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Abstract

A simple but general parallel programming language is
considered. The semantics of programs are defined in a concise and
natural way using relations. ‘'Correctness conditions' derived from
the semantic definitions enable Floyd's method of proving cbrrectness to
be applied to the parallel programs. Proofs of properties of programs
using the correctness conditions are claimed to be more systematic |
versions of the informal arguments normally used to check parallel
programs. A program simulating an elementary airline reservation
system is given, and several properties of the progfam are demon-

strated using the technique.

* This research was supported by the National Research Council of Canada.



INTRODUCTION

The method of Floyd [3, see also 6] for proving assertions about
programs has not yet become a widely used technique. Part of the reason
for this may be that the method requires a discipline of thought that
programmersbmay find both unfamiliar and unnecessary. For the simple
programs on which the method is usually demonstrated, a sceptical programmer-
could maintain that he finds the proofs harder to understand than the
original programs. This argument could be countered by providing him with
a well—designed, interactive, proof-checking, prégramrproving system, but
for simple programs this appears to be taking a sledgehammer to crack a
walnut.

The situation changes however when we consider programs in
languages of greater semantic complexity. (Complex programs in simpie
languages probably just result in more complex proofs, and the situation
remains essentially the same.) Recursive programming for example requires
a more 'inductive' type éf reasoning than does iterative programming, and
producing correctness proofs requires a little clerical effort rather than
a mental leap [see 7]. |

Parallel programming also requires a different type of reasoning
from seqentiél programming; one can rely much less on the 'obvious'. Since
such programs include operating systems, airline reservation systems and
the like, it is crucial that this reasoning be correct. Parallel programs
are difficult to debug, and the 'proof by test cases' approach is even more
unreliable than for sequential programs. The programmer's confidence in

his program has to come from very careful analysis of possible situations.



Any proof method that ensures that he has considered all eventualities
can only be helpful (provided it is not impossibly tedious).

The adaptation of the correctness method that we present here
results‘in proofs that are not unnecessarily tedious, and that follow the
sort of reasoning that the programmer would ordinarily make.

Although we shall use the term 'co;rectness method', it is to
be understood that the method simply allows one to prove that a program
(system) has particular properties. Whether these properties are
.sufficient to pronounce the system correct or not is outside the scope
of this paper. The whole question of what it means for a system to be

correct is considered elsewhere [1 ].

'PARALLEL, PROGRAMS

We wish to keep our parallel programming model as general as
possiﬂle. All we require is that the model allows a bounded number of
computations to be taking place quasi-simultaneously, i.e. the computa-
tions can proceed more or less independently but there is some basié
level at which no two operations can occur actually simultaneously (or
if they do then the effect must be the same as if one preceded the other),
Any sort of synchronisation or roadblocking is allowed, and new parallel
computations can be initiated and old ones terminated.

However we specify the syntax of such programs, by means of
constructs like 'fork' and 'join' or coroutines or tasking, the speci—

fication of the semantics must include non-determinism. An easy way is



in terms of non-deterministic programs, and one is tempted to take

non-deterministic programs as the model, and relegate the usual sorts of

parallel programs to the status of convenient syntactic descriptions that
are possible in special cases. This was the approach taken in Karp and
Miller [5] and to some in extent in Ashcroft and Manmna [2]. (In the
latter a conventional parallel programming language was considered that
used forks and joins, but properties of such programs had to be proved
indirectly by way of the corresponding non-deterministic programs.)
Although quite general, the fepresentation of a parallel
program by a non-deterministic program has several drawbacks. In partiF
cular, the size of the non-deterministic prograﬁ is some éxponential
function of the size of the original parallel program. Besidés being
cumbersome, this means that proofs of correctness tend to be very long.
In fact, they are often longer than they need be by an exponential
factor. This is because the various quasi-simultaneous computations are
usually designed by the programmer to work despite their interactions,
not because of the interactions. In other words, encugh limitations are
imposed, in the form of critical sections and synchronisations, to
ensure that each computation can be considered largely independently of
the others. Proving n parallel computations correct should then be
roughly linear in n rather than exponential, as would be the case with
the corresponding non-deterministic program. |
In this paper we shall specify the syntax of parallel programs
using simple fork and join comstructions. Synchronisation and critical

section features can be introduced by means of constraints on the



execution of statements in particular situations. We shall define the
semantics of each parallel program in a natural way in‘terms of relationms.
The specification of these relations is directly linked to the program
itself and is just as concise. The formula used for proying propertigs

of the program is directly obtained from these relations.

Synfax of Parallel Programs

A parallel program P consists of

i) a domain MP of memory-states. Intultively, each m € M?

contains values for all the variables used by the program.

ii) a set of basic operations GP ='{g1, 8ys 83> eee} where

gy ‘M M-

iii) a set of basic tests Qp =‘{ql, 95 93 -++} where each
9 < (a relation on Mf) .
iv) a finite set Ly = {Ll, L,, ***}  of symbols called labels.
v) a finite set SP = {sl, Sos -++}  of labelled statements, using

G, and Q, , with s, being the initial statement.

P

1
vi a set of constraints .
) c raint stoBsP

A labelled statement can be of one of the following 8ix forms:

i) L; : do 8; then go to L (operation)
ii) Li : 1f qj then go to Lk else go to L, (test)
iii) -Li : go to Lal, Laz, vee, La- (fork)
J
iv) le, LBZ, RN LBi : go to Lj (join)
v) Li ¢ go to one of Lal, Laz, ey, Luj (branch)



vi) L; : HALT (halt)

where Li’ Lj’ Lk’ Lh’ Lal’ La s -.-f La" L, , -, LB. are

labels.

