Department of Applied Analysis
and Computer Science
Technical Report CSTR 1010
August 1971

FORTSTAT - A FORTRAN TIMING PROGRAM

by
W. Morven Gentleman

L. Bryan Douglas

FORTSTAT - Program Description and Logic Manual Page 1

GENEPAL DESCRIPTION

This program is designed to run an executable load
module produced by either the FORTRAN G or H language
translators and produce statistics about tﬁe number of times
certain routines are called and the total amount of tire
spent in those routines. More specifically, the load module
must contain routines which were produced by the FORTRAN
translators, although not all the routines in the module
need be so produced; in fact, the only one which must be
FORTRAN-prcoduced is the mainline program. Only FORTRAN-
compatible routines will be timed so these will usually bke
in the majority.

We may not always wish to time all the routines in
our program but may instead want to group some routines in
Qith the calling routines instead of gathering statistics on
them separately. For example, we may have a small utility
subprogramme which 1is called from many routines in the
program and we may not care how much time is spent in that
routine itself but would rather see this time included with
whatever called it. It is possible to specify which
routines are to be timed; all others will be ignored and
treated as if they were part of the calling routine. If one
of these routines which is not being timed calls a routine
which 1is being timed (call it GEORGE) then it is treated

just as if GEORGE were called from the next-higher-level

FORTSTAT - Program Description and Logic Manual Page 2

timed routine. Figure 1 illustrates this concept.

N e - e

Fig. 1

As far as the timing routine is concerned,
evervthing in the dashed hox is routine A,

17

Here routine A calls B which calls C which calls D.
2 and D are being timed and B and C are not. Because the
timing routine does not know that B and C are there, it
ignores them completely and treats them as part of A. Thus,
when A is called we start counting its time, it calls B
which calls C and this time is still credited to A, then C
calls D and we start the timing for a new routine (D), the
time now being counted to D until it returns to C at which
point the time gets credited to A again. (breathe) The time
continues to be credited to A until we get back to where it
returns. Any Assembler or other language routines will be
ignored in this same manner unless they conform to FORTRAN
linkage and prologue conventions. These conventions will be
explained later.

The output of the program consists of a listing of
all the timed routines with the number of times the routine
was called and the total time spent in the routine, in

seconds. Totals for the entire run are also given. The

FORTSTAT - Program Description and Logic Manual Page 3

mainline program will be marked with an asterisk and will be
timed whether it is explicitly told to be or not. There is
an overhead of approximately 500 microseconds per CALL to a
routine being timed; this is unavoidable but must be taken
into consideration when looking at the results. This means
that about .01 seconds must be subtracted from the given
time for every 20 «calls indicated. This time is only
approximate and can vary considerably either way, but over
a large number of calls it should be fairly close.

Times given may vary considerably from run to run
but should be reasonably consistent within a given run.
This is due to the fact that 0S/360 does not give completely
accurate times. Therefore times should be wused only for
comparisons relative to other routines in the same run.

Core required by FORTSTAT is approximately #4K. The
exact amount will depend on how many routines are being
timed and whether or not the option of specifying the

routines to be timed is used.

FORTSTAT - Program Description and Logic Manual Page 4

USER INSTRUCTIONS

This program has been written to be as easy to use
as possible. It is not necessary to do anything to the
translator, to make any special runs, or to modify the
program to be timed. All that is needed is an executable
load module with FORTRAN G or H routines in it. The program
will scan through the load module and pick out all those
routines which it recognizes as FORTRAN-compatible. The
only JCL that is needed is the following.

// EXEC PGM=FORTSTAT,PARM='progname'

//MODULE DD DSN=library,etc.
//STATOUT DD SYSOUT=A

Here "library" is the name of the data set
containing the 1load module, "progname" is the name of the
member within "library" and "etc." is anything else you may
need depending on whether the data set is catalogued etc.
STATQUT is the DD card for the output statistics (it is
BLKSIZE=133,DSORG=PS,RECFM=FBA) .

The following changes must be made to the JCL if you
wish to explicitly specify which routines are to be timed.

// EXEC PGM=FORTSTAT,PARM='progname,’

//STATIN DD ?222?

