Department of Applied Analysis
and Computer Science
Research Report CSTR 1013
April, 1972

EFFICIENT EVALUATION OF
POLYNOMIAL FORMS

by
Ian Munro, University of Waterloo
and

Allan Borodin, University of Toronto

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

Department of Applied Analysis
&

Computer Science

Department of Applied Analysis
and Computer Science
Research Report CSTR 1013
April, 1972

EFFICIENT EVALUATION OF
POLYNOMIAL FORMS

by
Ian Munro, University of Waterloo
and

Allan Borodin, University of Toronto

ABSTRACT

The evaluation of several polynomial forms is considered. New
algorithms for the evaluation of a polynomial and its derivative, a
polynomial at two points, a polynomial of high degree using multiple pre-
cision arithmetic, and a bivariate polynomial of the form I a(i) xiyn_i

are presented. Various 'coefficient splitting techniques" are introduced

in these algorithms and the optimality of certain techniques is shown.

Some of the results described have been presented in preliminary

form in [11] and [12].

Introduction

Computational Complexity is concerned with how difficult, under some
measure of difficulty, it is to evaluate certain functions or classes of
functions. Historically, much of the work in this area deals with models
of computation quite unlike a stored program computer as it is commonly
envisioned. Furthermore, the functions dealt with are typically very dif-
ferent from those which are commonly computed. The reason for this is quite
simply that researchers are attacking the deep problem of what makes a
function hard to compute. The general approach has been, given a model of
computation, to consider first a complexity bound for the computation, and
then to show that certain types of functions are, or are not, computable
within this bound.

More recently, there has been a trend to consider first the function
or class of functions and then to ask how much "work" is required to per-
form the evaluation. Typically these functions are of a type computed in
practice, the model of computation is an idealization of a digital computer,
and the measure of complexity is the number of operations of a certain type
which are performed. There are two basic immediate goals of such studies.
The first, and most obvious, is to develop "good" algorithms for computing
functions which frequently occur in computational practice. The second,
and generally much harder goal is to show that the evaluation of certain
classes of functions require so many operations of a certain type. Hope-
fully these bounds will demonstrate that the algorithms developed are
optimal for use on most digital computers. The ultimate goal is, of
course, the same as that of the other branches of Computational Complexity,

to understand what makes certain functions hard to compute.

In this paper we present some results concerning the evaluation of
certain types of polynomials and evaluation of powers of numbers. We
present a technique of splitting up the coefficients of a polynomial which
permits faster computation of several polynomial forms. We also extend a
technique for proving lower bounds on the number of multiplications and
divisions required for computations, to prove that the number of these
operations needed to compute certain polynomial forms is somewhat greater
than the number of inputs to the problem.

The model of computation envisioned in this paper is a random
access register machine in which each register may store an arbitrary
integer or floating point number. The machine has four basic operations,
addition, subtraction, multiplication and division. The functions with
which we shall be concerned are calculable with a finite predetermined
number of arithmetic operations and hence we shall dispense with looping
and branching instructions in the formal model. Algorithms will, however,
be written in a form using looping, and at times recursion, in order to
conceptualize them more clearly. The basic aim is, to present an
algorithm and then show that it uses the minimum number possible of each
type of operation in computing the function. Most existing proof tech-
niques, including the ones used here, show that at least so many operations
of a particular form must be used. This form may be very restrictive. If
an algorithm achieves this bound and uses no other types of operations,
the result attained is very strong. If the algorithm minimizes one type
of operation at the expense of another, the shortcomings of the proof

techniques become apparent.

In this paper, attention is given to reducing the number of multi-

plications and divisions required. We do not justify this by falsely

claiming that single precision multiplications take much longer than
additions., Rather, minimizing the number of multiplications and divisions
becomes important if the numbers concerned are very large integers, real
numbers stored to high precision, or the computations are symbolic. Simi-
lar emphasis is given in [3], [7], [11], [12], [16], [17], [18], and [19].
In particular, Strassen [17] has announced independent discovery of
Theorems 1 and 4. This approach is further justified by the observation
that by minimizing the number of multiplications and divisions required for
a computation, the total number of arithmetics is often reduced as well.
However, the problem of minimizing additions and subtractions, and more
important, the total number of arithmetics, should not be neglected.
Kirkpatrick [9] and others have developed techniques for proving lower
bounds on the number of additions and subtractions needed. There are,
unfortunately few techniques for dealing with the problems of tradeoffs

between various types of operations.