Each label in LP must occur exactly once labelling some statement in SP s

(i.e. before the colon). The initial statement ) is labelled with _Ll .
LP
A constraint is an element <c, 2> of 2 = X Ly such that £ ¢ c

We consider stoEsP as a relation and say c stoEsP 2 . We define

a converse relation allowsP as follows: for ¢ E_LP , L € LP ,

< c¢ c' stopsy & is false.

P

1

c allowsP % if and only if for all c¢

Example Ihe following program P1 i8 represented dlagrammatically,

with the labels of statements on the edges leading to those statements.

Constraints

L13 stops L16
L7 stops L4

Lu' st‘lt? Lq

P &
rogram Pl



Semantics of Parallel Programs

To describe the execution of a program P we néed not only
the memory-state at each instant but also the control-state. A control
state is a subset of LP and represents the statements reached in the
program; they are about to the executed at the instant in question. We
may describe the execution of P in the following intuitive way. We
think of a control state as a set of markers on the corresponding state-
ments. We start off with a marker on the initial statement Sy > and
are given some initial memory state m . At each step in the p;ocess
with control state ¢ and memory state m , we shall choose some |
marker £ € ¢ at random such that ¢ allowsP £ . If 2 marks an
operation, then that statement is executed, m changes to gi(m) for
some g, , and the marker is moved to the next statement, changing c .
If 2 marks a test, then the marker moves to the appropriate hext state-
ment, updating c¢ but leaving m unchanged. If & marks a fork, then
the marker splits into several markers which are moved to the statements
referred to in the fork. If £ marks a join, and all the labels of the
join are marked, then the markers all fuse into one marker which is moved
to the statement referred to in the join. (If all the labels are not
marked then & cannot be moved at this step and some other marker must
be chosen.) If £ marks a branch, then the marker is moved to one of
the statements referred to in the branch, chosen at randdm. If 2 marks

a halt, then the marker is removed from c¢ . In all cases m is



unchanged but ¢ is updated.

The process is repeated either indefinitely or until no marker
may move, or no markers are left. Since control-states are defined as
subsets of LP we will consider a program illegal if it allows any
statement ever to get two markers. Syntactic restrictions could be

imposed to ensure this, the details of which we shall not be concerned

with here.

Example Note that program Pl is a legal program.

The formal definition of the semantics of P will be in two
stages. Firstly we will define a next-state relation s for every
statement s in P , and then we gilve a next-state relation becomesP

for the whole program. To do this we first introduce the following

important notation:

Partitioning notation

for A c LP & 2 e LP

A(R) = Avu {2} 4if An {JL} = ¢ , undefined otherwise.
for A cL & c cl

A(c).= Avuec if Anc=¢ , undefined otherwise.

We will find the partitioning notation very useful to indicate the

replacement of a subset of a set by another set.

The relation s

for c,c'_gLP & m,m' ¢ M, , (c, m)s(c', m') 1is defined as follows



i) operation: (c, m)_L__i : do gj then go to L (c', m') if

and only if ¢ allowsP Li &

[HA.E_LP[C = A(Li) &m' = gj(m) & c' = A(Lk)]

ii) test: (c, m)Li . if qj then go to I. else go to LH(C" m')

if and only if c-allowsP Li &

dA E_LP[C = A(Li) &m=m"& [IF qj‘m) THEN c'=A(Lk) ELSE c;=A(Lh)]*

iii) fork: (e, m)L_i : go to La , La y e, La (c', m') if

1 2 h|
and only if ¢ aIIOWSP Li &
= = ' c' = s
Ha < Lyle AL) &m=n' &c A({Lul, Laz, , Laj})]

iv) join: (c, m)LB s LB , v, LB : go to Lj(c', m') if
1 2 i

and only if
HA < Lyle = AdLg , LB‘, g ém=n' &c' = AQ)]
1 2 i

. . ; e ' '
v) branch: (c, m)éi : go to one of Lal’ Laz, y Laj(c , m')

if and only if ¢ allowsP Li &

A E_LP[c = A(Li) &m= m' & (¢' = A(Lal) v e! A(Laz) v

«ve' = A(Lu.))]
|

vi) halt: (c, m)éi.: HALT(c', m') if and only if

E{A.E.LP[C = A(Li) &m=nm" & c' = A]

* IF A THEN B ELSE €= (A& B) VGA&C) = (A=>B) & (A= ()



If 'P is a legal program the relation s clearly relates the states
. L _

P

(elements of 2 X Mf) before and after execution of s in the way

expected from the previous intuitive descriptionm.

The relation becomes
B &

- for e¢,c' &L, and m,m' € M,
(c, m) becomes, (c', m') if and only if (c, m) s (c', m")

for some s € SP .

Computations of P

for m € MP , we shall use P(mb) to denote program P with

initial memory-state m. - A computation of P(m ) is then a

ol
sequence of states Ops Ops Ogy *°° where 0 = ({Ll}, mo),
and oy becomesP ai+1 for i=1, 2, 3, -+ . The computation

terminates, if at all, with a state o for which o becomesP aj

LP

is false for all a, € 2 X M? . If the control-state in o
] n

is the empty set then we have normal termination, otherwise we

have deadlock.