The comma after "progname" in the PARM field tells

the program to look for STATIN and to read from it the names

FORTSTAT - Program Description and Logic Manual Page 5

of the routines to be timed. The MODULE and STATOUT DD
cards must still be included but you must also add the card
for STATIN. "?22?2?2" will usually be * indicating the input
stream but may be any data set of 80-byte fixed records.
The names of the routines to be timed are placed one per
card anywhere in the first 72 columns. All imbedded blanks
are removed, so the first 8 non-blank characters on the card
will be wused as the name (if there are 1less than 8
characters the name will be padded on the right with
blanks). Thus, as the program scans through the load
module, only the mainline program and those routines which
match a name on one of the cards will be timed. ©No check is
made to see 1if there are names on the cards which do not

match routines in the module.

FORTSTAT - Program Description and Logic Manual Page 6

PROGRAM LOGIC

This program has the option of timing all the
routines in the module or having specified explicitly which
routines are to be timed. The name of the module to be timed
is passed in the PARM field at execution time and if there
is a comma following the name then we know that the names of
the routines to be timed will be specified on DDname STATIN.
The name from the PARM field is moved into a BLDL list to be
used to FIND the module; if there is a comma, we set NAMECNT
to 1 so we will know later to read STATIN, otherwise it is
set to 0. We then issue a BLDL macro with the name we got
from the PARM field. In this way we only search the
directory once and we can use the resulting information for
both a feﬁch and a read. If the BLDL was not accomplished
properly we print a message indicating either that the
module was not found in the library or that there was an I/O
error 1in reading the directory and in either case we
terminate execution at this point.

If the BLDL went okay then we load the appropriate
module, do a FIND to set the read pointer to the beginning
of the module, and then issue a conditional GETMAIN for
between 0 and 16,000 bytes. The GETMAIN will get all the
core available, up to 16,000 bytes, so we must do the
GETMAIN after the LOAD or there will be no core to LOAD the

module into.

FORTSTAT - Program Description and Logic Manual Page 7

Now NAMECNT is checked and if non-zero we open the
DCB for STATIN and start reading the names of the routines
to be timed. We now set up a table at the bottom of the
GETMAINed core area. Each entry is 8 bytes and contains one
of the names specified on STATIN. When this table is
complete we store the address of the end of the table in
GADDR so we will know where we can start building the
statistics-table.

Here we come to the part where we scan through the
loaded program and find all those routines which look 1like
they might be FORTRAN, When we find a FORTRAN routine we set

up a table entry in the following format:

TNAME: 8 bytes - +this is the module name
TADDR: 1 word - entry point of the routine
TCALLS: 1 word - number of times the routine was called
TTIME: 1 word - time spent in that routine
TRET: 1 word - return address from the routine
the last time it was called
TPREV: 1 woxrd - pointer to entry for calling routine

When the table is set up the name and address are inserted
and all other fields are set to 0. The DSECT in the program
which is used to access this table is called TABLE.

Here is how we scan to find the Fortran routines;
from the BLDL we know the relative entry point of the

routine and from the LOAD we know the absolute entry point,

FORTSTAT - Program Description and Logic Manual Page 8

we subtract to find the absolute load point of the module
and use this as a base for all the relative addresses we get
from the ESD. We now start reading the load module and read
the CESD records which are at the beginning of the module.
From this we £ind 6ut the name and relative address of every
CSECT or ENTRY point and we now can calculate the real
address. Once we know the address we look to see if this
looks 1like a FORTRAN routine. The first thing we look at is
the first word in the routine and this should be
X'47FOF0CC', if not we throw that away and try the next one.
Tf the first word matches ckay then we look at the next 8
bvtes and get out the name, the first of these 8 bytes will
be X'06' for Fortran G and X'07' for Fortran H. The name
will be in the next 7 bytes and is in a different format
depending on whether it is G or H. TFor FORTRAN G +the nare
is left Jjustified and padded on the right with hlanks, for
FORTRAN H it is richt justified and padded on the left with

'00'. We get the name out and check it against the name in

=

the ESD. If the names match then we look to see if there is
a table of names to be timed (ie. NAMECNT#0) and if so we
look the name up in the name-table (linear search).