The Evaluation of a Polynomial and its First Derivative

One computation which has received a good deal of attention is the
efficient evaluation of the general polynomial of degree n. In proving
lower bounds on the number of multiplications and divisions required, the
definition of certain types of these operations as active or inactive is
very useful.

A multiplication or division f{oplg is inactive if one or more of
the following hold:

(1) g is a constant
(2) £ is a constant and the operation is multiplication
(3) VNeither f nor g depend on the coefficients of the polynomial
(4) The operation is equivalent to one which satisfies one of the
above conditions.
A multiplication or division is said to be an active operation if
n .
. 5 . 1
it is not inactive. Hence in the evaluation of P(a,x) = I a(i)x ,
i=0
a(i) + 2 and x + x would be inactive, but a(i) * x is an active multipli-

cation. Suppose we first compute P = a(l) » a(l)-1, then condition (&)
implies that the division P2=Pl/(a(l)+l) is inactive. Pan [13] has shown
that the evaluation of a general polynomial of degree n requires at least
n active mult/div. A more direct proof is given by Hopcroft and Borodin
{2]. Hence, the well-known "Horner's rule" minimizes the number of multi-
plications and divisions for evaluating a polynomial from its coefficients,
even if all the powers of the indeterminate happen to have been calculated
previously. Belaga [1] has shown that Hormer's rule also minimizes addi-
tions and subtractions. From Pan's result we have a direct proof of the
following theorem due to Winograd [18]. A similar result may also be

attained for additions and subtractions.

Theorem 1 — Given their coefficients, the evaluation of m unrelated poly-

nomials of degrees n

12 cree T at the same point in general

requires at least z n. active operations; and so an optimal
i=1

method for their evaluation is the repeated application of

Horner's rule.

Proof - Let the th polynomial, Pi(x), be defined as

n, .
P.(x) = I a(i,i)x
i
j=0
m
Then consider the general polynomial of degree I (ni+l)—l given by
i=1
m S(i) i"l
P(x) = Z Pi(x) - x where s(i) = X (n,+1)-1
T el j=1
m
The evaluation of this polynomial requires at least (Z ni)+m—l mult/div
i=1

even if we do not count those used to evaluate powers of x. Suppose we
have a method of evaluating all the Pi(x)'s in N active multiplications.
Then the definition of P gives an algorithm for its calculation in N+m-1
multiplications not counting evaluation powers of x.

m
Hence N4m-1 2 X ni+m—l

i=1

=Te) N 2
i

oy
1

I ~mB

0.E.D.

The evaluation of both a polynomial and its first derivative is
slightly different, as the concept of active multiplications is not adequate
for determining the minimum number of multiplications and divisions in

which this computation may be performed.

Theorem 2 - The evaluation of a polynomial of degree n and its first de-
rivative requires at least n active mult/div and can be per-
formed within this bound. However, for n 2 3 a total of more

than n mult/div is required.

Proof - By the previously mentioned theorem of Pan, at least n active
mult/div are necessary to evaluate a polynomial and its de-

rivative. The following algorithm computes the polynomial

n .
poly = I a(i)xl and its derivative (deriv) in 2n-2
i=0

multiplications, but only n active multiplications, when
n 2 1. The algorithm is intended only to illustrate this

point.

Algorithm 1

poly <« O
deriv <« 0

k(i) <« x" i=1, ..., n-1
[this step requires n-2 inactive multiplications]
for i=1, ..., n-1

begin
poly <+ poly + a(n-it+l) x xz{n=-i)
deriv <« deriv + poly
end [n-1 active multiplications are used in this loop]
poly < poly + a(l)
deriv <+ deriv + poly

poly < poly x x + a(0) .