CORRECTNESS METHOD FOR PARALLEL PROGRAMS

A valid predicate for a program P is a relation Q on
(Mf X Mf) x 2 such that (mo, m)Q ¢ 1is true whenever a computation
P(mo) gets to state (¢, m) . Such predicates can express significant
facts about programs. We shall develop a condition WP(Q) such that

any relation Q satisfying it is a valid predicate for P .
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The correctness method consists of first finding a relation
R expressing desired properties of a program, and then proving the

relation is a valid predicate by showing that WP(R) is true.

Definitions Let LieldsP be the reflexive, transitive closure

. L
of becomes, . We define at, c (M, X Mp) x 2 P as follows:

for mo,m € MP , C E~LP . (mo, m) at, c if and only if

({1}, m) ylelds, (c, m) .

Let C, = {c ¢ Ly | (m, m) at, c for some m ,m e MP} .

This is the set of possible control states for P .

A valid predicate for P is a relation Q ¢ (MP X MP) x Cp such that

at, < Q.

The Correctness Condition W_(Q)
xr

The relation at, has the following properties, which

follow immediately from its definition:

(I) for all m ¢ MP , (m, m) _ja_t_P' {Ll}

(II) for all mo,m,m" € MP , and c,c' € Cp yif (mo, m) at, c then

P

[(c, m) becomesP/ (c', m') = (mo, m') at, c'] .

P

We can express the above properties as a condition WP(Q) on an

arbitrary Q ¢ (M, XM x €,

W,(Q) = Vm ,m,m' e, , Ve,e' €Cpy (m, m) Q {L;}
and if (mo, m)Q ¢ then

[(c, m) becomesP (c', m') = (mo’ m')Q ¢'] .
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We have noted that if Q = aty then WP(Q) . In general the

converse is not true, but we have

Correctness—condition theorem

For any relation Q E_(MP><MP)’<CP , if Wf(Q) then

EEP-S Q, i.e. Q is a valid predicate for P .

Proof Assume at, $_Q . Then there exist m,meM, & ccl,

" such that (mo, m) at.

p C and (mo, m)Q ¢ is false. From the

definition of at,

p > ({Ll}, mo) yields, (c, m) and by definition of

yieldsP there is a finite sequence of states 0y 5 az, e, O such

that o, = ({Ll}, mb) , o = (c, m) and &, becomes for

n i ———P 0L:i.+l
i=1,2, -+, n-1 . Let aj = (c', m') be the last state in this

sequence for which (mo’ m')Q c¢' ; such g state exists since

(mo, mb) Q'{Ll} . Since J <n let aj+l be (c", m") . From
1 "

uj becomesP aj+l and WP(Q) we get (mo, m'") Qc" , a

contradiction. ‘ O

WP(Q) can be stated in a more concise and useful form by

first defining a relation QIS E.(Mf x MP) x CP for each s € SP and
c (M, x M) X .
Qc (M XM, Cp

The Relation QS

for m ,m € M? and ¢ ¢ CP , (mo, m)Q|S c is defined as

follows
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i) operation: (mo, m)QlLi : do B then go to L ¢ if and only

if

. VA E.LP[C = A(Li) & c allowsP Li => (mb’ gj(m))Q A(Lk)]

ii) test: (m_, m)Q|L, : if q. then go to L, else go to L,_l c
[o] ak —*1 K 1

if and only if

VA c Lyle = A(L;) & c allows, L, => IF 9 (m) THEN (m_, m)Q A(L,)

ELSE (m_, m)Q A(L,)

iii) fork: (mb, m)QJLi : go to La , L , o, L ¢ 1f and only

if
VA c LP[c = A(Li) & ¢ allowsP Li => (mb,m)Q A({La ’La s 0, La H1

1 2 - i

s el R . . d onl
iv)  join: (mo, m)g|L81, LBZ, y LBi go to Lj ¢ if and only

if
VA E LP[C = A({LBI’LBZ’...’LBi}) => (mO’ m)Q A(Lj)]
v) branch: (mo, m)Q[Li : go to one of Lal’ Laz, ser ;%3 ¢ if
and only if
VA  Lyle = A(L)) & c allows, L, => (m_, m)Q A(Lal) &
& (mo, m)Q A(La ) & -
2
& (m), mQ AL )]
k|

vi) Thalt: (mo, m)QILi ¢ HALT ¢ if and only if

VA < LP[c = A(Li) => (mo, m)Q Al
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It follows immediately from the definitions that for legal
program P and mo,m,m' € M, and c,c' € Cp

Vs ¢ SP(mo, m)gli c <> Vs ¢ SP[(c, m) 8 (¢', m") = (mo’ m)Q c'] <=
[(c, m)'becomesP (c', m") = (mb’ m)Q c']
We can thus state W?(Q) as follows

WP(Q) EVmo,m eM, Ve ¢ Cp
(mb, mO)Q {Ll} &

[(m, mQc= Vs es,, (n, mls c]

In this form we shall call Wf(Q) the correctness condition for P .

Using the Correctness Method

To prove that a relation R 1is a valid precicate for P one

must check that WP(R) is true. 1In general this involves checking that
(mo, mR ¢ = (mo, m)RIs c , for every s ¢ SP

and c¢ € CP . If each of these control-states must be checked indivi-
dually, we are no better off than if we had defined the semantics of P
using a non-deterministic program and tried to prove it correct; the
non-deterministic program would have ICPI statements. In practice
however, no one could write parallel pfograms if they had to think of
each c¢ ¢ CP individually. One essentially considers a relatively small

number of cases by partitioning CP , using such reasoning as 'if I am

at this statement then such and such is true, no matter where else I am
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in the program.' Exactly this type of reasoning can be used in checking
correctness conditions, which makes the method feasible. The most

convincing demonstration of this is probably by an example.

