LTI

Department of Applied Analysis
and Computer Science
Technical Report CSTR 1006
July, 1970

THE DIALATOR FILE SYSTEM
PROGRAMMER'S GUIDE

by
Doron J. Cohen, Paul M. Fawcett
Eric G. Manning & Larry Smith

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario

Canada

Department of Applied Analysis
and Computer Science
Technical Report CSTR 1006
July, 1970

THE DIALATOR FILE SYSTEM
PROGRAMMER'S GUIDE

by

Doron J. Cohen, Paul M. Fawcett
Eric G. Manning & Larry Smith

Other manuals in this series are:

TRAIZE User's Guide

FAUST User's Guide

General Programmer's Guide
TRAIZE Programmer's Guide
FAUST Programmer's Guide

File System User's Guide

DIALATOR SYSTEM - PROGRAMMER'S GUIDE - FILE SYSTEM

This is a programmer's guide to the DIALATOR file system.
The File System User's Guide should be read before this guide is
studied.

The guide is laid out as follows:

SECTION 1. RECDIR and RECFILE
SECTION 2. Recursive PL/1l routines
SECTION 3. Subroutine ALOC

SECTION 4. Subroutine CLEAN
SECTION 5. Subroutine CNS

SECTION 6. Subroutine DELETE
SECTION 7. Subroutine ENTER
SECTION 8. Subroutine FCID

SECTION 9. Subroutine FDIR

SECTION 10. Subroutine FETCH
SECTION 11. Subroutine FLST

SECTION 12. Subroutine FREER
SECTION 13. Subroutine GETST
SECTION 14. Subroutine IDLT

SECTION 15. Subroutine LDIR

SECTION 16. Subroutine LOCATE
SECTION 17. Subroutine LOUP and LUPTA
SECTION 18. Subroutine PCID

SECTION 19. Subroutine PUTST

SECTION
SECTION
SECTION
SECTION
SECTION

SECTION

20.

21.

22.

24,

25.

Subroutine REDR

Subroutine SDIR

Subroutine SIZST

Subroutine SORT and SORTA~

Subroutine STORE

Subroutine WRTR

SECTION 1. RECDIR and RECFILE

As explained in the FILE SYSTEM USER'S GUIDE, the file
system is divided into two parts - the file directory and the record
file.

The file directory is called RECDIR and is described
under the name DIR in SYSLIB. It contains three structures, DIR PRM,
DKWT, and RECS.

DIR PRM contains the directory parameters. AVA is a pointer
to the head of a linked list of unused nodes. RG# indicates the number
of regions used by the record file. ST# indicates the number of
structures available. ND# is the number of nodes in the tree. DN# is
the number of nodes desired in the tree. KW# is the number of keywords.
At the moment this amounts to the structure names. POB is a variable
used to point to the predecessor node of a given node when searching the
tree.

DKWT contains a list of the keywords KEW and with each an
associated number. In the case of the structure names it is the
structure number.

RECS is a vector of structures, each structure containing a
node of the tree. RNM is the node name. SIZ is the size of the record
associated. If there is no record associated SIZ is zero. STB is the
starting byte of the associated record. If there is no record STB is -1.
SRG is the starting region number of the record, if none SRG is -1l. TYP

is the type of the structure in which the associated record is stored

-4 -

if any, if none TYP is zero. SIS is a pointer to the sister node,
and is‘set to -1 if there is no sister node. DAU is a pointer to the
daughter node and is set to -1 if there is no daughter node.

The record file is called RECFILE and is described in SYSLIB
under the name FILE. FILE describes the record file and the buffer
used when reading or writing in the record file.

The buffer, BUF is 1800 words in length, or 7200 bytes.

This corresponds to 1 region for the record file,'also for the direct
access device on which the file is stored. BUR is a buffer region pointer.
D is the dimensions vector used in allocating the structures. ALC is
not implemented. RECFILE is the actual record file, keyed according

to regions of 7200 bytes.

-5 -

SECTION 2. Recursive PL/1 routines.

The purpose of this section is to give the programmer
an idea of how a recursive procedure works.

