: - - e
s - e 4 ;)

Department of Applied Analysis
and Computer Science
Technical Report CS-73-02
January, 1973
ON THE COMPLEXITY OF
SYMMETRIC COMPUTATIONS
by
Robert L. Probert
University of Waterloo

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

Department of Applied Analysis
and Computer Science
Technical Report CS-73-02
January, 1973
ON THE COMPLEXITY OF
SYMMETRIC COMPUTATIONS
by
Robert L. Probert
University of Waterloo

ABSTRACT

The paper demonstrates the equivaience of bilinear
chains and matrix multiplication algorithms which do not
assume commutativity of multiplication. This equivalence
is exploited to obtain the main symmetry result, that
the same lower bound on the number of multiplications
required to compute eéch of the six matrix products of
the form (mxn)(nxp), (nxm)(mxp), (pxm)(mxn), (mxp)(pxn),
(nxp)(pxm) holds. An exampie is given to illustrate the
techni@ue of constructing algorithms for computing
(nxm)(mxpj and (pxm)(mxn) matrix products from an
algorithm for computing a product of the form (mxn)(nxp).
'Finally,‘the main theorem is used to obtain a new lower

bound on the complexity of general matrix multiplication.

Introduction

Very few lower bounds are known on the complexity
of general matrix multiplication other than those resulting
from independence arguments such as found in Winograd (1969),
liopcroft and Kerr (1969), and Fiduccia (1970). Moreover,
these lower bounds are more appropriate to inner and matrix-
~vector products than to general matrix by matrix products.
Hopcroft and Kerr (1969) have‘shown that seven multiplications
are required to compute the product of two 2 x 2 matrices
if commutativity is not assumed. Winograd (1971) has
proven that Strassen's (1969) 7-multiplication algorithm
for (2x2)(2x2) is optimal even if commutativity is allowed.
Finally, by ingenious though tedious combinatorial arguments,
lopcroft and Kerr (1969) proved that Tbn/é\multiplications
are necessary and sufficient to compute products of the
form (2x2)(2xn), n*l naturally, and that 15 multiplications
suffice and are required to compute a product of the form
(3%x2)(2x3). Together with Kirkpatrick's (1972) proof that
(mxn)(nxp) matrix multiplication requires‘m(n+p-l) multi-
plications, this comprises the extent of our knowledge of
the essential complexity of the class of matrix multiplication.
'aigorithms.

Basically, there are two possible approaches for
proving lower bounds depending on the definition of the
class of algorithms under discussion. Typical of the first
approach is that of Winograd (1969) in which an algorithm «
is defined as follows:

-Let the number of steps in o« be denoted by N and
label the steps 1,2,.¢0y N. Let Q represent the field of
rational numbers.

Denote by ey(Jj) the evaluation of « at step Jj, ie.

the expression computed by & in its jth step.

of is restricted as follows:

-2 -

Either ex(d) e QU [aﬂﬂ""’amn’b11""’bnp where the aij's

and bij's are indeterminates,

or ey(Jd) = eu(jq) 'op' eg(J,) where j,, j<J and 'op' is
either '+', '=', or 'x'; division is not allowed.

ol is said to compute the product Y of Amannxp if 4

j/" 329000’ jm.p SUCh that eog(,jk) = yrs where k=(r—1)p-{-S.

In other words, each evaluafion consists of a
rational number, an indeterminate, or the sum, difference, or
product of earlier evaluations. The algorithm computes
the right answer if each element in the product matrix
appears at some step as an evaluation. Lower bounds are
obtained by using independence arguments. Finally, this
definition of a computation permits intermediate evaluations

ij> . P2<aij’bij) where P,,P, are

polynomials of arbitrary order in the indeterminates with
rational coefficients. Obviously, such evaluations are de-
signed to exploit‘the commutativity of multiplications of
b b for all 14iém, 1¢7,

of the form_Pq(aij,b

matrix elements, ie. aij kl = klaij
kén, 1414p., Conceptually, we may think of the indeterminates
as taking on irrational valuesj thus, since multiplication

occurs over the real field, it is a commutative operation.

‘owever, it is an interesting fact that Strassen's

- (1969) algorithm for multiplying two nxn matrices does not
assume commutativity. Moreover, it seems natural that

the additional restriction that non-commutativity imposes

on the class of algorithms under discussion should allow

us to discover more of the nature of the matrix multiplication
problem. In order to be more precise, we define the class

of algorithms, NC, by:

An algorithm, €, is in NC if and only if any
multiplication p; in « is of the form u.u' where

]
u€Q{a,],I,...,amr:l and u eQ\-_b,M,...,bn;) i.e. u,u' are
polynomials in the a, J's and b, j's respectively.

Unless otherwise stated, we will use 'the complex-
ity of a computation' to refer to the minimum number of
multiplications required to perform the computation by an
algorithm in. NC,.

STRUCTURE OF NC

In fact, we can be even more precise about the
form of multlpllcatlons p o The following two lemmas par-
allel Wlnograd's (1971a)

Lemma 1: If « is a given algorithm to compute a
(mxn)(nxp) matrix product and PqseesyPp are the results of
the multiplications in «, then the partial result computed
at the jth step, eyx(J), is of the following form:

ﬁﬁ . m n n p
T +£,TiD + = & r.o.a . + 5 %, r!.b.

