo,qf}

['=N,, and 61 and 62 are defined as follows:

1
(a) if A> € e P, then (qO,A) € Gl(qo,e);
(b) if A+ a ¢ Pl where A ¢ Nl’ a € T then (qO,A) € 6l(q0,a);
(c) if A > BlBZ"'Bn € Pl where A’Bl’BZ""’Bn € Nl then

(qO,A) € Gz(qO,Ble...Bn);
d) (qf,S) € Gz(qO,S).
Clearly, L(Gl) c L(M) since M simulatesvall derivations mentioned
above. The inclusion L(M) c L(Gl) will be shown if we prove that

% .
(4921250 +22 58) | (a5 18540002 Y Vg0 o Y,) Where 120, m 2 1,

= (%3 j 3 3 =
Yj (Xl’nj)(XZ’nj)'"(ij’nj) for some nj e I, Xp eI, P l,2,...,kj and

. . o j
j=1,2,...,m, implies there exist al,az,...,am-such that XiX%...Xij Ei aj

for j =1,2,...,m and 0ploe sl = 8135000840 We will prove it by the

induction on the number k of moves of automaton M.

Let k = 1, i.e. (qo’alaz"'an’s)lﬁ'(qo’ai+lai+2“'an’Y1Y2‘"Ym)‘

From the definition of an FM automaton follows that i < 1, m= 1,

1
Y = (Xl,l) and if i = 1 then Xi - a; € Pl else if i 0 then Xi > € € P17

Suppose now that the induction hypothesis is true for up to k
k+1
> —
moves, k =2 1, Let (qo,alaz...an,e)l o (qO’ai+lai+2'"an’YlYZ"'Ym)'

Then there exist v,s € I and Xl,Xz,...,AS such that
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(qo’alaZ"'an’E)I§(q0’av+lav+2 ceaahhye e A g (qo’a1+1 1427 @YY Yy
where v 2 i, Xj = (Yi,rj)(Yg,rj)...(Yij,rj),Yg e I' for j=1,2,...,s,

P = l,2,,..,tj, rj € I. Because the induction hypothesis is true for up to
k moves, there exist 81,82,...,6 such that Yi Y% .o YJ ai Bj for
j=1,2,...,s and 8132...85 = a;a,...a . From the construction of

automaton M follows that either the last move of the automaton is a reduction

and so i = v, Xl = Yl""’xm =Y, 1° km =1, FSE T e ST and
m m ¢S m o m 5.5 s
(ags%]) € 6 RUCTN i SOPU0 S o5 SO0 o1 ) and X > Y ¥o...Yp ... YYo. .Y
ta m 8
. L < Ay . .
is a prodwtion in Gl' Then X 1 Gl BmBm+l .Bs and the induction hypothesis

holds for k+l moves, or if the last move of the automaton M is a shift

, , m
then i-1 < v < i, m = s+l, Al = Yl""’As = Yoo Vp = (Xl’l) and
(qO,XT) € 61(qo,b) where if 1 > v then b = a; else b = €, and XT + b is
a production in Gl. In this case the induction hypotehsis is satisfied

with a; = Bl’ o, = BZ""’“m-l = Bm—l and o = b.

Let M be an FM-automaton, M = (K,Z,F,51,62,qo,qf).
Construct the FMOL-system G = (N,X,P,S) where

N = {(qi,A,qj)fqi,qj € K, Ae T}u {8} and P is constructed as follows:

(1) 8 > (q4,4,9;) € P for all A e T for which either (q;,A) « 62(qj,v),

or (qf,A) € Gl(qj,a) where qj e K, Yy € F+ and a € Zu {e};

(ii) if (qj,A) € 6l(qi,a) where a € T u {€} then (qi,A,qj) > a € P;
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(iii)  if (qj,A) € Sz(qi,Ble...Bn) then (qS,A,qj) >
(qS’Bqui )(qi ’Bz’qi )"‘(qi ’Bn’qi) € P for all
1 1 2 n-1
Q. 59: sesesq. € K.
S 11 1n—l

