PROVING ASSERTIONS ABOUT PARALLEL
PROGRAMS

by
E.A. Ashecroft

Research Report CS-73-01

Department of Applied Analysis and=
Computer Science

University of Waterloo
Waterloo, Ontario, Canada
January 1973
(revised April 1974)

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

Department of Applied Analysis
&

Computer Science

4 -~ .
I I I I A | :.J | 1;

PROVING ASSERTIONS ABOUT PARALLEL
PROGRAMS
by
E.A. Ashcroft

Research Report CS-73-01

Department of Applied Analysis and=
Computer Science

University of Waterloo
Waterloo, Ontario, Canada
January 1973
(revised April 1974)

PROVING ASSERTIONS ABOUT PARALLEL PROGRAMS

by

E. A. Ashcroft
Camputer Science
University of Waterloo
Waterloo, Ontario
Canada

Abstract
A simple but general parallel programming language is consider-
ed. The semantics of programs are defined in a concise and natural way
using relations. 'Verification conditions' derived fram the semantic
definitions enable Floyd's method of proving correctness to be applied
the parallel programs. Proofs of properties of programs using the
verification conditions are claimed to be more systematic versions of the
informal arguments normally used to check parallel programs. A program
simulating an elementary airline reservation system is given, ard several

properties of the program are demonstrated using the technique.

This research was supported by the National Research Council of Canada.

INTRODUCTION

The method of Floyd [2] (see also [6]) for proving assertions
about programs has not yet become a widely used technique. Part of
the reason for this may be that the method fequires a discipline of
. thought that programmers may find both unfamiliar and unnecessary.

For the simple programs on which the method is usually demonstrated, a
sceptical programmer could maintain that he finds the proofs harder to
understand than the original programs.

The situation changes however when we consider programs in-
languages of greater semantic complexity. (Complex programs in simple
languages probably just result in more complex proofs, and the situation
remains essentially the same.) For example recursive programming
requires a more 'inductive' type of reasoning than does iterative
programming, and producing correctness proofs requires a little
clerical effort rather than a mental leap (see [7]).

Parallel programming also requires a different type of
reasoning; one can rely much less on the 'obvious'. Since such programs
include operating systems, airline reservation systems and the like, it
is crucial that this reasoning be correct. Parallel programs are
difficult to debug, and the 'proof by test cases' approach is even more
unreliable than for sequential programs. The programmer's confidence
in his program has to come from very careful analysis of possible
situations. Any proof method that ensures that he has considered all
eventualities can only be helpful (provided it is not impossibly

tedicus).

The adaptation of the assertion method that we present here
results in proofs that are not unnecessarily tedious, and that follow
the sort of reasoning that the programmer would ordinarily have to make.
However, the method is not based on such informal reasoning but on a
rigourous definition of the semantics of parallel programs. In this
respect it differs fram other applications of the method of Floyd to
parallel programs (see, for example, [5]).

It must be emphasized that the method presented here simply
allows one to prove that a program (system) has particular properties.
Whether these properties are sufficient to pronounce the system correct
or not is outside the scope of this paper. The whole guestion of what

it means for a system to be correct will be considered in a subsequent

paper.

PARALLEI, PROGRAMS

We wish to keep our parallel programming model as general
as possible. All we require is that the model allow a number of
computations to be taking place quasi-simultaneously, i.e. the compu-
tations can proceed more or less independently but there is some basic
level at which no two operations can occur actually simultaneously (or |
if they do then the effect must be the same as if one preceded the
other). BAny sort of synchronisation or roadblocking is allowed, and
new parallel computations can be initiated and old ones terminated.

No matter how we specify the syntax of such programs, by
means of constructs like 'fork' and 'join' or by coroutines or tasking,
the gpecification of the semantics must allow non-determinism. An easy

way to do this is in terms of non-deterministic programs, and one is

tempted to take non-deterministic programs as the model, and relegate

the usual sorts of parallel programs to the status of convenient syn-
tactic descriptions that are possible in special cases. This was the
approach taken in Karp and Miller [4] and to some in extent in Ashcroft
and Manna [1]. (In the latter a conventional parallel programming
language was considered that used forks and joins, but properties of
such programs had to be proved indirectly by way of the corresponding
non-deterministic programs.)

Although quite general, the representation of a parallel
program by a non-deterministic program has several drawbacks. In
particular, the size of the non-deterministic program is some exponen-
tial function of the size of the original parallel program. Besides
being cumbersome, this means that proofs of correctness tend to be
very long. In fact, they are often longer than they need be by an
exponential factor. This is because the various quasi-simultaneous
computations are usually designed by the programmer to work despite
their interactions, and rarely becaﬁse of the interactions. In other
words, enough limitations are imposed, in the form of critical sections
and synchronisations, to ensure that each computation can be considered
largely independently of the others. The effort of proving n parallel
computations correct should then be roughly linear in n rather than
exponential, but the latter is the case if we consider the corresponding
non—-deterministic program.

In this paper we shall specify the syntax of parallel pro-

grams using simple fork and join constructions. Synchronisation and

critical section features can be introduced by means of constraints on
the execution of statements in particular situations. We shall define
the semantics of each parallel program in a natural way in temms of

relations. The specification of these relations is directly linked to
the program itself and is just as concise. The verification condition

used for proving properties of the program is directly obtained from

these relations.

Syntax of Parallel Programs

A parallel program P oonsists of

i) a domain M, of memory-states. Intuitively, each m ¢ MP

contains values for all the variables used by the program.
ii) a set of basic operations GP = {gi, Jor 93+ s++} where

9 ¢ U > My -

iii) a set of basic tests Q, = {d4,, 9,, 94, ---} where each
—_— P 17 =227 43

q; =M (a relation on MP) .
iv) a set LP = {Ll, L2, «++} of symbols called labels. The set

IP

CP =2 (the set of all subsets of LP) will be called the set of

control states.

V) a set Sp = {sl, Syr ++} of labelled statements, using Gp

and QP , with S1 being the initial statement.

vi) a set of constraints stoEsE + Where a constraint is an element

(¢, 2) of ¢ x L, such that £ ¢ c .

A labelled statement can be of one of the following six forms:

i) L; : do % then go to L (operation)

ii) Li : if qj then go to L else go to Lh (test)
iii) Li : go to La ’ La ; oty La. (fork)
1 2 J
iv) ., , L, , ---, L, :go to L, (join)
Bl 62 Bi J
V) Li : go to one of La ’ La ; ccc, La. (branch)
1 2 |
vi) Li : HALT (halt)
where L., L., ' , L , s, L ,L , -+, L
i’ 3 Lk Lh 0 aj Bl Bi
are labels.