If the name is in the name-table or there is no
table then we set up a statistics-table entry for that name.
As we are doing this we check each address to see if it

matches the entry point address of the module for if it does

FORTSTAT - Program Description and Logic Manual Page 9

it is the mainline routine and is timed whether specified or
not. All the time we are scanning through the ESD
information we are looking at the names for IBCOM# and when
we find this we save the entry address becuase we will need
it later. At the same time that we are setting up the table
entries we are also changing the entry to the routine. The
first word was X'47F0F00C' and we change this sco that the
first byte is X'00' and the next 3 bytes point to the table
entry for that routine. When we have set up the entire
table, the number of entries in the table is saved in
TABCOUNT. At this point, any unused core is FREEMAINed.
Since we changed the first byte in each routine to

a X'00' we are going to get an operation exception as soon
as we enter the routine. We must therefore change the
FORTRAN SPIE exit so that we will get control in case of a
program interrupt. Remember that as we were reading through
the ESD information we saved the address of IBCOM#. We now
start at the entry point address of the loaded module and
search word by word until we find this address. which is
the adcon that the FORTRAN mainline will use to branch to
IBCOM# to set wup the SPIE, so we save this address and
replace it with the address nf our own routine. FORTRAN
branches 64 bytes past the entry point of IBCOM# to do the
initialization, so we actually put in the address 64 bytes

before the routine we want control passed to.

FORTSTAT - Program Description and Logic Manual Page 10

At this point we are ready to start executing the
FORTRAN program. We set a pointer saying that the current
routine is the mainline, put an appropriate return address
in the table entry for the mainline, set the timer going and
branch to the mainline program. The first thing the FORTRAN
program does is branch to IBCOM# to set up the error
routines; since we fudged its adcon, it comes to us instead.
This is too early for us to do anything, so all we do is
change register 14 so that when IBCOM# returns it will come
back to wus. We then branch to IBCOM# as FORTRAN wanted to.
When IBCOM# returns to us we go 1in and change the exit
address in the PICA so that a program interrupt will
transfer control to us instead of to the FORTRAN error
routine, We save the address of the FORTRAN error routine
since we will pass to it any interrupts which we do not
want. 2t this time we also set the bit in the PICA to
indicate that it is enabled for operation exceptions and we
return to the FORTRAN mainline.

The FORTRAN program is now executing senmni-normally
and we are ready to time the routines. I say semi-normally
because everything 1is normal except for the entry to, and
exit from, the timed routines. When control is passed to
one of the routines which we are timing we get an operation
exception and control is passed to our exit routine; we

check the interrupt to see that it was one of those that we

FORTSTAT - Program Description and Logic Manual Page 11

generated and if not we pass it tc the FORTRAN error
routines, If it passes this test then we are ready to do
the timing; we first get the previous clock time and a
pointer to the calling routine (CLOCK and CURRTN). We issue
a TTIMER to get the current time and subtract this from the
previous time (the clock is counting down), we add this time
to the total time for the previous routine and set CURRTN to
point to the new routine. We put the new clock time in
CLOCK and add 1 to the number of calls for the new routine.
We also save (in the table entry for the new routine) the
pointer to the calling rcutine (so we can get back to it
when we return from this routine) and the real return
address from this routine. We now change register 14 so
that the routine will return to our other timing routine and
we branch to the new routine.

When we return from the routine we do exactly the
opposite of what we did on entering. We do a TTIMER to find
the time spent in the routine and add it to the total (also
put the new time in CLOCK). We get the pointer to the
previous routine from the table and put it in CURRTN, get
the return address from the table and go there.

When we started executing the mainline program we
put in the return address portion of its table entry, the
address of the place we want it to return in the control

program; therefore the timing of the mainline is handled

FORTSTAT - Program Description and Logic Manual Page 12

exactly the same as every other routine and we need do
nothing special at the end, When control is passed back to
us when the JORTRAN program is all finished, we merely scan
through the table , print cut all the statistics and we are
finished.

2ppendix 2 contains a diagram illustrating run-time

pointer usage and Appendix B contains a sample of output.

APPENDIX A

b e

; Table entrv
] for "MAIN"
LY "rlp IN n
\,__Nw%‘mwm
O wgrga
8 LS "BLSA"
12| Address
C
20 Time
Ret)
24
Prev
W "ANGUS"
T wanaan
12 Address o]
16 Calls B
20! Time
Ret
208 ~
Prev
. TABLE PROGRAM
CURRTN :

"ELSA" was ¢
which is cur
"ANGUS" is t
address of t
actual calls

RUN-TIME POINTER STRUCTURE

alled from "MAIN" and in turn called "ANGUS"
rently executing. RET in the table entryv for
he actual return address (R14 contains the

he timing routine.) The dotted line shows the

in the program being timed.

