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J. ACZEL: On Shanron's Inequality, Optimal Coding and Characterizations

/ .
of Shannon's and Rényi's Eutropies

1. The clessical form of Shannon's inequality 1is

N N
(1) ~Zp logp <-2Zp, loggq ,

k=1 k k k=1 k k
for all N > 2 if

N N
(2) Ip = I q =14,p >0,4q, >0; k=1,2,...,N,

k=1 k k=1 k k k
with equality in (1) iff
3) P = 9 (k = 1,2,...N).

The exvression on the left-hand side of (1) is the Shannon entropy,
if we take 2 as base of the logarithms in (1).

The most important application of Shamnon's irequality may be
the theorem asserting that the average length of a codeword in a uniquely
decipherable code cannot be smaller than the Shannon entropy divided by the
logarithm (base 2) of the number of symbols in the code. So, even optimal
coding cannot préduce shorter average lengths of codewords, but should try
to approximate this lower bbund ag closely as possible.

In this paper, by examining two proofs of Shannon's inequality closer,
we will first extend it to situations more general than (2). This, in its
turn, will simplify the proof of the optimal coding theorem, mentioned above.
Also, the analysis of the equality cases of this extended inequality will give
guidénce, how such optimal codes can be sglected.

The relevance of Shannon's inequality to Shannon's entropy is a.o.

due to the fact that the quantity on the lft hand side of (1) is Shannon's



entropy. Conversely, by putting an unknown function in place of log in (1),
we can obtain from Shannon's inequality a characterization of Shannon's
entropy. We will give two proofs (really shortcuts of previous proofs) for
this characterization.,

Another way of characterizing Shannon's entropy is the optimal coding
theorem itself. A cne parameter class of entropies, the so called Réﬁyi
entropies, can be similarly characterized. We will give a new version of
this characterization, in particular for positive values of the parameter,.

thus characterizing the Réhyi entropiés of positive order.

2. One proof of Shannon's inequality (cf. A. Feinstein 1958)

is based on the inequality of the geometric and arithmetic means. This

asserts that

N Py N
(%) m x < I p.x
k=1 k k=1 Kk
if
N
(5) I P = 1, py > 0, X >0 (k=1,2,...,N).
k=1

Inequality holds in (4) iff

(6) X, = X, T ce0s = X

In order to prove the Shannon inequality we put into (4)

X = qk/pk (k = 1,2,...,N, the conditions (5) are satisfied because of (2)),

and get
P
N 9 k N 9 N

)] n(-= < rp —= Lgq =1
k=1 Px k=1 *Px k=1 ¥



and, taking logarithms on both sides of (7), which we can do since

Py > 0, G > 0 (k =1,2,...,N), we get

(8)

It~ =2

p, (log q - log p,) <0
k=1

from which the desired inequality (1) follows at once. There is equality

in (7), cf. (6), iff

q q q
1 2 N
9) —_— == ,,, =— = ,
P P N
but, because of (2),
N . N N
(10) : Ip =1= 1 qg =¢cp
k=1 K k=1 & k=1 K

thus ¢ = 1 in (9) and we have equality in (1) iff (3) holds.

When we look carefully at this proof, we see that it can be modified

so that instead of

N

(11 Iq =1
' k=1 ¥
© We may suppnose only

n
(12) )X a9 <1.

k=1
Indeed, then (7) will change into

P
(13) §é5k5 gmg£=§qkil
k=1 Px k=1 Pk k=1



and (8), (1) can still be derived. There will be equality in (1) iff
there is equality in both inequalities of (13), that is, iff (9) and (11)
hold, so we get again (10) and (3). |

Of course, the inequality of the arithmetic and peometric means

expresses the concavity of the logarithm function on:]O,w[. Indeed, if

(14) Ip, =1, P >0, % >0 (k=1,2,...,N),

then (4) is equivalent to the Jensen inequality (see e.g. G. H. Hardy -

J. E. Littlewood - G. Pdlya 1934, Section-3.8)
N N

(15) Lo v(x) <v(e P )
=] =]

k k

for the function ¢y = log, with equality again exactly if (6) holds. (If
the function value - is admissible, then we can take (5) as domain instead

of (14), that is, allow some x, to be 0.)

3. The Shannon inequality can also be obtained (see e.g. J. Aczel -

Z. Daré&zy 1975, cf. F. M. Reza 1961) from the concavity on [0,1] of the function

L defined by

’ -x log x if x ¢ 10,1]
(16) T Lx) = . .
0 ifx=0

(In information theory one usually takes 2 as basis of logarithms, but this
is not important here as long as the basis is greater than 1). The function
L is indeed concave on [0,1] since (cf. &. H., Hardy - J. E. Littlewood -

G. Pélya 1934, Section 3.10 or J. Aczdl - z. Darézzy 1975, Section 1.3)



17 lim L(x) = L(0) = 0, lim L(x) = L) =0 and L'"(x) < 0 on Jo,1L .
x+ +0 x->1-0

The Jensen inequality (cf. (15)) for L asserts that

N N
(18) Lq, L(x.) <L(ZI qgx
k=1 k k k=1 kK'k
holds if
N
(19) b q = 1; 9 >0, (k=1,2,...,N)
k=1
and if
(20) x, € [0,1] (k=1,2,...,N).

Again, there is equality in (18) iff
(6) X, = K, T 400 = X

= i ith
Put Xy pk/qk into (18) wi

N
>0 (k = 1,2,...,N), z

(21) P p, = 1.
k o1 K
By (16) we get
N Py Py N Py N Py N
(22) - T q —log—= £q LG <L (Zq =) =L(Ip)=L( =0
k=1 © % G k=1 N k=1 © 9%k k=1
or
N
(8) kflpk (log q - log p) <0,

equivalent to (1), with equality again iff (3) holds.



Since (18) is true on the domain (20), we may take, instead of (21),

. N
(23) P 2 0 (k=1,2,...,N), I P = 1
~ k=1
and get from (22) at least
N Pi
(24) Iq L) <0
k=1 I

and if, in accordance with (16) and (17), we define

25) 0 log 0: =0,

then all of (22) and so (8) and (1) hold for all p,, q, (k =1,2,...,N)
| k* 9k

satisfying (19) and (23). (Cf. for this extension also J. Aczé&1l - J. Pfanzagl

1969.) There is still equality in (1) exactly when (3) holds. (We cannot
allow N
Lp <
k=1 ©
in (23), because L is decreasing near 1, so (24) would not hold anymore - cf. (22).)
Thus we have extended Shannon's inequality this time in another
direction. We may ask whether the two extensions can be combined, that is,
whether (1) is true for all Pro 9k (k =1,2,...,N) satisfying
N N

(26) Ip,=1, £Zq, <13;p >0,q >0 (k=1,2,...,N)
k=1 k=1 © k= 7k

The answer is yes. Indeed we have just proved (1) for P> 9y (k = 1,2,...,N)
satisfying (19) and (23). Suppose now that (26) is satisfied, but (19) is not,

that is

(27) p)



Define

(28) 1 -

k

N ™=

O .

IN+r © Qe > 0 Py =

1

The new PrsPose s PyoPre12 910900+ o9y satisfy both (19) and (23) for
N+1 instead of N, so (1) is satisfied under these circumstances, and we

have {(cf. (25))

N N N
(29) = I py log py = = I py 1og Py = Pigyy 108 Pyyy <= F Py 108 4y - Py Lo Q=
k=1 k=1 k=1
N
=~ 3Ip, loggqg .
k=1 K K

Thus (1) indeed holds for all y q (k = 1,2,...,N) satisfying (26). Does
Prr 9

(27) generate new equality cases? No, because

(30) Pre1 = Iyl

would be necessary (besides Pr = 9 for k = 1,2,...,N) in order to have

equality in (29), and (30) contradicts (28). We have proved the following.

Theorem 1. The Shannon inequality

z

N

p, logp, <-Ip loggqg
1 k k k=1 k k

€9 -
k

[ ]

holds (with the convention (25) where necessary), for all N > 2, if

N

p, =1, Zq,<1;p >0,q >0 (k=1,2,...,N).
1Pl oy k k

(26)

n o~ =

k

There is equality in (1) if and only if




(3) (k =1,2,...,8) .

