Department of Applied Analysis
and Computer Science
Technical Report CSTR 1004
July, 1970
THE DIALATOR SYSTEM
TRAIZE PROGRAMMER'S GUIDE
by

Doron J. Cohen, Paul M. Fawcett
Eric G. Manning & Larry Smith

Faculty of Mathematics

University of Waterloo

Waterloo, Ontario
Canada

Department of Applied Analysis
&

Computer Science

Department of Applied Analysis
and Computer Science
Technical Report CSTR 1004
July, 1970
THE DIALATOR SYSTEM
TRAIZE PROGRAMMER'S GUIDE

by

Doron J. Cohen, Paul M. Fawcett
Eric G. Manning & Larry Smith

We wish to thank the Defence Research Board of
Canada, the Northern Electric Research & Development
Laboratories, Ottawa, and the Faculty of Mathematics
of the University of Waterloo for financial, technical
‘and moral support which made this system of programs

possible.

Other Manuals in this series are:

1)
2)
3)
4)
5)

6)

TRAIZE User's Guide

FAUST User's Guide
General Programmer's Guide
FAUST Programmer's Guide
File System User's Guide

File System Programmer's Guide

-1 -

PROGRAMMER'S GUIDE - DIALATOR SYSTEM
TRAIZE *

This is a programmer's guide to program TRAIZE of the
DIALATOR system. This guide should not be studied before the
TRAIZE User's Guide has been read.

The Guide is laid out as follows:

Section 1) Introduction

Section 2) Program PARSER

Section 3) Program BUILDER

Section 4) Subroutine CCINT

Section 5) Subroutine CRESSA

Section 6) Subroutine LEOR

Section 7) Subroutine NECAR

Section 8) Subroutine REBL

Section 9) Subfoutine SCAN

* The General Programmer's Guide should be read before this

manual is studied.

Section 1) INTRODUCTION

TRAIZE is composed of two main}routines PARSER and
BUILDER. Descriptions of PARSER and BUILDER appear in that order,
followed by descriptions of the subroutines called by these two
programs. Those called subroutines which do not appear are
contained in the Programmer's Guide for the file system.

The actions of TRAIZE will be traced using the circuit

described below.

CIRCUIT DIAGRAM

u T\ ™\ s100m
. H/// L//j

X2

CIRCUIT 2
Input Description for TRAIZE program
7 RUN: TRAIZE CIRCUIT = CIRCUITZ2 , DISP = NO;
INPUTS (2) X1, X2;

OUTPUTS ¢8) 91;

Xl: INP Al;

X2: INP Al, @1;
Al: AND X1, X2/¢1;
¢1: QUT: @R Al, X2;

END CIRCUIT 2 ;

Section 2) PROGRAM PARSER

This procedure scans the circuit description of the
specified circuit, breaks down the statements into syntactic
units, detects syntax errors and builds the tables SCSYMTA,
SCLDSC, and SCSS, which are then stored as temporary files on
disc.

The subroutines called are LUPTA, SCAN, FETCH, CCINT,
STORE and PUTST.

Description of Variables:

NSU is the next syntactic unit. It is filled by
SCAN. NSU will always be the set of non-blank characters
between two adjacent delimeters. Remember that blank is a
delimiter.

DELIS is a character string containing all valid
delimiters. It is initializéd in CCINT.

TYPSWTIis a label switch for processing header
statement keywords (eg. 'INPUTS'").

FNCSWT is a label switch for processing function
statement keywords (eg. "AND").

FLSHSWT is a switch (label) which returns the program
execution to the appropriate place after a card has been flushed.

COMBFLAG is a bit indicating whether or not the circuit

is combinational ('1').

N # is the number of leads.

I # 4is the number of inputs.

¢ # 1s the number of outputs.

F # 1is the number of feed backs.

E # is the number of lead names.

K # is the pointer to the next available location
in the user supplied successor's list (5CSS.SS). K # -1
indicates the number of entries in SCSS.SS.

P contains the index of the delimiter in DELIS.
P is the value returned by SCAN.

SCSYMTA is a scratch file which will contain the contents
of the future structure $SYMTA in stream file form. (i.e. we
can access only one member of the file at a time. This saves
space).

SCSS is a scratch file which will contain the contents
of the future structure $SUCS in stream file form. Note that SCSS
contains two extra entries FLAG and LNAME. FLAG is employed to
indicate the end of a list of output references for a lead. LNAME
holds the name of the lead for which @NAME is the output reference
lead. The output reference pointer of SCLDSC is not used and so
is not necessary.

SCLDSC is a scratch file which will contain the contents
of the future structure $LDSC in stream file form.

Control Card Scan:

CCINT is called to scan for a control card. CTRLERR is

the label transferred to if any more illegal cards are found.
OPR is the variable, defined in CCINT, which holds the second
syntactic unit of the control card. For a TRAIZE run, this

syntactic unit must be 'TRAIZE'.