EXAMPLE: AN ELEMENTARY AIRLINE RESERVATION SYSTEM

We shall consider a program P' which simulates a simple
airline reservation system for one flight with up to K .passengersﬁ
Orders to book and unbook customers would normally be received by the
system from remote terminals in travel agents' offices. We do not
intend to describe this aspect of the system, and instead will simply
simulate the 'kernel' if the system ﬁhere routines for booking and
unbooking customers are running in parallel, and are called in random
fashion.

There is no subroutine feature in our language, so we will
use a different pair of routines for each customer, and postulate a
maximum number N of customers. These routines for each customer are
simply those for booking and unbooking him, and they will be run
repeatedly, in random order, with arbitrary delays at any time (since

the language makes no assumptions about the running rates of separate

computations). The N customers are run in parallel, together with a
service routine to handle the waiting-list, transferring customers from
the waiting-list to the flight-list when other customers cancel their

bookings.
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For convenience we shall number the customers from 1 to N

and the outline of the system is then as follows

Y

W)
D\
1

‘ BRANCH

cancel-1

book-1

(customer 1)

initialisation

N
7>

<
Y

D

G

N

cancel-N

Service

routine

book-N -

(customer N)

Program P'

The program maintains two lists of integers, in variables L

and W , representing the flight-list and the waiting-list respectively.

Before giving details of the subprograms, we will define the basic

operations on lists that we shall use.

Let J be the set of non—negative integers.

and jeJ, -

denotes concatenation and

X € J*
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i) 3 € =x 1if x = a°jeB for some o,B € J*
ii) add(j, x) = x°j
iii) remove (j, X) is defined if j € x and
remove(j, x) = 0°f where x = o0°j°B and j * o
iv) top(x) 1is defined if x # A , and top(k) = j Wheré
x = joo |
v) . bop(x) is defined if x# A , and pop(x) =0 where

X = joo
A denotes the empty list.

The program also uses a length N array M of integers
which are to be interpreted as codes for messages sent by the system to
the customers. The assignment M(j) « k replaces the j'th element
of M by k , in the usual way.

The subprograms are as follows

W< A
L<«A
M« {o}"
k<0

1 x<«0
t <0

initialisation is




- 17 -

Bi,l
book - i is ‘ [\ T
ieW M(@i) <« 4 >
\/ ; B (i)
B ' "2
i, |F | | |
~_ T
/1€L/ B - M) « 6 .
Constraints \ ‘ i4
g F| °1 |
Bi7 stops Bjs i3 5 Bi
6 .
B12 stops T9 <=>-—-,F————w + add(i, W) *
B, stops T | B B,
16 ' 2 F # i7 ‘ : 18
Bi stops T9 ] e
8 : k < k+1 M(i) « 3
B
1q
L+« add(di, L) B M(i) « 5 .
i

10

||

cancel - i is f
W < remove(i, W)
o
3
Constraints
- M(i) « 2
Ci2 stops T2 F
- M(i) « O
Cy
5
C
i8

M) « 1
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!

service
routine >
Constraints
for 1 <i <N k + k-t
TS{
y
T4 stops Ci
1 t<«0 >
T6 stops Cil
T
T7 stops Bi3 _ 6‘V
T8 stops Bi3 W+ pop (W)
T7 stops Ci4 T7
T8 stops Ci
4 t « t-1
T3 stops Bi
5 T
T. stops C 8 y
5 Stops i Ty
T st c L <« add(X, L) . M(x) « 7
g Stops ig
T9 stops 314

The message codes should be read as follows

'not listed'’

'"booking cancelled'
'cancelled from waiting list'
'wait-listed'

'already on waiting list'
'"booked'

'already booked'

N oY LW N RO

'transferred from waiting to booked'
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The routines are straightforward except for use of the
variable t . This is used to indicate to the service routine how many
customers should be transferred from the waiting list to the flight list.
(The seryice routine could just keep topping up the flight list when
seats became available, but then it would be possible for a customér
booking at the appropriate instant to circumvent the waiting list and
get booked directly.)

The constraints ensure that the program works correctly; they
will all be used in proofs of valid predicates. The constraints

Bi7 stops Bj5 s B16 stops T2 and T3 stops B15 will be used indirectly;
they simply ensure that the control states A({Bi s Bj }) (14 3) and
7 7

A({B; , T3}) are not possible for any A c L,i(i.e. are not members of
6

C,1). This is easily seen by considering the possible previous control

P \J
states. Let A({Bi , T3}) be the first control state of this type in a
6
computation. The previous control states can only have been A({Bi , T3}§
5 .

or A({Bi » T.}) , and from both of these the transitions are not allowed.

6

Hence A({B, , T
i

2

3}) does not occur.

The Correctness Condition WP'(Q)
For readability we will specify WP'(Q) using at for Q .
Each m ¢ M?' consists of a vector of values for the variables
L, W, M, k, x and t . The assignment statements in P' each change
only one of these values. For brevity the operation (mapping M?. into

MPy)associated with each assignment statement a we shall denote by [a]
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This notation is concise and expresses just the relevant information:
what has been changed. For example if m = <o, B, ¥, 8, €, ¥> (values

for L, W, M, k, x and t respectively) then
W+ remove(i, Wl{m) = <o, remove(i, B), v, 6, £, P>

We shall also use this notation for tests, e.g. for the same m as above
[k = K](m) 1is true if and only if § = K .