Each label in LP must occur exactly once labelling some statement in

SP (i.e. before the colon). The initial statement s is labelled

1
with Ll .
Example: An example program is represented diagrammatically,

in Figure 1, with the labels of statements on the edges leading to

those statements.

Notation for constraints

It is convenient to regard §E§E§p as a relation on
CP X LP , and say, for example, ¢ EEQEEP 2 . We extend EEQEEP
to CP X CP : for C1¢Cy € CP r Cq EEQEEP <, if and only if |
¢ stogsE 2 for all 2 «¢ Cy .

We also define a relation stopp which extends the first
argument of §599§P to sets of control states: for C E.cp , C € Cp ’
C stop, © if and only if C"EEQEEP ¢ for all c' ¢ C. |

7a

o -l
Cron) g
, 4
- L5 lLe
93
g Ltz /' q L
2 = | o 10
Lu C FORK)
FiLs
BRANCH) Lia
L2 Ltz Y JoiN)
' L
HALT C JOIN j | =16
Je
Lis ‘
gs Liz

CONSTRAINTS
Lig STOPS L g

Figure 1 Example of a Parallel Program

We will always omit set braces around singleton sets when
no confusion results, e.q. Li stogs; Lj means {Li} stoBsE Lj , and
{Ll, Lor =oc, Ln} stop;, Lj means {{Ll}, {L2}, cee, {Ln}} stop Lj ,

i.e. {Li} stoEsP Lj for 1 <i<n.,

We also define a converse of stoEsP which we call .allows,rh :
for c e CP ; Lo« LP , C allows,f_ 2 1if, for all c' cc, c' stogsP L

is false. Extending allowsE to CP X CP P g allowsE C, if, for

c, allows.. %

all Jlec2, 1 D

Semantics of Parallel Programs

To describe an execution of a program P we need not only
the memory state at each instant, but also the control state. The
control state represents the statements reached in the program; they
are about to be executed at the instant in question.

Accordingly we let Zp =M, x Cp be the set of states.

We may describe an execution of P in the following
intuitive way. We think of a control state as a set of markers on the
corresponding statements. We start off with a state consisting of a
single marker on the initial statement S1 (i.e. the initial control
state is {Ll}) , and with some initial memory state m_ . At each
step in the computation, with state (m, c¢) , we choose some marker
2 ¢ ¢ at random such that c¢ allows, 2 (and if £ marks a join, we

P N b

require that all labels &£' of the join be marked, and c allowsI LYy .

If & marks an operation, then that statement is executed, m changes

to g. (m) for some basic operation 9; and the marker is moved to the

next statement, changing c¢ . In all other cases m is left unchanged,
but ¢ is updated. If 2 marks a test, then the marker is moved to
the appropriate next statement, depending on the basic test applied to
m . If & marks a fork, then the marker splits into several markers
which are moved to the statements referred to in the fork. If 2

marks a join, all the markers on the join are fused into one marker
which moves to the statement referred to in the join. If 2 marks a
branch, then the marker is moved to one of the statements referred to
in the branch, chosen at random. If £ marks a halt, then the marker
is removed from c .

The process is repeated either indefinitely or until no
marker may move, or no markers are left. Since control states are
defined as subsets of L, we will consider a program illegal if it
allows any statement ever to get two markers. Syntactic restrictions
could be imposed to ensure this, the details of which we shall not be
concerned with here. (In fact it would not be difficult to remove this
restriction and allow control states to be multisets instead of sets

of labels.)

Example: A little study will show that in the example program
of Figure 1, the big loops on the left and right are synchronized.

The constraint ensures that the program is legal.

10

W

The formal definition of the sem'antics of P will be in _
two stages. Firstly we will define a next-state relation s, for every
statement s in SP , and then we will give a next-state relation EP
for the whole program. To do this we first introduce the following

important notation:

Control state decomposition notation

for A,c € CP

A+c=Auyuc if A and c¢ are disjoint, undefined otherwise.
We omit set braces on singleton sets:

A+ L, means A+ {Li} .

Note that c' = A + ¢ means that c¢' is the disjoint union of A and c.
The relation S

for (m, ¢),m',c") € 2 (m, <) s, {m', c") is defined as follows:

P r

i) operation: (m, ¢)L. : do g, then to (m', ¢') if and

only if ¢ allowsP Li &

:_?[AeCP[c=A+Li & m'=gj(m) & c'=A+Lk]

ii) test: (m, c)nIii : if gj then go to gj else go to E‘J (m', c")

if and only if c allows; Li &

HAeCP[C=A+Li &€ m=m' & [IF qj(m) THEN c' =A+ L

A+Lh]]*

EILSE ¢!

iii) fork: (m, ¢)L. : go to L L cee, I, (m', c') if and only

if c allowsP Li &

= =m! L.
HAe Cple=2+L, & m=m'é¢c A+{Lal, Laz, 'Lo‘j}]

* IF A THIN B FELSE C= (A&B) v (A EC) = (A=>B) & (A=>C)

11

iv) join: (m, C)‘EB‘LE ’ ,T.% : go to Lj(m', ¢') if and only
1 2 St

1

if ¢ allows, {LBl, LBZ, cee, LBi} &

I,} & m=m" Gc'=A%Lj]

HAECP[C=A+{LB,LBI"'I B
1 2

V) branch: (m, c)»-IJ—i : go to one of Lﬂl‘ L 2‘ eee, I, j(m , ¢') if |

and only if c¢ allo'wsP Li £

i
o=
+
o
™
3

il
g-
™

E[AeCP[C (c'=A+LOL VC'=A+LOLV

1 1 2
e ' -
vV C A+ LOL')]
J
vi) halt: (m, c)_}_,_i : HALT(m', ¢') if and only if ¢ allowsE Li 3

HAeCP[c=A+Li € m=m'" & c'=A]

If P is a legal program, the relation S clearly relates
the states before and after execution of s in the way expected from
the previous intuitive description. (If execution iof s from some state

z would result in duplicate markers then the decomposition notation

would not be defined, and z s z' is false, for all states .z' .)

The relation EP

for Zir 2y € ZP r 2y -§P Z, if and only if z1 8,2, for some s € SP.

E'P relates possible successive states in computations of P .

Computations of P

For m € N&, , a computation of P(Eo) .is a sequence of

12

states Zyy Zyr Zgs where 2y = (mo, Ll) and ziEP 2.1 for.
i=1, 2, 3, -+ . The sequence terminates, if at all, with a state

z for which z_S_. z is false for all z € Z_ . If the control
n n ~P P

state in zZ is the empty set then we have normal termination, other-

wise we have camplete deadlock.