SCAN..TEXT:

I#, O#, F# are set to their default initial values.
FLSHSWT is set to SCAN_{#S, which indicates we are processing
header statements. FETICH is called to get the operator's
table, TRAIZE.SOPTAB. SCAN is called to get the next operand

delimiter pair.

SCAN_##S:

If the delimiter is a color, we go to SCAN ATS, since
the statement can not be a header statement. The keyword is
looked for by LUPTA and a switch made to the appropriate action
according to the value returned by LUPTA. 1If LUPTA returns a
zero, the keyword is invalid and a message is printed.

For all subscript values of TYPSWT except 34, 35 and 36,
error messages are printed and the remainder of the statement is
flushed.

If the subscript value of TYPSWT is 34, we have an 'INPUTS'
statement. The delimiter from the last SCAN call should be an
opening parenthesis. If it 18 not, a message 1s printed,
the remainder of the statement is flushed and a transfer is made
to SCAN #S. 1If it is, SCAN is called to get the stated number

of inputs. The delimiter should be a closing parenthesis.

If not, the action is similar to that for the missing open
parenthesis. 1If it is, SCAN is called to pick up an input
name. Input names are picked up as long as the delimiter
returned is a comma and the number of input labels is less than
the stated number. If the delimiter is not a comma, but is a
semicolon, the last input name is picked up; otherwise, anA
error message 1s printed and the remainder of the statement
flushed. The stated number of inputs is compared with the
actual number. If the stated number is larger than the actual
number, a message is printed and the stated number corrected.
TYPSWT (35) and TYPSWT (36) handle output and feedback header
statements respectively. The action for each is similar to that

above.

Here is a trace of the Header Statement Scan for card 2 of

CIRCUIT2 description.

Present Label’ Present Action
K#t= 1
1# =0

SCAN _ #s SCAN looks at columns 1 to 20 of CARD2
| P « 8 and NSU <« 'INPUTS'
Look up 'INPUTS' position in $OPTAB using
LUPTA
position is 34
GO TO TYPSWT (34)
TYPSWT (34) - P=38
SCAN looks at columns 21 to 22 of CARD2
P < 9 and NSU <« '2'
I# « 2 and D (1) « 2
‘J <1
SCAN looks at columns 23 to 27 of CARD2
P < 3 and NSU « 'X1'
INPUT-LIST (1) <« 'X1'
J + 2
SCAN looks at columns 28 to 30 of CARD2
P <« 6 and NSU « 'X2°
P# 3 and J £ I#

P=26

- 8 -

Present Label Present Action

INPUT - LIST < 'X2'

J = I#

SCAN looks at rest of CARD2 and columns
1 to 21 of CARDS

GO TO SCAN __ s

SCAN-ATS:

E# and N# are initialized, and the value in FLSHSWT
changed. A check is made to see if all the header statements
have been read. If not, a message is printed. If there is no
feedback statement, a message is printed indicating that the
circuit 1s combinational. The scratch files_are opened for

output.

SCANATLOOQP:

The leads counter, N# , is bumped by one. IR is
initialized. If the delimiter is a colon and NSU is nomblank,
SCAN is called to pick up the lead name and the label counter,

E#, is bumped. There may be more than one name per lead. The
lead name and the associated line number are written onto the
SCSYMTA file. If the label counter has not been bumped at
least once since the beginning of this statement, a message is
printed. NSU should contain the function keyword. LUPTA is
called to identify the keyword by returning its associated lead
function number.

Action is dependent on the value returned by LUPTA. For
all subscript values of FNCSWT except ome through fourteen, error
messages are printed and the remainder of the statement is flushed.

If the subscript of FNCSWT is one, we have an input lead.
BLDSC.FUNC 1is filled and a transfer taken to SCAN_ORS.

If the subscript of FNCSWT 1is two, we have a feedback
lead. BLDSC.FUNC is assigned and since a feedback lead should

have one input reference, a check is made to see that it exists

- 10 -

and is followed by a semicolon. If there are output references,
go to SCAN ORS. If all of these conditions fail, a message is
printed and the remainder of the statement is flushed.

For the remainder of the valid functions, BLDSC.FUNC
is filled and a transfer made to SCAN IRS.

Note for macro leads, which have not been implemented
yet but will be in the future, 4all the subcomponents after the
first will have to be given a negative value for BLDSC.FUNC. This
identifies them with &ach other. Also, they must be described
sequentially By the user. In other words, the user describes
them as a unit and TRAIZE ﬁrogram keeps them together as a unit,

thus, the negative function values are assigned.

SCAN_IRS:

If the delimiter, from the last SCAN call is not a
blank, there are no input references. An error message is
printed, the statement is flushed, and a transfer is made to
SCANATLOOP. Otherwise, SCAN 1s called, and, while the delimiter
is a comma, the input reference names are picked up. The number
of input references is checked to see if it exceeds five. If
it does, a message 1s printed and the remainder of the statement
is flushed. Transfer to SCANATLOOP. If it does not, and the
delimiter is a semicolon END _STAT is executed. If it does not, and
the delimiter is a slash, a transfer is made to SCAN ORS. If
there 1s no slash or semicolon, a message is printed, the remainder

of the statement is flushed, and a transfer is made to SCANATLOOP.