1 ' ' 1 3
where the Ti'8, T;4's, and ri4's are all in Q.

Proof: Obviously, ex(1)e€ Q(){a,m sece ’bnp? and
therefore is of the required form.
Suppose for all steps j#l, ex(J) is of the required form.
If en(l) is a multiplication, then e.,<,(1)=pk for some k.
Otherwise, e,f(l)= edﬂjq) s ed(jz) for j,,d,¢1, i.e.

, Kk m n
‘, b+
eal()= (P2 F) & Z (H2ep; + Zy &y (57 Day

Lemma 2: If « is an algorithm which computes the
matrix product (mxn)(nxp), has k multiplication steps, and &
€ NC, then there exists an algorithm «' with no more than
k multiplication steps, such that each multiplication is of

the form: n

= .
(fzaj=1rijaij)

.

n p
'
(Fdmmibiy)
and such that o' computes the same matrix product.

(Note: the number of multiplications in an algorithm does
not count multiplication by a rational number, e.g. rijaij
is not counted as a multiplication if T4 is in Q.)

Proof: Let the functions Li’ 1=0,1,2,%, of poly-

nomials in the aij's and bij's be defined as follows:

LifQYéﬂﬂ’°°f’amn’b11""'bn§] onto Q aﬂﬂ""’bn§]
such that 1f ueQ{gqq,...,bnﬁ], then
Lo(u)=the constant term of u,
Il P

m n
L,(u)=the ;1near term of u, i.e. féijzavijaij+fgﬁjzﬁwijbij’

L2(u)=the quadratic term of u, and LB(u), what remains, i.e.

Ly(w)= u = T(w) = I(u) = Ly(u).

Suppose ey (J)= ed(jq)ed(jg) = u.u',
eI =In(W)Ly(u') + Loy(w)(u'-Io(u')) + (u-Ly(u)) Ly(u')

+ (u-Lo(u))(u'—LO(u')). The only multipli-
cation which is counted is the final one., Thus, we can
construct a new algorithm«xé such that4io has the same num-
ber of multiplications as «, computes the same product, and
1f ey(J)=u.u', then Lo(u)zLO(u')ao. Therefore, if ex(Jj)=u.u’
then L2(u.u')= Lq(u).Lq(u').

By Lemma 1, if eggjo)=f§;ailblj, 1

-5 -

then, ea(dg)= roris R pe= 13514 5 1a+1=’la=’l 13 big @

Applying L2 to 1 and 2, we have %gi a4 l Z::r L2(p) .

Then, set pi=u..u! e Thus,

1" 1

) |
17%11%15 = ériLz(ui'ui) = ol ey Iy (u) . Note

that r = (rq,...,rk) is a function of i and j.

Hence, to compute Y5 for 14iém, 14j4p, an algor-
ithm suffices which computes the k multiplications
Lq(ui).Lq(ui) . Note that no multiplications are required

to compute L, (u.), and since ®eNC and ®contains u;.u! ,

« Thus, the

mz’i
Lq(ui) 4T3 184 and Lq(ui)= %gaggﬁrijbij

1=13=1"13"1]
algorithm &' has only multiplications of the required form
and computes the same matrix product as &,

The above lemma is a formal proof of the intuitive-
ly obvious observation made in (Hopcroft, 1959), namely
that since constant terms and terms higher than quadratic
do not appear in the product to be computed, these terms
need not appear in intermediate multiplications. Thus,
an equivalent algorithm exists with the same number of
multiplications whose multiplication steps are the product

of a linear sum of aij's with a linear sum of bij's.

The following algorithms both compute the matrix
product of two (3x3) matrices "faster" than the usual
brute-force method which uses §5=27 multiplications. he
first method belongs to NC, the second, a typical inner-
product algorithm, presumes commutativity of multiplica-
tion of matrix elements and hence is not in KC.

Method 1: To compute A5x5B3x5’ proceed as follows,

841 212 (bﬂﬂ P12 P13 ;
Let Ag= |85 855] 9 By = \bpq Doy b2;) v Ap= (aq3 253 355>L
351 352 :
By = (b5q D3 bz3) -

Then, use the algorithm given in Hopcroft and Kerr to
compute A,B, in 15 multiplications (which is optimal).

Compute A,B, in 9 multiplications (also optimal) and

set AB = A,B + A5Bs at a total cost of 24 multiplications.

171
Method 2: The well-known "fast" inner product algorithm
(see Winograd, 1968, 1969) uses only three multiplications
fewer than brute force. For example, if 05X5=AB, compute

C.

& s ¢ .) - -—
g0 141,343, as (ajqtbyy)(ay 54Dy) =8548 50 3Do 5483 303 5

Each cij requires 2 unique multiplications, namely
(ai4+b23)(a12+bqj) and aiBbBJ . There are three multi-
plications each of the form 25128409 and bqugj « There-

fore, the total number of multiplications in Method 2.is
(9 x2) + 3+ 3 =24 multiplications. Thus, exploiting
commutativity in this way affords us no saving over the
non-commutative Method 1.