COMMENTS ON THE PARALLEL, PROGRAMMING MODEL

The model was designed to be simple, yet at the same time
general enough to describe the more specialised constructs that are
found in practical parallel programs. In particular the constraints
feature is general enough to describe the effects of critical sections,
synchronization, coroutines etc. The language is not intended to be a
practical programming language; it really is a model of parallel pro-
gramning, a language for describing parallel programs. For any
program that can be described this way we will be able to apply the
generalization of the assertion method, to be given in the next
section.

One feature of practical parallel programs that is absent
in our model is the 'finite delay property'. This property would
ensure that, in all computations of a program, every marker which is
not permanently stopped is eventually moved.

Besides being very difficult to formalize, the finite delay

property is peculiar in that it is irrelevant as far the assertion

13

method is concerned. All it does is exclude certain infinite computa-
tions - it does not prevent any, otherwise possible, situations from
occurring. It affects properties such as termination and eguivalence,
but not 'partial correctness'. For this reason it has not been included
in the model. We will comment further on this subject in the observa-

tions at the end of the paper.

THE ASSERTION METHOD FOR PARALLEIL. PROGRAMS

In the usual assertion method, applied to simple flowcharts,
we attach 'assertions', relations on memory states, to edges in the
flowchart. In simple flowcharts we can consider control states to be
single labels, and labels are attached to edges as we did in Fig. 1.
Therefore we can think of this attaching of assertions to edges as
associating the assertions with control states. If all the edges
have associated assertions we can think of all the attached assertions
together as specifying a single relation on states; state (m, %)
satisfies the relation if and only if m satisfies the assertion
attached to % . This is the way we think of associating assertions
with parallel programs, and we call the relation on states an
assignment.

If Q is an assigmment for P , a relation on Zp + wWe
denote by o' the relation on Mp such that ot m) < Q@m, L h .

Q" 1is called the initial assertion of the assignment; intuitively it

14

is the assertion attached to the start of the program. An assignment
Q will be said to be valid if all states produced in computations of
P , for initial values satisfying the initial assertion QI , satisfy
Q.

Valid assignments can express significant facts about
programs. We shall develop a verification condition W, » a relation
on assignments, such that any assignment Q satisfying W, is a valid
assignment for P . If same desired property of P cah be expressed
as a valid assignment, we can prove that P has the property by show-

ing that the assignment satisfies Wp .

Definitions

Let yieldsp be the reflexive transitive closure of S .
For ¢ c MP (think of ¢ as an initial assertion), we define a
relation on states <I>—;QroducesP as follows: for =z ¢ Zy

@—Eroduces;_ (z) if and only if (m, {Ll}) yields . z

for some (initial) memory state m such that ®(m) .
Note that @—EroducesPI = ¢ , Since Yig_l_c}gp is reflexive.

A valid assigmment for P 1is a relation Q on states such
that QI—EroducesP c<Q

i.e. for all z ¢ ZP , QI-EroducesP (z) = Q(z) .

A Verification Condition for P

Since ieldsP contains the transitive closure of ,.S,P ’

15

for any ¢ ¢ MP , the relation @¢-produces, has the following

property:
Proposition
for all z,2, € Z, , if g-producesp (z;) and
zq §'_P z, then o-produces, (z,) .
We can derive fram this property a condition Wp(Q) on an arbitrary

relation on states, Q :
WpQ) =Vzy,z, € Zp if Ql-produgesp(z;) and

Q(zl) and zq §P z, then Q(zz) .
Note that for Q = $-producesp , we have that Wp(Q) , using the Pro-
position and the fact that in this case QI =0 . In general the

converse is not true but we have:

Verification Condition Theorem

For any assignment Q , if Wy (Q) then I roducesP < Q,

i.e. Q is a valid assigmment for P .

Proof. Assume QI—BroducesP i Q . Then there exists a state =z

such that QI—EroducesP(Z) + but Q(z) is false. By the definition of
QI—EroducesP and of yieldsP there exists a finite sequence of states
Zyr Zor oeeey zn such that z:L = (m, {Ll}) for sane m such that

I . . _ _ ‘
Q (m) , and Zi§‘PZi+l for i=1, 2, ..., n~1 , and zn—-z.Let

zj be the kst state in this sequence for which Q(zj) ; such a state

exists since Q(Zl) . Now j < n since Q(zn) is false, sO zj +] exists.

16

Since

T
Note that =produces and Z. and z. S Z. .
uce P(_zj) [Q(j) j wp]+l

WP (Q) , we get Q(zj) , a contradiction.

+1

The condition W, can be stated in a more concise and
convenient form by first defining a relation {s}Q on states, for
each statement s e S, and assignment Q . We shall write 2z{s}Q
instead of {s}Q(z) , so that our notation deliberately resembles
similar notation of Hoare [5]; z{s}Q will be true if executing s

from state =z (when possible) gives a state satisfying Q .

The relation {s}Q

For z= (m, ¢) ¢ Zp z{s}Q is defined as follows:

i) operation: (m, c) {Li : do gj then goto Lk}Q if and only if
YA ¢ CP[C = A + Li E c allowsP Li => Q(gj (m) , A+Lk)]

ii) test: (m, c) {Li : if qj then goto L, else goto Lh}Q if and
only if
YA e CP[c = A+ Li & c all(msP Li => IF qj (m) THEN Qfm, A+Lk)

ELSE Q(m, A+Lh) 1

iii) fork: (m, c){L; : goto O N LOL.}Q if and only if

1 2 J
YA ¢ CP[c = A+ Li & c allows.P Li =>Q(m, A + {Lal,Laz,...,Laj})]
iv) join: (m, c) {LB , LB ; eeey LB : goto L.}Q if and only if
1 P2 i J

VAeCP[c=A+{L ,...,LB}EcallowsP {LB L

'L
By By i 1 B i

roess ,LB_ 1 =Q{m, A+Lj)

v) branch: (m, c){Li : goto one of L, L, "“'Loc.}Q if and only if

1 2 J
YA ¢ CP[c = A + Li & c allowsP Li => Q{m, A+Lal) &
Qm, A+L,) & ... &
o}
2
Q(m, A+La_)]
J

vi) halt: (m, c) {Li : HALT}Q if and only if

YA € CP[c =A+L & c allovwsP L, => Q(m, A)]

It follows immediately from the definitions that for

21 € %p
[vs € S, z,{s}0]
if and only if [¥s e S Yz, € Z,r 20 8,2, = Q(z,)]

P
if and only if [\z‘z2 € ZP' zl.S'P z, => Q(zz)] .