Since all the variables are initialised at the begining of the
program we can drop the initial-memory state m throughout WPv(Q).
The statements of P' are naturally partitioned into subprograms: we
shall similarly partition va(Q) (and indicate in parentheses which

statement we are considering):

1
where
(initialisation)
WPI‘(§£) is Vym € M’P" m at {Ll} and
' mat {L} = <A, A, {0}V, 0, 0, 0> at {L,}
& mat {LZ} =m at {Dl’ Dy, *++s Dy, Tl}
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(book-i and cancel-i)
WP]!_(.QE) is
Vm € M‘P" Ve € CP" VA_C_LP',

mat ¢ =

[(Di) ¢ = A = mat AB; ) & m at A(C; )

1 1
&(B; ) c = A(B; ) = IF [1 € Wl(m) THEN m at A(B; ) ELSE m at A(B; )
1 1 2 - 3
&(B; ) ¢ = A(Bi ) = [M@E) + 4](m) at A(D,)
2 2
&(313) c = A(Bi3) & T, tcs Tg ¢ ¢c= IF [i € L](m) THEN m at A(Bi4)
_ ELSE m at A(B,; )
5
&(314) c = A(Bi4) & T, § c=> [M(1) « 6](m) at A(D))
&(Bis) c = A(Bis) 8§ 1<j<N= B17 ¢c)&Ty § c=> IF [k = Kl(m)
THEN m at A(B, ) ELSE m at A(B; )
6 7
S &(B, ) ¢ = A(B, ) = [W < add(i, W)](m) at A(B, )
1 16 1g
&(B, ) ¢ = AB, ) = [k « k+1](m) at A(B, )
7 *7 —
&(B; ) ¢ = A(B; ) = [M(1) < 3](m) at D(D,)
8 8
&(B, ) ¢ = A(B, ) = [L < add(i, L)](m) at A(B, )
9 Y *10
&(B;, ) c=A@B;, )= [ME) «5](m) at A(D,)
10 10
&(cil) c = A(Cil) & T, ¢ c& T ¢ c=> IF [1 ¢ W](m) THEN
m at A(C; ) ELSE m at A(C; )
— h - N
&(C, ) c = A(C, ) = [W « remove(i, W)](m) at A(C, )
) *2 1,
&(013) c = A(Ci3) => [M(1) « 2](m) at A(D,)
&(C14) c = A(Ci4) & T, ¢ c& Tg ¢ ¢c=> TIF [i € L](m) THEN ma_tA(Ci6)
- ELSE m at A(C, )
5
86 ) e = AC; ) = (M) < 0](w) at A
&(Ci6) c = A(Ci6) => [L « remove(i, L)] (m) at A(Ci7)
5(C, ) c = A(C; ) & T, ¢ c = [t « t+1]1(m) at A(C, )

(¢]
[

7 7 8
&(Cis) A(Cis) & Ty ¢ ¢ => [M(1) « 1](m) at A(Di)]
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(service routine)
WPI.‘(gj;) is VmeMP,, VceCP', VAELP.

mat c =

(2]
]

A(Tl) => IF [t 0] (m) THEN m at c¢ ELSE m at A(TZ)

[z
8(T,) c = A(T,) & (1 <1

|A

N=>C §cé&B, ¢c]l= IF [W=Al(m)
2 6

THEN m at A(T,) ELSE m at A(T,)
&(T3) c = A(TB) = [k <—.k—-t](m) at A(Tg)
&(T,) ¢ = A(T,) => [x « top(W](m) at A(T,)
&(TS).(: = A(TS) => [t « 0](m) at A(Tl)
&(T;) c = A(T,) => [W + pop(W) ](m) at A(T,)
&(T7) c = A(T7) = [t « t-1]1(m) at A(TQ)
&(Ts) c = A(TB) => [L « add(x, L)](m) at A(Tg)

&(Tg) c = A(Tg) & (1 <i<N= Biz ¢ c & B18 * c) = [M(x) <« 7](m) at A(Tli]

Valid Predicates and Their Proofs

We will first show (A) that the flight never gets overbooked
and that the flight is fullybooked whenever there is a waiting list.
Then we will show (B) that for every customer, the message he last
received always corresponds to his present booking status (except for
those situations where his status has just changed and a new message is
about to be sent).

(A) Numbers of Passengers Booked

It is apparent from the program that k corresponds to the

number of passengers booked, provided the service routine has 'caught up'
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with the pending transfers to the flight—list. If we denote the length
of L by |L| , we should expect that |L] + £ = k . However we must
allow for those situations where for example k has been incremented
but the newly booked customer has not yet been put on L . These situ-
ations occur at Big, Ci7 and T8 . To account for these situétions we
must keep a count of them:

let temp(c) = |[{ ec | 2=c¢C, v&=B vi=T

for ¢ e C
i7 i

P!
1 <1< N}
We can now give the relation R which we shall show is a

valid predicate.