Suppose we have a recursive procedure that is supposed to
scan the tree. The skeleton of the program (without all the important

validity checks) would be,

LOOK AT: PROCEDURE (P) RECURSIVE;
DCL P FIXED BIN;
IF DAU(P) > O THEN
CALL LOOK_AT (DAU(P));
IF SIS(P) > O THEN
CALL LOOK AT(SIS(P));
K=P; PUT SKIP EDIT('NODE',K,'HAS BEEN' 'LOOKED AT') (A,F(5),2A);
RETURN;

END LOOK AT;

Suppose the tree is:

10 ‘/II\ }(ji)

-6 -

The following statement, CALL LOOK AT(3), would generate
this output.
node 32 has been looked at
node 31 has been looked at
node 21 has been looked at
node 20 has been looked at
node 5 has been loocked at
node 9 has been looked at
node 12 has been looked at
node 11 has been looked at
node 10 has been looked at
node 18 has been looked at
node 15 has been looked at
node 4 has been looked at
node 1 has been looked at

node 3 has been looked at

In general the direction is from bottom to top and left

to right.

SECTION 3. Subroutine ALOC

" This subroutine allocates space for a record from the 'FREE'
nodes of the tree. The 'FREE' nbdes are scanned until one with a large
enough number of bytes is found. The free node from which the space
is taken is then reduced in size, in order to keep an accurate account
of sface available.

The subroutines called are FREER and SIZST.

Description of Variables:

$ is the node number of the node for which space is to be
allocated for a record.

ISR is the new start region for the 'FREE' node from which
space was taken.

IST is the new start byte for the 'FREE' node from which space
was taken.

VS holds the total number of bytes for the offset of the new

free node.

We check to see if § is a valid node number. If so, FREER
is called to place a free node next to the headfree node. This node
will have the size of the old node (if there was one) at which we are
making space for a record. This is convenient when we are writing over
an old record of the same size or larger.

STIZST is called to determine the size of the record for which

space i1s being allocated.

- 8 -

The node is checked for an illegal name and invalid size.

The list of FREE nodes is scanned to find storage space
for the record. The start byte and start region of the FREE node with
sufficient space assigned to the node $. The size of the FREE node is
reduced. The total offset in bytes, to find the new start byte and
start region for the FREE node is calculated.

If the new start byte is more than 1790, the FREE node is
reduced in size to the nearest whole number of regions.

If the size of the FREE node is nil, it is returned to the
unused node list and all of its parameters set to their defaults values.

The value returned is the number of regions rounded upward to

the nearest integer.

SECTION 4. Subroutine CLEAN
This procedure cleans up core by freeing all the structures,

designated by the non-zero bits in the parameter STS.

Description of Variables:

STS, TST are bit strings, length equal to the number of
structures.

S is a bit vector defined on STS, to get at each bit.

LA is a label vector, to point to the action for each
structure.

SLOOP is a do loop which examines each bit of S and if it

is '"1' frees the structure indicated (if it is allocated).

- 10 -

SECTION 5. Subroutine CNS
This subroutine constructs a new. node in the directory
tree.

The subroutine called is LUPTA.

Description of Variables:
$RNM is the node name of the node constructed.
$SIS is the sister link of the node constructed.
$DAU is the daughter link of the node constructed.

$ is the node number of the node constructed.

A check is made to see if there are any nodes in the unused
node list. If so, the node pointed to by AVA is taken, the desired
number of nodes incremented and the parameters of the new node filled
in (except STB, STR and SIZ).

A check is made to see that the parameters are valid. The

node number of the created node is returned.

- 11 -

SECTION 6., Subroutine DELETE

This subroutine deletes a subtree of the directory tree

identifying the subtree by its qualified name.

The called subroutines are LOCATE and IDLT.

Description of Variables:

NDN, CC are qualified names
deleted.

P is the node number of the

LOCATE is called to get the
subtree to be deleted. It also fills

'mother' node of the root node. This

indicating the subtree to be

root of the subtree.
node number of the root of the
in POB which points to the

is important, since if there are

any other nodes on the same level as the root node, these nodes have

to be‘relinked (perhaps to the mother

OLD TREE

(56)
A)--
e @ 4_

This subtree is deleted
by specifying the root
node, 57.

node). For example:

NEW TREE

Node 58 must be
relinked to the
tree.