We will show the equivalence of automaton M and of system G by
proving that for any 31589500058 € Z, n 2 1 the statements (1) and (2)
are equivalent.
*
1) (qj,alaz...an,e)|M(qi,€,(A1,m1)(A2,m2)...(AS,mS) where
AV e T, m e I for v =1,2,,..,s.
. ’ *
2) There exist Qe 39, seeesdy € K and O 90y e ee 0 € " such

1 2 s-1
m

m m
that (qj ’Al’qu) E; O"la (qu’AZ’qrz) Eg OLZ""’(qrs_l’As’qi) E OLS

and Oloessly = @j850002 .
(a) First we prove by the induction on the number of steps in the
derivation that (1) follows from (2).
(al) Suppose that all derivations are direct. Then from the definition

of the FMOL-system follows that o, € Y u {e} for all i € 1,2,...,s and

(qu,Al) € Gl(qj,al),(qrz,Az) € ﬁl(qrz,az),---,(qi,As) € Gl(qrs_l,as).

So (qj,alaz...an,e)lﬁ-(qi,a,(Al,l)(A2,1)...(As,l)).

(a2) Suppose that the induction hypothesis is true for up to k steps
. . . , _ Uy, u u
in any derivation. We can write (qj’Al’qu) §> (qj’Bl’ql)(ql’BZ’qZ)"'
k
(qi ,BV >4, ) it where Bl’BZ""’Bv e T, q;,...,qz € K and using

1 "1 "1 1 1

*
the induction hypothesis we have (qj,al,e)lﬁ(qv ,E,(Bl,k)(Bz,k)...(BV »K) .
1 1
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From the definition of the system G follows that

(qvl’e’(Bl?k)(BZ’k)"'(Bvl’k))Iﬁ(qu’s’(Al’k+l)) and therefore

*
(qj,al,e)]ﬁ(qr ,e,(Al,k+1)). Similarly, we can obtain that
1

* *
(qr ’0('233) I‘M‘(qr 2E (AZ 9m2)) see ey (qr sASse) l-ﬁ(qi’g’ (AS’mS)) . Clearly,
1 2 s=-1

the induction hypothesis holds for k+l steps.

(b) We will show that (2) follows from (1) by the induction on the
number of moves of the automaton.

(b1) Suppose that (qj,alaz...an,s)lﬁ-(qi,e,(Al,ml)(Az,mz)...(As,mS)).
From the definition of an FM automaton follows thatn <1, s =1,
and from the construction of the system G follows that (qj’Al’qi) +~be P
where b = aj, if n = 1, otherwise b = €,

(b2) Suppose that the induction hypothesis holds for up to k moves,
k 2 1., Let (Q.,alaz...a ,8)Ikﬁi(Q.,e,(Al,ml)(Az,mz)...(A s ).

3 n i s’'s
Considering three possible kinds of moves of the automaton M in k+lSt
step, using the validity of the induction hypothesis for up to k moves,
and from the construction of system G follows that the induction hypothesis
is true for k+l moves.
The next theorem shows the equivalence of RMOL-systems and

RM-automata.
Theorem 4: The family of languages accepted by RM-automata isCif;MOL.
Proof: (a) Let L be an RMOL-language generated by a system G = (N,T,P,S).