As we will see, the extension (12) is the most important one for

applications to optimal coding.

4. Codes are correspondances between messages and sequences of
symbols, called codewords. Suppose we have D symbols and N messages
Ml’ M2""’ MN with the respective probabilities Pys pz,..., Py for which
(23) holds. The number of symbols in the codeword Ck corresponding to Mk
(k =1,2,...,N) is the length n of its codeword (the number of symbols

in the sequence Ck). The average length of codewords in this code is

: N
(31) I p,r
oy Kk
The messages can be, for instance, letters. We transmit usually sequences

of messages (words, in this example) by transmitting the codewords consecutively.

If this can be done without spacing, that is, from the union of several

codewords all of the original messages can still be uniquely determined, then

we have a uniquely decipherable code. (The union of several finite sequences

is the sequence obtained by writing the elements of the second sequence after
those of the first, the elements of the third after those of the second
sequence, and so on.j The very remarkable theorem of L. Kraft and B. McMillan
(see e.g. A. Feinstein 1958, F. M. Reza 1961) announces that a code is

uniquely decipherable if and only if

N -
(32) ):an‘il.

k=1

Often (32) is called the Kraft inequality.




It is quite natural to regard a code economical or efficient, if

the averape length (31) of codewords is small and optimal the code for which
(31) is the smallest (see, however, also Section 9). But how small can (31)
get? A partial answer is given in the following (see again A. Feinstein 1958

or F. M. Reza 1961 or J. Aczél - Z. Dardczy 1975, a.o.).

Theorem 2. For every uniquely decipherable code, the average

length of codewords satisfies

N H(pysPyseresPy) N

(33 Ipmn > (zp =1,
o1 Kk log D e

o~ =
lw)

<1; D> 2, n, integers,
1 N

P2 0i k= 1,2,...,N).

Here
N

HN(P]_9P2: ces ,PN) = kilL(pk)

with the notation (16), or, with the convention (25),

N

(34) Ho(pysPyse-esPy) = —kilvk log py

is the Shannon entrony of the finite probability distribution (pl,pz,.;.,pN),

if the base of the logarithms is 2.

The proof of Theorem 2 is now very simple on basis of (32) and of

Theorem 1. Indeed, put into (1)

-n
(35) 9 =D k ,

then we get



- 10 ~

N N
Ip, log p < - Ip logaq = -
k=1 ¥ k= g1 K kox

o~z

. k
HN(pl,pz,...,pN) =~ Py log D = log D i
‘and this is exactly (33). The conditions (26) of Theorem 1 are satisfied,

because we have supposed (23) and because (35) and the Kraft inequality (32)

give
N N -1
qk)09 zqk=Ean_<_l.
k=1 k=1
Also, by Theorem 1, we have equality in (33) iff
(36) P = G =D " (k = 1,2,...,N)

-if this is possible. This is not always possible, because it means

log p,

*135—5 (k = 1,2,...,N)

(37) n =~

and this is possible only if the fractions on the right hand sides of (37)

are (positive) integers. In this case, every uniquely decipherable code with

codeword lengths given by (37) is an optimal code. Also, in this sense, by (36)

and (26), optimal codes are only possible for proper probability distributions

with Py #0 (k = 1,2,...,N) and only if equality holds in the Kraft inequality.
' If a fraction on the right hand side of (37) is not an integer, then
it seems plausible that we get near to optimal codes when we choose the integers

n, near to
k

log pk

- *Isg—ﬁ (k = 1,2,...,N) .

For instance, it is easy to prove (cf. F. M. Reza 1961, J. Aczél - Z. Dardczy

1975, also Section 9 here) that

-n N

2

1 k=1

KMk
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Ho(pysPysesespy) N He(Pyspyseeespy)

(38) log D f-kilpknk < log D +1,

if we choose our code so {uniquely decipherable, by the Kraft - McMillan theorem)

that o be the (unique) integer satisfying

log v, log py
(39) —mink<_m+l (k=l,2,...,N) .

There is no equality in (the first inequality of) (38) excent if all

log p,

-m (k = 1,2,...,N)

are integers, i.e. if there is equality in all inequalities (39).

We can get arbitrarily small +¢, instead of 41, in (38) if we

transmit sequences of independent messages consecutively. The inequalities
(33) and (38) characterize the Shannon entropy (34) in a way. We will
return to a generalization of this characterization in Section 9 . 1In the
next sections we use the Shannon inequality (1), with Shannon's entropy on

its left hand side, in another way for a characterization of the Shannon

entropy.

5. The Shannon inequality (1) suggests the problem of determining

all functions f: JO,1[ » R which satisfy the inequalities

N N
(40) - Zp, f(p,) <=L p, f(q,)
k=1 € k k=1 K k

for all N > 2 and for all PyaPysecesPysdyslyses sy satisfying (2). The
inequality (40) has also applications to the so called "how to keep the
expert honest" problem, see e.g. I. J. Good 1952, J. Acz&1l - J. Pfanzapgl 1966,

J. Aczél - A. M. Ostrowski 1973. By Shannon's inequality, log is a function



-12 -

satisfying (40) on (2). If we multiply (40) by a nonnegative constant a

and add an arbitrary constant b, we see that also the functions f given

by

(41) f(q) = alogq+b (a>0) for all q e 10,1[

satisfy (40). (If we take the base of the logarithm arbitrary, then

the constant a can be omitted, except for the trivial case a = 0.) We will

prové the following.

Theorem 3. The inequality (40) or, equivalently,

N N
(42) £ pflp) > I pflq)
k=1 k k k=1 k k

holds for one N > 2 and for all pl,pz,...,pN,ql,qz,...,qN satisfying

N N
(2) rp = Lgq =1 p >0,q >0 (k=1,2,...,N),
el K pop K k k

if and only if there exist two constants a, b such that

(41) f(q) =a logq+b for all qe 10,1{ and a > 0

In this case, the left hand side of (40) is the Shanron entropy up to

an additive and a nonnegative multiplicative constant.

Remarks. 1) The supposition,that (42) be satisfied for égé
N > g)is weaker than that demanding that (42) be satisfied for all N i_2
(but also the latter is always true for (41». If (42) is supposed only for-
N = 2 (and for all P12P9sdy5dy satisfying (2)), then there exist solutions

different from (41), for instance f(q) = 6q - 9q2 + 8q3 - 3q4 (for detailed
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discussions of the case N = 2, see J. Aczél ~ J. Pfanzagl 1966 and P,
Fischer 1972).

2) Supposing (42) for all positive Gyslysenesly s satisfying (12)
instead of (11), would again be a stronger condition for the "only if" than
‘'what we have supposed in Theorem 3. On the other hand, the "if" statement
holds then too, as we have showa in Sections 2, 3. 1In (41), we have got
the values of f on the open interval ]0,1[. 1Indeed, we could not hope
for more, since (42) under the restrictions (2) does not say anythihg about
the values of f outside the interval ]0,1[. If we supposed (42) valid on
(23) instead of (21) (i.e. if we allowed also 0's among pl,pz,...,pN),

we would get on the values of f at 1 and O only the restriction

£(1) + (N-1) K> sup £f(q), where O £(0): =K >0 .
qe J0,1[

3) We also do not suppose that there should be equality in (42)
only in the case (3) in order to get (41). Ihis,'again, is a consequence as
we have proved in Sections 2, 3.