We can thus state V\i, equivalently as follows:

Revised Definition of W,

W, (Q) = Yz ¢ Zp 1 [QI—QroducesP(Z) € Q(z)] = v¥s ¢ Sp z{s}Q

In this form we shall call WP the verification condition-

for P .

17

18

Using the Assertion Method

To prove that an assignment R for program P is valid one
must check that W, (R) 1is true. This involves checking that for all

states 2z such that RI—EroducesP (z) , and all statements s € Sp ’
R(z) = z{s}R .

This is not as formidable a task as it appears for the
following reasons.

Firstly, in practice one would usually check the above con-
dition for all states z , not just those for which RI-EoducesP (z) .
This simplifies matters since we don't know exactly which states satisfy
RI—EroducesP (if we did then we could check if R were valid directly). In
fact, without loss of generality, we could have left the term RI-ErodugesP
out of the verification condition W entirely.

However, if the impossibility of reaching certain states is
crucial for certain properties of a program to hold, then this impossi-
bility of states must come into the proof of the properties somewhere.

One way is to explicitly incorporate the impossibility into the assignment
we wish to prove valid, and check the above condition for all states.
Alternatively, if we can easily establish separately, from considerations
of constraints etc., that the states in question are impossible, then we
need not add the impossibility into the assignment; we simply don't

bother to check the above condition for the impossible states. This
second method makes proofs cleaner.

Summarising, the term B]:—EroducesP in the verification

19

condition is just there to indicate that we don't need to check impos-
sible states.

The second observation is that in practice valid assignments
tend to be surprisingly uniform. If a program has n statements then
there are 2" control states (though some may be impossible to achieve).
It might appear that an assignment would then be essentially the union

of 2"

different 'assertions', one per control state. (These are the
assertions we would need if we translated the program to a non-deter-
ministic program as in Ashcroft and Manna [2].) However, in practice
no one could write parallel programs if he had to think of every possible
control state individually. The program must be designed in such a way

that it is possible to reason along the lines "if we are at this state-

ment then such and such is true, no matter where else we are in the

program”. An assignment then becomes more like the union of n
assertions.
The final observation is related to the previous one. Note

that in checking

R(z) = =z{slR

we need only consider those states 2z for which R is already true
and only those statements whose execution can make R become false.
Taken together with the relatively uniform nature of R in practice,
this results in a drastic reduction in the number of cases we need to
consider.

The most convincing demonstration of these points is probably

by an example.

20

EXAMPLE: AN ELEMENTARY ATRLINE RESERVATION SYSTEM

We shall consider a program P which simulates a simple
airline reservation system for one flight with up to K passengers.
Orders to book and unbook customers would normally be received by the
system from remote terminals in travel agents' offices. We do not
intend to describe this aspect of the system, and instead will simply
simulate the 'kernel' of the system where routines for booking and
unbooking customers are running in parallel, and are called in randam
fashion.

There is no subroutine feature in our language, but we will
simulate the effect by having different copies of the routines for each
custamer, corresponding to different activations of the same subroutines.
These subroutines are simply those for booking and unbooking a customer,
and we will assume that each custamer calls the subroutines repeatedly,
in random order, with arbitrary delays at any time (since the language
makes no assumptions about the running rates of separate computations).
The copies of the subroutines for all the custamers are run in parallel,
together with a service routine to handle the waiting-list, transferring
custamers from the waiting-list to the flight-list when other customers
cancel their bookings.

For convenience we shall number the customers 1,2,3,... and
the outline of the system is then as shown in Figure 2.

The program maintains two lists of integers, in variables
L. and W , representing the flight-list and the waiting-list respective-
ly. Before giving details of the subprograms, we will define the basic

operations on lists that we shall use.

)

SERVICE
ROUTINE

BRANCH

BRANCH

CANCEL-I

BOOK -|

CANCEL-2 BOOK-2

CUSTOMER 1

Figure 2 Outline of Airline Reservation System

Simulation

CUSTOMER 2

20a

21

Let J be the set of non-negative integers. For x e J*

and j € J, o denotes concatenation, A denotes the empty list and

i) j e x if x = qojoB for same o,B e J*
ii) aga(@d. x) = x°j
iii) pemove(j, x) is defined if J € x and then
remove (j, X) = aeB where x = aejoB and J ¢ o
iv) top(x) 1is defined if x # A , and then top(x) = j
where x = jea , j e J .

v) pop(x) is defined if x # A , and pop(x) = ramove(top(x), x)

The program also associates with the i-th customer a variable
Mi which will hold an integer representing the last message sent to

the custaomer. The message codes should be read as follows

'not listed'

'booking cancelled'

'cancelled from waiting list'
'wait-listed'’

'already on waiting list'

'booked

'already booked'

'transferred from waiting to booked'

~N~oounmmkEWwWhEHO

The copies of the booking and cancelling routines for
customer-i are shown in Figures 3 and 4. The service routine is shown

in Figure 5. The constraints are as follows (for all i, j):
i) Bi7 stopsy, Bjs 1#3

ii) Bi6 stopsP T2 ' T3 sto;gsP Bi5

P

book —i

is

Figure 3 The Booking

Routine

L

cancel-i

Figure 4 The Cancelling

Routine

1S

2la

Mi<—6 N

W <« add (i,W) 4

Big

M; =3

L == add (i,L)

Bijo

W = remove (1,W)

Ci

3

- M; -— 2

! M; -— O

Mj = |

L-<=remove (i,L)

Ci7

t=—t+1]

'

service
routine

IS

L= add (x,L) My -7

Figure 5 The Service Routine

21b

22

iii) Ci2 .StOESP T2 , {TLl’ T6} stopP Ci

1
iv) {Biz, Bi8} stopP T9 ' 'I‘9 StOESP {Biu’ Cis}
V) {T7, T8} §topP {Bi3, Ciu}

vi) T5 stops Ci7

The routines are straightforward except for use of the
variable t . This is used to indicate to the service routine how many
customers should be transferred fram the waiting list to the flight
list. (The service routine could just keep topping up the flight list
when seats became available, but then it would be possible for a custamer
booking at the appropriate instant to circumvent the waiting list and
get booked directly.)