We suppose that G is modified similarly as in the proof of Theorem 3, i.e.

if A> € € P then we add to P productions A » X, X > X, X +~ € where X
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is a new nonterminal. Let Ri’ i=1,2,...,n be all regular expressions
used in productions in P and let Mi = (Ki,Z,fi,si,Fi) be a finite

automaton (see [5], p.26) accepting the language L(Ri). We may suppose
n
N

i=1

n
that K, = $. Let 4995 be not in U Ki' Construct the RM-automaton

i=1

n
M = (K,Z,P,61,62,q0,qf) where K = (i:lKi) u {q }, T =N, and 61 and 62

0°%¢
are defined as follows.
() If A »> Ri € P then (si,e) € Gl(qo,e) and (qO,A) € Sl(q,e) for
each q € Fi;

(ii) Gl(q,a) = fi(q,a) x {e} for every a € I and q ¢ Kip 1=1,2,...,m3

(iii) If A~ BlBZ"'Bm € P where A’Bl’BZ""’Bm € N then
(qo,A) € Gz(qO,Ble...Bn);
(iv) (q455) € 6,(q,,5) .
From the construction of M follows that L(M) = L.

(b) Let M be an RM-automaton, M = (K,Z,T,dl,ﬁz,qo,qf). Define

*
Rij = {a:(qi,a,e)lﬁ(qj,e,e)}. Clearly, Rij is a regular language.

Let Rij be denoted by a regular expression Eij' Construct the RNOL-system
G = (N,Z,P,S) where N = {(qi,A,qj):qi, qy < K, Ae '} u {S} and P contains
the following productions.

(i) S = (qO,A,qf) € P fpr all A ¢ T for which (qf,A) € Gz(qY,y)

or (qf,A) € Gl(qj,a) where 9 e K, ye (I x I)+, ae Zu {e};

(ii) if (qj,A) € Gl(qk,a) where a € Zu {€} then (qi,A,qj) - Eik *a € P;
(iii) if (qj,A) € 62(qi,B1B2...Bn) then (qS,A,qj) > (qs,Bl,qil)(qil,Bz,qiz)
...(qi ,Bn,qi) € P for all Qgsqy se+e2dy € K.

n-1 1 Th-1
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We can prove by the induction the equivalence of the automaton M and

of the system G similarly as-we did in the proof of Theorem 3.
17 (
5. In this section the closure Propertles Of<x£FMDL andczf%MDL

are studied. The main result is thatczf%MOL forms a full-AFL, which is

the smallest full-AFL containing OL~languages.

Lemma 1. <§EZ FMOL is closed under the operations of union, concatenation,
star and homomorphism.

Proof: Consider two FMOL systems Gl = (Nl,Tl,Pl,Sl), G2 = (N2,T2,P2,Sz).
We can suppose without lost of generality that N1 n N2 = ¢, Let

S,s',s" ¢ Nl u NZ.

(a) Let Gy = (N u Ny v {s}, Ty U T,,P;,S) where

3

Py =P U P,U {s ~» 8.5

generates L(Gl) U L(Gz).

S SZ}' Clearly, FMOL-system G3

(b) Let G, be FMOL-system (N; u N, u {s,s',s"}, T, v T,,P,,5) where

4 2

P, =P U P,uU {s »s's",s' >~ s',8" > 8",8' » sl,s" > 32}.

Then L(G4) = L(Gl)-L(GZ).

(c) Let G5 be FMOL-system (N1 y {S},Tl,PS,S) where
P, =P v {S>5,5>555>5,5>¢c} Clearly, L(Gy) = L(Gl)*
(d) Let h be a homomorphism h:Tl - F*. Define homomorphism f on
Tl U Nl by f(a) = h(a) for all a ¢ Tl and f(A) = A for all
A e N;. Let G = (Nl,P,P6,Sl) be an FMOL-system where

P, = {A~> f(@):A~>a € Pl}. Then L(G6) = h(L(Gl)).
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Lemma 2. aZ: is closed under intersection with a regular set.

FMOL

Proof: Consider Ll an FMOL-language and let R be a regular language.