4) Theorem 3 has been proved under the assumption of differentiability
for £ by J. Aczél and J. Pfanzagl 1966, P. Fischer 1972
has proved Theorem 3 in its present form, without any regularity supposition
on f . However, his proof was rather difficult to understand, so several
mathematicians (A. Réhyi, J. Aczél, A. M. Ostrowski) have made new proofs of
this remarkable theorem, see J. Aczél -~ A, M. Ostrowski 1973. (A similar
theorem was (incorrectly) announce& without proof previously by J. McCarthy
1956 with credit given to A. M. Gleason. It seems that Gleason's (unpublished)
proof has been longer.) In what follows, we give two proofs of Theorem 3,
While it may be difficult to recognize them, the first proof is based upon

almost the same ideas as the original proof of P. Fischer 1972, although it
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is, we trust, quite a bit easier to understand. The second proof is a
modification and complementation of the proofs in J. Aczél - A. M. Ostrowski

1973. It utilizes also remarks made by P. Benvenuti, A. M. Gleason and W. Walter.

6. First proof of Theorem 3. We have proved the "if" part of

the Theorem in Section 2. As to the "only if" part, we first sliow that

every solution f of (42) is nondecreasing on 10,1[. We put into (42)

(43) P, = q for all k> 2, p, =p, q =q,

(44) 'pl+p2 = q1+q2 =r, i.e. pz = r-p, q2 = r-q

and (42) goes over into

(45) pLf(p)-£(q)] > (r-p) [f(r-q)-f(r-p)] .

Notice that r in (44) ‘is arbitrary in 10,1[ (because of (2) and (43)), so (45)

holds for all

(46) | pe J0,rl, q e JO,r[, r € JO,1[

The conditions (46) are symmetric in p and q, so (45) remains true on (46)

if we interchange p and q:

(47) qlf(@)-£(p)] > (x-q) [f(x-p)-f(r-q)] .

Now multiply (45) by (r-q) and (47) by (r-p) and add these two inequalities

in order to get

r(p-q) LE(P)-f(q)] = [p(r-9)-a(xr-p)] Lf(p)-f(a)] > O .
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This shows, that for all p > q we have f(p) > f(q), that is, f is indeed

nondecreasing.

Now we show that whenever f is differentiable at r-p then f is also

differentiable at p (p € J0O,1(, r-p € 10,10), and

(48) pf'(p) = (r-p) £'{r-p)

holds. Indeed from (47) and (45), we get

r-q f(r-p)-f(r-q) f{q)-f(p) r=p f(r-p)-f(r-q)
(49) (r-p)-(r-a) = p — p (r-p)-(r-q) °

if q > p,and both inequalities are reversed if q < p. Let now q »> p, then r-q > r-p

and both extremes of (49) tend to

E%R £' (r-p)

(since f is differentiable at (r-p)). Thus f is indeed differentiable at p
and (48) holds.
What we have just proved, can also be formulated so that whenever f

is not differentiable at p, then f is also not differentiable at r-p for all

r ¢ Jp,1L. From this it follows that f is everywhere differentiable on 10,1[.

Indeed, if there existed a Po € 10,10 such that f were noF differentiable

at pg, then f would be not differentiable at (r—po) either, for all r ¢ ]pO,l[
that is, f would not be differentiable at any point of the interval (of
positive length, 1-

Py > 0) ]0,l—p0[. But this is impossib;e, because f,

being nondecreasing, is almost everywhere differentiable on 10,1[. Thus f

is indeed everywhere differentiable on 10,1l and (48) holds for all

p ¢ J0,1L, r-p ¢ JO,1L, that is,
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(50) pf'(p) = a (constant)

The constant a in (50) is nonnegative

(51) a>0

S

because f is increasing. From (50) and (51) we get (41) (with the natural
logarithm, but that makes no difference) and this concludes the first proof

of Theorem 3.

7. Second proof of Theorem 3. We keep from the first proof the

argument leading to the recognition that f is nondecreasing and the inequality

(45), which we divide by p-q > 0 again

E@-£@@) | (. £Gmq)=£(r-D)
.- N GO

Let now q tend to p increasingly: q“7p (therefore r-q»r-p). We do not know
at this stage whether the two sides of (52) have limits under these
circumstances, but they have (finite or infinite) 1lim sup’'s and lim inf's

and the inequality in (52) remains valid between them. So we get

(53) p D £(p) > (r-p) D'£(z-p)
and
(54) p D_£(p) > (r-p) D _f(x-p)

respectively. (D_,D+,D_,D+ denote the left upper, right upper, left lower,
right lower Dini derivatives, respectively.) Similarly, if p\g (r-prr-q) in

(52), then we get
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(55) q D+f(q) > (r-q) D f(r-q) and q D+f(q) > (r-q) D_f(r-q).

The inequalities (53), (54) and (55) hold, as (45), whenever

(46) r ¢ 10,10, p € 10,r[, q € 10,r(

is satisfied. 1In particular, we may choose in (55) q = r-p, and then

comparison with (53) and (54) gives
p D £(p) = (r-p) D+f(r—p) and p D_f(p) = (r-p) D+f(r—p)

or, taking the arbitrariness of p and r within (46) into consideration,

there exist two (finite or infinite) constants A, a such that

(56) x D f(x) = A = x D+f(x) for all x ¢ Jo,1L
and
(57) x D f(x) =a=x D+f(x) for all x ¢ 130,1[ .

Since f is nondecreasing, A and a must be nonnegative

(58) | A>0, a>0,

but we have not yet ruled out the possibilities that A = » or a = =, If
we want to use, as in the first proof, the theorem that a nondecreasing

function 1s almost everywhere differentiable or, at least, differentiable

at one point Xq € 10,1[ then we get there immediately

D £(xy) = D'E(xy) = D_f(xy) = D,f(xy) = £'(xy) »
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thus A and a in (56) and (57) are equal and finite. Therefore it follows

from (56) and (57) that f is differentiable at every x e ]0,1[

22D f() =D f(x) =D f(x) = D'E(x) = £'(x) for all x e 10,1 ,

which is the same as (50) and since, by (58), also (51) holds, Qe have proyed
(41) and the Theorem 3 again.

In this proof, however, we will deduce Theorem 3 without appeal to the
relatively deep fact that an increasing function is almost everywhere
differentiahle or of any other result in the theory of (Lebesgue) measure.

We will also need only (57) with (58) a > O .
First we rule out a = » ., Indeed, else we would have even for

arbitrarily large vositive constants B
D Lf(x)-Bx] = D f(x) - B == and D [f(x)-Bx] =D f(x) - B = =

by (57). 1In particular for all functions g,defined (with different constant B's)

by

g(x) = f(x) - Bx (x € Jo,10),
we would have
(59) D+g(x) >0, Dg(x) >0 for all x e 10,10 .

But then'g is increasing on J0,1[ (see Lemma 1 below). Choose, however,

B>30ed) - £3)] .

Then

1 1, 1 2. 2. 2
g(i) = ng) -3 B> f(g) -3B= g(%) ,



which is impossible 1if g is increasing. So a = « is impossible, a is
a finite (nonnegative) constant.

Mow we can write (57) as

(60) D_[f(x}—a 1n x] = D_f(x) —-% =0 = D+f(x) - §-= D+[f(x)-a In x] on 10,1

But we will prove in Lemma 2 below that a function is constant on an (open)

interval iff both jts left and right lower Dini derivatives are 0 on that
interval. With this, Theorem 3 will be proved again, because (60) will

then imply (41) (see also (58)).

8. We prove now the two lemmas mentioned above.

Lemma 1. If the function g is defined on an (open real) interval

I and

(59) D+g(x) >0, D_g(x) >0 for all xe I,

then g is (strictly) increasing on I.

Proof. 1If, at a point X, € 1,

k = D+g(xl) >0,

then there exists a 6 > 0 such that

g(xl+h) - g(xl)

k .
(61) o > 3 >0, i.ey g(xl+h) > g(xl) if 0 <h< 3§
Similarly,
D_g(x,) >0

implies
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(62) g(xl-h) < g(xl) if 0 <h <35 .

In order to prove that g is strictly increasing we have to show,

for arbitrary x, € I, that

0

(63) g(x) > ﬂ(xo)

whenever

X > Xgs X € 1.

By (59) and (61), there exist 6(x0) such that (63) holds for all x ¢ ]xo,x0+6[.
Let Xq be the greatest number such that (63) hold for all x ¢ ]xo,x1C < I.
This X, must be the right extremity of I, because else, by (61) and (62),

for all sufficiently small h
g(xy) < g(x;-h) < g(x;) < g(x;+h)

contrary to the definition of Xy This concludes the nroof of Lemma 1.