The constraints ensure that the program works correctly.
They will all be used in proofs of valid assignments. Constraints i),
ii) and iii) are used indirectly. They effectively set up 'critical

sections' which ensure that no possible control states can contain

a) B , B} (73,

7 7
b) {Bi , T3} or
6
c) {Ciz, Tu} or {Ci2' T6}

This is easily seen by considering the possible previous

control states. For example, let A + {Bi ’ T3} be the first control
6 .

state of type b) in same computation. The previous control state

must have been A + {Bi ' T3} or A+ {Bi . T2} , but fram both of these
5 6

23

the desired transitions are not allowed. Hence A + {Bi , T3} does

6
not occur.
Constraints iv) make sure that messages from the custamer
routines and the service routines don't get 'crossed'. Constraints

v) make sure that a customer is properly transferred from the waiting
list to the flight list before the custamer can re-book or cancel. The
last constraint makes sure the system can't 'forget' about cancelled
seats.

The constraints may appear to be unnecessarily complicated.
In a practical program, critical sections would be made much larger,
and the pattern of constraints would be simpler. However the number of
constraints would be larger, and thus the parallelism, or freedom of
action, would be reduced. Of course, this would also make the program
easier to understand. However we prefer here to illustrate the useful-

ness of the assertion method for really camplex programs.

The Verification Condition for the Airline Reservation System

To construct the verification condition W, we need to
specify the basic operations and tests of P , or at least find suitable
notation for them. The memory states of P will be vectors of values
for the variables L, W, k, x, t ad Ml’ M2, «e. . The assignment
statements in P each change only one of these values. We shall adopt
the notation that the basic operation (mapping M, into Mp) associated

with each assignment statementa will be denoted by [al . This notation

24

is concise and expresses just the relevant information: what has been

changed. For example if m = <o, B, v, §, €, 11’1' wz, ...> (values for

L, W, %k, x, t and M., M2, ... respectively) then

[W < remove (i, W)] (m)

<o, remove (i, B), v, 6, €, wl,wz,...>

We shall also use this notation for basic tests, e.g. for the same m
as above [k = K] (@m) is true if and only if y =K.
For readability we shall specify Wp using a relation at,
representing an assignment, which we shall write infix,i.e. for
z = {m,) € Zpr we write mat c instead of Ig_t‘(m, c) .
We can naturally partition the statements in P into
a) The outer fork statement
b) The separate subprograms that run in parallel - the routines

for each customer, and the service routine.

We will partition W, accordingly:

Wplat) = W (@) & W . (@b & Wpl(gt_:) & sz(g’g) & ...

These camponents are specified as follows (we write conjuncts on separate -

lines and label them for the statement in question):

Wfork (EQ =

Wz=(m, c) eZp, VAeC,, if magc and at -produces(z)

then

L;: c=A+Ll => m93A+{Tl, D » D, I

25

(book-1 and cancel-i)
Wp.@) =Vz = (m, ©) EZP ’ VAecp if mat c and

1 I
at -—Broduce% (z) then

D.: c=A+D, = mat A+ B, & mat A+ C,
i —~ 1 b

. 1 -~ 1
B.: c=A+B, =>IF [i ¢ Wl(m) THEN m at A + B, ELSE m at A + B,
1 1 L 1 r 1
1 1 2 3
Bi: c=A+Bi => [Mi<—4](m)§$~A+Di
2 2
Bi3: c=A+Bi38T7¢ch8¢c=>IF[1€L](m)THEI\Tm213_A+Biu
EISE m at A + B.
Lt 1
5
BiL;: C=A+Biu 3 T9¢c=> [Mi+6](m)9EA+Dj_
BiS: c=A+Bi5€ (\il)Bi7¢ch3¢c=>IF [k = K] (m)
THEN m at A + B, ELSE m at A + B,
Bit c=A+Bi => [We——add(i,W)](m)gl:‘A+Bi
6 6 8
B. : c=A+B, = [k «k+l] (m) at A + B,
i i A i
7 7 9
Bi: C=A+Bi => [Mi<—3](m)§.£A+Di
8 8
Bi: c=A+Bi = [L < add (i, L)](m)gEA+Bi
9 9 10
B. ¢ c¢c=A+ B, => [M. <« 5] (m) at, A + D.
10 i1 i ag i
Cil: C=A+cilgTu¢c8T64sc=>IF[leW](m) THEN

mat A+ C. EISE m at A + C,
~t 1 Sk 1

2 4
Ci: c=Z—\+Ci = [W «— remove (i, W)] (m) gt_:‘A+Ci
2 2 3
Ci= c=A+C. = [Mi+2](m)9£A+Di

26

: = = i + C.
ciu. c A+ciq 3 T7¢c & T84;c >IF[J.eL](m)THEINm25A Cle
EISEm at A + C,
S]_5
C;: c=Aa+C = [M «0l(m atA+D;
5 5
ci: c=A+Ci => [L « remove (i, L)](m)g.EA+Ci
6 6 7
C;+ c=A+C, & T54sc=> [t « t+11(m) gt A + C;
7 7 3
cisz c=A+Ci8 & T9¢c=> [M; « 11 (m) at A +D; .

(service routine)

Wservice(i)zvz=(m’c)€ZP’ VAeCP,if mgsc and
atI—EroducegD (z) then
Tl: c=A+Tl=>IF[t=O](m) TI-IENmit_:‘c ELSE m’§5A+T2
T.: c=A+T, & (Vi)(C, 4c & B, ¢c) = IF [W=A]m)
2 2 12 16
THEN mEEA+T3 ELSE mgl:‘A+Tu‘
T3= c=A+T3=> [k < k-t] (m) i’sA+T5
T, ¢=A+T, = [x <« tOP(W)](m)igA+T6
T5= c=A+T5=> [t<—0](m)‘§1:JA+Tl
T6= c=A+'I‘6 => [W « POP(W)](m)‘g_t_:'A+T7
T7- c=A+T7=> [t<~t—l](m)‘<'31'1:“A+T8
M = = add
T8 c A+T8 > [L < (x,L)](m):::'1~1.:“A+T9

To® ¢c=A+T, & (_Vi)(Bi24zc & BiSJ;c) => [M <« 7](m) at A + Ty

Valid Predicates and Their Proofs

We will first show (A) that the flight never gets overbooked

and that the flight is fully booked whenever there is a waiting list.

27

Then we will show (B) that for every customer, the message he last
received always corresponds to his present booking status (except for
those situations where his status has just changed and a new message is

about to be sent).