Let Ml = (Kl,z’r’513629q0’qf

A = (KZ,Z,g,pO,F) be a finite automaton accepting R. We can suppose that

) be an FM-automaton accepting Ll and let

g(p,e) = {¢} for all p € K Construct the FM-automaton

2.
_ o2 o2 ,
M, = G(l x KU {qf;,Z,E,Gl,GZ,(qO,pO),qu), where 61 and &2 are defined
as follows. If (qi,Z) € Gz(qj,Ble...Bn), where Z,B1,B,,...,B ¢ I' then

((a;,p ) »2) € 6%((qj,pk),3132...13n) for all p_ € K,. If

(q;,2) € 5l(qj,€) then ((q;,p,),2) eGi((qj,pk),s). If (q;,2) ¢ 6l(qj,a)
for a ¢ T and p_ ¢ g(p,,a) then ((q;,py),2) € §;((q;,p,),a). It is easy
to see that if (qd,alaz...an,e) Iﬁ- (qj,s,y) and (po,alaz...an) |§-(pr,s)

%
then ((qospo)salaZ"'anse) I'M'z((qj 9Pr)’€sY)- So L(Gz) = Ll n R,
Theorem 5: °Z:FMOL is closed under all AFL operations with exception
of inverse homomorphism.

Proof: That £ is not closed under inverse homomorphism follows

FMOL n
from the following. Language Ll = {az in > 1} GCJfFMOL but the language
e § _ _ . .
L2 = h (Ll) where h(a) = a, h(b) = € is not ln‘ﬁfFMDL as it follows from
what has been proved about L2 in [4]. Closure of éi}MDL under the

remaining operations has been shown in previous two lemmas.

Lemma 3. £ is closed under the operations of union, concatenation

RMOL

and star.
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Proof: Similar to proof of Lemma 1.

Lemma 4. /& is closed under finite transducer mappings (see [1], p.224).

RMOL
Proof: Let L be an RMOL~language accepted by an RM-automaton

A

(Kl,Z,F,él,éz,qo,qf). Let T be a finite transducer ([1], p.224)

T

(KZ,A,Z,f,pO,F). We can suppose that in one move automaton T does

not read or output more than one symbol, Construct RM-automaton

A' = (K',A,F,di,éé,qé,q%) where K' = (K1 X K2) U q%, q6 = (qo,po) and

Gi and Sé are defined as follows. If (qi,Z) € 51(qk,b) and (pj,b) € f(pn,a),
aedu {el, b eI then ((a55p,)52) € 8]((q,p),a). If (q;,2) € Oy (qy,e)
then ((qi’Pn)’z) € 5i((qk,pn),€) for all P, € K,. If (pj,e) € f(pn,a) then
((4y5p;)»€) € 8] ((q,p),a) for all q € Ky If (4;,2) € 8)(a,2y%,.00.2.)
then ((qi,Pj),Z) € Sé((qk,Pj),lez...Zn) for all 95 € Ky.

(qs2) € 5%((qf,pj),Z), for all Py € Fand Z € T,

iw (q%,e,Z) if and only if T(a) = B and

Clearly (qé,u,a) [A

(qosB’e) I'Z (qf,E,Z).

Theorem 6: is a full-AFL.

&iRMOL

Proof: The closure of 2 under the operations of union, concatenation

RMOL
and star has been proved in Lemma 3. The closure of ;fRMOL under the
operations of homomorphism, inverse homomorphism and intersection with
regular set follows from the closure of &ZRMDL under the finite

transduction [1].
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Theorem 7: JﬁFMOL is equal to the closure of OZ%L under generalized

sequential mappings (see [11], pp.128-132).

Proof: Let L be an FMOL-language generated by an FMOL-system
G = (N,T,P,S). Let X be a symbol not in Nu T. Construct an FMOL-system
G' = (N',T,P',S) where N' = Nu X, P' =P u {X > X} u {A > X:A ¢ N}.

Clearly L(G') = L(G). Construct the OL-system G, = (N',P.,S) where

1 1

P, = P''n (N!' x (N')*)., Clearly, G

M = ({qo}, N',T,S,{qo},{qo}) where (qo,w) € 6(qO,A) if A>we P, we T,

is complete. Define g.s. machine

Then M(L(Gl)) = L(G).