Lemma 2. A function F is constant on an (open real) interval I,

if and only if

(64) D, F(x) = D F(x) =0 for all xe 1.

Proof. The "only if" part is obvious. In order to prove the
"if" part, define first g by
(65) g(x) = F(x) +ex (e >0) for all xe 1.

For this function, by (64) and (65),
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D+g(x) =D g(x) =e>0 for all xe I.

Thus, by Lemma 1, g is increasing on I. Therefore (¢ + 0, cf. (65)), F
is nondecreasing on I.= We prove now that F, being already monotonic, is
also continuous on I. Indeed, all discontinuities of monotonic functions

are jumps, and there either D+F or D_F would be «» , contrary to (64).

Thus F is continuous and nondecreasing. We conclude the

proof of Lemma 2 by showing that there do not exist

(66) ae I, be I, a <b such that F(a) <F() ,

thus showing that F is constant on I. Indeed, if (66) held, we would

define the linear function £ by

(67) 2{(x) = F(a) + e(x-a) (e >0) for all xe I .

We have 2(a) = F(a) but, if € is small enough, then £(b) = F(a) + ¢ (b-a) < F(b),
by (66). The function F being continuous, there would exist a greatest Xy € fa,bl

for which F(xl) = z(xl), while, for all x € ]xl,b], F(x) > 2(x). 'But then

F(x) - F(xl) L(x) - 2(xl)

z 2! = 0]
(68) — > e (x > xl) and D+F(xl) 2 (xl) € >

would hold, contrary to (64). Thus Lemma 2 is proved.
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Remark 5) One has to be careful with plausible sounding things

about Dini derivatives. For instance, the statement in Lemma 1 (that g is

increasing on I) is not true, if only

. (69) D+g(x) >0 onl
is supposed. Counter example: I = J0,1f 3

x, if x € ]O,l{

g(x) =
x-1, if x € El,lf .

The function g is increasing, however, if, besides (69% also the continuity
of g is supposed on I. The situation is analogous for Lemma 2.

Also, in general it is not true that

D+(F4G)

it

D+F+D+G )

only

D+(F+G)

W

D+F+D+G s

but, first, this would be enough for the above proofs and, second,

- 1
D+(F+G) = D+F+G

if G is differentiable.

9. We return now to the relationships among optimal coding,

entropies and Shannon-type inequalities. We have pointed out in Section 4,

that Shannon's inequality establishes a connection between Shannon's entropy
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and optimal coding, if the optimality of coding is measured by minimizing
the ézi}hmetic average length (31) of a codeword. We call this average

length arithmetic, because (31) is the arithmetic mean of the lengths

Myslysees Mg of codewords, weighted with the probabilities PisPoseesPye
There exist also other mean values (e.g. the geometric mean in (4)).

L. L. Campbell (1965) has suggested the use of the

N tnk N
IpDd ) (t#0; I

(70) -% log, (
: k=l k=1

Py =13 Py > 0; k=1,2,...,N)

exponential mean lengths of codewords, weighted again with the probabilities

(logD is the logarithm with base D, of course). In order to get a result
similar to Theorem 2, we use another inequality instead of the (1) Shannon

inequality.

HBlder's inequality (G. H. Hardy - J. E. Littlewood - G. Polya

1934, Section 2.8) states that

N N :

(72) Dxy, 2 (PP (zy Y sededan anair p<1,p o
R k=1 P 4

while
N N N

(72) Lxy < (2 PyU/P (py HMa 3ed v loy anaif po1.
k=1 © %7 k=l k=1 1

Here X, > 0, Ve > 0; k =1,2,...,N (later we will allow zeros among the x's

and y's). There is equality in (71) and (72) iff the sequences {xk}, {y,}

k
are proportional, that is, there exists a (positive) number c such that

P_ .4
(73) X = Cy .
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In (71), put

-
1/t D k 1/t

(74) X, = Py s Y TP s P = -1 = T+l

Because of p < 1, p # 0, we have

(75) | t>-1, t#0.

Thus we get from (71), taking also the (32) Kraft inequality into consideration,

N - N N tn, -1/t N _
76) 1> 10 "k _ S xy, 2 (5p D “k) Cx pkl/(t+l))(t+l)/t
k=1 k=1 k=1 k=1
or
N tn, 1/t N
1/(e+1) | (e+1)/t
(zp D nk) 2 (% p /¢ ))( )/ R
k=1 © k=1
N “tn N
: +
(77) Liog (zp. D & >80 (5 p L/(HHD,
t “%8p - Pk t D * o Pk

We have now the expression (70) on the left hand side of (77). As to the

right hand side, if we introduce

1
(78) a := —t—_lji‘ N
where
(79) | @ >0, o #1

by (75), then (77) goes over into
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o N nk(l—a)/a 1 N
(80) o5 log, (z P D ) > 7= log (z P )/log D .
k=1 * k=1

This now is an inequality similar to (33). Indeed, the left hand

side is an (exponential) mean length of codewords (cf. (70), (78)) while the

quantities

N N
R a : - 1. C ko=
(81) aHN(Pl,st---,PN) - 1-q lOg ( lek ) (OL # l; ilpk - l’ Pk _>_ O’ k = 1929"'9N)

k= ki

(log again with base 2) on the right hand side of (80) are the entropies of

order o introduced by A. Rényi in 1960 and called Rényi entropies. We call

the left hand side of (80)

(82) 1o logy (I D ) , (@#1, a#0)

an a-average length of codewords. With (81l), we can write (80) as

N (1-0) /a H (PysPosesssDy)
o "k o N-P1*Po 0Py
(83) 1-a logD (z P D ) > Tog D , (0 >0, o #1
k=1 .
N
Zp, =1y p, >0; k=1,2,...,N) ,
k=1 k k

where the similarity to (33) is even easier to recognize. As a matter of
fact, the following is also easy to prove, If o -+ 1, then (82) ((70) if t » 0)
tends to (31), while the (81) Réﬁyi entropy of order o tends to the Shannon

entropy (34). So, we have just given a new proof of Theorem 2. We had till

now p, > 0; k = 1,2,...,N; but, by (79) and (80) the same remains true also

if some pk's are zero.

We may thus call the Shannon entropy a Réhyi entropy of order 1,

and (31) a l-average length of codewords. Summarizing we have proved the

following.
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Theorem 4. For every uniquely decipherable code, the g-average

length of codewords satisfies

(84) o 1o ( 2 an(l_a)/a) N aHN(Pl,PZ,---:PN)
~-a Ep =lpk - logzD

whenever a >0

D>2,n integers, Y x =1,2,...,N);

' .
where qHN(pl’pZ""’pN) is the (8l) Renyi entropy if a # 1 and the (34)

Shannon entropy if o = 1, while the left hand side of (84) is replaced by

N
(31) ' z

P 0y
k=1 k 'k

Let us see, when is equality possible in (83). Only if there
is equality in both inequalities of (76). The first equality means

N -
(85) _ ID L 1

k=l

b

the second can, by (73), (74), and (78), hold iff

(1-a)/a _
an =c pi Lk =1,2,0.0,0 ,

i.e.,
(86) D "k c“/(""l)pi (k = 1,2,...,N)
Combined with (85), we would have

N

ca/(a—l) =1/ & pi

k=1

and, from (86)
a N o
= e = “coay ; 0 .

(87 n, log, (pk/jilpj) (k = 1,2, N; a > 0)
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This is possible only if the quantities on the ripght hand side of (87) are

(positive) integers. In this case, every uniquely decipherable code with

codeword lengths given by (87) is an optimal code in the sense that it

minimizes the a-average lengths of codewords. In particular, as we have

seen, such optimal ccdes are only possible if equality holds in the

Kraft inequality.

Here tob, i1f some of the right sides of (87) are nct integers,

then it seems plausible that we get near to optimal codes when we choose

the integers n, near to

N
~log, (pz/jilp;) (k = 1,2,...,N) .