A) Number of passengers booked

Intuitively, k is the number of seats reserved on the flight,

for passengers already on the flight list or for passengers about to

be transferred from the waiting list. Since K is the number of seats
on the flight, we would require that k < K at all times. Moreover if
k < K we would expect the waiting list to be empty. Variable t
represents the number of passengers to be transferred fram the waiting
list, so we should expect that k = |L| + t , where |L| denotes the
length of flight-list L . Changes to L are accompanied by changes
to k or t which will preserve this relationship. However, in those
situations where L has been changed and k or t has not yet been
changed, or vice versa, the above relationship will not hold. To

correct for these situations we must keep account of them: let

no.pending (c) = number of labels T Bi or Ci (for some i)

8" 14 7

in ¢ .
Then,it is more true to say that
k = |L] + t + no. pending(c) .
Unfortunately, there is one more situation we must take special account
of; in the service routine, when the waiting list has became empty the

number of reserved seats is reduced by t and t 1is then set to zero.

28

The above relationship will not hold in the situations occurring
inbetween these actions.
The desired properties can now be expressed as an assignment:
R, : for m= <L, W, k, X, t, Ml' M2, e eMP ’ CeCP ’ mB‘lC if
and only if
i) (k<KéegwW=A) vk=K
ii) £>0
iii) k - IL] - no. pending(c) = if T ¢ ¢ then 0 else t

To show that R is valid, we actually have to prove a

1
stronger property; we need to know for example when k is less than

K or W is empty:

52: for m=<L,W,k,x,t,M,M2, ...>eMP,CECP,m§20 if and
only if
iv) W = A when T3ec
v) k =K when BiGec,forscme i
vi) k < K when Bi7ec,forsome i
vii) t > 0 when T2, Tu, T6 or T7 e C .

Proposition ’%3 = Bl n 52 is a valid assigrment for P .

Proof To check that W, (53) is true we need only check the transi-
tions (from possible states) that can make Ry false.

Weork (Rg) ¢ Executing statement L, cannot make R, false.

WPi (33) -+ The only statements whose execution can affect R, are

checked below:

29

BiS:mBBC & C=A+Bi5 & ...

=> TF [k = K] (m) THEN mB_3 A+Bi
6

ELSE mR., A+B.
3 17

Only v) and vi) are affected. k = K 1is necessary for the
transition to Bi » k <K 1is necessary to get to Bi . Therefore

6 7
v) and vi) are satisfied.

Bi : m\RiBC & c=A+ Bi = [W <« add(i, W)] (m)‘I}‘3 A+Bi
6 6 8
Only i) and iv) affected. Before the transition, V)
implies k = K , therefore i) is satisfied afterwards. No control

state can contain {Bi ' T3} , SO V) is satisfied after the transition.
6

Bi7 : m&,}c & c=A+ Bi7 => [k <« k+1] (m)\f}‘3 A+B:.L9

Only i), iii), v) and vi) affected. Both k and no. pend-
ing(c) are increased by one, so 1iii) remains true. From vi), k <K
before the transition, so i) is still true after the transition. Also,
since v) and k < K are both true before the transition, the control
state can not contain B. for same j , so V) is true after the
transition. Since no conﬁrol state can contain {Bi , Bj }o,ovi) will

7 7
be true after the transition.

Bi9 : mggc & c=A+ B19 => [L <« add(i, L)] (m)\}i3 A+Bil0

Only iii) is affected. |L| is increased by one, but

no.pending(c) is decreased by one, so 1ili) remains true.

30

Ci6 : n@ac & c=A+ Cie => [L <+ remove(i, L)]Qn)‘gB A.+Ci

Only iii) affected. After the transition, |L| is decreased
by one (if L was empty, the transition would not be campleted), but
no.pending(c) is increased by one, so 1iii) remains true.

C; :mBc & c=A+C, & Te ¢ ¢ => [t « t+l] MRy AC;
7 7 8

Only ii) and iii) affected. ii) clearly remains true.
After the transition, t is increased by one, but no.pending(c) is
decreased by one. Since Ty ¢ ¢ for the transition to occur , iii)

remains true.

Wservice (R3) : The following are the statements in the se.tv:.cg rc)ut:mev

that can affect 53 :

Tl:rr§3c S c=A+Tl=>IF [t = 0] (m) THEN

ELSE m\Ri3 A+’I‘2

Only vii) affected. Since t >0 by ii) and t # 0 is

necessary for the transition, vii) is satisfied.

T :m&c and ¢c=A+T

5 3 , & ... = IF [W=Alm

THEN mR3A+T3 ELSE mﬁA-PI‘u

Ay
Only iv) and vii) affected. vii) ensures that t > 0
before the transition, so vii) true afterwards. iv) is satisfied

since W = A 1is necessary for the transition to T -

31

T, :mR,c & ¢c=A+T

3 TRy 3 = [k < k-t] By AT

5

Only i), iii), v) and vi) affected. iv) implies W= A
before the transition, and t > 0 by ii), therefore 1) remains true
afterwards. k 1is decreased by t , but we move to T5, so right hand
side of iii) also decreases by t , and iii) remains true. k does
not decrease since t > 0 by ii), so vi) must remain true. No
control state can contain {Bi ' T3} , so V) 1is true after the transi-

6
tion.

T4 : mlsgc & c=A4A+ Tu = [x < topW)] (m)\Ij‘3A+’I'6

Only vii) affected, but it must remain true, since vii)

implies t > 0 before the transition.

= [t « 0] (mBy AT,

Tt mBc & C=A+Ty

Only iii) affected, and it remains true because its right

hand side was already zero.

T. :mR,c &§ ¢c=A+T

6 Ry e — W= pop (W)] (m)Ry A+T,

Only vii) affected (shortening W cannot make 33 false).

From vii) , t > 0 before the transition, so vii) is true afterwards.

T71 m§3c & cC =A+T7 => [t < t-1] (m)§3 A+T8

Only ii) and iii) affected. By vii), t > 0 before the
transition, ii) is true afterwards. iii) remains true because t

is decreased by one, but no.pending(c) is increased by one.

32

Tg : MRyc & C=A+Tg=> [L « add(x, L)](m)g3 A+T9

Only iii) affected, and it remains true because |L| is

increased by one, but nc.perding(c) is decreased by one.