It has been shown by Borodin [2] that Hormer's rule is an essentially
unique method of polynomial evaluation in n multiplications. Hence for
n > 2; more than n multiplications are needed to evaluate both the poly-
nomial and its derivative, and so more than an active multiplication argu-
ment is needed to determine a lower bound for the complexity of this com-—

putation.
0.E.D.

Hopcroft [8] has suggested a [14+€]n algorithm. A procedure is
given which requires n+2/n multiplications and 2n+2¥/n additions. This
economy of total arithmetics is at the expense of creating an array of
length approkimately vn. The evaluation of v/n need only be a rough
approximation. This /E'splitting of a polynomial will be used to compute
several other polynomial forms using fewer than the number of multiplica-

tions (or operations) of "conventional methods.

Algorithm 2

poly <« 0

deriv <« 0

m < Isqrt(n-1)]

m2 < |n/m]

x(i) <« xi (iA=0, ..., m)

[m-1 multiplications]

k <« n

for i=1, ..., m2

begin
poly <+ (poly+a(k))xx(m)
k + k-1

deriv <« deriv x x(m) + poly

for j=m1, ..., 1

begin
poly <« poly + x(J) x ak)
k +« k-l

deriv + deriv + poly

end [m-1 multiplications in this loop]

end [m2 + (mtl) multiplications in this loop]
for k = n-m2xm, ..., 1
begin

poly < (poly+a(k)) x x(k-1)
deriv <« deriv + poly
end [n-m2 . m multiplications in this loop]
poly <« poly x x + a(0)

[a total of ntmtm2 multiplications are needed for this procedure]

The algorithm above is essentially the same as one independently
developed by Paterson and Stockmeyer [14] for the evaluation of a poly-
nomial in which the coefficients are real, but the indeterminate is a very
large matrix. The operation of major concern in their case is the matrix
by matrix multiplication. Note that, if all computations involving "deriv"
are ignored, Algorithm 2 computes "poly" using about 2v/n multiplications

in which both multiplicands depend on x.

Evaluation of a Polynomial at More than One Point

Very often the same polynomial is to be evaluated at several points.
Such computations fall into two basic categories. To use a bit of Turing
machine terminology, they are the on-line and off-line models of computa-
tion. The on-line case is usually a situation in which the polynomial is
evaluated at one point and on the basis of this value the next point is
determined. This is typically the case in problems such as findiag roots
of polynomials. In such cases, the value of the polynomial at the ith
point must be determined before the i+lst point is given. The off-line
case is simply the situation in which all, or at least a good number, of
points are given at once. These distinctions may seem minor, however,
the evaluation is asymptotically (as the degree of the polynomial and
number of points become large) much faster in the off-line case.

Pan [13] and others have developed schemes by which functions of
the coefficients of the polynomial may be computed (once), and these
values used to compute the function in [n/2]|+2 multiplications and n addi-
tions. Such techniques are generally referred to as preconditioning
methods., Motzkin [10] and Belaga [1] have shown that such methods are
almost optimal for on-line polynomial evaluations as |n/2|+l multiplica-
tions and divisions, and n additions and subtractions are required to
evaluate a general polynomial regardless of how much preconditioning
occurs.

Such results, of course, do not imply that the evaluation of a poly-
nomial of degree n at m points requires 3mn/2 arithmetics. It is shown
in [3] that a vV/n-splitting and fast matrix multiplication may be used to

evaluate a polynomial of degree n at Vﬁ—points in essentially the time

- 10 -

required to multiply two VE‘by~/E.matriceS. Strassen [16] has shown that

i
two k by k matrices may be multiplied in O(k'q'og 7) = O(kz'81

) arithmetics.
Others have speculated that the exponent may be very "close to" 2. In any
case, if m = vn, a polynomial of degree n may be evaluated at any m points
in 0(mn'91) or fewer operations. That is, less than linear in n when
viewed on a polynomial-point basis.