The relation R

For m = <L, W, M, k, x, t> ¢ M,, mR {Ll} is true and for ce Cprs

c # {Ll} , <L, W, M, k, x, t> R ¢ if and only if all the following are true:

1) (k<K&W=A vk =K
2) Tg ¢ c=> |L| + t + temp(c) =k

3) T. e c=> [L]| + temp(c) =k

5
4) T3 e c=>W=A
5 B, ec=>k=K (1 <1i<0N
ig - -
6) B, cec=>k<K (1<i<N)
7

To show that R 1is a valid predicate we shall show that WP,(R) ,
I

WP.(R) (1<i<N and WP.(R) . We can easily verify that WP.(R)
i T I

is true. For the rest, notice that we only need check those parts of

the correctness condition corresponding to state~transitions which
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can make R false, i.e. the transitions which change

k or t or L , add elements to W , go to labels T c., , B, ,

s T, C,
3 5 17 19

B, , B, or T, , or from labels T,, C or B . We check all these
17 14 8 8 i7 19

transitions informally below.
changing k :

(B, ) mRe & c =A(B, )= [k « k+1](m) R A(B. )
*7 17 19

k 1is increased by 1, but temp is also increased by 1.

2) & 3) remain true. Since Bi € ¢ , k was less than K ,
7

and after being incremented still satisfies 1). All the condi-

tions in R remain true.

(T3) mRe & ¢ = A(TB) = [k « k-t](m) R A(TS)
k 1is decreased by t , but we switch from ¢ = A(TB) » which does
not contain T5 , to A(TS) which does, so 2) & 3) remain true.
Bi % ¢ since A'({Bi . T3}) is an impossible control state.
6 6
5) is not contradicted. Since 4) implies W = A , 1) remains true.
‘changing t :

(ci7) mRe & c = A(Ci7) § T, ¢ ¢c=> [t « t+l](m) R A(Cis)

t 1is increased by 1, but temp is decreased by 1. The
constraint ensures T5 * A(Ci ) and T5 % A(Ci ) , so 3) is

7 8
still satisfied.

(T;) mRe & c = A(T7)=$>[t < t+1](m) R A(TS)

t 1is decreased by 1, but temp is increased by 1. T5 & A(T7)
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and T, ¢ A(Tg) for possible control states, so 3) is still

satisfied.

changing L :
(B,) mRc & c=A(B, )=> [L<add(i, L)](m) R A(B, )
i i i
9 . 9 , 10
IL] is increased by 1, but temp is decreased by 1.

(Ci ) mRc & c= A(Ci ) = [L « remove(i, L)}1(m) R A(C, )'
6 6 *7

]LI is decreased by 1, but temp is increased by 1.

(T mRec & c=A(Tg) = [L+ add(x, L)](m) R A(Tg)

g
|L| is increased by 1, but temp is decreased by 1.

adding to W :

(B,) mRc & c= A(.Bi ) = [W < add(i, W)1(m) R AB, )

6 6 8
W + A after the transition but k = K since Bi- €c .
76
v 1) still satisfied. T, ¢ ¢ since A'({Bi > T3}) is an
6
impossible control state.
Transitions to T3, Bi6, Bi7’ TS’ TB’ Big and Ci7

(T,) mRec & c=A(T) & -+ = IF [W = Al(m) THEN m R A(T,)
W= A is a necessary condition for the transition. .. 2)

is satisfied.

(Bi ) mRc & c= A(Bi ) & «+»- => IF [k = K](m) THEN m R A(Bi )
5 5 6

ELSEm R A(B, )
1,
k = K 1is necessary for transition to Bi , k < K 1is necessary
6
for transition to Bi <. 5) & 6) remain true.

7
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(T3)' already considered

(T7): already considered

(Bi ) already considered
7 ‘
(Ci ) already considered.
6
Transitions from T,, C and B :
8 17 19

(TS)' already considered

(Ci ) already considered
7"

(Bi ) already considered.
9 .

We have thus shown that WPy(R) is true, . and hence R 1is
a valid predicate for P'. The 'proof' was informal but could be develop-

ed formally.

(B) Correctness of Messages M(i)

We would expect that, at all times,
M(i) <2 <> i ¢L&id¢w
2 <M@{H) <5 <= 1ieW

M(i) > 5 <> 1i e L .

Unfortunately there arise situations when this is not true;
namely a) if book~i or cancel-i have altered L or W , but not yet
sent the corresponding message, and b) if the service routine is in
the process of transferring i from W to L . To conveniently test

for these critical situations we can define the folloﬁing conditions:

crit.(c) Z ¢ n {B ,B, ,C,,C,,C } # ¢
i 18 110 13 i i
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erit;(c, ®) Tcn{T,, T, Tob#¢ & =x=1

We can now state the predicate Qi which we shall prove to

be‘valid.

The relation Qi

For m=<L, W, M, k, x, t> € Mp,, m Q {Ll} is true and for

ceC , C #'{Ll}_, <L, W, M, k, x, t> Qi ¢ if and only if

P!
1 —1criti(c) =
IF ~eritp(e, x) THEN M(1) <2 <> i ¢W&i ¢l
M) >5 <> Qe L
2 <M@) <5 <= ieW
ELSE 2 <M(i) <5 & IF Ty ¢ c
THEN i e L
ELSE 1 ¢ L & i ¢ W
2) criti(c) =

IF-ﬁcritT(c, x) THEN Bi ec <> ieW

8
Bi ec <> 1elL
10
ELSE (B e c &TF T, e ¢ THEN i € L
18 9

ELSE i ¢ L & i ¢ W
v ((Ci ecvV Ci € ¢)