- 11 -

ENDLSTAT:

The input reference names, and the lead function number,
are written on to the SCLDSC file. If NSU from the last SCAN
call is 'END', a transfer is made to the end of PARSER,

END_PARSER; otherwise the transfer is to SCANATLOOP.

- 12 -

Here is a trace of the Lead Statement Scan and Input references

using CARD 7 of CIRCUIT 2. Assume this is the first lead CARD.

Present Label Present Action

SCAN_ATS | E#, N# < 0, P=2, NSU = '¢1'

Since I# # O and @# # O and F# = O
'combinational circuit'

Open files SCYMTA, SCLDSC, SCSS
@LDE# < E# :. @LDE# = O

SCANATLOQOP : Nt <1

Initialize BLDSC.IR <+ '000C00'

Ef + 1

BSYMTA.NAME + '@1'

BSYMTA.LINM + '1'

WRITE (3) and (4) onto SCSYMTA file
SCAN looks at columns 5 to 8 of CARDS
P + 2 and NSU <« '@uUT'

Eff < 2

BSYMTA.NAME + '@UT'

BSYMTA.LINM + 1

WRITE (5) and (6) onto SCSYMTA file
SCAN looks at columns 9 to 17 of CARDS
P <« 0 and NSU « 'OR'

OLDE# = O and E# = 2

“. Look up '#R' using LUPTA in $0PTAB

GO TO FNCSRT (14)

- 13 -

Present Label Present Action

SCAN_IRS P=20

SCAN looks at columns 18 to 19 of CARDS
P <« 3 and NSU <« 'Al'

BLDSC.IR (1) < 'Al'

J <« 2

SCAN looks at columns 20 to 22 of CARD5

P € 6 and NSU * 'x2'

J?5
BLDSC.IR (2) * 'X2'
WRITE (1), (2) (part), 7, 8, 9, onto BCLDSC file

CALL SCAN to get first NSU of next card.

- 14 -
The structure of SCS5S5.SS is such that we can refer, independently
of the output reference pointer in SCLDSC (BLDSC.OUTPTR*), to the
lead from which the output leads come. For this reason LNAME
was added to the structure. LNAME is the lead name of the lead
which has "@NAME' as an output reference.
Imagine SCSS as a sequential file where K# points to the

first available slot. For CIRCUIT2 the following pictures show how

SCSS.SS is filled.

PNAME
FLAG
LNAME A

|
g \\

-

1 2 3 4 5 6

 — —pointer K#, J + O

After the first output reference;

1AL" 4
lN' ,/
X1’ T 5

1L2 3 4 5 6
pointer Kif, J « 1

After the second output reference;

'Al' lll 1 /,1

"' ry! ! '

L A i
1 2 3 4 5 6

pointer K#, J « O

* This substructure should be deleted from your system if it

is present..... and so on;

- 15 -

Now, SCSS is filled and K# points to the next available slot.

'Al? 1! Al { /
' 1y N l /-’/'
1x1! el 12" ; Lo
u '
1 2 3 4
pointer K#, J<*1
-
'Al' 111 I’All lwll i Z/,.
'Nl ,Y" |Nl 'Nl é 4/
IXll lxll lle lle ; s
oo /
1 Z 3 4
pointer Ki#t, J « 2
warr it [tart ot vz /7
' le ™! 'Nl 'Y' //
X1t | 'RLYO['x2' |'x2' {'x2! .
A i
1 2 3 4
pointer K#, J <« O
a1t |1t |tarr frenr 20 |1 L,
"' ry! ! ! f1yr !)
'X1!' 'x1! 'X2' 'x2! 'x2! TAl! ~ o
1 2 3 4 7
pointer K#, J <« O
VR 1 INE o1 11 » 1g1" tyr
lNl 'Y' 'N' INI IYI lNl IYl
'Xl' 'Xl' 1le Ile lxz' lAll 'Al'
1 2 3 4 7
pointer K#, J « 1

- 16 -
SCAN-ORS :

If the delimiter is a semi-colon, go to END_STAT: otherwise,
SCAN is called. 1If NSU is blank, a message is printed, the remainder
of the statement is flushed and a transfer is made to SCANATLOOP.
Otherwise, SCAN is called while the delimiter is a comma, and, the
output reference names are picked up. With the output name is an
associated flag saying that it is not a list tailer. The two of these
are written onto the SCSS file, and K# is bumped by one to point to

the next available location of SCSS.

If the delimiter is not a semicolon nor a comma, a message
is printed, the.statement is flushed and action returns to SCANATLOOP.
If the delimiter is a semicolon, the last output reference is
written out with the associated flag indicating that it is not a
list tailer. The list tailer is now written and contains the number

of output references for the lead. Go to END.STAT.