In fact, no algorithm for multiplying 3% x % matrices
has been found, including algorithms which exploit
commutativity, which employs fewer than 24 multiplication
steps.

- BILINEAR CHAINS

| This section defines Fiduccia's (1972) notion of
a bilinear chain and proves that this class of algorithms
is precisely NC,

We will often refer to the matrix-vector‘product
which corresponds to a given matrix multiplication prob-
lem. In order to make precise this corréspondence, we
define:

as C where

the tensor product A @ B . mrxns

Citk,d+p = 213Pk+1,p+1?

A O
and the direct sum A . @ B. ., as c(m+r)x(n+s)='(0 .B) .

Then, if T_ stands for the identity matrix,with s 1's,

we have Is® A= L@ ... ©® A, s times, 'Finally, if Blxs
, define X(B) as

has the s columns bq""’bs

3((5) = [??,...,bS]T, i.e. an rs-column vector.

Lemma 3: (Fiduccia) If B has s columns, let
d=X(B), C=I_@ A . Then, the set of entries of AB is
identical to the set of entries of Cd.

Essentially, this lemma has reduced the matrix
multiplication problem to a matrix-vector multiplication
problem, BSince this idea of entry equivalence is central,
denote the set of elements of the matrix result AB by Z
E(AB). Define AB & cd iff E(AB) = E(cd) .

Let R be a ring and let K be a subring of the
center of R such that ar = ra for all (a,r) in KXR .

Let X = (Xij) be a matrix variable which ranges over a

-8 -

non-empty subset S of Rmxn and y = (yq,...,yn)T be a
vector variable over RnX1 = R% . } ,
o is an algorithm for the matrix-vector product Xy if X

computes E(Xy) from E(X) U E(y) for any pair (X,y) in
SXR® . Then define Ly (E(X)) as the set of all linear

combinations-g:aw x; of E(X) (Here, s=mn, X is (mxn))

- with fixed wl's in K which, for our purposes will Dbe
the set 29 1 —1%) o

A K~chain ¢ for E(Xy) is a finite sequqgnce ¢4,...
such that for each z ¢ E(Xy) there is a p such that
¢p=z where each.d)k is either in E(X) U E(y) or
O
¢ x

»

r¢3 where rekK, or

i

cbi'op'(bj for i, j<k and 'op'e%+','-','x'§.

. The chain d>1s K-bilinear iff whenever ¢k ¢‘ ¢
¢ ;eI (E(X) and §eLy (E(7)) .

By comparing the definitions of NC and bilinear-
ity, and applying Lemmas 2 and 3, we have the following
straightforward equivalence between the two models:

Lemma 4: For any algorithm X€NC which computes
Amannxp using only k multiplication steps, there exists
a bilinear chain which computes E(Xy) where X= I @DAL

and y=(b,],...,bg)T using no more than k multlpllcatlons,

and conversely.,

Hence, using Lemma 4 as a bridge between matrix by
matrix multiplication algorithms (in NC) and matrix-vector

bilinear chains, we can now employ a theorem by Fiduccia:

Theorem 5: There is a K-bilinear chain for E(Xy)
with t multiplication steps iff there is a K-bilinear
chain for E(XTz), where z ranges over R®, with t multipli-
cation steps.

This result is illustrated in great detail in a later
section; for now, we need only the statement of the theo-
rem to prove a result about symmetry in NC,

Lemma 6: Matrix products of the form Amannxp

require t multiplications‘by algorithms in NC iff products
of the form C D require t multiplications to be

NXMm mxp
computed by an algorithm in NC.

Proof: By Lemma 4, there is an algorithm«&NC

~which computes A in t multiplications iff there is

mannxp
a bilinear chain using only t multiplications which com-
putes E(Xy), where Xy is the COrresponding matrix-vector
product.,.

By Theorem 5, this chain exists iff there is a
bilinear chain for E(XTz) with t multiplication steps
where z ranges over R® . Note that XT is of the form
‘ . T T
Ip®cnxm and z is of the form (d,l,...,dp)r .

Again by Lemma 4, this chain exists 1ff there is
nmemxp) where C,D
are matrix variables (as are A,B,X) with exactly t multi-

an algorithm o' NC which computes E(C

plication steps.

flence, matrix products of the form (mxn)(nxp) re-
quire the same number of multiplications as products of
the form (nxm)(mxp) . |

- 10 =

Lemma 7: For any algorithm o with t multiplication
steps which computes matrix products of the form AmannXp’
there exists an algorithm «' which computes matrix products

. “ o
of the form Cpannxm_uSing the same number of multiplica
tion steps.

Proof: ©Note that simply computing Cpannxm as
(DTCT)T via algorithm A will not work since we are not

allowed to assume element multiplication is commutative;
~element products d i 1k do not necessarily equal clde1 .
What we can do, however, is to colleet the multiplications

m, of algorithm K where ® is applied to a computation of

| . | T T
the form Amannxp~ The matrices A and B are D~ and C

respectively. For each my in®, construct the “"reverse"

m? multiplication as follows

1f m1*3:%3 Vi 13)(5:%J=1 iJ 13) » then set

= (1 =1j=1 lJle)(l =1J= 1v13aij)

these multiplications exactly as ol does, we get an element

Now, if we combine

of the product matrix Cpannxm .

