Department of Applied Analysis
and Computer Science
Technical Report CS5-73-04
January, 1973
A NEW PROOF OF THE UNDECIDABILITY RESULTS
FOR FLOWCHART SCHEMAS
by

E.A. Ashcroft

University of Waterloo

(Revised Jure 1974)

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

Department of Applied Analysis
&

Computer Science

Department of Applied Analysis
and Computer‘Science '
Technical Report CS-73-04
January, 1973
A NEW PROOF OF THE UNDECIDABILITY RESULTS

FOR FLOWCHART SCHEMAS
. by
E.A. Ashcroft

University of Waterloo

(Revised Jure 1974)

A NEW PROOF OF THE UNDECIDABILITY RESULTS FOR FLOWCHART SCHEMAS

E. A. Ashcroft
Computer Scicnce
University of Waterloo
Waterloo, Ontario

A NEW PROOF OF THE UNDECIDABILITY RESULTS FOR FLOWCHART SCHEMAS

The usual proof that divergence and non-halting are not partial-

ly decidable for flowchart schemas [1] uses a two-stage simulation - a

sinulation of Turing machines by two-headed automata (with infinite tapes)

and then a simulation of two headed autamata by flowchart schemas. In

the following proof we use one simuilation of Post machines by flowchart

schamas.

We shall consider Post machines starta.ng with empty tape.

These

machines are related to Post normal systems [2] but are actually the

SJ.ngle—Reglste.r Machines of Shepherdson and Sturgls [3].

We will take a binary Post machine P (over alphabet {a, b})

to be a flowchart constructed fram the following camponents (the

generalisation to larger alphabets is obvious):

Start Statement

Writing Statements

}

X <« X°a X « x*b

X + tail (x)

Y

x « tail (%)

¥

'L

‘ Endmg Statements

(m)Cm)

A denotes the empty list or queue.
x+a denotes the queue x with 'a' added on fhe
| right.
X*b denotes the queue x with 'b' added on the

right.

;l'@(x) | denotes the left most symbol of x , if x is
non-empty.

tail (x) denotes x without its left nmost symbol, if x
 is non-empty. |

Wew:.ll say that a Post machine is in normal form if it never
‘takes the T branch of any of its x = A tests. | |

In [3] if is shown that binary Post machines can campute all
partial recursive functions, and therefore are as general as Turing
mach.lnes It is also mentioned there that binary Post machines in normal .
form are as general as arbitrary Post machines (we prove this in the
appendix, for campleteness). |

Since binary normal form Post machines are as general as Turing

machines, non-halting of such machines is not partially decidable.

| We shall show how to construct, fram each binary Post machine
P :Ln normal form, fldvx:hart schanas‘ SPl and SP2 such tbat

SPl diverges if and only if P does not halt

'sz‘ does not halt if and only if P does not halt.
Spl and SPz use two variables 2 amd r , which 'keép track of' the

ieft and right hand ends respectively of the queue x . ‘In general, when

the length of x is k , and the value of 2 is y , then the value of

r is £(y) , and the sequence <p(¥), PEW), PEEW)) /s ory PES T (>,

is a coded version of x : T represents a , and F represents b .

_"' Note that in a normal form Post machine we can amit the x = A

Construction of S,

1

Start statement fragments:

Y

in P becomes

Writing statement fragments: .

X €XxX*a

X <« X*b

Reading statement fragments: o x=A test is required since P is

in normal form)

a
i
x < tail (x) x + tail (x)

I

" Ending fragxﬁents :

We consider these fragments as elementary pieces of P and

5. -

1

Theorem 1. Sp ~ diverges 'if and only if P does not halt.
‘-————_—— .

1

Proof Consider any interpretation for which canputation of Sp does
1

not get to LOOP. We claim that the camputation of Sp follows the same
1

path as the computation of P , and at each step, i.e. between fragments,
the values of x , & and r are related as follows:

If 3{=alo¢2'.,. o in P (i.e., the length of x is n), then

r=£'(2) and for 1<k<n
4 0_k=a<=> p(fk—l(fl)) =T

o'k = b <> p(fk—l(ﬂ,)) =F

This is clearly true after the Start statement fragments when
x=A ,n=0 and & =r=a. |
To check that the i‘elationship is preserved by the reading and

writing fragments, let x = U0y ees O s 2 and r be the values

befare the fragment, and x' =oja) ... ar , 2' and r' be the values

after the fragment. For writing statement fragments, m=ntl , &' =24,
a]‘{=ak for 1<k<n, and r' = £(xr) = fn+l(l) = f*(2') . Note that
p(fm-l k")) = p(fn(z)) = p(x) ; this value correspords to the swﬁol added
(o}) by the restriction that the computétion does not get to IbOP. For
reading statements, since P is in normal form, n > 0 , m = n-1 ,

of =a,, for 1<k<m,r' =r and £ =f() . Thus r'=r=£"@)

gkl

= 1) = (') . Note that for 1<k<m, pET®)) = pE<®)