APPENDIX B

This Aprendix contains a sample outnut from TORTSTAT

showing the format of this listing,

ECUTINE CALIET TIME (SEC)

*MAIN 0 <27
SETICHMAI 1 .00
USHEE 1 .00
CHCE 558 . 80
EAGER 144 .17
SEISYH 5 .00
FABRIC 5 .02
DIVEST 139 .10
GCSS5IP 1 .03
GETLAB 2 .01
GETINUY o .00
TINKER 3 .00
EEWIND 2 .09
INCARL 137 .49
I0ID 1 .4
IDERIN 1 .01
SIMILE 344 .29
MCVE 267 .26
IaCV 15 .01
LCCK 106 .32
MATCH 941 .56
ICTAFE 15 .07
BEMBER G .00
ADAY 0 .00
ERNCIT 14 .62
CAERCIT 15 «5¢
SEICCH 1 .00
SCCuT 658G .60
SYMBCL 39 .18
GEICH 405 . 41
JUST 210 LU0
SCAN U .0C
ARTY 165 .19
IDEAL 405 +25

TOIAL 4525 5.87

APPENDIX C

This Appendix contains a listing of the FORTHCLG
catalogued procedure used at the University of Waterloo
and a copy of the users guide for FORTSTAT which was written
for use at the University of Waterloo. The JCL given in
this guide requires that the catalogued procedure agree

with that given in the relevant aspects.

FORTSTAT -~ A FORTRAN TIMING PROGRAM

USER'S GUIDE

FORTSTAT will run an executable FORTRAN G or E load
module and will compile statistics on the number of times
each subroutine or each entry point is called and also on
the amount of time spent in each routine., If there are
separate entry points within a subroutine, each entry point
is treated as a separate routine.

The program has been written so that it will be
extremely easy to use. It is not necessary to do anything to
the translator or to change the program being timed. All
that 1is required is an executable load module with FORTRAN
G or H routines in it.

The JCL necessary for running a FORTRAN G
compile,linkedit and go with FORTSTAT is the following:

// EXEC FORTGCLG,LMOD= IORTSTAT,GO=FORTGCLG

//GO.DELETE DD DUMMY

//GO.MODULE DD DSN=§EGOSET,DISP=(0OLD,DELETE)

//GO.STATOUT DD SYSOUT=A

For FORTRAN H use FORTHCLG on the EXEC card, both as
the procedure name and in the GO= parameter field.

If the wuser wishes to specify the routines to be
timed, the EXEC card must be changed to

// EXEC FORTGCLG,LMOD=FORTSTAT,GO='FORTGCLG,"

and he must include

//GO.STATIN

which points to a data set containing the names of the
routines to be timed. The format of this data set will be

explained later in this document.

NOTE: The GO.DELETE card must be the first DD card for the
GO step while the GOC.MODULE and GO.STATOUT cards go after
the cards which overide the cards in the procedure, i.e.

GO.FTO5F001, GO.SYSIN etc.

SXAMPLE : Suppose we have a FORTRAN program which will be
read from SYSIN and which contains the routines A,B,C,D and
E. If we wish to time all the routines we would use the

following procedure:

// job
// EXEC FORTGCLG,LMOD=FORTSTAT ,GO=FORTGCLG

//FORT,SYSIN DD *
program
Vz

//GO.DELETE DD DUMMY

//GO.SYSIN DD *
data

/%

//GO.MODULE DD DSN=§&§GOSET,DISP=(0OLD,DELETE)
//GO.STATOUT DD SYSOUT=A

Now if we wish to time only routines B and C we
would change GO=FORTGCLG to GO='FORTGCLG,' in the EXEC card
and add after //STATOUT the following:

//GO.STATIN DD *
B

Cc
/¥

The necessary JCL to run FORTSTAT if the load module
is already available is as follows:
// EXEC PGM=FORTSTAT PARM='progname'

//MODULE DD DSN=library,etc.
//STATOUT DD SYSOUT=A

'Library' is the name of the data set containing the
load module; 'progname' is the name of the member within
'library' and 'etc' 1is anything else the user may need
depending on whether or not the data set is catalogued.