In particular, we have the following (cf. L. L. Campbell 1965,

J. Aczél - z. Daréczy 1975).

Theorem 5. There exist uniquely decipherable codes for which

the inequalities

(88) LG PRRTRN % lon (¢ g an(l-u)/a) ) Hn(PpsPgs e sPy) £ 1 (e
log,D = 1-q %% k=lpk Tog D
N :
hold (in the case a =1, T Py stands in the middle). We get such codes if
k=1

we choose the codeword lengths n, as the (unique) integers satisfying

N N :
o a a a = .
(89? ~ log, (pk/jzlpj) <my < - logD (pk/jilpj) +1 (k=1,2,...,N)

There is equality in (the first inequality of) (88) exactly when all quantities

- log, (pX/ £ Y (k =1,2,...,N)
D Yk j=1pj
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are integers, that is when there is ecuality in all (left) inequalities (89).

This time we prove (88), which is analogous to, and contains as

(limiting) case a = 1, the inequalities (38).

From the left inequalities of (89)

(k = 1,2,...,N)
j= J

follows.  If we take the sums of both sides fromk = 1 to k = N, we get'

that the
N —nk
(32) ID <1
' k=1

Kraft inequality is satisfied, that is, there indeed exist uniquely decipherable
codes with the codeword lengths determined by (89). We have seen in Theorems
2 and 4 that these satisfy the first inequality of (88). 1In order to prove
that they satisfy also the second inéquality (88), we introduce the notation
N xk(l—a)/a

(90) M({x ) =12 log, (PP ) (afa-1) # 0)

(o > 0y Xp9Xyse e sXy is arbitrary real but

N -
Zkail',
k=1

in particular, (82) is aM({nk}))' We note that the exponential mean (90)

aM is increasing with each X (k = 1,2,...,N) and tramslatory, i.e.
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(91) M({x, +t}) = M({x, Y) +t for all real x.,x
o k o k

12Xgs e o Xy

Then the right inequalities in (89) imply

o N nk(l-a)/a o N o
(92) 1-a o8 (kilpk D ) = aM({“k}) < otM({-logD(pk/jilpj) + 1)) =

. N
N N -log (po/ I pD) (1-a)/a
a a o D k'3i=1"]
- o -2 k|
M 1ogD<pk/'£lpj)})+ 1 =9 log, (kilka

) +1 =

N N

- 1~
lia l°gD [ Pkpi(u /e (I P?)( a)/u] + 1=
k=1 j=1

it

N N
& log [C £ p (1 p% /)1
k=1 k=1

1+1=

N H o (P,sP,yseessPy)
1 +-l— log ( Z pz)/log D=2 N"12 N + 1,

1-a k=1 log D °
as asserted. It seems that we have excluded in (92) case o = 1 (Shannon .
entropies, average lengths (31) of codewords). But, evidently, also the

lM defined by

arithmetic mean

N
(93) 1M({xk}) - kilpkxk

is increasing and satisfies theltranslativity (91). The quantity (31) is
'again 1M({nk}). Now (92) remains valid, with the appropriate changes.
for o = 1. The rest of Theorem 5 i8 obvious. |

We can again get arbitrarily small + e, instead of + 1, in (88)

if we transmit sequences of independent messages.
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10. The inequalities (B84) and (83) characterize the Shannon

; _
and Renyi entropies of order a(>0). But what characterizes the a-average

lengths (31) and (82) which figure in these inequalities or the arithmetic

and_exponential means (93) and (90)? We try to answer this question in

this last Section.

We recall the proof of Theorem 5. Both (80) arnd (93) are

quasiarithmetic means, which means that they are of the form

94 Pmlx ), (b1 = vt ¢ : (x)) : T
94 MAlx, }, {p = ¢ Lp, ¥ fp =1;p, >0; k=1,2,...,N; £ D g1
k' P ek Uk e K k | A .

where ¢ is a continuous and strictly monotonic function. For (93) and (90%

(95) ¥(x) =x  or y(x) = p*(1-a)/a (@ #0, a 1),

respectively. Mean values of the form (94) are evidently always increasing

in the xk's (k = 1,2,;..,N). But when are they also

(96) M), ) = Mdx ), D)+t

translatory (cf. (91% a property which we also needed in (92)). It is known
(sée e.g. J. Acz1 1966, cf. also G. H. Hardy - J. E. Littlewood -~ G. Polya

1934, Section 3.3) that the only translatory (96) quasiarithmetic means are the

arithmetic and exponential means (93) and (90) with a # O.

We have still to motivate (96) from the information theoretic

point of view and also exclude a < 0 in (90).

Remember, that we have introduced (93) and (90) as generalizations
of the ao-average lengths (31) and (82) of codewords. Take two independent

sets of messages K KZ""’KL and Ml,M M, with the respective pfobabilities

1° 2000y
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PysPpsseesPpslysdnse sty and codeword lengths !Ll,ﬂ.z,...,!LL,nl,nz,...,n,\I

1

in their respective uniquely decipherabtle codes (same number D of symbols in
both). Then there exist uniquely decipherable codes with codeword lengths

2k + n for coding pairs of messages (Kk,Mm) (k =1,2,...,L; m = 1,2,...,N).

Indeed from the Kraft inequalities (cf. (32))

L —£k N =-n
ID <1 and £D "™<1,

k=1 m=1
also the Kraft inequality

(L,N) -% 4n ,
L D <1
(k,m) = (1,1)
follows, by multiplication. Since the messages Kk’ Mm (k = 1,2,...,L;
.m=1,2,...,N) were supposed independent, the probability of the pair
(Kk’Mm) will be P (k =1,2,...,Ly m = 1,2,...,N). In analogy to (31),

(82) and (94),we can introduce quasiarithmetic mean lengths of codewords by

L
(97) Yt ), o h = v SR ORICREP

and it is quite natural to ask which of these are additive, i.e.,
v e Ut P .
(?8) M{y+n Y, {pq b) Mint, {(pH + "MUn }, {q D) .

This means that the mean length of codewords in the code for pairs of

megsages should be equal to the sum of mean lengths of codeword in the codes

for individual messages.

It is easy to check that the arithmetic and exponential mean codeword

lengths (31) and (82) have this additive property (98), but the problem of
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determining all quasiarithmetic mean lengths (97) of codewords, which are

(98) additive, is still unsolved.(})

However, L. L. Campbell (1966, see also J. Aczél - Z. Dardﬁzy 1975)

has introduced noninteger codeword lengths and stated that they can be motivated

also from the point of view of coding theory. (One advantage is that the lower

bounds in (33) and (84) can then be actually attained.) Then (97) is defined

(cf. (94)) and (98) postulated for all real (or all positive) Rk,nm with (32), and
L N

Py > 0, q, > 0 (k=1,2,...,L; m=1,2,...,N) with % Py = z 4,
k=1 m=1

these, the above question is now easily solved since, under these circumstances,

1. For

(96) follows from (98) if we take n o=t (m=1,2,...,N), and we have just

seen that the expressions (93) and (90) (with o # 0) are the only quasiarithmetic

means which satisfy (96). It still remains to motivate the restriction o > 0.

Remember, that the inequality (84) was our primary reason for
introducing a-average codeword lengths. Both sides (cf. also (81)) make

sense also if o < 0. But the inequality does hot hold in general, if a < 0.
2

1
Take, for instance, o = -1, Py =3 Py T D=2, n, =n, = ¥ (the (32)
Kraft inequality is satisfied). Then
12

H, (5,3 -1 -1

1729378 1 17 o2 1 1 .
Tog,? = 5 log, [(3) + (3) ] = > log, 4.5 > 7 log, 4 =1

N § 1,2 2 ,-2y _

=-3log, (32" +3527) = _M({1}),

i.e., there is < instead of{i in (84).
As a matter of fact, we have seen in (76) that the proof of (84)

is based upon the (32) Kraft inequality and the (71) HUlder inequality.