= p(f (k+1)~1

were correct for Uy * It simply remains to show that the same exits

(2)) ; so the values of p for a]'{ are correct, since they

are taken fram the reading statement fragments, wﬁich follows immediately
f‘rqn the correspondence between o4 and the value of p(%) .
| We also claim that there is always some interpretation that
does not get to IOOP. This follows because the tests that lead to ILOOP
are all free tests. |
Hence there is an interpretation for which SPl halts if and
only if the camputation of P halts. i.e. SP diverges if and only

1
if P does not halt. ‘ : g

Construction of S.
. —=P, |
The construction of sP is similar to that of sP but with
2 1 '

100P replaced by HALT.

" Theorem 2. S, does not halt if and only if P does not halt.
2 .

Proof The reasoning of the proof of Theorem 1 applies, in particular

the relationship between x , & and r for interpretations that do
not hit the HALT's (that were LOOP's in SP) is the same as before.
1

Hence there is an interpretation for which SP does not halt if and

: 2
only if the computation of P does not halt. : a

Since P is an arbitrary binary Post machine in normal form,
and for this class of machines non-halting is not partially decidable,
the two theorems give us our undecidability results:

1) Divergence of flowchart schemas is not partially

decidable.

(2) Non-halting of flowchart schemas is not partially

decidable.

Comment:s

i) The class of schemas for which the undecidability results are proved
is exactly the same class 32 as is used in the 'classical' proof
in [1]. |

ii) The motivation for this new proof was to popularise the use of Post
machines in proving results in program schema theory, since they
seem to be particularly suitable for this. Another watural'
technique, the use of the Post Correspondence Problem, could also

have been used, quite elegantly, to prove (1) but rot (2).

References

[1] ILuckham, D., Park, D. & Paterson, M. "On Formalized Camputer
Programs". Journal of Camput. & System Sci., Vol. 4, No. 3, 1970.

[2] Post, E. L. "Formal reductions of the general combinatorial
decision problem". Amer. J. Math. 65, 197-215.

[3] Shepherdson, J. C. & Sturgis, H. E. "Computability of Recursive
Functions". J. Assoc. Comput. Math., Vol. 10, 217-255.

APPENDIX: Binary normal-form Post Machines are as general as arbitrary

binary Post machines

_ We will show that binary Post mach:Lnes can be simulated by
' ternary Post machines in normal form; it is clear that a simple codi_ng :
argument can show that ternary normal form Post machines can then be

simulated by binary narmal form Post machines.

Theorem 3 For every binary Post machine P we can construct an
equivalen{: Post machine P' (with an extra alphabet symbol) in normal

form.

Proof P' simalates P , but keeps an end-marker symbol # on the

end of X . We construct P' fram P as follows:
et | copy (%) denote the following

IR

Y

x « tail(x) x < tail (x) ‘ X <« tail (x)
| , |
X <+ X*a X <« x--b

N/ A

(This removes the end-marker from x .)

in P becames

X « Xea

X +« x*b

in P becames

in P becaomes

copy (x)

X <« X*a

X <« X°#

copy (x)

X <« X*b

X < x*#

in P!

Pl

Pl

10

x < tail®) | (x <+ tail(x) _
l l/ ‘ x + tail (x) x <« tail(x) x <+ tail (x)

v v |

X « X*°#

R

Consider the above fragments as elementary pieces of P and

p' ; the construction ensures that the computations of P and P'
follow the same path, and at each step (i.e. between fragments) if x =a
in P then x=o0# in P' (and sO X isneveremptyatthébeginning

» of'a reading statement fragment of P'). To see this, note that this is
clearly true after the start statement and the relationship is preserved
by all the other fragments. (The purpose of in P'v is to
convert x =af to x=o .) Hence P' is equivalent to P i.e. it

accepts/rejects if and only if P accepts/rejects. 0]

	
	
	
	
	
	
	
	
	
	
	
	
	