More formally, an element 23 3 in CD is found as
follows:

t .
If o« computes z as fzﬁvimi where vieK=§p,1,—1§, then

Jji
let &' compute 25 4 (in CD) as EEHV mR o The example in

the next section will illustrate this procedure.

Now, the main result on the symmetry of the gen-
eral matrix multiplication problem follows immediately by
alternating applications of Lemmag 6 and 7.

-1 -

Theorem 8 (SYMMETRY THEOREM): Matrix products
of each of the following forms have the same computation-
~al complexity, i.e. require the same number of multipli-
cations to compute: ' '

(nxm) (mxp), (pxm)(mxn), (mxp)(pxn),

(nxp)(pxm), (pxn)(nxm), (mxn)(nxp) .

Obviously, Theorem 8 is a very important tool
for extending known results, for example we can extend
all the results in Hoperoft and Kerr's (1969) paper as
follows:

Corollary 8a: Algorithms which compute matrix
products of the following forms must contain at least

15 multiplication steps: ‘
(3x2)(2x3), (2x3)(3x3), (3x3)(3x2) .

Corollary 8b: Algorithms which compute matrix
products of the form (2x2)(2xn), (nx2)(2x2), or (2xn)(nx2)
require rbn/é]'multiplications. ’

We can also use Theorem 8 to show that these
bounds are best bounds; that fact follows immediately
from Corollary 8¢ in the next section on finding algor-
ithms for probléms symmetric to solved problems.

- N2 -

TRANSFORMING ALGORITHMS

This section presents a detailed example to il-
lustrate how to. obtain new "fast" algorithms from old. "
We can proceed in a well-defined manner from an algorithm
o for (mxn)(nxp) to one for (nxm)(mxp) and then to one
for (pxm)(mxn). If we examine the proofs of Theorems 5
and 8, we obtain the following:

Corollary 8c: Given any algorithm to compute a

product of the form (nxm)(mxp) which uses t multiplica-
tions, we can construct ones using exactly t multiplica-
tion steps and computing products of the forms

(pxn)(nxm), (nxp)(pxm), (mxp)(pxn), (pxm)(mxn), (nxm)(mxp).

We can also note that trangformations from an
algorithm for products of the form (mxn)(nxp) to one for
products of the form (pxn)(nxm) by the technique of
Lemma 7 preserve additions and subtractions as well as
multiplications. Transformations via Lemma 6 from algo-
rithms for (mxn)(nxp) to those for (nxm)(mxp), however,
may drastically change the number of additions and sub-
tractions.

To illustrate these techniques, we will compute
the algorithms for products of the forms (nxm)(mxp) and
(pxm)(mxn) from an algorithm for products of the form
(mxn)(nxp) where m=4, n=2, and p=4 (here, m happens to
be the same as p; the techniques are, however, indepen-
dent of the values of m,n,p) . “

The first step is to construct a "fast" algorithm
which computes matrix procucts of the form Ay yoBoyy o
Following Hopcroft and Kerr's (1969) technique, we arrive
at the following set of 26 multiplications., The letters

A.

tion in

iant of

i? B

J* 7k

Strassen's algorithm.

relation to the seven multiplications in

C,., etc. refer to the structure of tne multiplica-

some var-—

In their paper, Hopcroft and

Kerr defined a group of product-preserving transformations

of algorithms for matrix multiplication.

Thus, the seven

letters designate the seven equivaleﬁce classes of multi-

plications in

Ay

B,

Strassen's scheme.

The multiplications which suffice to compute matrix
products of the form (4x2)(2x4#) are listed below.

2121 +P2q)

(24292095

(apq-220)27
824 (Pyo+pp)
®32°23
615,]k>,,5

(asq+845)(byg=byo)

2y, 5(0qy+05,)

(ayq-ayp)bqy
(agq+aqp=aqq=23) (Po3=Dq)

(851-244) (P43+D55-D14=bpq)

= @ g

Q o

IO B 5 N
W W W W W W W

(agp+a55) (bpy+b50)
(a1q+apq) (Bgq+Dq0)

-b

- b
(aqptazq=aq)(0g4+0p=bp3)

(a50=8p) (by3+b55-D15705)

Py

(azq+apy=azo=apng (b3
(azqtayp=ayq=a32) (053D)

(a39=8,4) (047405501, =05,)
(ayp+855) (05 050)
(ayq+859) (0,04 0)

(8pqtazp=as0) (043-0457055)

Cy (agq+ap+ay5=8y4=845-855) (Doy+bos=bs),)

4 (81q+2p9=8) (044D
Gy (apqtayp)(Dy=bop)

(azq=ayq+ey) (g, +D;
6 (a11+a21-a41+a42)<b14 21~

+b

12%P21+Dpo=by =5y)

4=Ppo3z)
bootboy)