- 12 -

The node number found by LOCATE is checked for validity.
The predecessor or mother node of the root node is stored in I, then
the daughter node of that node calculated. Again a validity check is
done.

If the root node is the daughter node of the predecessor, the
sister node of the root node becomes the new daughter node. If the root
node is not, its level 1s scanned until it is found. It is deleted by
linking its sisters together, Its sister link is set to 1. IDLT is called
to delete the node and all the nodes in the subtree. The value returned

is the return value of IDLT.

- 13 -

SECTION 7. Subroutine ENTER
This subroutine enters new nodes or a record into the
directory tree.

The subroutine called is CNS.

Description of Variables:
NDN, CC are qualified names of the record to be entered.
D is the index of '.,' in the qualified name.
B is the index of ' ' in the qualified name.
P is a pointer to the root of the subtree in which to enter

the next node.

CC, D, B, POB, I and U are initialized. D, B and P are
checked for validity. If the qualified name has at least one qualifier
the first element is stored in NM. If the name is not qualified, NM
receives all of the name. If there is an embedded blank, NM receives
the string up to the blank (provided no period in string). If P is one,
we have already added a node and we wish to add a daughter node.

If this is the last node to be added, D will be zero, so CNS
is called with daughter and sister links set to -1. If it is not the
last node to be added, CNS is called with the daughter 1link set to a
call to IENTR, in order that the process may be repeated on the next
part of the qualified name. The value returned by CNS is checked for
validity, POB updated to point to the predecessor node if necessary.

The node number of the created node is returned.

- 14 -

If P is not one, we have not entered any nodes and must
first find the root node, which will have node name equal to NM. We
do this by scanning the level pointed to by P.

If the node is not found, we must add an extra node to the
level. This is achieved by calling CNS to create a new node between
the second last and last node of the level. The sister link points
to the old last node of the level and the sister link of the second last
node is changed to point to the new node. As before, if D is zero this
is the last node to be added, otherwise there are more to be added and
the daughter link is set to a call on IENTR, to repeat the action with
P set to 1. POB is updated and the node number of the node just created
returned.

If the root node was found in the previous search and the
qualified name has no subnames, we have a duplicate name. If D is not
zero, the daughter node of the root node is looked for. If it does not
exisf, TENTR is called to create daughter nodes. POB is updated, and
the node number of the node just created returned. If the daughter node
does exist, IENTR is called to checked for duplicate nodes etc. and to
append daughter nodes i1f necessary.

At any time a negative value for Q, less than -1 indicates

failure mode. If failure occurs at any time POB is set to -1.

- 15 -

SECTION 8. Subroutine FCID

This subroutine fetches the circuit description into core
for the specified circuit.

The subroutines called are LOCATE, REDR, SIZST, CLEAN, FDIR

and FETCH.

Description of Variables:

CNM is the name of the circuit whose description is wanted.

OPT, OV are bit strings indicating where the description is to
be sought.

OB is a bit vector defined on OV. If OB(1l) is 'l', core is
to be cleaned by CLEAN before the circuit description is sought. If
0B(2) is '1', the description is to be looked for in the file only. If
OB(3) is 'l' the description is to be looked for in core only.

FLOP is the faults option. It can have the following values,
'ALL', 'GET', 'NO', 'CORE', ' ', or, some selected faults structure
name.

EV contains in the end a bit pattern of the structures which
have been fetched according to their associated structure numbers. If
a bit is on the structure with that number indicated by position was
fetched into core.

EX is a bit vector defined on EV.

N# 1s the number of leads in the circuit.

O# is the number of outputs of the circuit.

I# is the number of inputs of this circuit.

F# is the number of feedback leadsof the circuit.

- 16 -

Variables are initialized. The heading is printed followed
by an interpretation of the options specified. The fault option is
printed. A check is made to see if the options conflict.

FDIR is called if the file directory is not in core already.
The tree is scanned by LOCATE to find the circuit name. If it is found,
its node number is printed. LOCATE now looks for '$CIDS' in the subtree
of the circuit name. If it is found, its name, node number, starting
region and starting byte (rather word) are printed. If it is not found
a message is printed.