No transition can make 53 false, so WP (&) is true and

R is a valid assigrment for P .

v\]_nB

2

Thus, any camputation of P that starts off with values of

L , W,k and t satisfying 31 will always have values satisfying ,I\k'l

B) Correctness of messages

We prove that at positions D,, B, and C, the last
i’ 71y i

message Mi received by custamer 1 corresponds to his booking status,
unless he is in the process of being transferred by the service routine.
At the same time we check that no double booking occurs.
We define i—-tra.nsferringl (c) to mean T7 or Tg e C &
X =1 ; also i—transferrinq2 (c) means T9 ec & x=1 . Then
i-transferring(c) means i—tra.1r1sferrj_ngl (c) or i—transferrj_ng2 (c) -

The assignment §i We wish to prove valid is
1

S. : For m=<L,W,k,x,t,Ml,M2, ...>€MP,C€CP,

mS. ¢ if and only if

33

i) Mi§2=>i¢w & i¢L
MiZS==>ieL
2 <Mi< 5=>1i ¢ W v i-transferring(c)

when Di’Bj_ or Ci € C .
1 1

il) dienL=1i¢wW & i¢ rewve(i, L)
iii) i eW—=1i¢L & i ¢ remove(i, W)

To prove ~§i is valid we need to prove a stronger assignment v§i = §i n§i2
1 3 1

where we have:

’giz:For m=<L,W,k,x,t,Ml,M,...>€MP,CGCP, m"s'izc if
and only if
iv) i4¢W & i¢L & (2<M, <5VvB, eq) when i-transferring, (c)
2
V) ielL vC, or C. €cC when i—transferring. (c)
17 18 2
vi) W#A when Tu or TGec
vii) x = top(W) when T6 € C
viii) i € W v i-transferring(c) when Bi or Bi e C
2 8
ix) 14w when B, or C, e€cC
i i
3 4
x) iel when B. , Bi or
Ty 110
C. e€cC
i

34

xi) ieW when C., € C
)

xii) 1 ¢L & i¢W &~ i-transferring, (c) when B; , By , By + B; ,
5 6 7 9
C.,Ci,c. or C, e¢cC

137 15 1y 1g

Proposition §i =5, n gi is a valid assigmment for P .
3

Proof To check W, (§i) is true we need only check those transitions
3
that can make §i false. None of the transitions in book-j or
3
cancel-j , for j # i , can do this, so we need only check Weork ! W,
i
and W . .
service

Weork (§i3) : executing L, cammot make §i3 false.
W, (85) : The only statements whose execution can make §. false

i 73 3

are checked below:

B. : m§.c & c¢c=A+ B, = IF [i ¢ W] (m) THEN n§.A+B.
1y 13 L 13 i

ELSE mS. A + B.
~3 13
Only viii) & ix) affected, and both are satisfied by the

conditions for the corresponding transitions.

B, : mS. ¢ &§ c=A+B. = [M. « 4] (m)S. A + D.
5 ~ig i, i ~ig i

Only i) affected, and is satisfied because wviii) is true

before the transition.

Biu : m§i3c 3 c=A+Bi3 & T, ¢cC & T8¢c=>IF[1eL](m)

THEN rnSiA+Bi ELSE mSiA+Bi
~=3 4 ~E3 5

35

Only x) and xii) affected. x) is satisfied because

i € I, necessary for the transition to B, . Fram ix) and
4

because i ¢ L and'-xi—transfexringl (c) are necessary for

the transition to Bi , xi1) is satisfied afterwards.
5

mS,
o~

;. C & c=A+Bi L [Mi+6](m)§iA+Di.

3 4 3

Only i) and iv) affected. i) is satisfied because x)

is true before the transition. Also x) and iv) being
true before the transition imply — i—transferringl (¢), so iv)
is true afterwards.

mS,
~

;C & c=A+B, = W« add (i, W)](m)'giA+Bi

3 6 3 8

Only ii), iii), iv), vii) & viii) affected. xii) is true
before the transition, so ii), iii) & iv) are satisfied
afterwards. Viii) is satisfied by the effect of the transi-
tion. From vii) being true before the transition, if

T_ ¢ c then W was non-empty before the transition and so

6

. vii) remains true afterwards.

mS.c &§ c=A+ B, = [M, « 3] (m)S, A + D,
N.‘L3 18 1 N13 1

| Only i) affected, and is satisfied because viii) was true

before the transition.

mS. c & c=A+B. = [L<add(i, L)]{m)S. A+ B,
i ig ~ig i1

Only ii), iii), iv) & x) affected. x) is satisfied by

the effected of the transition. Because xii) true before

10

36

transition, iv) is satisfied, and so are ii) and iii).

mSic & c=A+B:.L => [Mi+5](m)§iA+Di
~E3 10 3

Only i) and iv) affected. i ¢ L because x) is true
before the transition, so 1) is satisfied. Also = i~trans-
ferrj_ngl (¢) , fram iv), so iv) remains true.

ms. c &€ c=A+C, & ...=IF [i ¢ W] (m)
Nl3 ll

THEN m§iA+C:.L ELSE mSiA+Ci
3 2 3 4y
Only ix) and xi) affected. Both are satisfied because
of the conditions for the transitions.

n§i3c & c=A+ Ci2 => [W <« ramwove(i, W)] (m)§i3A + Ci3

Only vi), vii) & xii) affected. Since no control state
can contain {Ciz, ’I‘u} or {Ciz, T6} , vi) and vii)
remain true. From xi), iii) & iv) we have i ¢ W and
hence = i—transferrj_ngl (c) and i ¢ L before the transition,
and 1 ¢ W after the transition. Therefore xii) 1is
satisfied.

mS. ¢ & A=A+ C, => [M, <« 2](m)S. A + D,
~13 l3 1 . -/v13 1

Only i) & iv) affected. Both are satisfied because

xii) 1is true before the transition.
msNi3c & c=A+Ci4 ¢ T, ¢c & Tgfc=>1IF [ieLlm

THEN mSiA+Ci ELSE mSiA+Ci
~M3 6 ~3 5

W .
service

X3

(s

i

3

37

Only x) and xii) affected. x) is satisfied because
i € L necessary for the transition to c, - Fram ix)
6
and because i ¢ L and ™ i--tra.nsferrinc_;:L (c) are necessary

for the transition to Ci , xii) is satisfied afterwards.
5

ms.c &€ c=A+C. = [M, <« 0] (m)S. A + D,
~ig ig i ~ig i

only i) and iv) affected. xii) implies i ¢ L and
1 i-transferring, (c) + so i) and iv) are both satisfied.

n§i3c & c=A+ Ci6 => [L « ramove(i, IL)] (m)/%i3A + Ci7

Only v) and xii) affected. From x), ii) and iv) we
have i e L and hence —vi-transferring,(c) and i & W
before the transition, and i ¢ L afterwards. Therefore
xii) is satisfied, Since we move to C, , v) 1is also

7
satisfied.

m§i3c & c=A+Ci8 & Tg ¢ c= [M:.L+l](m)§i3zl\.+Di

Oonly i), iv) and v) affected. xii) implies i ¢ L and
= i—-transferringl (), so i) and iv) are satisfied. Since
the transition cannot take place if transferring, () , V)

is also satisfied.