If there is equality in (32) and if the HYlder inequality is reversed with
strict < instead of >, then we have in (84) < instead of >. The former

condition is satisfied, for instance, if

4 (82).

(%) since completion of this paper,I have solved this problem. The solutions are (31) an
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(99) ¥ = D", n =0 (k=1,2,...,D).

The latter condition is satisfied, see (72), if p > 1 and {xi} is not

proporticnal to {yg}. That means, see (74), (78) and (99),

-n 1/(1- \ -1 -1 _ '
P, D P o xi # c y% = cpp /(1-p) i.e. pp # c(p )/p Dn(p ) (k = 1,2,...,N) and
t < -1,
that is
11 1
(100) a < 0 and (p19p2)""pN) # '(NQN!"',E)

So we have proved that in (84) < stands instead of > if (99) and

(100) hold.
With aid of the functions given in (95), the Shannon and Réhyi

entropies (34) and (81), when divided by log2 D as in (33) and (83), can be

written as

VyD -1 X 1/(Logu(1)+1)
(101) H({p, D) = (Qogy ¥(1) + 1) v = [ I p, ¥(-logyp,) ]
k=1

" Summarizing, we have proved the following.

Theorem 6. The a—average generalized codeword lengths (90) and (93)

o N xk(a—l)/a N
(102) — log. ( I p, D ) (a#0, a#1l), Ipx (o = 1)
l~a D k k7k
k=1 k=1
and only these are quasiarithmetic
N N " N -%

v | -1 .
({x, ), (p, D =v (Zp¥(x)) (Zp =1, LD < 1;
Bl T k=1 © K7 k=1 K k=1

P > 0, x

K real; k = 1,2,...,N)
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(¢ continuous and strictly monotoric) and (98) additive

Mty b tagand) = Gy o) + Yy ), (ad)

Jf these quasiarithmetic mean generalized codeword lengths are also bounded -

from below by the respective entropies (101)

e (g 3 1o ) > YN (ip )

for at least one N > 2, one (finite) probability distribution with

' 11 1
(pl’pZ’.."pN) # (’ﬁa'ﬁ's-"sﬁ)

and with n = 1 (k=1,2,...,N), then a > 0 in (102).
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Determination of All Additive Quasiarithmetic

Mean Codeword Lengths

3. Aczél

1. L. L. Campbell 1966 has introduced quasiarithmetic mean codeword

lengths in the following manner.
Let Y ='{nl,n2,...,nK} be a finite set of messages and let

Q ='{ql,q2,...,qK} be an associated distribution of probabilities, so that

the probability of e is 4 (k = 1,2,...,K) and

(1) ) 20 (k=1,2,...,K) .

Suppose that we wish to represent the messages in Y by codewords, i.e. by

finite sequences of elements of the set {0,1,...,D~1} where D > 1. There

is a uniquely decipherable code (see e.g. F. M. Reza 1961) which represents

by a codeword of length (number of elements) (k = 1,2,...,K) if and
e "k

only if the set of positive Iinteger codeword lengths N =‘{nl,n2,...,nK}

satisfies the Kraft inequality

K -
(2) Xan'sl

Let now ¢: [1l,o[ -+ R be a continuous strictly increasing function.
-1 X , ] s .
It has an inverse ¢ which is also continuous and strictly increasing. This

defines a quasiarithmetic mean codeword length

' K
(3) L(Q,N:6) = 67 ¥ q6(n)]
k=1



for all N satisfying (2). The reason for calling L a mean length is that,
for N = {n,n,...,n}, i.e. when all codewords are of equal length n, then

L(Q,N;¢) = n. Moreover, if ¢(x) = ¢0(x) =x (x € [1,»=[), then

K
4) L(Q,N;¢) = q s
kzl K"k

the ordinary or arithmetic mean codeword length. L. L. Campbell 1965, 1966

has also introduced the exponential mean codeword length, for which

$G) = 6,0 =D (x e (1,005 t #0),
K t

(5) L(Q,N34,) = T Log, kZ q,D *
=1

It is easy to see that fim L(Q,N;¢t) = L(Q,N;¢0).
>0

Important inequalities are known for the mean codeword lengths
(4) and (5) (see, e.g., F. M. Reza 1961, L. L. Campbell 1965, J. Aczél 1973
and section 4 of the present paper). These give essentially the Shannon and
Rényi entropies as lower bounds of (4) and (5), respectively, and show also
that there exist uniquely decipherable codes for which these mean codeword
lengths come within a unit (bit) from their lower bounds. The proof of the
latter facts use a tranSlativity property of (4) and (5), the generalizations
of which we will examine in section 3. The inequalities, mentioned above, can
also be translated into optimal coding statements with respect to certain cost
functions, related to ¢ in (3). This we will see in section 4, in modification
of results by L. L. Campbell, partly published (L. L. Campbell 1965, 1966)

and partly unpublished.
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The question arises, why the mean codeword lengths (4) and (5)

have been chosen, say, among the quasiarithmetic mean codeword lengths (3).

In our main result, in section 2,we will show that the following rather natural

additivity condition characterizes them.

Comdider two independent sets of messages X = {61,52,...,£J}
and Y ='{nl,n2,...,nK} with associated probability distributions
P ='{pl,p2,...,pJ} and Q ='{ql,q2,...,qK}. Since X and Y are
independent, the probability of the pair (Ej,nk) is quk (G =1,2,...,J;
k=1,2,...,K). We denote by PQ the probability distribution
'{plql.plqz,---,plqK,pqu,pzqz,---,pqu,---,pJql,pqu,---,pJqK}: Let &g
be represented by a codeword of length mj (G =1,2,...,J) and let My be
represented by a codeword of length o (k = 1,2,...,K). Moreover, suppose
that we use the same symbols 'ﬂ),l,...,D—l} in all these representations;
The pair (Ej,nk) may be represented by a codeword of length mj + n
(G =1,2,...,3; k =1,2,...,K). Let us denote these three distributions

.of lengths by M ='{m1,m2,...,mJ}, N ='{nl,n2;...,nK} and

M+ N ='{ml+n1,ml+ﬁ2,...,ml+nK,m2+n1,m2+n2,...,m2+nK,...,mJ+nl,mJ+n2,...,mJ+nK} s

respectively. If M and N satisfy the Kraft inequality (2) then so does

M + N Dbecause

J -m K -
(6) Yp 3 <1 and ank51
=1 k=1
imply
J K -(m,+n )
y Yo J+nksl.
j=1 k=1

Thus there exists indeed a uniquely decipherable code with M + N as set of éodeword
lengths for VXY =
{glnlsglnzsoc-,Ean’Eznxsgznz,o --,EZT]K,-..,Egnl,Ean,oo-,EJnK}.

If L dis to be a measure of mean lengths, it is natural to require
that
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¢)) L(PQ,MN;¢) = L(P,M;¢) + L(Q,N;¢) ,
i.e.,
J K J K
-1 -1 -1
8 [ pAn)) = ¢ L ] pom)T + ¢ L Y . 6(n )7,

We call the properties (7) or (8) additivity. They are supposed for all

positive integers mj and n satisfying (6) and for all pj,qk

(3=1,2,...,7; k=1,2,...,K) satisfying (1) and

J
9 Yp,=1;p,20 (j=1,2,...,7) .
j= j j .

The problem of finding all additive (7), quasiarithmetic (3)

mean codeword lengths has not been solved before (cf. L. L. Campbell 1966,

J. Acz€l 1973). Instead, L. L. Campbell 1966, has generalized the codeword
lengths n, (k = 1,2,...,K) so that they become arbitrary real numbers

satisfying (2), and has solved (8) in this case. In this paper we solve

the original problem, with positive integer codeword lengths. We restrict

ourselves to J = K = 2, thus making the result more general. This has

also the advantage that, because of D > 2, m z2l,m,21, n, 21, n, 21,

(6) is always satisfied.

2. Theorem 1. The arithmetic and the exponential mean codeword

lengths (4) and (5) are the only quasiarithmetic mean codeword lengths (3)

which are additive (7) with J = K = 2 (for two-place distributions).