The same is done for each of the other possible structures
of the circuit. |

If OB(1) is on, we must clean core of all structures. EX(4)
is put on if $FMCS is not wanted.

If FLOP is CORE, the faults structure is expected in core.
EX(4) 1is set, so $FMCS will not be brought into core from the file.

Also, if $SFMC is allocated, information concerning it is printed.

CORE:

If 0B(2) is off, we are looking for each of the structures
in core first. Before information is printed, we demand that the
structure be already allocated and the corresponding bit of EV be off.
If the structure is in core, but does not belong to this circuit, it

is freed.

- 17 -

FILE:

If OB(3) is off, we look for structures in the file.
The search occurs only for those structures which have the corresponding
bit in EV off. Of course, if the option is 'file only' all of the bits
will be off, except, possibly the fourth (it does nothing). REDR is
called to get the appropriate structure from the file.

If the fault option is none of the keywords 'NO', 'ALL', 'GET',
'CORE', or " ', it is assumed to contain the name of a $SFMC structure.
An attempt is made to fetch this structure under the given name.

If EF is on, we have previously indicated a desire to have
a selected faults structure which was found in core, so we wish to free
$FMCS if it has been brought into core.

If EF is off, EX(4) is set or reset depending on the allocation
of $FMCS.

If EX(2) is not on, FCID has failed. The value returned is

EV.

- 18 -

SECTION 9. Subroutine FDIR

This subroutine fetches the file directory into core.

Description of Variables:

RECDIR is a stream file, to get DIR _PRM, DKWT and RECS.

We read in DIR_PRM. DKWT is allocated and each of its members
fetched. ND# is updated to contain the desired node's number, N holds
the present number of nodes. RECS is allocated and fetched.

If the desired number of nodes is greater than the present number,
nodes with names, '.UNUSED.', are linked into an independent list. The
number of these nodes is the difference between the number of nodes
present and the desired number. For each of these nodes, the start byte,
start region and daughter node are set to -1, and type and size are set
to zero.

The present list of unused nodes is scanned, and the last
node is linked to the first node of the independent list.

If the unused list is empty, AVA is pointed to the first node of
the independent list.

The sister link of the last node of the previously independent
list is set to -1, to indicate the end of the available node list.

The file buffer and region pointer are initialized, as a safety

precaution.

- 19 -

SECTION 10. Subroutine FETCH
This subroutine fetches a record from the record file.

The subroutines called are FDIR, LOCATE and REDR.

Description of Variables:
WDN, CC are qualified node names of the record to be fetched.
TND is final part of the qualified name.
P, Z is a pointer to a node in the tree.

X a the position of '.' in the qualified name.

If the file directory is not in core, FDIR fetches it.

LOCATE is called to locate the record to be fetched.
NXD:

If the qualified name has subnames, X will be greater than
zero. The latter portion of the name is stored in CC. Go to NXD.

The above is repeated until the final portion of the qualified
name lies in CC. If LOCATE returns a value less thanone, a message is
printed. Otherwise, REDR is called to read in the record from the record
file.

The value returned is the value returned by REDR.

- 20 ~

SECTION 11. Subroutine FLST.

This subroutine lists the selected faults for the specified

circuit, 1f the structure $SFMC is in core.

Description of Variables:

REV is a vector which back links the rows of $SFMC to the
lead numbers.

M# is the number of faults for the circuit.

N# is the number of leads in the circuit.

NF# is the number of faulty leads in the circuit.

JFL is the fault code number of a particular type of single
fault.

IFNC is the absolute value of the lead function number.

This procedure fails if any of $LDSC, $SYMTA, $SFMC or
$COPT are not allocated. N#, M#, NF# are initialized and, REV is
allocated and set to zero.

A message header is printed giving information about the
selected faults structure. The REV vector is filled using the pointer
of $SFMC. The first machine, the fault free one, is printed. The
subsequent faults are given numbers from 2 to M# using M.

There are two loops, MLOOP and ILOOP, since there may be
multiple faults in which case M will not be incremented.