MULTIPLICATIONS IN oK

- 14 -

Each diagonal element is computed from two multipli-
cations; symmetric off-diagonal elements are computed in
pairs from three additional multiplications. For example,
if we let C4x4 denote the product matrix A4x2B2x4 , then the

elements €449 Coos Cqo9 and o1 of C are computed from the

multiplications Aq, Bq, 01, Dq, Eg, F2, and G,l as follows:

b = A, + B

S LIV R PLIY 1 1

Cop= 8pqbotagsbsy = ~Cf + Dy

¢qp= =By ~Dy +Fy =Gy
==8, 404 4+81 5044 =854 D 1 5=854 Ponta by tR D5
L L PR L PLEE A PLP P
= 244D + 845055

Coq= =Ay + Cp + B5 + Gy
= 354Pqq ¥ 8ppboy

The algorithm uses 8 multiplications to compute the four
diagonal elements, as well as 18 multiplications to compute
the six pairs of off-diagonal elements. The total number
of multiplications used is therefore 8+18= 26, Call this
26-multiplication algorithm for computing products of the
form (4x2)(2x4) ol ,

The next step is to transform & into «' via Lemma 6
such that «' computes products of the symmetric form
(2x4)(4x4) using exactly 26 multiplications. To do this,
we first must characterize o in terms of the following de-
composition theorem: '

Theorem 9: (Fiduccia) There exists a K-bilinear
chain ¢ for E(Xy) with t multiplication steps iff there
exist fixed matrices F,G with elements in K and a (txt)

- 15 =

diagonal matrix U with elements in LK(E(X)) such that
X = GUF .

Actually, Fiduccia's result is slightly more general,
characterizing X as GUF + H . Our class of algorithms allows
operations on zero matrices as well a8 on non-degenerate
ones, however, and so H=0, yielding Theorem 9 .

To make use of this theorem we first must find the
matrix~-vector product which corresponds to a matrix by matrix
product of the form (4x2)(2x4) . By Lemma 3, this is Xy
where X and y are defined as follows,.

- =])
Let X—IQ+C)A4x2 , where ',' stands for O,

* o ¢
¢ o e
¢ >0 .
pre o o

and let y =X(B) = (b11,b2,‘,.no,b14,b24)T .
Then, Xy has the product form (16x8)(8x1) .

Now, we construct the (26x26) matrix U by placing
along its diagonal the contents of the left bracket of each
multiplication of X in order as it appears in the previous
list, and zeros everywhere else, In other words,

Ay 0

U= | N , where M! is obtained from M; by de-

0 Gé
leting the entries from LK(E(y)) . For example,

Ay = aqg(bq1+b21) . Hence, A% = 8,5 .

The matrix G will specify which Mi 's will be used

to calculate an element of Xy and exactly how these inter-
mediate results will be composed., The matrix F will operate

- 16 -

on U and y to provide the elements from-LK(E(y)) which
make up the righthand component of each original Mi .
For X46X8y8xﬂ y the matrix F26x8 w;ll be:

/
1 1] . . o . . A
/ /I .] ,] B,]
'] . . /] . e . [C/I
e o 11T ¢ 4 e . D,I
° 1 . _ E,] _
. . . . 1 ‘. . . F/l
. 1 . [""1 [[. G’,'
L] L L] L L] L J 1 1 AE
. e e . . . 1 . B2
. "‘/l L] . . 1 . o 02
"/’ "/I) [1 ,] [) L) D2
[] /l [] ,] L] L L] - E2 :
F = 1 e 1 F2
,‘ 1 . >- . "1 . . G’2
3 . . "'/| "‘1 /I 1 . . A5
[. "1 [1 . [. BB
‘ . . L4 L] . ,] . —1 C5
. . L]]) ll 1 -1 —1 D5
. . . 1 . . . ,l EB
B T E F5
! . o "/] —1 /I GB
I . /l . 1 o‘ . - [-,I Cq_
T N T I D,
. . . "‘1 bo . /‘ . GL‘.
. . . o . '-1 /] /' G5
. "1 . "1 . . 1 ’I G’6

where the letters on the right indicate which multi-
plication of ok has its left component equal to that row
multiplied by y. For example, multiplying the first
row of F by the column vector y yields
(131,04 00030)(DaasDogseeesby)t
= by tbyy 4 the left side of multiplication

_A1 y as expected. In fact, the product Fy is a 26-

element column vector which contains the righthand com-
ponents of each multiplication of & in order. Thus,
the product UFy yields all the multiplications of &«

in the order in which they are listed on page 13 .

- 17 -

The (16x26) matrix G is given below. The 4(j=1)+i th
row of G encodes the combinations of the multiplications

in d.which are used to compute Zij

Xy = (Z/I,"ZE/I,ZB/!,'..,ZL‘.L'_) »

[

11 ..
1.1 .
1. .
. e o
P -
. =11

[W N T)

A D .

in the (16x1) vector

For example, to compute 525 in Xy we need to scan the

4(3-1)+2 = 10th row of G to see which multiplications
of oA are required and, also, to see how these multipli-

cations are combined.