) : The statements that can make ,g'i false are checked
3

below:

38

ms.c & c=A+T &€ ...= IF [W=A] (m)

2 7 Ry 2
THEN m’§i3A + T3 ELSE ”l%if‘ + Tu

Only vi) affected, and is satisfied because W # A\ necessary
for the transition to T, -

Tu : n§i3c & c=A+ T4 => [X « top (W)] (m)§i3A + T6
Only vii) is affected, and is satisfied by the effect of
the transition. vi) remains true because W 1is not changed.

Te ¢ m§d3c & c=A+ T, = [W*-POP(W)](m)Ei3A+T7
Only i), iv), viii), xi) and xii) affected. From Vi)
and vii) we know that W= A and x = top(W) before the
transition. We will have i—transferringl (c) after the
transition if and only if x = i = top(W) before the transi-
tion. If we don't get to i—transferr:i_ngl (¢), then i), iv)
and viii) all remain true (i is not removed fram W). If
we do remove 1 fram W we get to i—tra.nsfe:rringl (c), and
again i), iv) and wviii) remain true. We can only make
xii) become false if i ¢ W before the transition and
i—transferr:i.ngl (c) after the transition, which is impossible.
x1i) is satisfied because no control state can contain
{Ciz, Tet -

T8 : m§i3c & c=A+ T8 = [L < add(x, L)1} (m)’%i3A + T9

Only i), ii), iii), v) and xii) affected. To affect 1),

ii), 1ii) and xii) wemust add i to L , which will only

39

be the case if we have i«transfe.rringl (c) before the transi-
tion and i-transferring, (c) (and i ¢ L) after the transi-
tion. v) and xii) are immediately satisfied, and ii)

and iii) are satisfied fram iv). Also iv) implies that

i) is satisfied.

T9 : n§i3c & c=A+T9 E .. = [MX<-7](m),§i3A+T

Only i) affected. By v) , if D,, B, or C. e c after
i’ Tiy i
the transition then i ¢ L , so i) is satisfied.

1

No transition can make 8S. false, so WP(S. } 1is true and
Nl3 er3
CH is a valid assignment for P .

Thus, any camputation that starts off with values of L, W

and Mi satisfying ~§i will always have values satisfying Ei .

(Note that the validity of gi also ensures that the program never
3
'hangs up' by trying to remove a custamer from a list when he is not

present on the list.)

OBSERVATIONS

1. Both these proofs were long, but it can be argued that they are as
short as any convincing proofs could be. The behaviour of the
program is really very camplex, and the proofs follow quite closely
the reasoning that must be made in any proof. The advantage of the

method over more informal reasoning is clearly that it brings ocut

40

all the cases. In fact many of the constraints were found to be
necessary while attempting these proofs. Although the program
appeared to behave in the desired way, in fact it didn't in certain
circumstances which were discovered by attempting the proofs.

Of course, a reasonable program would have much simpler behaviour,
produced by having larger 'critical sections'. We have deliberately
considered this program to show that the method can handle great
canplexity.

For parallel programs, proofs of assertion can not be simplified by
applying the 'one assertion per loop' rule for sequential programs.
Between the execution of any two textually successive statements in
a program there may occur abitrary amounts of camputation, elsewhere
in the program. Nevertheless, same simplifications in applying the
method may well be found.

Despite these proofs, we can not claim that the program is 'correct'.
Even if we do not consider the problem of what 'correctness' could |
mean, we see that there are some desirable properties of the program
that we have not proved, and which seem to be béyond the scope of
the assertion method. For example, we have not proved that the
waiting list works correctly — that no one can 'jump the queue’.

Any properties relating situations at different times can not be
handled.

A crucial requirement for the program might be - if ever custamer

i enters book-i eventually he will get same response from the

system, i.e. he will get a new message Mi and exit fram book-i.

41

We have shown that if he gets a message it correctly reflects his
status on the various lists, and we can eveﬁ check that he gets put
on or taken off the lists in the appropriate situations. But we can
not be sure that he will eventually get out of book-i.

Tt might appear that this is where we can resurrect the finite delay
property. We can show there are no deadlocks in the program, so if
we have the finite delay property, each of the subprograms should
keep going at same finite rate, ensuring that we get out of book-i,
for example. Unfortunately, even without deadlocks, it is possible
for book-i to be permanently stopped (and so even the finite delay
property cannot help us)! For example, assume custamers i, j and
k are all on the waiting list, and custamer i tries to book again
just as he is being transferred to the flight list by the service
routine. We can end up with a control state containing {Bi . T9} ,

n

and B, is stopped by Ty to ensure that the messages don't get
4
'crossed'. Now imagine that customer Jj tries to book again, and

gets to sz , and also custamer k tries to book, reaching Bk2 .
Now T9 is stopped as well as Biu . By the finite delay property,

eventually sz and Bk2 must be executed, but if sz goes first,
say, there is nothing to prevent custamer Jj trying to rebook before

Bk is executed, stopping T9 with B. once more. Bk can now be
2 2 2
executed, but we can get back to Bk before Bj moves. And so
2 2
on. We see that it is possible for Tg to be permanently stopped

by a continually changing pattern of constraints. This situation is

42

not deadlock, and in fact is much more difficult to detect. We

might coin the term 'livelock' to describe it.

So we see that the program in fact is not correct if we require

every subprogram to keep going. Admittedly the circumstances under which
livelock can occur in this program are rather esoteric, but they may not
be in other programs. It is probably possible to construct parallel
programs where, for example, a round-robin algorithm, to decide which
statement to execute next, gives precisely the behaviour which results in

livelock of same process.

43

REFERENCES

[1} E. A. Ashcroft and Z. Manna "Formalization of Properties of Parallel
Programs", Machine Intelligence 6, Edinburgh University Press (1970).

[2] R. W. Floyd "Assigning Meaning to Programs", Proc. Symposia in
Appl. Math. 19, Amer. Math. Soc. (1967).

[3] P. B. Hansen "A Camparison of Two Synchronizing Concepts", Acta
Informatica 1, No. 3 (190-199) (1972).

[4] R. Karp and R. Miller "Parallel Program Schemata", J. Camput. System
Sci. 3, 147-195.

[5] K. N. Levitt "The Application of Program—proving Techniques to the
Verification of synchronization Processes", Proceedings Fall Joint Comp.
conference, 1972, 33-47.

[6] Z. Manna "The Correctness of Programs", J. Comput. System Sci. 3,
No. 2 (May 1969).

[7] Z. Manna and A. Pnueli "Formalization of Properties of Functional
Programs", J. Assoc., Camput. March 17, No. 3 (July 1970).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