Theorem 8: of is equal to the closure of OZ%L under finite transducer

RMOL
mappings.

Proof: Let L be an RMOL-language generated by an RMOL-system

G = (N,T,P,S). Let X be a symbol not in Nu T. Construct an RMOL¥system
G' = (N',T,P',S) where N' = Nu X, P' =Pu {X > X}u {A > X:A ¢ N}.
Clearly, L(G') = L(G). Construct the OL-system Gl = (N',Pl,S) where

P, =P'n (N' x (N")¥). Clearly, G

1 is complete. Let Ri’ i=1,2,...,n

1

are the regular expressions used in productions in P and let

Mi = (Ki’z’fi’si’Fi) be the finite automaton aceepting the language

L(Ri)' We may suppose that Ki’ i=1,2,...,n are pairwise disjoint. Define

the finite transducer T = (K,N',T,é,qO,F) where K = {qo} U (leKi)’

n
F=u Fi and § is defined as follows. (si,e) € G(qO,A) if A~ Ri e P'.
i=1

n
(q0,€)4e §(q,e) for each q ¢ U F

4=1 1
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If q; € fi(qj,a) then (qi,a) € 6(qj,€). We can see that

= i i * o0 => e e .
T(AlAZ"'An) ajay...a is equivalent to A1A2 A.n A ajaye..a

So T(L(Gl)) = L(G).

Corollary GgiRMOL is the smallest full AFL containing JﬁbL.

‘Proof: Any AFL is closed under finite transduction and so any AFL

containing &be has to contain ékoOL'

Now we will study the relation of &f;MO to the family of Index

L

Languages [2] which will be denoted by JZ;NDEX'

Theorem 9: °ZiRMOL < &Z}NDEX'

Proof: Let L be an RMOL-language given by an RMOL-system G = (N,T,P,S).
Let Ri’ i=1,2,...,n be all regular expressions used in the productions
in P and let Gi = (Ni’Ti’Pi’Si) be a regular grammar generating

language L(Ri). We can suppose that N,N Nn are pairwise disjoint.

l’.‘.’
Define the index grammar G' = (N',T,F,P',S') where S' is a symbol not

used in any of grammars G’Gl’GZ""’Gn’

NI

n
U N, uNuSs'; F-= {f,g};
i=1

f :{Pn (N x N+)};

g :{A+Si:A+RieP};

Il
U u {s' » sg, S + Sfl.

]
P i=1 Pi

2 m’

* n * %
C 1 LI, ) ' i 7 p—
early, S G? Sf'g G? AlgA g...Amg is equivalent to S G> A1A2...A

%
= * i i =
Al’Az"”’Am € N, and Aig G? w where w € T* is equivalent to Ai G> W.

So L(G) = L(G").
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Consider now the language L={( a"bc n)m tn,m > 1}

to show the proper inclusion of ;fRMOL in éZTNDEX' It is

quite straightforward but rather tedious to show that L is not an
RMOL~-language and we will omit this proof. However, L is generated by the

index grammar G = (N,{a,b,c}, {fl,fz,f3},P,S) where N = {s, 5158,,4, Bl;

P={s~>5,f5f, S > fzslf3,'sl > £,£4, 8, > 5,613
£, = {sz-> S,A, A> A, 5, > Al;
£, = {A » aAc, A ~ aBcl;
and f3={B+bB,B->b}-
Clearly, all the derivations in G are of the form
s % 5,E050 60 2> Af 2Aflf2Af]2_ o e A 7leel S5
%> (aangcn)m => (anbncn)

The summary of results on proper inclusions of the considered
families of languages is given in figure 1, The meaning of the tree is
the following. 1If two nodes labeleéd sayoff Jf are connected by an edge,

then ozz to

the nodeoZ; being below the node o 30

Proper inclusion of &Z’NDEX in oZ%S has been shown in [2].
Incomparalwility of<;f5L and the family of finite languages has been

shown in [12].
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