=D

/‘

+ E

_A3

Row 10 suggests
+ G

= ap(byptbys) + azpboy

= (agomay,) (Dy3+0o3-b0=bys) + (8p +azs=855) (byz=bys=bss)

-] e

= a2,]b,,3 +'a22b23 as required.,

Multiplying the 10th row by U results in the following
26-element vector u :

(0,0,0,D,‘l ,E:' ?O’ LI] ,O,"Aé,o, L] .,O,Gé,o, LI ,O)
Multiplying u by Fy yields

which is exactly the previous computation of Zoz .

Thus, Xy = GUFy and this leads directly to the
required decomposition of X; namely, let y range over
the subset ,eq,...,eé%-of R8 , then we have

X = XI = (GUF)I = GUF .,
For example, x12=312=x54=x96=145’8 ; hence, the decomposi-

tion should assign 845 to each of these four xij's.

X,I2=(g/]/| ’gqgg ‘-0,81,26)U(f12,f22’000,f26’2)

=(/| .a,le,/lo(a/l,]-a,le),o’ o..’O)(1 ,O’ L) ,-1)T

=812

X54=(g51 ’852’ “',g5’26)U(f14,f24’ coe ’f26,4-)
=—apq+1(8q+a5)
=8,, = X 5 88 expected.

Similarly, X96=X45’8=&ﬂ2 , and in general,

Thus, we have decomposed our encoding X of the
matrix multiplicand A into three component matrices
G,U,F such that U is a diagonal matrix, and G,F contain
only elements in K={?,1,—4§ .

- 19 -

Now, we are able to complete step two of the
example, namely to derive an algorithm to compute a
matrix product of the form (2x4)(4x4) . For now we
have a decomposition of matrices of the form (8x16);
xT - (GUF)T = FlugT because of the nature of U,F, and
G « More precisely,

I, @ AT = X = F'UGT . There is & small problem
here, however, in that we do not wish a decomposition
of the particular matrix AT, rather a decomposition of
all (2x4) matrices, based on &, This problem is easily
solved by replacing each aij in U by é“i ; therefore,
call this modification of U, U' . To understand this,

note that (let fij=f.~, 8l =8:s:)

J ij =g

<féqvfée’---vfé 26>U<s44,---,gé6,4>
T

= (1’09""-4)(312,(311~a12),.b.,o)‘

= 2,5 where the actual element in the second row, first
column_oflﬁ+6§A?X4.is 85, e replacing U by U', however,

we have

(‘ (1
(fé’l".”fé,26>U'("g/']ﬂ’...’g26,’|)
= (190,000,-4)(321,(aqq—agq),...’O)

= a,, as required.

Thus, to compute a matrix product of the form
Ao onByyys find the equival ent matrix-vector product

‘ T
Xy where Xiﬁ+§DAQX4 y ¥ =y<(B) = (bqq,b21,...,b54,b44)

as Xy = FTU'GTy o Note that each element in the 8-ele-

ment column vector z=Xy is a unique entry in the product
matrix ng4 = A2X4B4x4 o Thus, to compute Cij’ compute

-) -

the 2(j-1)+i th entry in z., This, in turn, is obtained
by multiplying the product of the 2(j-1)+i th row of F'

with U' by G y .

We now compute °25=321b13*322b23+325b55+a24b45 to
illustrate the procedure. First, note that 025 is the

2(3-1)+2 = 6th entry in z. Thus, to see which multip-
lications are involved, scan the 6th row of FT, i.e.
the 6th column of Fj; 1's occur in the columns of FT
which correspond to eleménts .of U': E}, C3, D3, A%, C%,
D%, ~1's in those columns corresponding to Gg, Gg, and

O's elsewhere (M{ in U' is obtained from Mi in U by
replacing each a3k by By 4)e Therefore, let the vector

ul

Ll
(£5q3TEp000stg 26U
= (O’ '..,a25’ ...,a,‘5+a2,]~a,],‘—a}25,3215-—a,‘1 ,0,0’
~lapgtagz=844 01855851 0r8 380, ~8 4803085~ 8y
~(a,3-a,4+a5,),0)
As before, GTy yields a 26-element vector whose entries
are the righthand components of the multiplications to
be used by «'; thus, the set of multiplications used by
. T . : .
x' to compute Ao By 18 exactly E(U'Gy). In partic-
ular,
c = u'GT
23 J
a2a(b51+b25+b35+b54)+(a15&&21—a41-a25)b13+(a15—a41).
(=bq3)=(apq+aq3-814)(b3q=Dy3)+(ap3-8,5) (=03)+

I

(ay3+a0,=84y=ap3)bgy+(ag 378,) (=by5)~(ay5-8, 485) (D5, =Dy)
= a25b53+a21b15+322b25+a24b45. as required.

Thﬁs, if we let «' be the algorithm which combines
the multiplications given by E(U'GTy) according to the
entries in FT, we have accomplished the second stage of

-2 -

the example, i.e. we have constructed an algorithm &'
which computes matrix products of the form (2x4)(4x4)
using exactly the same number of multiplications as <«
uses to compute products of the form (4x2)(2x4). DMore-
over, the construction is well-defined once o is known.
We should also note here that the number of additions/
subtractions employed by algorithms for symmetric prob-
lems is not necessarily constant.