- 17 =~

Here is a trace of the Lead Statement Scan and Output
Reference Scan using CARD5 of CIRCUIT2. Assume this card is

the first Lead Statement card.

Present Label Present Action

SCAN_ATS E#, N# <0, P =2, NSU = 'X2'

i
(@]

Since I# # O and o# # O and F#
'Combinational Circuit'’
Open files SCYMTA, SCLDSC, and SCSS
OLDE# + E# .. OLDE # = 0O
SCANATLOOP N# «1
Initialize { BLDSC. IR < '000000'
P = 2 and NSU = 'X2'
E# *1
BS&MIA.NAME + 1x2!
'BSYMTA.LINM < '1'
WRITE (3) and (4) onto SCSYMTA file
SCAN looks at columns 5 to 21 of CARDS
P*“ 0 and NSU * 'INP'
OLDE# = O and E# = 1
Look up 'INP' using LUPTA in $0PTAB
GO TO FNSCWT (1)
BLDSC.FUNC < 1
GO TO SCAN ORS
SCAN ORS P=0

SCAN looks at columns 22 to 23 of CARDS

- 18 -

Present Label Present Action

P « 3 and NSU <« 'Al'

BSS.ANAME <+ 'Al'
BSS.FLAG <«'N'
BSS.LNAME <« 'X2'
Write (6) and (7) onto SCSS file
Kt «+2 and J <2
SCAN looks at colums 24 to 26 of CARD5S
P «6 and NSU + '¢1'
BSS.@NAME <« '¢1'
BSS.FLAG <« 'N'
BSS.LNAME + 'X2'
WRITE (8) and (9) omto SCSS file
Ki#t «3
K# «4
JCHARS <« 2
BSS.ONAME <+ '2'
BSS.FLAG * 'Y'

WRITE (11) and (12) onto SCSS file

A

Present Picture of SCSS file

Ki#f—
FLAG | N 'y ’
PNAME a1t | e | r2
LNAME x2' | 'x2' | 'xe
1 2 1 3 Z 5

SCLDSC.OUTPTIR

AN

- 19 -

Present Label Present Action

GO TO END_STAT
ENDL_STAT WRITE (1), (2), (5), (10) onto SCLDSC
file

SCAN looks at first NSU of next card.

- 20 -
END_PARSER:

The scratch files are closed. This isvdone so these
files can be opened in BUILDER for input purposes. The
necessary parameters of the circuit (eg. I#, E#,) are stored

in a scratch file called STRMIN.

- 21 -~

SECTION" 3) Program BUILDER

This procedure accepts the scratch files filled by
PARSER and creates, for the circuit, $CIDS, $LDSC, $SYMTA, SREFS
and $3yUCS. BUILDER detects logic errors im the circuit description.
To minimize core requirements, the structures are freed as they
are compieted.

The subroutines called are STORE, FETCH, PUTST, SORT,

LUPTA, LOUP, CRESSA, FCID, REDR, LDIR, SDIR and PCID.

Description of Variables:

The variables not described here are described at the
beginning of SECTION 2).

N holds the output reference pointer for a lead (obsolete)

P is the return value of subroutine STORE.

KYWRD holds the keywor& to be looked for by LOUP.

The STRMIN file is read of its contents, which are then
printed along with headings. FETCH is called to get TRAIZE.SOPTAB.

The scratch files are opened for input. K# is decremented
by one so that it indicates how many entries are in the user supplied
successor's list. The dimensions vector is filled for $SYMTA and $SYMTA
is allocated. TIts two parameters are filled.
READSYM:

The symbol names and theirAcorresponding line numbers are
obtained from SCSYMTA. Since a lead may have more than one name (i.e.
there may be more than one label per function statement), a slight
ambiguity arises when referring to the label of a given lead function

or line number. In fact, 1f we wish to obtain a label name for a line

- 22 -

given by $SYMTA.BLINK , we may get anyone of the label names for
that line (if there is more than one).

For example, suppose the third lead statement is:

X1: @ 24: INP;
Also assume X1 and @ 24 are the 4th and 5th entries into $SYMTA.
We would have:

$SYMTA.BLINK (3) = 4

$SYMTA.BLINK (3) = 5

Here 1s a trace for lead statements 4, 5, 6 and 7 of
CIRCUITZ.

Picture of SCSYMTA:

' 3
X1t X2 'Al' ‘g1’ 'ouT' -
1 2 3 4 4 N
1 2 3 4 5
Present Label Present Action
READSYM: I «1; Read (SCSYMTA) into (BSYMTA)

$SYMTA:NAME (1) + BSYMTA.NAME (1) <« X1
$SYMTA.LNM (1) + BSYMTA.LINM (l)‘+ 1
READSYM: I « 2; Read (SCSYMTA) into (BSYMTA)
$SYMTA.NAME (2) + BSYMTA.NAME (2) * 'X2'
$SYMTA.LNM (2) <« BSYMTA.LINM (2) < 2
READSYM: I < 3; Read (SCSYMTA) into (BSYMTA)

$SYMTA.NAME (3) < BSYMTA.NAME (3) < 'Al'

$SYMTA.LNM (3) * BSYMTA.LINM (3) < 3

- 23 -

Present Label Present Action

READSYM: I < 4; Read (SCSYMTA) into (BSYMTA)
$SYMTA.NAME (4) < BSYMTA.NAME (4) <« '@1°
$SYMTA.LNM (4) < BSYMTA.LINM (4) < 4

READSYM: I < 5: Read (SCSYMTA) into (BSYMTA)

$SSYMTA.NAME (5) < BSYMTA.NAME (5) <« '@UT'
SSYMTA.LNM (5) < BSYMTA.LINM (5) < 4
'SORT THE LEADS

Form the back links.