MLOOP :

K is set to zero; M printed.

- 21 -

IL.OOP:

We scan each row of the selected faults table. 1If the
number at the present location in the table is the current value
of M, K is incremented. The lead number is taken from the REV vector.
The fault type number is obtained from the $COPT fault definition
table.

The value of K is printed, with the lead name, found using
the BLINK in $SYMTA, and the fault definition. If the fault is an
input fault, a check is made to see that it is not an invalid input
fault. If it is valid it is printed.

We go back and check to see if M is the same as the fault
number for the next fault.

Note the entire table is scanned for each fault number M.

This is logical since a multiple fault may involve any subset of leads.

- 22 =

SECTION 12. Subroutine FREER
This subroutine frees space occupied by a record of the tree,
and gives this space to a node in the 'FREE' node section.

The subroutine called is CNS.

Description of Variables:

$ is the node number of the node to be freed.

ALL is a bit indicating whether subsequent nodes are to
be freed.

NM is the node name, '..FREE..'.

NM and M1 are initialized. The node number is checked for
validity.

If ALL is on, we wish to free the space occupied by the
daughter node and all of its sisters; plus all of their successors.
(NOTE: din this system FREER has not been implemented with this option
yet. This isuseful if it is necéssary to free an entire subtree.)

The size of the node to be freed must be greatér than zero.

A check is made to see that size, start byte,and start region are valid.

If they are, a node is created between the 'headfree' node
and its sister node (i.e. the new node becomes the first node in the
'free' list. It is assigned the size value had by the node to be freed,
in the tree. It is also assigned the start byte and start region of the
node to be freed.

The size of the node whose space was freed, is given size of

zero, and its start byte and start region set to -1.

- 23 -

SECTION 13. Subroutine GETST
This subroutine gets a structure of an input file into core.

The called subroutines are LUPTA and SORTA.

Description of Variables:
is the number of the structure to be fetched.
INFT is the means by which the structure is to be read.
TND is the final portion of a qualified name.
NDN, CC is a qualified name of a structure.
LA is a label vector, indicating the action for each
structure.

L is the line number.

The file is opened; i1f it has a name other than SYSIN it is
given by INFT. The structure name is read from the file. The final
portion of the qualified structure name is stored in TND. It must begin
with '$'. The name in TND is looked for in DKWT. If # is zero, the
user has left the structure number to be decided by the program. If #
is not zero it is checked for validity against the number returned by
LUPTA.

The dimensions vector is read from the file. These elements
contain the parameters necessary to allocate the given structure.

Action now goes to the particular structure to be read. It
is allocated, and the information read from the file.

It is important that the information appear in a certain

format, since all GET instructions are edited.

- 24 -

SECTION 14. Subroutine IDLT
This subroutine deletes a node from the directory tree as
well as all its successors. Disc space occupied by terminal nodes

is returned to the free storage list.

Description of Variables:

$, R are the node numbers of the node to be deleted.

$ is checked for validity as a node number. The node name
is checked for illegality.

The daughter link is stored in I. If I points to a node of
the tree, IDLT is called for each node on that level.

If this node has disc space associated, a check is made of
the validity < the type of node, the start byte and the start region.

The disc space is freed by linking the node, to the headfree
node (node #1) and to the sister node of node #1. The appropriate
parameters are adjusted and the value of R returned.

If there is no disc space associated, the node is returned
to the unused node availability list by pointing AVA at this node and
linking this node to the previous head node. The desired number of nodes

is decreased by one and the value of R is returned.

- 25 -

SECTION 15. Subroutine LDIR.

This subroutine prints out the directory tree.

Description of variables:

P, S indicate the node which is to be the root node of
the printed tree.

SIZE indicates the total number of bytes used.

UNUS indicates the number of unused nodes.

CNT indicates the number of nodes in the tree.

FCNT indicates the number of nodes in the free list.

The heading is printed, followed by certain parameters
concerning number of nodes. This is followed by a listing of the keyword
table for structures.

P is checked for validity. The tree heading and the illustrative
node are printed out. LST is called to print the nodes of the tree.
This is followed by a printout of more information concerning the
tree: the number of nodes in the tree, the number of nodes in the
free list, the total number of bytes used in records, and the number of
unused nodes.