In attacking the problem of multiplying large matrices quickly,
Fiduccia [7] has developed a technique for multiplying a k by k matrix
by two vectors in about 3k2/2 multiplications rather than 2k2. This
algorithm, together with the v/n-splitting technique may be used to evalu-
ate a polynomial at any two points in 3n/2+0(v/n) multiplications. Let
P(x) = ‘;Oa(i)xi and without loss of generality assume again that n is

i=

a perfect square. The technique 1s essentially that of [3], write

(2 (1) a2) eennr (/D]
EYCZ IR D T

RAASRRRREEEEERREEEEREE a(n)

and then, if X and x_, are the points of evaluation,

2
(x X, B
2
xl .
X = . .
U ey
Lt 2 J

X is found in 2/n - 2 multiplications. Then Y = AX = (yij) may be found

in roughly 3n/2 more multiplications

1 all logarithms are to base 2, unless otherwise noted.

- 11 -
and

n . vn
z a(i)x1 X

0 3 a(0) + ylj + x..(k-l)‘/r—1
i=

ki %3

k=2

is computed in 2vn - 2 more. The entire process takes 3n/2 + 0(vn)
multiplications. The point of this algorithm is more to illustrate that
the number of multiplications used in such a computation may be reduced
from 2n , rather than to suggest an algorithm for most computational
situations, since the number of additions used is such that more than 4n
(as in two applications of Hornmer's rule) total arithmetics are required.
With the provision that divisions are not used, Kirkpatrick [9] has shown
that 2n additions and subtractions are needed for this problem, and so
two applications of Hormer's rule minimize these operations. We conjec-
ture that a total of 4n arithmetics are needed and that 3n/2 multiplica-
tions are required. The best lower bounds presently obtainable are nt+l

multiplications/divisions (by uniqueness of Horner's Rule) and hence

3ntl total arithmetic operations.

- 12 -

Multiple Precision and Symbolic Polynomials

Our final example of the use of a coefficient splitting technique is in
the evaluation of a polynomial in which the amount of work required for an
arithmetic operation depends on the size or precision of the inputs. In
particular we are concerned with the case in which the coefficients and
indeterminate are large integers (of almost full word size) and so the
product of n of these is an n precision number. That is, the value
of the polynomial may be expected to be an n + 1 precision integer.
Essentially the same problem exists if the inputs (coefficients and inde-
terminate) are floating point numbers, but the computation must be carried
out to full precision. Another version of the same problem is a special
case of symbolic polynomial evaluation. Suppose each of the coefficients
of the polynomial, and the indeterminate are themselves dense (i.e. most
coefficients are non-zero) polynomials of roughly the same degree in the
same variable, The function to be computed is the symbolic polynomial
in these polynomials. For simplicity, however, we shall consider princi-
pally the case in which the inputs are large integers and make only the

occasional reference to the other cases.

Using the most obvious method, the product of a k-precision and an
f-precision number (or symbolic polynomials of these degrees) requires
O(k *) operatioms. However, using fast Fourier transform—like techniques
([5], [15]) this may be reduced to or almost to O(r fLog r) operations, where
r = max(k,%). We exploit these methods to evaluate a polynomial of degree n
in a manner asymptotically faster than Horner's rule.

Assume all inputs.are single precision integers; if Horner's rule is

i

used, the product of (I a(n-i+j)xJ) and x requires 0(i) single precision
j=0

- 13 -

operations. Hence the_entire evaluation requires 0(n2) operations. It
can be verified that if multiplication is to be carried out by an 0(k-%)
method that O(hz) operations are required to evaluate x . Hence, under
these conditions, Horner's rule is within a constant factor of being
optimal. However, if we assume the use of an O(r fog r) multiplication
scheme an O(n',Q.og2 n) bound is attainable. In fact if m(n), the time
required to mﬁltiply two n precision numbers, grows reasonably uniformly

with n, this bound may be written as O(m(n)*%0g n).

n .
In the following algorithm, which computes poly = I a(i)xl, we
i=0

assume a(k) = 0 for k > n.