I <1, S$SYMIA.BLINK (1) =1
I« 2, S$SYMTA.BLINK (2) = 2
I <3, S$SYMTA.BLINK (3) =3
I <4, S$SYMTA.BLINK (4) = &4
I« 5, S$SYMTA.BLINK (4) = 5

The next structure filled is $LDSC. The dimensions vector

is filled and $LDSC allocated. The parameters are filled in.
READLDSC:

SCLDSC is read into BLDSC for each lead. The addresses
or line numbers, of the non zero input references are found by a look
up, using LOUP, into $SYMTA. These numbers are placed .in $LDSC.IR.
A message 1s printed if a label is not found. The funcﬁion number
of the lead 1s stored in S$LDSC.FNC.

Here is a picture of SCLDSC for statements 4, 5, 6, 7 of

CIRCUIT2.
FNC 1 1 13 14
IR(1) '000000" | '0p000O’ 'X1' 141"
IR(2) '000000" | 'opooo0' | 'x2' TX2"
IR(3) '000000° | '000000' | '00000Q' | '000000'
IR (4) .1000000' | '00p000’ | '000000" '000000"
IR(5) '000000" | '000000' | 'G00000’ '000100°

- 24 -

Here is a trace for statement number 6 of the CIRCUITZ2

description.
Present Label A Present Action
READLDSC: I <« 3; Read (SCLDSC) into (BLDSC)

KYWD + BLDSC.IR (1) < 'Al'
LOUP returns 3

SLDSC.IR (3, 1) « 3

KYWD « BLDSC.IR (2) « 'X2'
LOUP RETURNS 2

$LDSC.IR (3, 2) « 2

$LDSC.FNC (3) « 13

BUILD_SREFS:

The dimensions vector is filled in order to allocate $REFS.
SREFS, INPUT LIST, OUTPUT -LIST and FEEDBACK LIST are allocated.
The last three structures are filled from the STRMIN file. Of
course, if F# is not greater than zero FEEDBACK_LIST remains empty.

INPUT_LIST is read to get each of the inputs. A check is
made to see if the input is in the $SYMTA table and that it has
the proper function (i.e. 'INP').

The input lead line number is entered into S$SREFS.IL:

The same procedure is carried out for OUTPUT_LIST (and
FEEDBACK LIST if necessary).

The parameters of SREFS are filled and the structures
INPUT.LIST, OUTPUT LIST and FEEDBACK LIST are freed.

LEOR 1s called to level and organize the circuit. The
back links must be recalculated since the o0ld line numbers may not

coincide with the new ones.

- 25 -

CRESSA 1is called to create the successors list ($SUCS)

from the input references.

in $SUCS.SS including the pointers.

The user supplied successors are checked against the

created ones in $SUCS.

Remember that the user supplied successors

CRESSA returns the number of elements

list has list tailers, not list headers. Also the order of the

lead numbers might have changed after the call to LEOR, therefore

the output references may not appear in the same order.

CHECK SS:

Each member of SCSS is examined.

If it contains the

first output reference name, the lead name for which it is the

output reference 1s looked for in $SYMTA. We now access the created
successors of $SUCS for this lead through $LDSC.¢R.
The output reference name is looked for in $SYMTA.

Finally a check is done to see 1f its lead number appears in $SUCS.SS.

If it is not found, a message 1s prin t ed.

For CIRCUIT2

ONAME
FLAG
LNAME

S$CSS.SS would be:

lAll |l| lAll l¢ll |2| l¢l| '11
'N! ty? ™! N ty! ™' Tyt
'x1' 'X1' | 'x2! 'x2! 'x2' 'Al’ 'Al!
2 3 4
$SUCS.SS would be:
1 3 2 3 4 1 4

Kit « 7

- 26 -

SLDSC.¢R would be: SLDSC.¢R (1) =1
$LDSC.#R (2) = 3
$LDSC.@R (3) = 6
SLDSC.PR (4) = 0

Present Label Present Action.