Proof. For J = K= 2, (7) or (8) can be written as
-1 _
(10) ¢ “Ipya é(mytn) + prayé(mp+n,) + poq,d(mytn,) + Pyd, ¢ (m,ytn,) ] =

= o7l p 0(m) + pp ()] + 67 a b(n)) + qyb(ny)]



where
(11) pl 20, pZ 20, pl+p2 =1, ql 20, q2 20, ql+q2 =1,
ml,mz,nl,n2 are positive integers.
Put into (10) m =m, =m, q = 1-q, q2'= q, in order to get
-1 -1
(12) ¢ [Q-q)¢(n 4m) + qd(nytm)] = ¢ "[(1-q)¢(n)) + q¢(ny)] + m
for all
(13) . q e [0,1]; Dy, Ny, W positive integers.

We need the following

Lemma. Let ¢, ¥ be continuous, strictly increasing functions

defined on [1,o[. The equation

(14 $TTA-00() + ap(a] = YA () + vl )]
holds for
(15) n, = 1, n, arbitrary integer gréater than 1,

-q € [0,1] arbitrary, if and only if there exist constants o > 0, B such

that

4(16) .w(x) =q ¢(x) + B for all x e [1,=[.

Proof of the Lemma. The "if" part is obvious. 1In order to

prove the "only if" part, put into (14) n, = 1, n, > 1. Denote

: al = ¢(nl) = ¢(l)9 aé = d)(nz) - ¢(nl) > 0’ bl = W(nl) = lP(l), b2 = ‘p(nz) "W('ﬂl) > 0

Then (14) goes over into

an ’ ¢—l(a2q+al) = w—l(b2q+bl) (q € [0,1]) .



Now denote

y = b2q + bl

and notice (cf. (15)) that y runs through [¢(1), 2im y(n)[{ when q € [0,1],

n-—>oe
'm, =2,3,... (¥, being increasing, has a finite or infinite limit as n + ),

So (17) goes over into
l!) (y) = d) A y+A ) A, > O)

or
(16) P(x) = ad(x) + B8 for all x e [1,=[ ,
where a = l/A2 = b2/a2 >0, q.e.d.

Continuation of the proof of Theorem 1. Denote

¢éx) = ¢(xtm) (xe [ly,e[3 m=1,2,...) .

Then (12) goes over into

¢4 + as)] = ¥ LY (n) + i (n,)]
for all

qe [0,1]; n arbitrary integers.

1 "2
Thus, by the Lemma (the "constants" o, B8 in (16) will now depend upon m)
Yy

(18) ¢(xtm) =y ¢x) = a(m)é(x) + B(m) (x € [1,o[; m =1,2,...)

We distinguish two cases:
(i) a(m) = 1. Put then into (18) x=n (n = 1,2,...), in order

to get

(19) ¢(m+n) = ¢(n) + B(m)  for all m, n = 1,2,...

Since the left hand side of (19) is symmetric in m and n, the right

hand eide has tno he svmmetric too.
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$(n) + B(m) = ¢(m) + B(n)

and thus (put a constant for n) we have

Bm) = ¢(m) + ¢ for all m = 1,2,... .
- This transforms (18) into
(20) d(xtm) = ¢(x) + ¢(m) +c¢ (xe [l,ol;m=1,2,...) .

(ii) If there exists an n, such that a(no) % 1, then we

derive from (18)

¢ xtmin) = a(n)¢(x+m) + B(n) = a(m)a(n)é(x) + a(n)B(m) + B(n) .

The left hand side is again symmetric in m and n, so the right hand side

~ has to be symmetric too,
a(n)B(m) + B(n) = a(m)B(n) + B(m)
or, with n =n; (a(n,) # 1),bwe have
B(m) = Bla(m) - 1] .
Putting this into (18) we get
(21) ¢(x+m) = a(m)[¢(x) + B] - B

or, with x=n (n=1,2,...) and again by symmetry,

(22) ¢(mtn) + B = a(m)[¢(n) + B] = a(n)(¢(m) + B] .

By supposition, ¢ 1is strictly increasing, thus ¢(n) # -B and therefore

(substitute into (22) n = n, with ¢(n1) # -B)



a(m) = al¢(m) + B] .

Putting this into (21), we finally get

(23) ¢ (xtm) = ap(x)¢(m) + aB¢p(x) + aBop(m) + aB2 - B .

Both (20) and (23) are of the form

(24) $(x4m) = ap(x)p(m) + bo(x) + bo(m) + ¢
with
(25) . a=0, b=1 in the case (i) ,

and (since ¢ 1is not comstant on [2,[)

(26) a#0,b=aB, c= aB2 - B in the case (ii) .

So (10) goes over into
(27) ¢_1(a[pl¢(ml) + pyd(m,) ] [ql¢(nl) + q2¢(n2)] + b[pl¢(ml) + p2¢(m2)] +

+blagd(n) + a0(n)] + ¢) = 67 Ip g(m) + pyd(my) T + 67 La d(n) + q,0(ny)]

with the variables restricted only by (11). If 'ml =n; = 1l and m,,n, = 2,3,004,

then, as p, and q., run through [0,1],
2 2
u=pdp(m) +pye(m), v =4q;6(n;) + q,(n,)

assume all values in [¢(1), Lim ¢(n)[ (¢ being increasing, the finite or

n->



infinite limit  2im ¢(n) exists). Therefore (27) goes over into
n-Heo '

¢_l(auv+bu+bv+c) = ¢;l(u)b+ ¢_l(v) for all u, v e [4$(1), Lim ¢(n)[

n-ree

and, with x = ¢—l(u), y = ¢-1(V),

(28) d(x+y) = ap(x)¢(y) + bo(x) + bo(y) + ¢ for all x, y e [1,o[ .

For the constants in (28) we have one of the two cases (25) or (26).

In the case (25), we get that f defined by

(29) f(x) = ¢(x) + ¢ (x € [1,=[)

satisfies the functional equation

(30) f(x+y) = £(x) + £(y) for all x, y € [1,=[

1
With ¢ also f 1is increasing, and so, by J. Acz€1 1966 and J. Aczel -

J. A. Baker - D. Z. Djokovid - P1l. Kannappan - F. Radd’ 1971, f£(x) = yx (y > 0) and

(31) d(x) = yx+ 68 (y >0) for all x € [1,=[ .

In the case (26), we get that g defined by

(32) g(x) = al¢(x) + B] (x € [1,»[; a # 0)

f[gm) = a(m); m = 1,2,...] satisfies

(33) _ glxty) = g(x)g(y) for all x, y € [1,o[ .
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From (32) we see that g is strictly monotonic. On the other hand, as
(33) shows, if there were an Xy for which g(xo) = 0 then g(x0+y) =0
for all y € [1l,oL which would contradict the strict monotonicity of g.

Thus g 1is (strictly monotonic and) nowhere zero and, according to the

above references,

tx

it
<

g (x) (t # 0) for all x € [1,[

and

(34) ¢ (x) yDtx +6 (yt >0) for all x e [1,=[ .

Putting (31) or (34)-into (3) we get (4) and (5), respectively,

and this concludes the proof of our Theorem 1.

On the other hand, the functions given by (31) and (34) satisfy

(8) for all J > 1, K> 1 [and all mj,nk,pj,qk (3 =1,2,...,J; k =1,2,...,K)

satisfying (6), (9) and (1)], thus the arithmetic and exponential means (4)

and (5) are always additive (7).

3. The property (12) or its generalization, both called translativity,

(35) ‘1[1§ (n, +m) ] ‘1[Iz< (n,)]
35 ¢ q ¢(n 4m)] = ¢ q, ¢ +m
b He | T S

vhenever (1) and (2) are satisfied, is quite important in itself. It serves
(ef. J. Acz€l 1973) to prove certain uniqueness propérties of the so called

Shannon and Rényi entropies which are the lower bounds of our mean codeword

lengths (4) and (5). We will come back to this later briefly. On the

other hand, after allowing non-integer codeword lengths, L. L. Campbell

1966 has deduced (31) and (34) from the (12) translativity alone. Thus,



..ll..

in the case of those generalized codeword lengths, the (12) translativity
and the (8) additivity are equivalent. This is not so anymore for the

proper positive integer codeword lengths, not even (35) implies (8) or (10)

[of course, (8) does imply (35)]. We will give, however, the general
solution of the (12) translativity equation and we will show that (35) and

(12) are equivalent.