Algorithm 3

Xp + X
for i =1, ..., [Rogn+l)]
begin
for j =0, ..., [n/2%)
a(j) «+ a(23j+1) x xp + a(2j)
Xp € Xp X Xp
end
poly <+ a(0)
In each pass through the outer loop of the algorithm the degree of
the polynomial to be computed is halved, while the precision of each of the
inputs is doubled. On each pass through this loop f(n+l)/211+1 multiplica-

tions and r(n+l)/21] additions, each operating on two 21_l precision numbers

are performed. The time for the entire process

- 14 -

[hog (ntl)1 . 1 -
T(n) < T @i)/2M+) @@t ety

i=1
where d(r) denotes the time needed to add two r precision numbers. If we
assume r—precision multiplication may be performed within O(r fog r) opera-
tions. Then m(r)+d(r) £ 0(x Rog).

Hence
log(n+l)7

¥ (Fa+1y /2514y o2t tei-1))
i=1

T(n)

A

0(n R,og2 n).

- 15 -

Evaluation of Powers of Numbers

We will now deviate briefly from conventional polynomial evaluation
problems to consider the problem of raising numbers to powers.

Consider the problem of evaluating the nth power of a number in the
minimum number of multiplications. If the number is real, and multiplica-
tion the only operation permitted,the problem is equivalent to generating the
number n, starting with 1 and using only additions. The familiar binary
algorithm takes at most 2 fog n steps. Brauer [4] has demonstrated a

method requiring only

Log n

2og(fog n) steps and Erdos [6] has shown this

fog n+2

method to be optimal to within a constant multiple of the lower order
term for most choices of n. Briefly, the method is given as follows:

For any b, n may be written uniquely as

b
n = ul 2+ Bl
- . ob
Oy =ay 2t By
b
where 0= Bj < 2
for =1, ..., l-,Qog n

Note that the Bj's are merely b bit sections of the binary representation
of n, Thus we may build n by first forming the numbers from 1 to 2b (that
requires 2b—1 steps). This gives all Bj and also O where s = %-Rog n.

The aj are then formed in descending order. The formation of each requires
b+l steps and this must be done %—20g n times to yield n.

Therefore the number of multiplications needed to find %" is about

2b + b%i‘£og n for any integer b. This bound may be reduced by judicious

- 16 -

choice of b as a function of n, The desired result is attained when
b = fog(Rog n) - Log(log(log n)).

Looking back at this algorithm we note that most of the steps are
doublings, or squarings in the formation of %x". This fact becomes inter-
esting if the number to be eiponentiated is complex, since

C§+iy)2 = xz—y2+2xyi
= (xt+y) (x=y)+2xyi
and so requires only 2 real multiplications to be computed. A general

complex product (a+bi) (c+di) may be found in three real multiplications

as a(ctd)~d(at+b) = ac~bd
1 (2)

a(ctd)+d (b-a) = ad+be
3)

It has been shown independently by Winograd [19] and Munro [11] that this
number may not be reduced to 2. Hence if the above exponentiation scheme
is used to evaluate a power of a complex number

Log n

2 fog nt6 %o (%08)

multiplications would be needed. It is conjectured that this method is
optimal, to within a constant multiple of the lower order term, for most
values of n. We note that if addition, subtraction and multiplication

are the only operations permitted, then

Theorem 3 - If there exists a k, such that (x+iy)k can be evaluated in
fewer than 2 Zog k multiplications, then (,x+iy)n can be
evaluated in fewer than 2 fog n multiplications for almost all

n.

-17 -

Proof - The technique used to efficiently evaluate the powers of complex
numbers is essentially the one previously described. The key difference
is that the basic operation is to raise a complex number to the kth
power rather than to square it.

Suppose Ci+iy)k requires 2 fog k-t real multiplications to evalu-
ate for some € > 0 (clearly 2 R0g k-t must be an integer, but 2 fog k

need not).