CHECK S5: K+<0; KfE+7; I+«1

BSS.FLAG = 'N'

KYWRD = 'X1', K = 1
N«1l
KYWRD = 'Al', J = 3
L+« 2

$sSUCS.SS (2) =3 =7
CHECK 8S: I+2
BSS.FLAG = 'Y'; =0

CHECK SS: I+«3

]
=

BSS.FLAG

KYWD « 'X2'; K<2

$SUCS.SS (4) = 3 = J
CHECK SS: I+4

BSS.FLAG = 'N'

KYWD = '§1'; J = 4

L+«4

- 27 -

Present Label Present Action
$SUCS.SS (4) =3 # J
L+ 5
$SUCS.SS (5) = 4 = J

CHECK §S: I+«5

BSS.FLAG = 'Y'; K = 0
CHEC%;SS: I+«6

BSS.FLAG = 'N'

KYWD « 'Al'; K < 3

4
=8
=
[}

]
o~

$5UCS.Ss (7) = 4

[
[}

CHECK §S: | 1 +7

BSS.FLAG = 'Y'; =0

BUILD $CIDS:

SCIDS is allocated and filled in. The five structures are
stored in the file if the DISP value is appropriate.
END.BUILDER:

The scratch files are closed. If some structures have been
stored and the file directory is in good condition, LDIR is called
to list the directory and SDIR to save the updated directory. The
directory 1s fetched using FCID and printed out using PCID to give

the user picture of the circuit description TRAIZE has created.

- 28 -
SECTION 4) SUBROUTINE CCINT

This subroutine interprets control cards for FAUST
and TRAIZE.
The subroutines called are ALLF, SCAN, FETCH, FCID,

FLEVZ and PCID.

Description of Variables:

NSU is the next syntactic unit
DISP is the disposition of the following description
or simulation desired by the user with respect to the file.
LIST indicates whether or not the circuit description
is to be listed.
OEOF, OEOD hold the previoﬁs values of EOF, EOD.
CARDIN and JOBPARM are allocated if necessary, and
DEL, QUT, QUP, SOUP, NC, EOF, EOD, SOCAR, LINM, LEN are initialized.
The present EOF and EOD labels are saved; they are re-
initialized.
If SOCAR (1) is '%' we have a control card already,
so SOUP is set to one and SOCAR (1) set to blank. Go to CONTROL.
NOTYET:
If we do not have a '%' sign, SCAN is called and the
remainder of the card is flushed. GO TO NOTYET.
CONTROL: Variables are initialized to default values. The
first NSU picked up by SCAN, is the RUNAME. SCAN is called to pick
it up. The delimiter must be a colon.
The operator is picked up by SCAN indicating a circuit

deséription (TRAIZE) or a simulation run (SIMULATE) follows.

- 29 -
The delimiter must be a blank.

The keywords CIRCUIT, FAULTS, LIST, and DISP are looked
for while there is no semicolon as delimiter. For each of these
keywords, the delimiter following must be an equal sign. If
it is, SCAN is called to pick up the CNAME, FLOP, LIST and DISP,
respectively. For each, a check is made to see that the value
is not blank.

Error messages are printed if the keyword founmd is not
one of the above; 1If the delimiter following is not an equal sign
or if the operand following the keyword is a blank.

EOFILE:
If eﬁd of file is reached before a control card is

found, a message is printed..

FAIL:
The return value is set to negative one, a message is

printed with some data. The rest of the statement is flushed.

BYEBYE:
EOD and EOF regain their original labels and the value

in CCC is returned.

- 30 ~

SECTION 5) SUBROUTINE CRESSA

This subroutine creates the successors structure

$SUCS from the input references.

Description of Variables:

CNAME is the circuit name.

N# is the number of leads in the circuit.

S# is the number of successors including pointers.

IRI is the input reference lead number.

NOS is the counter of the number of input references
for each lead.

IS is the counter for the number of successors.

NSLOOP:

This loop counts the number of successors for each lead
and the total number of successors, S#. S# is incremented by one
each time a new lead is found, that has successors. The reason for
this 1s that each lead with successors must have an additional
entry, to indicate the number of successors.

Thus for a lead with K successors, K 4+ 1 locations in
the successors list are saved.

The structure is now allocated and the parameters filled in.

ISL@@P:

The output reference pointers from $LDSC are filled from
N@S. This is accomplished by looking at each lead of the circuit.
If it has any output references, the output reference pointer for

that lead is set to point to the next location (IS + 1).

- 31 ~

The value of the location pointed to is set to the number of
successors of that lead. IS is incremented by the number of
output references for the same lead. This puts IS in position for
the next lead and its output references. N@S is set to point the

same as $SLDSC.OR.
SSLOOP:

This loop fills in the successors. Each lead is
examined for input references. One by one the input reference
numbers are placed in IRI. NOS for that lead is incremented by
one, to point at the next available successors slot for that lead

and the lead is placed in the successors list.

Here is an illustration of the program action by

tracing.

CIRCUIT DIAGRAM.

“ {\ Al
%

X2

~
)

- 32 -

Let the line numbers associated with the leads be:
X1 <« 1

X2 <+ 2

Al <« '3

A2 > 4 a

1 <« 5

Let the input references be given as fwllows:

For X1 SLDSC.IR (1, J) =0 for J =1 to 5
For X2 $LDSC.IR (2, J) =0 for J =1 to 5
For Al SLDSC.IR (3, l).= 1, .