If there are any unlocatable bytes, the number is printed. If

there are any unlocatable nodes the number is printed.

DUMP :
If an error has occurred, the information of RECDIR is printed

out.

- 26 -

LST:

This routine prints out the tree from the node specified
through all of its subset nodes. The variable S, here, is used to
point to the column in which each node is to begin on printout.

The node number passed as a parameter is checked for validity.
The node is printed. CNT is incremented, to show that another node
has been printed out.

If the node is a free node, FCNT and FREE are updated. If
the node has type other than zero, SIZE is updated.

If the node printed has a daughter node, S is increased and
LST is called on the daughter node. S is decremented to put it back to
the value it had previous to the LST call,

If the sister node exists LST is called on the sister node.

- 27 -

SECTION 16. Subroutine LOCATE
This procedure locates a record in the directory by its

name.

Description of Wariables:

NDN, CC are the record name

NM is part of the qualified name.

D is the position of '.' in the name.

B is the position of ' ' in the name.

POB is the node number of the predecessor or, the 'mother'
node, for the record node.

P is a pointer to the root of the subtree in which to search
for the node.

CC, D, B and POB are initialized. A validity check is made
on D, B and P.

If D is greater than one, NM assumes the first part of the
record name.

Otherwise, if B is greater than one, NM assumes the first
part of the name up to the blank encountered, and, if B is less than one,
NM assumes the entire name.

If NM is '"#', the returned value is ~9. The use of the '#*'
indicates that every node in the subtree of the qualified name is to
be dealt with. In the case where the name is CIRCUITI.$CIDS.*, the
node number of $CIDS will be returned.

The node with name, NM, is searched for on the present level

- 28 -

of the tree. If it is not found, -2 is returned. If it is found

and D is zero, we have located the record, so the node number is
returned. If it is found and D is zero, we have located the record,
so the node number dis returned. If D is not zero, the name still has
modifiers.

We travel the daughter link and if it points to a node of the
tree, LOCATE is called again on the remainder of the record name and
the new subtree. If the daughter link is less than one, we have failed,
-2 is returned.

The POB variable is updated to point to the new predecessor,
pointed to by I. The value of Q is returned, since if everything went

well, we have called LOCATE again so 0 will point to the node sought.

- 29 -

SECTION 17. Subroutines LOUP and LUPTA
These procedures implement the binary search algorithm on

the sorted tables, in order to locate the member named.

Description of Variables:

TAB is the symbol table with two substructures, NAME, the
symbol name and, NUMB, the code number associated with the name.

NM is the symbol to be looked for in the table.

L is the length of the table.

UB is the upper bound.

LB is the lower bound.

The basis of the methéd is to split the table in two each
time by looking at the middle element, until the symbol required is
found.

The value returned is the code number associated with the

symbol name (if it is found). If not, zero is returned .

- 30 -

SECTION 18. Subroutine PCID
This subroutine prints the circuit description of the
specified circuit.

The subroutine called is FLST.

Description of Variables:

CNM, NM are the circuit name.

FLOP is the faults option.

EV is a bit string, indicating with 'l' bits the structure
numbers which are allocated. |

EX is a bit vector defined on EV.

EF is a bit, indicating a selected faults structure is
allocated.

N# is the number of leads in the circuit.

O# is the number of outputs.

I# is the number of inputs.

F# is the number of feedbacks.

IFP is a selected faults pointer.

IOR is a pointer to successors list.

The EX vector 1s filled in according to the structures
allocated at the time PCID was called. A message is printed, if either
$LDSC or $CIDS is not allocated.

If FLOP is 'ALL', EF is set to '0' and a message is printed

if $FMCS is not allocated.

- 31 -

If FLOP is 'GET' or is the name of some selected faults
structure, EX(4) is set to zero, and a message is printed if EF is
not '1’'.

The circuit parameters are placed in N#, O#, I# and F#
from $CIDS. A check is performed on all structures, to see that their
parameters coincide with those of $CIDS. If any do not, a message is
printed and R is set to -1.