If we have (12) for (13), then we can proceed, as in the proof

of Theorem 1, till (24) with (25) or (26). From (24) we get then

(36) ¢_1(auvm+bu+bvm+c) = ¢—1(u) + ¢—l(vm) for all u e [¢(1), 2im ¢(n)[ ,

n->o

but only for all v, o= ¢(m), m=1,2,... .

However, (24) and (36) imply (35):

K K K

-1 -1

¢ L) qo(m+m)] = ¢ [ap(m } q¢(n ) +b ) qé(n) + be(m) +cl =
Koy KK kzlk * kzl ok

_17§
=¢ [ ) qd(n)]
Lk "

+
=]

Thus (12) indeed implies (35) and, since (12) is the special case K = 2

of (35), the equivalence of these two equations is established.

In order to solve (35) or (12) or, equivalently, (24) in the
cases (25) and (26), introduce again the functions f and g defined by

(29) and (32), respectively. They will satisfy now the functional equations

(37)  f(xtm) = £(x) + f(m) (xe [1,o[; m=1,2,...)
and
(38) g(x+m) = g(x)g(m) (x € [1,»[; m=1,2,...) ,
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respectively. Again ¢ - and thus g can be strictly monotonic only if

g 1is nowhere 0 [g(xo) = 0 would imply g(x0+m) =0 for all m=1,2,...0.

It is easy to construct the general continuous strictly increasing

solution of (37):

arbitrary continuous increasing on [1,2] but with £(2) = 2£(1),
(39) f(x) =

f(x-k) + kf(1) for x e Jk+l, k+2]1 (k = 1,2,...)

and the general continuous strictly monotonic (increasing, if a > 0,

decreasing if a <0 ) solution of (38)

arbitrary strictly monotonic continuous on [1,2] but with
(2) = g(1)?
(40) gx) =4 & 8L
e(x-K)g(1)X for x e Jk+l, k#2] (k = 1,2,...) .

So we have proved the following (the "if" part is easily checked).

Theorem 2. The translativity equations (12) and (35) are equivalent.

A function ¢ is continuous, strictly increasing and satisfies (12) or (35)

if,and only if,
- rd

p(x) = £(x) - ¢ (x e [1,=])

¢ (x)

-% g(x) - B (x e [1,«[)

where a # 0, B, ¢ are constants and f and g are given by (39) and (40)

(g increasing if a > 0 and decreasing if a < 0).

.

4, It is well known (F. M. Reza 1961, L. L. Campbell 1965, 1966,

J. Aczél 1973) that for all Q and N satisfying (1) and (2), respectively,
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K K

2 q 2 - z q, fog.q,, (0 fLog 0: = 0)
R N A

(41) L(Q,N;¢0)

and, for t > -1, t # 0,

K t K
1 S
= fog 2 q,D > —= fog 2 q
t D k=1 k t D kel k

1/(t+1) a

(0”:

(42) L(Q,N;4,) = 0)

The right hand side of (41) is the Shannon entropy while on the right hand

, .
side of (42) Renyi entropies [of order 1/(t+l)] stand.

One advantage of allowing non-integer codeword lengths is (L. L.
Campbell 1966), that the lower bounds at the right hand sides of (41) and
(42) are actually attained. But even if we restrict ourselves to.integer
codeword lengths, it is easy to prove (F. M. Reza 1961, L. L. Campbell 1965,

J. Aczel 1973) that

(43) L(Q,N ;¢4) = q < - q, fog.q, + 1
o’ 7 L %k TN B
if
44 - <o k=1,2,...,K
(44) - fogq, < m < - fogyq +1 (k =1,2,...,
and, for all t # -1, t # 0,
- K tn K
oy =1 Tr tH1 1/(t+1)
(45) L(Q,N 34,) = ¢ togy J qD <= sogy ] oqp +1,
k=1 k=1
if
1/(e+D) , X 1/(e+1) x /() , & 1/¢e+1)
46y — ospla, / Zlqi ) < m < - fog (g /1 a4 ) +1
i= i=1

(k = 1,2,...,K)

We can get these from the transitivity of (4) and (5).
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As to t = -1, it is easy to show that

K

- 20g._ max (q.,q,se¢05qy)
t > -1 k=1 D 1’72 K

(Thus the right hand side of (47) is the Rényi entropy of order «.) So,

by going over to the limit t - -1 1in (42), we get

L "
L(Q,N;4_;) = - fogy lequ > - fogy max (4y,qy5-«+>q)

More genérally, L. L. Campbell has recently proved (communication by

correspondance) that for all t < -1

(48) L(Q,N5¢,) =

]
et
=
o)
0
S
~1
Na)
w‘
(a3

. ‘Q'OgD max (qlsqza' -an)

while (again for t < -1)

*
tn :
* 1 k 1

(49) L(Q,N 34,) = P logD kz q, D < T tog; max (ql,qz,---,qK) + 1
if

(50 * a1, n (k # k) wh - (

) nkO =1, n 2 RogD D(K l) where qkO = max ql,qz,...
%

% *
(A1l these {nl,nz,...,nk} do also satisfy (2).)
On the right hand sides of (43), (45) and (49), + 1 can be

replaced by arbitrarily small + € > 0 if we encode sequences of

independent messages consecutively.

The minimum or lower bound properties (41), (42) and (48) give.
interest to the following interpretation of quasiarithmetic mean codeword
lengths, c¢f, L. L. Campbell 1966. The function ¢ in (3) can be

understood as cost function, ¢(n) being the cost of using a codeword

Q)

K
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of length n. It is reasonable to suppose that ¢ is (strictly)
increasing on the et of positive integers and then it can always be
extended to a function strictly increasing and continuous on [1,~l.

This is suitable because then ¢-l can be applied on more than a

denumerable set,

Now the average cost of encoding the messages Y ='{n1,n2,...,nk}
(probability distribution Q ='{ql,q2,...,qk}) by a. distribution

N ='{hl,g2,...,nk} of codeword lengths is

K
C=) q¢(n) .
kZlknk

A coding problem of some interest is to minimize the cost C by an

appropriate choice of the distribution N, subject to the costraint (2).

1

Since L(Q,N;4) = ¢ (C)' and ¢—1 is (continuous and) strictly increasing,

an equivalent problem is to minimize the mean codeword length L(Q,N;¢).

There are multiplicative and additive constants contained in the
cost functions as given by (31) and (34). (They do not influence the mean
codeword lengths (4) and (5).) For calculating the average costs it may
be advisable to normalize them. A possible normalization would assign unit
cost to encoding a codeword of length 1 and zero cost in the (idealized)

case of a codeword of length 0. Then we still have

(51) bo(m=n (n =B1,2,...)

but, instead of ¢t’ we have

tn

(52) . =2—=L1  (c40;n=0,1,2,..0)
D -1
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(One of the advantages is that ¢O = Lim ¢t while ¢0 # 2im ¢t.) The
t->0 t=>0

inequalities (41), (42) and (48) show that the average costs cannot be

less than

K
(53) -kzlqk ILoquk (0 20g 0: = 0) for t =20

1/(t+1) . t+1
(54) k=1 S for t#0,t>-1,
D- -1 : .
and
1 - max (q,,95s+++q5) ,
(55) 1 2 = for ts<-1,

1-0°

whenever the cost functions are ¢ given by

- - ptX _ 1
9(¥) =x and ¢ (x) == for t#0 (xe [1,=])
D -1

fef. (51), (52)] which, by Theorem 1 and the above, are the normalized

forms of the cost functions in all cases of additive mean codeword lengths (8).

The inequalities (44), (46) and (50) show with what N we get

near to the -lower bounds (53), (54), and (55) of the average costs, respectively.
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