$LDSC.IR (3, 2) = 2,

S$LDSC.IR (3, J) =0 for 3 =3 to 5
For A2 $LDSC.IR (4, 1) = 2

SLDSC.IR (4, J) = 0 for J = 2 to 5
For §1 $LDSC.IR (5, 1) = 3

$LDSC.IR (5, 2) = 4

S$LDSC.IR (5,‘J) =0 for J =3 to 5
From loop NSLOOP, we calculate.

NOS (1) = 1 Also S# = 9

NOS (2) = 2

NOS (3) = 1

NOS (4) = 1

NOS (5) = 0
From loop ISLOOP, we calculate

POINTERS LIST HEADS

$LDSC.OR (1) =1 $8UCS.SS (1) =1
SLDSC.OR (2) = 3 ‘ $8UCS.SS (3) = 2

- 33 -

POINTERS LIST HEADS
SLDSC.OR (3) = 6 $SUCS.SS (6) = 1
SLDSC.OR - (4) = 8 $SUCS.SS (8) =1
So far we have created the imaginary file.
POINTERS i
1 .
I START| 1 , 2 .‘ 1 CEND
1 2 3 4 5 .4 6 7 10
N\ N - A 7
"~ R e
\\ - -

~——— LIST HEADS.— _

From loop SSLOOP we calculate
$SUCS.SS (2) = 3,

$SUCS.SS (4)

]
W
-

$8UCS.SS (5) = 4,

$SUCS.SS (7) = 5,

]
%,]

$SUCS.SS (9)

(Remember new NOS vector is changed in ISLOOP)

NOS (1) =1
POINTERS

NOS (2) = 3

NOS (3) = 6

NOS (4) = 8

- 34 -
SECTION 6) SUBROUTINE LEOR

This subroutine organizes the circuit leads into

levels, if possible.

Description of Variables:

1 TLED
2 TFNC
2 TLVL
2 . TIR (5)
2 TOR is a temporary structure to hold

an element of the $LDSC table while elements are being interchanged.
N# is the number of leads.
I# is the number inputs
¢# is the number outputs
F# is the number of feedbacks

LV is a pointer to the current level.

K is an indicator of the number of leads that have been

levelled.
MAP, PAM indicate the new line numbers assigned to the
leads. MAP is a mapping from the old line numbers to the new and
PAM is the inverse mapping.
OK is the old value of X.
Allocation of certain structures is checked and
parameters filled in.

ORG:

The initial level given to all leads is 999. MAP is
and PAM are set to the identity mapping, since no lezads have been

interchanged.

- 35 -
The levels for the feed back nodes are set to zero. This makes

it possible to level the remainder of the circuit.

LLOOP:
This loop attempts to level and organize the circuit.

Suppose we have the following circuit with the lead numbers as

4
inputs : ' 7 outputs
— PO~

The mapping that should result is 1 -1, 2+5, 3 »+ 3, 4 > 4, 5 > 2,

shown.

Here is a trace of LLOOP for the above circuit.

Present LaBeil Present Action
PRG: LVL (1) = LVL (2) = LVL (3) = LVL (4)=
LVL (5) = 999

Pk, K=0, LV=0

LLOOP: I=1

PLODP : L=1

ILOOP: IR (1, J) for J = 1 to 5 are zero
K=1
LVL (1) = O

NYET: I=2

PLOPP : L=2

ILOOP: IR (2, 1) =1, LVL (1) =0

NYET: I=3

Present Label » Present Action

PLAPP : L=3

ILOOP: IR (3, 1) =1, LVL (1) =0

NYET: I=24

PLOGP : : L=4

ILOOP: IR (4, 1) =1, LVL (1) = 0O

NYET: I= 5

QLpPP: L=>5

ILOOP: ' IR (1, J) for J =1 to 5 are zero
K=2

Call Interchange
ITC (5, 2)
LVL (2) = 0

NYET: ; I =26

Loop: | 1-=3

gLPPP: L=3

ILOOP: IR (3, 1) =1, LVL (1) = 0
IR (3, 2) = 5, LVL (2) = 0
IR (3, 3) = IR (3, 4) = IR (3, 5) =0
K =3
LVL (3) = 1

NYET: I=64

OLOPP : L =4

ILOOP: IR (4, 1) = 1, LVL (1) = 0
IR (4, 2) = 5, LVL (2) = 0

IR (4, 3) IR (4, 4) = IR (4, 5) =0

- 37 -

Present Label Present Action
K=4
LVL (4) = 1
NYET: I=25
PLOGP : L=35
ILOOP: IR (5, 1) =1, LVL (1) = 0O
IR (5, 2) = 3, LVL (3) = 1
" NYET: I=6
OK = 4, LV = 2
LLOOP: I=25
PLOPP : L=5
ILOOP: IR (5, 1) = 1, LVL (1) = O
IR (5, 2) = 3, LVL (3) =1

IR (5, 3) = IR (5, 4) = IR (5, 5) = O

K=25
LVL (5) = 2
NYET: I=¢6

- 38 -
MAP-IR~-LOOP:

Here, the input reference numbers are mapped into the
new numbers.