Then for any b, n may be written uniquely as

n = 0L1 . kb + Bl
_ . b
Oy = Gy "k F By

where 0 < Bj < kB

for i=1, ..., %-Qogk n

An algorithm similar to the one previously given may then be used

to generate n or rather (x+iy)n. By setting b = ,Q,ogk ,Q,ogk n - SLogk Qng

Q,ogk n the total number of multiplications required to compute (x+iy)n
will be about

b(2 fo0g k -) + 3
b

3(kb—l) + ,Q.ogk n

6 2,ogk n

=2 %gn - ¢€ ILogk n +
2ogk(£ogk n)

6c

€
.\
Hence for all n > kk (for some c) the evaluation of (x + 1iy)

requires fewer than 2 Z2o0g n multiplications.

0.E.D.

- 18 -

This theorem may be of use in attempting to show that there is no
k
k such that (x+iy) can be evaluated in fewer than 2 fog k multiplications.
Another line of attack on the same problem is to consider the evaluation
n .
i n-

of any two (homogeneous) polynomials of the form Z c Xy * , which have
i=0

no common factor. It is conjéctured that a carefully stated induction may
be able to prove that at least 2 R20g n multiplications are needed to per-

form such a computation.

- 19 -

Evaluation of a Homogeneous Polynomial of Degree n

The active operation arguments, noted earlier in this paper, can
be used to show that essentially one multiplication or division is required
for each independent non constant term of a polynomial. That is, roughly,
for each parameter, one such operation is required. If preconditioning is
permitted, one multiplication is needed for every two parameters. We
shall now demonstrate an extention of this concept and show that for a
particular type of polynomial more multiplications and divisions are needed
than there are '"degrees of freedom", by simply adding the number of opera-
tions needed by active operation counting and those for simple growth argu-
ments (at least fog n multiplications are needed to find xn).

Consider the polynomial in two variables

n .
P(x,y) = X a(@)xy"
i=0

which shall be referred to as a homogeneous bivariate polynomial of degree
n. Using the exponentiation technique of the last section an essentially

optimal method of evaluating this function may be obtained as we show the

following result.

Theorem 4 - A general homogeneous polynomial of degree n in two variables
can be evaluated in n+fog n + 0(Rog n/f0g fog n) multiplications
and divisions and n additions. Furthermore, at least n additive
operations and n+[f%og n] mult/div are needed. Hence, this
method is almost optimal.

Proof -~ P(x,y) may be written as

n

. . n .
P(x,y) = Za(xy ' =y"Lal)&x/y .
i=Q i=0

- 20 -

Hence it may be evaluated in 1 division, n+fog n + 0(Rog n/fog Log n)
n .

multiplications and n additions by evaluating yn and I a(i)(x/y)1 .
i=0

The essential optimality of this method may be shown by first proving a

more general result.

Lemma - The evaluation of the functional form

n .
PGoy) = v I L @ /)T + rey))
i=0

-
in which there are u > 0 linearly independent Li(a)'s and r(x,y)
is any rational function, requires at least ut|fog k] mult/div

not counting multiplication or division by constants.

Consider the ease in which r = 0, and make substitution a=x=y. Then the
+
function becomes yk l, and so requires at least [Rog(k+l)] mult/div.
Suppose the lemma is true for all v < u, and the first active

operation in the evaluation of such a form with u independent Li(;)'s is
+
@' @)+ (x,y)) {x,/} ((ca(@)+L"(a(0),...a(i),...a(n))+r"(x,¥))

. . Al
where ¢ # 0 is a constant (we use the convention a(i) to denote the absence

of a(i) as a parameter). Then, if we set
a(i) = 1-(L" (a(0),...a(i),...aln))+r" (x,y))/c

and substitute back into the definition of P(x,y), we have an expression

of the form

n .
PTGLY) = v L @) G/ Mrtey))
i=0

- 21 -

in which at least u-l of the L'i's are linearly independent. Therefore,
by the induction hypothesis, at least [fog k]+u-1 mult/div are needed to
evaluate P'(i,y); Hence the evaluation of P(i,y) requires at least 1
more, or |fog k]+u multiplications and divisions of the type we are count-
ing.