A printout of the circuit description follows. The heading
is printed. The number of leads, the number of outputs and the name
of each, the number of inputs and the name of each, and the number of
feedbacks and the name of each are printed.

The parameters of $CIDS are printed. If EF is 'l', FLST is
called to list the selected faults structure.

A description of the circuit, lead by lead, follows. For
each lead is printed: its associated line number, its name, its function,
its level, its input references, the number of output references, its
output references and its associated fault numbers. Each portion of
information is dependent, of course, on the allocation of certain

structures.

LOOP:

The DO loop parameter I is printed to indicate the lead
number. The corresponding symbol name is printed only if $SYMTA is
allocated. The function names are printed if $LDSC is allocated. These

function names are taken from S$COPT if it is allocated otherwise from

- 32 -

SI.DSC. If SLDSC is allocated the level number and the first three
input references are printed énd, if $SUCS is allocated the first four
output references are printed preceded by the number of output references.
K indicates the countdown on the output references. If $8UCS is not
allocated, but SLDSC is, the output reference pointer is printed. If
EF is 'l', the first four elements of the row pointed to by the faults
pointer are printed. If EX(4) is '1l', the first four elements of the
appropriate row are printed. If S$REFS is allocated and the lead is an
input or feedback, a message is printed.
All of the above information appears on a single line. On
the next line, if SLDSC is allocated the last two possible input
references are printed. If there are still some successors to be printed
K will be greater than zero. As many as four will be printed starting
in column 52. Again, if there have been fault numbers printed before,
the last four elements of the appropriate row are printed now. If $REFS
is allocated and the lead is an output or terminal, a message is printed.
If there are still output references to be printed, K will be
greater than zero. The remainder is printed four per line, until K is
Zero.

The wvalue returned is R.

- 33 -

SECTION 19. Subroutine PUTST
This routine prints out the contents of the structure
specified.

The subroutine called is SIZST.

Description of Variables:
is the structure number.
LA is a label vector indicating the action dependent on

the structure.

A check is made concerning the validity of the structure
number. SIZST is called to calculate the size of the structuré to
be printed.

The action is diverted to the specific structure, in order
to print headings and its contents. If the structure is not allocated

a message is printed.

- 34 -

SECTION 20. Subroutine REDR.
This subroutine reads a record from the record file into

core.
The subroutine called is MOVE which moves a fixed amount of

bytes (1l region) from the buffer into the structure.

Description of Variables:

$ is the node number of the node in the directory tree indicating
the record.

ALL indicates all of the successor nodes in the tree, which
point to records, should be read.

$T indicates the structure number.

OF indicates the offset in bytes of the record.

L indicates the length in bytes of the portion of the record
moved.

Z indicates the offset of the buffer, this is filled by MOVE.

R 1s the value returned.

I is the start region of the record.

J is the start byte of the record.

A validity check is performed on the node number R, $T, J, Z, I,
L, and OF are initialized. TIf ST is zero there is no record attached, go
to SOF.

S, I, and J receive their values from the nodes. These values
a checked for validity. Since J is in words (4 bytes) it is multiplied
by four and subtracted from 7200 to get the proper number of bytes to be
movedf If L is greater than the size of the record left to be moved, L

is modified.

- 35 -

If the buffer region is different from the starting region
of the record, an initial read is done. The dimension vector D is
filled from the first eight words of the buffer (this is to allow
allocation).

The structure is allocated and the first part of the record

moved by MOVE. Go to TROF.

TROF:

The size of the structure yet to be read is decreased by L,
the amount just moved.

If there is still some record to be moved, the offset is updated,
the region number is updated and L is set to 7200.

If L is greater than the size remaining, L is adjusted. The
offset and the region numbers are checked. The next portion from
RECFILE is read into the buffer, the buffer region is updated. The
subroutine MOVE is called to move the buffer contents into the appropriate

structure. This is repeated until the structure has been moved.

SOF:
If ALL is 'l', REDR is called on the subset tree with the

present node as root node.

- 36 -

SECTION 21. Subroutine SDIR.

This routine stores the directory tree back into RECDIR.