) &i¢L&ieWaT
. 8€C 1% 1#

9

3) (side conditions when —1criti(c))

a) B, ec= 2<M@{H) <5
1y

b) B, ecVC ec=> itW
3 4

c) Bi €ecV Ci ec=1¢e¢lL
4 6
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d {B,, B, , B, , B,
17 g’ 17 i

e) C, ec=1eW&I[T, ec=1i# topMW] & [T, € c=> x # i]
i, 4 6

B, , Gy }ned ¢ = MH) <2
5

4y T, e ¢ => x = top(W)

6

5) 1 el = 1i¢We&idé¢ remove(d, L)
(no double~booking)
ieW = 1i¢L&1i¢ remove(i, W)

To show that Wf|(Qi) we note first that WP'(Qi) follows
: I

immediately, and that for the rest of Wf'(Qi) we need only check the

parts of Wf'(Qi) corresponding to those state transitions that can make

Qi false. 1In other words the transitions that add or remove i to or
from L or W , change the message category of M(i) , change critT

to —1critT or vice versa, change criti to = criti or vice versa,

go to any of {B, , B, , B ,B ,B ,B ,B ,C ,C ,C }|,or

2 3 4 5 16 7 9 4 s 6

go to T4 s T6 or T9 . We can first note that no transitions in book-j

or cancel-j can do any of these things (j # i) , so WP'(Qi) is
j

certainly satisfied. On the other hand, practically every transition in
book-i and cancel~i will have to be considered, and several in the

service routine.

Checking WPgigil :

]

(0;) mO; ¢ & c=A(MD) = mQ A(Bil) &m Q A(Cil)

No effects.

(Bil) mQ ¢ &c= A(Bil) = IF [i e W](m) THEN m Q, A(Biz)
ELSE m Q; A(B; )
3
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¢

3,

(8,

3,
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No effect on 1) & 2). 1) and i ¢ W dimply 2 < M(i) < 5
3a) satisfied. 3b) is satisfied since 1 % W hecessary for the

transition.

mo, c & c= A(Biz) => [M(1) « 41(m) Q; A(D,)

3a) implies no change of message category. No condition is
affected.

mQ c & c= A(Bis) & T, bc&Tg ¢c=IF [1 e L1(m)
THEN m Qi A(Bia)
ELSE m Qi A(Bis)

3c) satisfied since i € L necessary for transition. i % L &

3b) & T7 ¢ cs& T8 k ¢ imply from 1) that M(i) < 2 , satisfying
3d).

mQ, c & c-= A(BiA) & Ty ¢ ¢ => [M(@1) « 6](m) Q; A(Dy)

1) and 3c¢) & T9 & ¢ imply M(i) > 5 . There is therefore no
change of message category and no condition is affected.

m Qi c & c=A@B, ) & ---=>IF [k = K]l(m) THEN m Q. A(B, )
15 ; i 16
ELSE m Q, A(Bi7)

No effect. 3d) remains true.

mQ, ¢ & ¢ = A(Bi ) = [W<« add(i, W)](m) Qi A(Bi )

i
6 8
We move from —1criti to criti . 3d) and 1) imply i & L&

i ¢ W before the transition (so 5) is satisfied) and —erit, .

i ¢ W after the transition so 2) is satisfied.

m Qi c & c= A(Bi7) => [k <« k+1](m) Qi A(Big)
No effect. 3d) remains true.
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mQ e & c=A(B )= [M{) «3]1@ Q; AD,)

8
We move from criti to —1criti . If —ﬁcritT then 2) implies

i €W after the tramsition. If critT then 2) implies

IF T9 € ¢ THEN i € L ELSE 1 % L &1 ¢ W after the transition.

Since M(i) = 3 after the transition, 1) is satisfied.

mQ, ¢ & c=A(B, )= [L <+ add(i, L)](m) Q. A(B, )
i i, i ilO
We move from - criti to criti . 3d4) and 1) imply i % L&

i * W (so 5) is satisfied) and —1critT . 1 e L after the

transition so 2) is satisfied.

m Qi c & c= A(Bilo) => [M(i) « 5](m) Qi A(Di)

We move from criti to =—crit 2) implies —|ecrit,, & i € L .

i’ T

M(i) = 5 after the transition so 1) is satisfied.

mQ c & c=A(ci)&T4¢c&T6¢c=> IF [i € W](m)
1
THEN m Q, A(Ciz)
ELSE m Q; A(C, )
4

3e) is satisfied since i ¢ W, T4 & c , T6 * ¢ are necessary
for the transition. 3b) is satisfied since i ¢ W necessary for

the transitiom.

m Qi c & c= A(Ci ) => [W « remove(i, W)](m) Qi A(Ci )
2 2

3e) & 5) imply i * W, &1 & L after the transition. 1) and

4) imply 1 # top(W) before the transition if T, e ¢ . .. 4)

6
is satisfied after the transition. 3e) & 1) imply '—wcritT .
We move from —1criti to criti . Since we are not at Bi or
8

Bi , 1) is satisfied.
10
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m Q.