The third and final problem in this example, is
to find «" which computes products of the form (4x4)(4x2)
from the algorithm &' just constructed for the (2x4)(4x4)
case, ' Clearly, if we assumed all multiplications commute,
we could easily apply «' to the transposed multiplication
problem and transpose the result as an algorithm with no
more multiplications than «' , However, this is taboo
in NC. But, by the techniques of Lemma 7/ we are able
to construct the required «" from o .

Suppose we wish o" to compute C4X4D4X2 . Let

T

T, B4x4=0 . Since oL " € NC, we must not assume each

A2X4D

intermediate product dijckl in the computation of AR
commutes. However, we can sum these products as if they
did commute, In fact, if «" sums the reversals of uulti-
plications in U'GTy exactly as &' sums the originals, the
result computed by «" will be the reversal of X' 'g
computation and, therefore, the desired result.

For example, let C'=AB, E=CD , Then, to compute
e52=c5,|d,'2+c52<122+c55(132+c54d,+2 , collect those multip-
lications Mi which «' uses to compute cé5 and form the

corresponding reverse multiplications as in Lemma 7 (the
multiplications Mi are given on page 20.) .

-l -

Summing the reverse multiplications as &' sums

the Mi’ we obtain

(b51+b25+b55)a25+b15(a15+a21—a11-a25)+(—b15)(aqa—aqq)
=(054=0q3)(ap +ag3-814)+(=Dp3) (ap3-855) +D5y (8325, =8 4=80)
+(=byz) (B304,)~ (bg,=by3) (ag 3-8, +an,)

= 03805705801+ 0038050y 580,

[o

ij=cji y We get

Finally, substiting aij=dji’
R

EMi = c55d52+054d42+052d22+c54d42

e52 as required,

[

Since all we modified in «' is the order of the
multiplicands, «" uses exactly as many multiplications,
and additions/subtractions to compute products of the
form (4X4)(4x2) as &' does to calculate matrix products
of the form (2x4)(4x4).

Thus, we have 26-multiplication algorithms for
the symmetric problems: (4x2)(2x4), (2x4)(4x4), and
(4x4)(4x2) matrix multiplication. It is not known if
these algorithms are optimal; obviously, by the syumetry
theorem, if any of &, o', o is optimal, they all are.

Since we have utilized no specific festures of
this example to illustrate the algorithm construction
‘process, the process itself is completely general, i.e.
‘we have demonstrated a simple method for building al-
gorithms for matrix products of the forms (nxm)(mxp)
and (pxm)(mxn) from an algorithm for the form (mxn)(nxp)
~ such that thie new algorithms are of exactly the same
computational complexity as the original. By repeating
the above processes, we can obtain algorithms of equal
cost for the remaining symmetric problems, namely those
of the forms (mxp)(pxn), (nxp)(pxm), and (pxn)(nxm) .

- 2% -

A NEW LOWER BOUND

The symmetry of the complexity of matrix multi-
plications demonstrated by Theorem 8 can be employed to
improve existing lower bounds on the number of multiplications
required to compute the general matrix product (mxn)(nxp).
Obviously, due to the symmetry theorem, optimal algoritnms
for the product forms (mxn)(nxp), (nxm)(mxp), (mxp)(pxn)
and their transposes must contain the same number of
multiplication steps. This implies that complexity in
terms of number of multiplications must be a function of all
three variables, m, n, and p. That this function is not
linear in the product mnp of the dimensions can be shown
‘easily by examples such as the following. The 3 product
forms (8x2)(2x2), (16x2)(2x1), (4x4)(4x2) all have 32 as
the product of their dimensions. However, only the
second form actually requires %2 multiplications (by Winograd
(1969)). 28 multiplications are sufficient and necessary
to compute products of the first form, whereas 26 suffice
to compute (4x4)(4x2) by our example. No linear function
of 32 could yield such a variety of lower bounds.

Upon closer inspection, we note that tne greater
the disparity among the size of dimensions, the greater the
number of multiplications which are required. Fut anotner
way, the more symmetric the two matrices are in size, the
fewer the number of multiplications‘necessary to compute
their product. This appears to indicate that the lowsr
bound function 1l(m,n,p) allocates weight to each dimension
variable corresponding to its size in relation to the other
two variables. In fact, we show by the next few results
that a product of the maximum dimension with the sum of
the other two yields a new lower bound for the complexity
of matrix multiplication.

- 24 -

Theorem 9: (Kirkpatrick) Any algorithm over
Q[?ﬂT’“"amn’bﬂﬂ""'bné]’ where Q,'aij, bij are defin-

ed as before, which computes the matrix product Amannxp’

must employ at least m(n+p-1) multiplication steps.

Actually, Kirkpatrick's theorem is phrased in
terms of independent variables in a field and active
yx-operations, but if we restrict the class of algorithms
to those which do not use division, we obtain Theorem 9.

Corollary 9: If we consider only algorithms

in NC, a product of the form (mxn)(nxp) requires m(n+p-1)
multiplications.