In LLOOP , different ' action is taken if the function
lead number is negative. This is due to the fact that macro
components must appear together in the same order. The negative
function number indicates a macro compoment, thus it must be changed

so that it immediately follows the head component in the new mapping.

FBKF:

Thils section finds maximal connected subgraphs.

Description of Variables:

VIS keeps track of the unlevelled leads we have seen,
when tracing out a maximal connected subgraph path.

MMB marks the numbefs of the maximal connected subgraph
with a '1',

S, P are pointers to leads which are unlevelled.

IN is a pointer to an input reference lead number.

MLK is a set of links in the linked list of the maximal
connected subgraphs. Each member points to another lead in the list.

MC holds a pointer to the linked lists for each maximal
connected subgraph.

MMB, MC, MLK, M are initialized. A list of the leads which
could not be levelled is printed.

For each lead of the unlevelled portion of the circuit,
VIS is initialized to zero and MCSG called if the current lead is not

a member of a maximal connected subgraph already.

- 39 -
If MCSG returns a 'l', the number of maximal connected subgraphs
is incremented by ome.
E§E§;Q¥
| This routine creates a linked list for each maximal
connected subgraph.
VIS is set to one for lead p. We travel all input
reference links of p. For each of the input references, if
VIS (IN) '0O', we have not seen this lead on thié path yet, and
if MMB (IN) is '0', it does not belong to a maximal connected sub-

graph.

INLOQP:
' If IN equals S (the original lead MCSG was called on), we
have made a loop, so MMB for the present lead is set to 'l'.

If VIS (IN) and MMB (IN) are 'l', an input reference
to a lead has been seen on this path and in a maximal connected
subgraph, therefore MMB of the present lead is set to 'l'.

If VIS (IN) and MMB (IN) are 'O', an input reference has
not been seen yet on this path, and is not in a maximal connected
subgraph, therefore, we must check it out and MCSG is called on
the input lead.

If MMB is 'O' after INLOOP has been finished, 'O' is
returned. Otherwise, 1f we have not printed any member of this
maximal connected subgraph MC (M) will be zero, so a heading is
printed. The current value in MC is put into the linked list
MLK at position p, where p 1s the new lead to be added to the
list, and the head pointer MC changed to point to p. The lead

is printed.

- 40 -
MAP-TR-LOOP:

This loop maps the input references in to their new lead
numbers using MAP. The line numbers associated with the structure
SSYMTA are also mapped.

The input, output and feedback lists are mapped into the

new lead numbers.

ITC:

This routine interchanges two members of the $LDSC
structure using the structure TLED as a temporary storage when

switching MAP and PAM are aiso up dated.

- 41 -

SECTION 7) SUBROUTINE NECAR

This subroutine reads data cards one at a time, keeps
a pointer to the current column of the card and returns the
character in the column pointed to by the pointer.

The pointer, SOUP, is incremented by one each time
NECAR is called. 1If SOUP is greater tham 72, a new card is
read. Thus, the user can use columns 1 to 72 for input information;
however, the last 8 columns are ignored. If the character in column
one is '%', that column is set to blank and a transfer made to
process the control card.

Otherwise, the charactér in the column, pointed to by

SOUP, is returned to SCAN or REBL.

- 42 -

SECTION 8) SUBROUTINE REBL

This subroutine reads through blank columns and
comments, if contained in the proper quotes.

The subroutine called is NECAR.

BLANK:

NECAR is called repeatedly while the returned value
is blank.

If the value returned is a beginning quote of a comment,
NECAR is called until an ending quote is found, otherwise the
index of the character in the delimiter stack is returned.

After a comment, NECAR is called and a transfer made to BLANK.

- 43 -

SECTION 9) SUBROUTINE SCAN

SCAN scans the source input stream and assigns to its
only parameter the next syntactic unit found. The parameter is
CHAR (*) VAR. The value returned by SCAN is the index of the
delimiter in the delimiters string (DELIS) of the source des-
cription. If there is no delimiter after the syntactic unit
(i.e. the delimiter is a blank), SCAN returns a zero. The included
structure is SD and the extermal subroutines are REBL and NECAR.
Each time SCAN is summoned, set NSU to blank and length
of NSU to zero. Call REBL to read through blanks and commenfs. If
REBL returns a non zero number, it has found a delimiter; therefore,
return from SCAN without filling NSU. 1If REBL returns a zero, it
has found a character, so concatenate this character and all follow-
ing characters until a blank is found or a character which is a
delimiter. If a delimiter has been found and is a quote, read
through comment until a non blank character is reached and
return the index of tlhe character in DELIS. If a delimiter has been
found and is not a quote, return index of the delimiter in DELIS.
If a blank has been found, read through following blanks and
comments until non blank character is found and return its index

in DELIS.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