3

We move from criti to —wcriti . 2) implies -—1critT &

i$L&iéd¢wW. Since M(i) = 2 after the tramsition, 1)

is satisfied.

mQ, c & c=A(C; ) &T, $c&Tg ¢ c=1IF [1 e L](m)
4
THEN m Q, A(Ci6)
ELSE m Q, A(Cis)

3¢c) is satisfied since 1 € L 1s necessary for the transition.
3b) implies i ¢ W. If i¢L and T, bcaTgdc, D)

implies M(i) < 2 , satisfying 3d).

m Q.

i © & ¢ = A(Ci ) = [M(1) <« 0](m) Qi A(Di)

5

3b) implies M(i) < 2 Dbefore the transition. There is thus no

change in message category.

m Qi c & c= A(Ci ) => [L « remove(i, L)](m) Qi A(Ci )
6 7

3) &5) imply i ¢ L & i ¢ W after the tramsition. 3c) & 1)

imply that if critT then T, € ¢ . We move from —1criti to

9
criti but 2) is still satisfied, whether critT or not.

mQ, c & c=A(C; ) & T, ¢ c= [t +« t-11(m) Q; AC; )
7 8

We stay in criti 2) remains true.

mQ c & c=A(C ) & T, ¢ c= [M@) « 1]1(m) Q; A(D,)
8

We move from criti to —1criti « 2) and T9 * ¢ imply —crit



- 32 -

and 1 ¢ L &i ¢W. Since M(i) = 1 after the transition,

1) is satisfied.

Checking WP%SQTL :

Only the following transitions need be considered

(T,) mQ;c & c=A(T2)&[15j_<_N=>cj24c...] =>
IF ++- ELSE m Q; A(T,)

3e) is satisfied since C, ¢c.

2
(T4) mo, ¢ & c= A(T4) => [x « top(W)](m) Q A(T6)
4) is satisfied immediately. 3e) is satisfied after the transi-
tion since before the transition it implies 'Ci € ¢c=>1i # top(W),
2
and therefore x # i after the transition.
(T6) m Qi c & c= A(T6) => [W < pop(W)] Qi A(T7)

From 4, we move from —-,critT to critT only if 1 = top(W)‘.

If —1criti , then 1) implies that i ¢ W only if 2 < M(i) < 5.
If i = top(W) before the transition, 1 § W & i ¢ L after the
transition and 1) is satisfied. Similarly, if criti then 2)
implies that 1 € W only if Bi8 €e C. If i = top(W) before
the transition, i & W & 1 * 1L after the transition and 2) is

satisfied. 3e) is satisfied after the transition because before

the transition 4 and 3e) imply that i € W but i # top(W)
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(I,) mQ c & c=A(T,) = [t «t-1](m) Q A(Ty)

No condition is affected.

(T8) mQ, ¢ & c¢c= A(T8) = [L <« add(x, L)](m) Qi A(Tg)

1

1) and 2) are affected only if x=41i , i.e. if critT . If

—crit, then 2 <M@) <5 & i ¢L & iéw before the
transition. After the transition we are at T9 and i eL .
. 1) is satisfied. If criti then B18 ec &1 * L &

i ¢ W before the transition and we are at Ty and 1 e L

after the transition. .. 2) is satisfied. 1In both cases 5)

is satisfied.

j2¢c&Bj8¢c] =>

M) « 7] (m) Q A(Ti)

(T m Qi c & c= A(Tg) & [1 s_j S_N => B

Q; affected only if x =1, i.e. if crit, before the transi-

tion. We then move from critT to -wcritT . If —-,criti then

1) and T, € ¢ imply i e L before the transition, and we have

9
M(i) = 7 after the transition, so 1) is satisfied. If criti

then B, ¢ c and 2) imply that i ¢ L & i ¢ W and

8
Ci ecV Ci € ¢ before the transition. After the transition
7 8
we are not at Bi or B, therefore 2) is satisfied. 3d)
i
8 10
is satisfied since M(i) < 2 and 1) imply -ecrit beofre the

T

transition and 3a) is satisfied since B, $c.
2

We have thus shown informally that Qi is a valid predicate
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for P'; the broof’could be made rigourous.

Observations

1.

Both these proofs have been long, vet we consider that they are as
short as any convincing proofs could be. They follow quite closely
the informal reasoﬁing that must be made; such reasoning will always
look tedious when written down in detail. The advantage of the
method over simple informal reasoning is clearly that it brings out
all the cases. In fact many of the necessary constraints were
discovered while trying to find the proofs; even though the program

looked correct in fact it wasn't.

The proof of (A) is much simpler than (B), because the predicape
R is more uniform than Qi . In fact, if a valid predicate is
completely uniform then the proofs become very easy. We then geé

essentially the method of invariants (see for example B. Hansen [4]).

We can claim that the invariant method is a special case of the one

presented here.

Although the proofs were long, note that they were independent of
N . This indicates that our initial requirement that the number of
parallel computations in a program be bounded was not necessary.

In fact, nothing in the theory requires that Cf be finite. It is
clearly straightforward to extend the method to programs with
subroutines, arbitrary numbers of activations of which can be

running in parallel. (This is essentially what our example was

simulating.)
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4, 1In applying the correctness method to non-parallel programs, consider-
able effort is saved by the fact that the wvalid predicate need not
describe the memory state for all possible control states. It is
sufficient to consider a 'cut-set' of control states, i.e. one control-
state per program loop. This saving does not appear to be available
for parallel programs. Since arbitrary amounts of computation can
take place between one statement and its textual successor, it is

‘necessary to consider every control state in specifying the valid
predicate. For ekample in the previous program it is essential that

i & L at Bi . This would not necessarily be the case without the
9

. . - : ) - |
constraint T8 stops B13 . Just taklng. cut-sets’' of control states

would not reveal the need for this constraint.

Nevertheless, it may be possible to simplify the wvalid pre-

dicates to some extent; further study is needed here.
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