This is an obvious corollary, but is included to
demonstrate the difference-in modeils,"

Lemma 10: For all m,n,p21, let D be the triple
zm n,ﬁg Let m be the largest element in D, Let do,

dq be the remaining two elements of D . Then,

mx(dO + d,l —’I.)?do(m, +d, - 1)

Proof: d, - 120 , since 4,21 .
- > -
Therefore, since m_2d. , mx(dq-ﬂ) -2 do(dq—ﬂ)

Also, m_d 21 . Therefore, mxdo+mx(d1-1)2 m do+dq(d,=1)

0
Hence, mX(dO+d1-1) 2 do(mx+d1-1) since m do=dom, .
Thus, multiplying by the maximum yields the largest pos-

sible result.

Theorem 11: Any algorithm which does not assume

commutativity of multiplication and which computes a mairix
product of the form (mxn)(nxp) must contain at least
mX(dO+d1—1) multiplication steps where m = max m,n,pg

- 25 -

and EdO’dﬂg = %m,n,ﬁg - m. . (Here, D = im,n,ﬁz is

not a set but an unordered triple. If m=n=p, for example,
we still treat D as having three components.,) Thus, the
complexity of any matrix multipiication algorithm is at
least as great as the product of the larger dimension by
one less than the sum of the remaining two dimensions.

Proof: By the Symmetry Theorem (theorem &), the
same number of multiplications is required to compute
products of the form (mxn)(nxp) and (mdeo>(don1> where

m, = one of %m,n,p% , and ido,d4§ = im,n,ﬁg—mx. In

particular, we let m, = max %m,n,p . By Theorem 9,

mx(d0+d1_1) multiplications are required to compute an

(mXXdO)(dOXd¢> matrix product.

Observe that by Lemma 10, this lower bound is
always as larse as Kirkpatrick's (Theorem 9)., 1In facth,
whenever'mX £ m, Theorem 11's lower bound 1s a strict

"improvement. To see this, repeat the proof of Lemma 1O
with do = mj; the inequalities from the second line on

become strict inequalities.

For example, products of the form (2x4)(4x4) require
at least 4(2+4-~1) = 20 multiplications, whereas Kirkpatrick's
lower bound is 2(4+4-1) = 14 multiplicacions. Tiis
lower bound may not be optimal; the best algorithm to
date, ' in the detailed example, uses 26 multiplications.
tiowever, Theorem 11 is not intended to yield achievavle,
and therelore best, lower bounds, but only to give a
rough estimate of the essential complexity of general
matrix multiplication. In fact, we can show that Theorem
11 does not necessarily produce achieveable lower bounds

- 26 -

by examining computations for the product form (2xn)(nx2)
for n2 3, Kirkpatrick's lower bound is 2(n+2-1) = 2n + 2
multiplications. The new lower bound is n(2+2-1) = 3n
multiplications, a significant improvement. However, by
Corollaries 8b and 8c of the Symmetry Theorem, [5n/é]
multiplications is an achievable lower bound. Thus,
further refinements of Theorem 11 are required; however,
present techniques appear inadequate for this purpose.v

Conclusion

The Symmetry Theorem corrects the invalid intuitive
notion that one dimension in the product form (mxn)(nxp)
determines the complexity of the computationj for exanple,
n, the number of terms involved in brute-force inner-
product multiplication. This theorem and its corollaries
extend the few known lower bounds; in addition, tine tneorem
can be implemented as demonstrated to find algorit ms
of equal complexity for symmetric computations of matrix
products. This invariance of the complexity of symmetric
problems appears capable of being extended to the usual

matrix computations.

Unfortunately, the Symmetry Theorem, though a sign-
ificant result for the theory of general matrix multip-
lication, offers no insights into the complexity of
computing the product of square matrices. Thus, we nave
no new information about the exact complexity of multi-
plying even two 3x3% matrices. Detailed combinatorial
analysis does not seem to be fruitful. As in other areas
of Computational Complexity, (Munro and Borodin, 1972),
new techniques must be developed before we can increase
our knowledge of lower bounds.

- 27 -

Acknowledgement

This work was supported by the National Research
Council of Canada.

References

Fiduccia, C., "Fast Matrix Multiplication'", Froc.
Third Annual Symp. on Theory of Computing,
45-49 (1971). ‘

Fiduccia, C., "On Obtaining Upper Bounds on the
Complexity of Matrix Multiplication", Proc. of
the IBM Symp. on Complexity of Computer
Computations (1972).

Hoperoft, J.E., and Kerr, L.B., "On Minimizing the
Number of Multiplications Necessary for Matrix

Multiplication", Cornell University Technical
Report 69-44 (1969).

Kirkpatrick, D., Personal Communication

Munro, I. and Borodin, A., "Efficient Evaluation of
Polynomial Formg", University of Waterloo Research
Report CSTR 1013 (1972). '

Strassen, V., "Gaussian Elimination is not Optimal",
Numer, Math. 13, 354-356 (1969),

Winograd, S., "On the Number of Multiplications
Required to Compute Certain Functions", FProc.
N.A.S., Vol. 58, 1840-1842 (1967).

Winograd, S., "On Multiplication of 2 x 2 Matrices",
Linear Algebra and Its Applications 4, 381-%88
(1971a).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