The RECDIR file is opened for output. L is initialized to

1000. This gives a line number count
referenced. The directory parameters
is saved, L being updated before each

The actual tree information
the first time, and is incremented by

by 10,000.

so that any member can be

are saved. The keyword table
save statement.

is saved, L starts at 9000

1000. Thereafter L is incremented

- 37 -

SECTION 22. Subroutine SIZST
This subroutine calculates the size of the structure in

core whose number is specified.

Description of Variables:

N#8, I#8, o#8, CV#8, CP8, M#8, are variables which hold a
number which represent a number of whole bytes. This is used for bit
strings.

LA is a label vector pointing to the appropriate action for
a given structure number.

A check is made to see if the structure number is valid. For
each type of gructure the size is calculated if the structure is of a
variable size. For those structures which have bit strings the CEIL
function is used to calculate the size to the nearest whole byte.

The value returned is the size of the structure in bytes.

- 38 -

SECTION 23. Subroutines SORT and SORTA
These routines sort the symbol table specified alphabetically,
in order that the binary search can be used. The ''reverse bubble"

routine is employed.

Characteristics of the sort routine:

Fach time the list is scanned the scanner makes one less
comparison. For example, after the first scan, the largest element
is at the bottom of the list for sure. Therefore, no entry need be
compared to it.

The scan is accomplished by comparing the size of successive
elements. A switch is made if they are not in the proper order.

The check for completion, is achieved by a bit variable
which is set to '0' before each scan. It is changed to 'l' if any
switches are made. Thus the bit variable will be '0' at the end of

a scan if the sort is complete.

- 39 -

SECTION 24. Subroutine STORE
This subroutine stores a record in the record file.

The subroutines called are FDIR, WRTR, LOCATE and IENTR.

Description of Variables:

TND is the final part of the qualified name.

NDN, CC are the qualified name.

DISP is the disposition of the storing. It can be 'OLD',
'NEW', 'YES', 'NO' or ' '. If ' ' is found, 'NEW' is assumed.

P is a pointer to the node where the record is to be stored.

If the récord directory is not allocated, FDIR is called.

If DISP is NO, one is returned.

CC, Z and P are initialized, P, by a call to LOCATE. The
INDEX function is used to get the last part of the qualified name TND.
If DISP is 'OLD' and P is negative the record was not found so a

message is printed and a negative value returned.

NOT OLD:

If DISP is 'new' or ' ', then if P is greater than zero a
message is m@inted since the record already exists. If DISP is not
'YES' , '"NEW' or ' ', a message is printed and a negative number returned.
If DISP is 'YES', P less than zero, and TND is '*', then a message is
printed and only one record stored. * IENTR is called to enter a new
node in the tree. POB now has the predecessor of the node in which the
record is to be stored.

WRIR is called, on the predecessor node.

* Since P was negative the node with the qualified name was not found
and we cannot store the whole subtree as the '#*' asks for.

- 40 -

SECTION 25. Subroutine WRTR
This subroutine writes a record specified by the node
number, into RECFILE.

The subroutines called are MOVE and ALOC.

Description of Variables:

$ is the node number of the node in the directory indicating
the record.

ALL indicates all of the successor nodes in the tree which
point to records should be rewritten.

$T indicates the structure number.

OF indicates the offset in bytes of the structure.

L indicafes the length in bytes of the portion of the record
to be moved.

Z indicates the offset of the buffer.

R is the value returned.

I is the starting region of the record.

J is the starting byte of the record.

A validity check is made on the node number received. R,
$T, J, Z, I, L and OF are initialized. IF ST is zero there is no
record attached. Go to SOF.

The node number is checked to see if it is a legal node.
ALOC is called to allocate space in RECFILE. S, J and OF are filled
in.

This doloop writes the structures into RECFILE. L is set to

the size of the portion of the record to be written. The RECFILE of the

- 41 -

current region is read into the buffer area to be adjusted. MOVE
is called to adjust the buffer area by moving into the buffer a

portion of the structure. A write statement follows, putting the
buffer area back into RECFILE. This is repeated until the entire

record is written.

SOF:
If ALL is 'l', all the subset nodes with records attached

must be rewritten.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