Q.E.D.
The theorem follows directly from the lemma. The optimality with respect

to additive operations follows by letting y = 1.

Q.E.D.

- 22 -

Conclusion

We have studied the asymptotic behaviour of the number of arithme-
tics in computing certain polynomial forms. Several algorithms have been
presented. Some of these, such as the second polynomial and derivative
algorithm may be of practical value. Others, such as the full precision
polynomial algorithm, for now, only suggest asymptotic behaviour and gen-
eral techniques for developing efficient algorithms.

From the forms studied, and other considerations, it is quite
apparent that the "optimality" or non-optimality of an algorithm depends
very heavily on the details of the model of computation and the step
counting function. In spite of the well-known optimality of Hormer's rule
in the usual setting of polynomial evaluation, as one departs from this
setting many questions remain open. The reason is the same as in much of
Computational Complexity. As soon as the difficulty appears to exceed the
number of inputs, most known techniques are inadequate and for establishing

lower bounds.

Acknowledgement

This work was supported by the National Research Council of

Canada.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

(91

[10]

[11]

[12]

[13]

[14]

References

Belaga, E.C., '"Some Problems in the Computation of Polynomials",
Dokl. Akad. Nauk. SSSR, 123 (1958), pp. 775-777.

Borodin, A., '"Horner's Rule is Uniquely Optimal", Theory of Machines
and Computations, (Ed. Z. Kohari and A. Paz) (1971) pp. 45-48.

Borodin, A., and I. Munro, "Evaluation of Polynomials at Many Points',

Information Processing Letters, Vol. 1, No. 2, July 1971, pp. 66-68.
Brauer, A., "On Addition Chains', Bull. AMS 45 (1939), pp. 736-739.

Cooley, J.W., and J.W. Tukey, "An Algorithm for the Machine Calcula-
tion of Complex Fourier Series', Mathematics of GComputationm, Vol. 19,
No. 90 (1965) pp. 297-301.

Erdés, P., "Remarks on Number Theory III - On Addition Chains", Acta
Arithmetica 6 (1960), pp. 77-81.

Fiduccia, C.M., '"Fast Matrix Multiplication, Doctoral dissertation,

Brown University.
Hopcroft, J., Personal Communication

Kirkpatrick, D., "On the Additions Necessary to Compute Certain
Functions", M.Sc. Thesis, Department of Computer Science,

University of Toronto (1971).

Motzkin, T.S., '"Evaluation of Polynomials and Evaluation of Rational

Functions'", Bull. Amer. Math. Soc. 61 (1955), p. 165.

Munro, I., "Some Results Concerning Efficient and Optimal Algorithms",

Proc. Third Annual Symp. on Theory of Computing, May 1971, pp. 40-44.

Munro, I., "Efficient Polynomial Evaluation," Proc. Sixth Annual Prince-

ton Conference on Information Sciences and Systems, March 1972, to appear.

Pan, V.Y., '"Methods of Computing Values of Polynomials', Russian

Mathematical Surveys, Vol. 21, No. 1, 1966.

Paterson, M., and L. Stockmeyer, '"Bounds on the Evaluation Time of
Rational Functions', Proc. Twelfth Annual IEEE Symposium on
Switching and Automata Theory, October 1971, pp. 140-143.

[15]

[16]

[17]

[18]

[19]

Schonhage, A., and V. Strassen, "Fast Multiplication of Large Numbers",
Computing Yol. 7 (1971) pp. 281-292,

Strassen, V., 'Gaussian Elimination is Not Optimal", Numerische Mathe-
matik 13 (1969), pp. 354-356.

Strassen, V., "Evaluation of Polynomials", Proc. IBM Symp. on Complexity
of Computer Computations, May 1972, to appear.

Winograd, S., '"On the Number of Multiplications Necessary to Compute
Certain Functions", Comm. Pure and Applied Math., Vol. 23, 1970,
pp. 165-179.

Winograd, S., "On the Multiplication of 2 by 2 Matrices', IBM Research
Report RC 2767, January 1970.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