STATOUT is the DD card for the output statistics; it
is BLKSIZE=133,DSORG=PS,RECFM=FBA. FORTSTAT will time all
routines included in the 1load module unless otherwise
specified as follows:

// EXEC PGM=FORTSTAT,PARM='progname,'

//STATIN DD 1?2227

The comma following 'progname' in the PARM field
indicates to the program that STATIN is following and so it
will read from it the names of the routines the user wishes
to time. The user must still include the MODULE and STATOUT
cards,but must also include the STATIN card. '?2?2?2?' will
generally be * indicating the input stream but it may be any
data set of 80 byte fixed records.

The names of the routines to be timed are placed one
per card anywhere in the first 72 colurns. All embedded
blanks are removed so the first 8 non-blank characters on

the card will be used as the name (of course if there are

less than 8 characters they will be padded on the right with
blanks). Thus, as the program scans through the 1load
module, only the mainline program and those routines which
match a name on one of the cards will be timed. No check is
made to see if there are names on the cards which do not
match routines in the module.

The output statistics list the routine, the number
of times that the routine was called and the total time
spent in the roﬁtine in seconds.

With each call tc a subroutine there is an overhead
of approximately .5ms/call. This overhead is included in the
total time spent and so must be subtracted from this value
to arrive at the actual amount of time spent in the
particular routine.

Note that these should be used as relative times not
absolute as they may vary from run to run.

Core required is approximately UK more than normal

for the timed program,

FORTGCLG Catalogued Procedure

//FORTGCLG

//

//

//FORT
//STEPLIB
//SYSPRINT
//SYSPUNCH
//SYSLIN
//

//LKED

//
//SYSPRINT
//SYsuT1
//SYSLIE
//

//

//

//
//USERLIB
//SYSLMOD
//
//SYSLIN
//

/ /GO

//
//STEPLIB
//LIBUSAGE
//DELETE
//FT01F001
//FT02F001
//FT03F001
//FTOLF001
//FTO0SF001
//FT06F001
//FT077001
//*

//*

//*

//*

//*

//*

//*

//*

//*

//*

PROC PROG=IEYFORT,LIB='SYS1.FORTLIB',CORE=96K,FSIZE=128K,
FORT=,LINK=LINKEDIT,KED=LIST,LSIZE=96K,EL=l, 07SEP71
PROGRAM=FORTGCLG,IMOD="'%*_,LKED,SYSLMOD' ,GO=, LINKERR=1

EXEC PGM=&PROG,REGION=§FSIZE,PARM="EFORT"

DD DSNAME=SYS1.R19.LINKLIB,DISP=SHR

DD SYSOUT=A

DD SYSOUT=

DD SPACE=(CYL, (1,1)),DISP=(NEW,PASS,DELETE) ,UNIT=2314,
DCB= (RECFM=FB, LRECL=80,BLKSIZE=3200)

EXEC PGM=g§LINK,PARM='LIST,MAP,ELKED',REGION=§LSIZE,

COND= (§EL, LT, FORT)

DD SYSOUT=2
DD SPACE=(CYL, (1,1)),UNIT=2314

DD DDNAME=USERLIB

DD DSN=§LIB,DISP=SHR

DD DSN=FORTLIB,DISP=SHR

DD DSN=SYS1.R19.LINKLIB,DISP=SHR

DD DSNAME=SYS2.LOADLIB,DISP=SHR

DD DSN=SYS1.USERLMOD,DISP=SHR

DD SPACE=(CYL, (1,1,1)),DISP=(NEW,PASS,DELETE) ,UNIT=2314,

DSH=&&§GOSET (§PROGRAM)

DD DSN=#%,FORT,SYSLIN,DISP=(CLD,DELETE) ,UNIT=2314
DD DDNAME=SYSIN

EXEC PCM=§LMOD,PARM='§&GO',RECICN=ECORE,

COND= ((§EL,LT,FORT) , (¢ELINKERR,LT,LKED))

DD DSN=SYS1.R19.LINKLIE,DISP=SHR
DD DSN=SYS2,.FORTUSE,DISP=SHR

DD DSN=€EGOSET,UNIT=2314,DISP=(MOD,DELETE) ,SPACE=(80,1)
DD SPACE=(CYL, (1,2)),UNIT=2314

DD SPACE=(CYL, (1,2)),UNIT=2314

DD SPACE=(CYL, (1,2)),UNIT=2314

DD SPACE=(CYL, (1,2)),UNIT=2314

DD DDN2ZME=SYSIN

DD SYSCQUT=A

DD SYSOUT=R

FORTGCLG

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

